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Abstract

Making inference with spatial extremal dependence models can be computationally bur-
densome since they involve intractable and/or censored likelihoods. Building on recent
advances in likelihood-free inference with neural Bayes estimators, that is, neural networks
that approximate Bayes estimators, we develop highly efficient estimators for censored
peaks-over-threshold models that use augmented data to encode censoring information in
the neural network input. Our new method provides a paradigm shift that challenges tra-
ditional censored likelihood-based inference methods for spatial extremal dependence mod-
els. Our simulation studies highlight significant gains in both computational and statistical
efficiency, relative to competing likelihood-based approaches, when applying our novel es-
timators to make inference with popular extremal dependence models, such as max-stable,
r-Pareto, and random scale mixture process models. We also illustrate that it is possible
to train a single neural Bayes estimator for a general censoring level, precluding the need
to retrain the network when the censoring level is changed. We illustrate the efficacy of our
estimators by making fast inference on hundreds-of-thousands of high-dimensional spatial
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extremal dependence models to assess extreme particulate matter 2.5 microns or less in
diameter (PM2.5) concentration over the whole of Saudi Arabia.

Keywords: censored data; convolutional neural network; likelihood-free inference; neural
estimation; spatial extremes; threshold exceedance

1. Introduction

Due to the flexibility and computational scalability of neural networks, recent years have
seen a dramatic uptake in their application in the study of spatial extreme values, with
their uses ranging from extreme quantile regression (Cannon, 2010; Vasiliades et al., 2015;
Galib et al., 2022; Wilson et al., 2022; Pasche and Engelke, 2024; Richards et al., 2023a;
Cisneros et al., 2024; Richards and Huser, 2022) to extremal dependence characterisation
(Ahmed et al., 2022), extreme event simulation (Boulaguiem et al., 2022; Zhang et al.,
2023), and parameter estimation (McDonald et al., 2022; Lenzi et al., 2023; Majumder and
Reich, 2023; Walchessen et al., 2024; Majumder et al., 2024; Rai et al., 2024; Sainsbury-Dale
et al., 2024a; Zammit-Mangion et al., 2025). A promising new approach to likelihood-free
inference for spatial (and space-time) dependence models is neural point estimation. In
neural point estimation, one trains a neural network to take in data as input and pro-
vide parameter point estimates as output; see, for example, Cremanns and Roos (2017),
Zammit-Mangion and Wikle (2020), Gerber and Nychka (2021), and also Lenzi et al. (2023)
and Sainsbury-Dale et al. (2024a) who consider inference with spatial extremal processes.
Neural point estimators are accurate, very fast to evaluate (once trained) and they can be
trained to be approximately Bayes; we refer to such estimators as neural Bayes estimators
(NBEs, Sainsbury-Dale et al., 2024a). They are also “amortised” in the sense that a trained
estimator may be re-used repeatedly at almost no computational cost; once trained, these
estimators generate estimates via a single function evaluation and are very fast. Moreover,
they provide estimates without requiring evaluation of a likelihood function. This is par-
ticularly helpful for models where the likelihood function is computationally intractable or
expensive to evaluate, as is often the case with extreme value models (e.g., Padoan et al.,
2010; Castruccio et al., 2016; Huser and Wadsworth, 2022).

Models for spatial extremal dependence can be broadly classified into two categories:
models for maxima and models for peaks-over-threshold. Popular models for the former
are max-stable processes (MSPs), which arise as the only possible non-degenerate limits
of suitably normalised pointwise maxima of independent and identically distributed (i.i.d.)
random fields. Likelihood-based inference for MSPs can be computationally difficult, as the
number of likelihood terms for a d-dimensional observation vector grows super-exponentially
with d (Padoan et al., 2010). Since their popularisation by de Haan (1984), Schlather (2002),
and Padoan et al. (2010), many efforts have been made to improve the computational speed
of making inference with MSPs, and to increase the feasible dimensionality for which they
can be applied; see, for example, Genton et al. (2011), Huser and Davison (2013), and recent
work by Hector and Reich (2024) and Huser et al. (2024). Despite these efforts, traditional
techniques for making inference with MSPs remain limited to relatively low-dimensional
settings or make use of approximations that lead to a substantial loss in statistical efficiency.

Popular models for spatial peaks-over-threshold data include r-Pareto processes (Fer-
reira and de Haan, 2014; de Fondeville and Davison, 2018), inverted MSPs (Wadsworth
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and Tawn, 2012), random scale/location mixtures (Huser et al., 2017; Krupskii et al., 2018;
Huser and Wadsworth, 2019), and the spatial conditional extremes model (Wadsworth and
Tawn, 2022). It has been shown that likelihood estimators for these models can be highly
biased if spatial extreme events include marginally non-extreme observations (Huser et al.,
2016), and this sub-asymptotic misspecification problem is often solved by treating non-
extreme observations as censored when making inference. Although the spatial conditional
extremes model usually suffers less from these bias issues, inference with this model may
still require censored likelihood estimation in certain applications (e.g., for rainfall extremes,
see Richards et al., 2022). Moreover, whilst MSPs are not intended to be used with peaks-
over-threshold data (being limits for maxima, not threshold exceedances), their joint tail
structure is in one-to-one correspondence with r-Pareto processes. It is therefore possible to
fit models designed for maxima to high peaks-over-threshold data by censoring low values
as, for example, done by Huser and Davison (2014). In these peaks-over-threshold infer-
ence approaches, censoring is key to avoid non-extreme values from adversely affecting the
estimation of the extremal dependence structure, but can lead to computationally burden-
some inference. While computations can be simplified through the use of a nugget effect
(see, e.g., Zhang et al., 2022), such approaches are still computationally demanding in high
dimensions. Censoring is therefore an important technique when making inference with
models for spatial extremes, but comes at a high (often prohibitive) computational cost.

A way forward to circumvent the computational issues that arise when censoring data
is to use likelihood-free inference methods, where the likelihood function need not be evalu-
ated. NBEs are an attractive choice since, as discussed above, they are likelihood-free and
optimal in a Bayes sense. Lenzi et al. (2023) and Sainsbury-Dale et al. (2024a) illustrate the
efficacy of their use when estimating the parameters for several spatial extremal processes,
including the Schlather (Schlather, 2002) and Brown–Resnick (Brown and Resnick, 1977)
classes of max-stable processes, and the spatial conditional extremes model (Wadsworth
and Tawn, 2022). However, the treatment of censored data in this framework has not yet
been addressed. In this paper we develop a class of NBEs that allow for, and efficiently
extract information from, censored data. The resulting NBEs can be used to make inference
from censored data with a variety of popular peaks-over-threshold models. We observe sub-
stantial gains in statistical and computational efficiency (when evaluating a trained NBE)
over competing censored likelihood-based approaches. Our proposed framework allows us
to make inference with spatial extremal dependence models of a dimension that is much
higher than was previously possible when used in an “operational” manner, that is, when
used to repeat an estimation task thousands of times within a short time frame (e.g., a few
minutes). In our application, we fit upwards of 130 million separate extremal dependence
models using five different trained NBEs; the scale of such a study is unprecedented in lit-
erature on models for spatial extreme values. Our methodology has been incorporated into
the user-friendly open-source software package NeuralEstimators (Sainsbury-Dale, 2024),
which is available in Julia and R.

The remainder of this paper is organised as follows. In Section 2, we review NBEs
and outline our new methodology for handling censored inputs. In Section 3, we summarise
some popular spatial extremal dependence models and discuss estimation strategies based on
censored likelihood maximisation. In Section 4, we conduct simulation studies to illustrate
the efficacy of our inference framework, and in Section 5, we apply our estimator to analyse
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extremal dependence of high-resolution Saudi Arabian particulate matter data. The paper
concludes with a discussion in Section 6. Reproducible code is available from https://

github.com/Jbrich95/CensoredNeuralEstimators.

2. Methodology

In Section 2.1, we review NBEs. In Section 2.2, we detail our methodology for adapting
NBEs to allow them to handle censored data as input.

2.1 Neural Bayes estimators

A parametric statistical model is defined as a set of probability distributions P on a sample
space Ω, parameterised by a parameter vector θ ∈ Rp such that P := {F (· | θ) : θ ∈ Θ},
where Θ is the parameter space (see McCullagh, 2002). For ease of exposition, we take
Ω ⊆ Rd and assume that F (· | θ) admits a density f(· | θ) with respect to Lebesgue mea-
sure. Consider m mutually independent realisations from F (· | θ) ∈ P; a point estimator
θ̂(·) is any mapping from Ωm to Θ. Denote the realisations as Z := (Z′1, . . . ,Z

′
m)′. The

performance of an estimator θ̂(·), for a given θ and Z, can be evaluated using a loss function
L : Θ×Θ→ [0,∞). The risk of the estimator at θ is then defined as

R(θ, θ̂(·)) :=

∫
Ωm

L(θ, θ̂(z))f(z | θ)dz, (1)

which represents the expected loss over all possible data realisations. The Bayes risk is a
weighted average of (1) over θ ∈ Θ, with respect to some prior measure Π(·), defined as

rΠ(θ̂(·)) :=

∫
Θ
R(θ, θ̂(·))dΠ(θ). (2)

An estimator θ̂(·) that minimises (2) is a Bayes estimator with respect to L(·, ·) and Π(·).
Bayes estimators have attractive theoretical properties under mild regularity conditions,
including asymptotic normality, efficiency, and consistency under the squared-error loss
(see, e.g., Lehmann and Casella, 1998).

An NBE is a neural network that approximately minimises (2). Bayes estimators for
independent replicates satisfy permutation invariance; that is, θ̂(Z) = θ̂(Z?) where Z? de-
notes any permutation of the independent replicates in Z (Sainsbury-Dale et al., 2024a). To
construct parsimonious NBEs that have this property, Sainsbury-Dale et al. (2024a) pro-
pose using a neural network architecture known as DeepSets (Zaheer et al., 2017). Consider
the functions ψ : Rd 7→ Rq and φ : Rq 7→ Rp, and a permutation-invariant set function
a : (Rq)m 7→ Rq. Here, we let the j-th component of a, aj(·), return the element-wise
average over its input set (of cardinality m) for j = 1, . . . , q. We represent φ(·) and ψ(·)
as neural networks, and collect in γ := (γ ′φ,γ

′
ψ)′ their trainable parameters (the so-called

“weights” and “biases”). Then, a permutation invariant NBE is of the form

θ̂(Z;γ) = φ(T(Z;γψ);γφ), with T(Z;γψ) = a({ψ(Zt;γψ) : t = 1, . . . ,m}). (3)

Permutation invariance allows the NBE to handle independent replicates parsimoniously,
which is key for inference with replicated data and spatial extremal dependence models.
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As our interest is in estimating dependence only, we hereon assume that θ determines only
the dependence characteristics of Z, not its marginal behaviour. Following Sainsbury-Dale
et al. (2024a), we use a densely-connected neural network for φ(·); the architecture for ψ(·)
is application-dependent (see the example in Section 4.1).

An NBE is trained by finding the neural-network parameters γ∗ that minimise (2) in the
estimator space spanned by θ̂(·,γ). As (2) cannot be directly evaluated, it is approximated
using Monte Carlo methods. Given a set of K parameter vectors, {θ(k) : k = 1, . . . ,K},
drawn from the prior Π(·), we simulate, for each k, m mutually independent random samples
Z(k) from F (· | θ(k)). Then we approximate (2) using the estimator parameterised by γ as

r̂Π(θ̂(· ;γ)) =
1

K

K∑
k=1

L(θ(k), θ̂(Z(k);γ)) ≈ rΠ(θ̂(· ;γ)), (4)

and we obtain estimates γ∗ = argminγ r̂Π(θ̂(· ;γ)) using back propagation and stochastic
gradient descent.

When training an NBE for a large number of replicates m, computational speed-ups can
be achieved with the use of pre-training (Goodfellow et al., 2016, Ch. 8). Let γ∗m denote the
optimal NBE weights for datasets containing m replicates. We employ pre-training by first
finding γ∗m̃ for some smaller sample size m̃ < m, and then using these as initial estimates
when finding γ∗m. In practice, we run a recursive pre-training scheme for a sequence of
increasing sample sizes, m̃ := (m̃1, m̃2, . . . ,m)′; for details, see Section 4.1. Throughout we
assume that m equals the number of observations from which inference needs to be made.

2.2 Neural Bayes estimators for censored data

In Section 2.2.1, we review censored likelihood-based inference and detail a way of encoding
relevant censoring information into the input of an NBE. In Section 2.2.2, we describe how
to build NBEs that can be used with a range of censoring levels.

2.2.1 Encoding censored values

Suppose that we have (time-)replicated observations Zt := (Zt,1, . . . , Zt,d)
′ for t = 1, . . . ,m,

sampled independently from the joint distribution F (· | θ), and that we want to estimate
the unknown parameter vector θ by prioritising calibration in the joint upper tail. In
order to prevent low values from affecting the estimation of extremal dependence, the stan-
dard approach in statistics of extremes is to treat all observations falling below some high
marginal quantile as censored. That is, while we know which observations are treated as
censored or not, the exact values of the censored observations are assumed to be unknown.
Mathematically, we consider a vector of censoring thresholds c := (c1, . . . , cd)

′, where here
cj = F−1

j (τ | θ) is set to be the marginal τ -quantile of Zt,j , j = 1, . . . , d, for some prob-
ability τ ∈ [0, 1) close to one. Let It := (It,j : j = 1, . . . , d)′, with It,j = 1{Zt,j ≤ cj},
denote the vector of indicator variables with j-th component equal to one if the correspond-
ing element of Zt is censored and zero otherwise, and let dt− :=

∑d
j=1 It,j ≤ d denote the

number of censored components. We rearrange the observation vector as Zt = (Z′t−,Z
′
t+)′,

where Zt− := (Zt,j : Zt,j ≤ cj , j = 1, . . . , d)′ is the subvector of censored observations,
and Zt+ := (Zt,j : Zt,j > cj , j = 1, . . . , d)′ is the subvector of uncensored observa-
tions. We do the same for the vector of censoring thresholds ct := (c′t−, c

′
t+)′, where
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ct− := (cj : Zt,j ≤ cj , j = 1, . . . , d)′ and ct+ := (cj : Zt,j > cj , j = 1, . . . , d)′. Note that ct
is a permutation of c, with the ordering time-dependent. Traditional censoring in statistics
of extremes assumes that Zcens

t := (I′t,Z
′
t+)′ is the only information available for inference

at time t. The corresponding likelihood contribution is given in the following proposition.

Proposition 1 Let Zt = (Zt,1, . . . , Zt,d)
′, d ∈ N, t = 1, . . . ,m, be random vectors de-

fined by a statistical model parameterised by θ with joint distribution F (· | θ) and density
f(· | θ). Let Zt+ := (Zt,j : Zt,j > cj , j = 1, . . . , d)′ denote the subvector of uncensored values
of Zt, where c := (c1, . . . , cd)

′ is a vector of censoring levels with time-dependent subvector
ct− = (cj : Zt,j ≤ cj , j = 1, . . . , d)′. Given indicators It := (1{Zt,j ≤ cj} : j = 1, . . . , d)′, the
likelihood contribution of Zcens

t := (I′t,Z
′
t+)′ is∫ ct−

−∞
f(zt | θ)dzt− =

∂|Jt|∏
j∈Jt∂zj

F (z | θ)

∣∣∣∣
z=bt

, t = 1, . . . ,m, (5)

where zt = (zt,1, . . . , zt,d)
′ is the realisation of Zt, Jt := {j : zt,j > cj} denotes the indices

of the uncensored components of zt with subvector zt− := (zt,j : zt,j ≤ cj , j = 1, . . . , d)′, and
bt := (max{zt,j , cj} : j = 1, . . . , d)′.

For completeness, we provide a formal proof of (5) in Appendix A. Note that (5) is a
dt−-variate integral of the joint density; if dt− is large, (5) quickly becomes computationally
intractable and this often prevents censored likelihood inference in moderate-to-large di-
mensions d. While a different censoring framework for extremal processes has been used by
Wadsworth and Tawn (2012), Opitz (2016), and Wadsworth et al. (2017), the formulation
in (5) is usually preferred since it is more robust against model misspecification in the bulk,
and thus less subject to sub-asymptotic estimation bias (Huser et al., 2016). In this paper,
we seek to develop novel NBE methodology that is able to handle censored inputs in a way
similar to the censored likelihood contribution in (5).

A possible approach could be to discard all censored observations, Zt−, and train our
NBE based on the uncensored data only, namely Zt+. However, this approach inevitably
leads to a loss of information, particularly for large τ close to one, given that the indicator
vector It is then ignored: it is impossible to recover the censored likelihood contribution (5)
from the marginal density of Zt+ alone. We note that the information carried by It may not
be negligible (especially for large d); in the spatial setting, for example, larger (respectively
smaller) clusters of zeros or ones are indicative of stronger (respectively weaker) spatial
dependence. Moreover, this “data removal” approach requires a specialised neural network
architecture that can efficiently handle partially-observed vectors with varying patterns of
missingness, given that the censored observations may change with every time replicate.
Such an architecture can be difficult to design and implement.

Here, we propose a different approach that circumvents the aforementioned issues. We
first standardise the data to an appropriate scale by marginally transforming the data
Zt = (Z′t−,Z

′
t+)′ to Z∗t := ((Z∗t−)′, (Z∗t+)′)′ with marginal distribution H(·). We then replace

the censored component Z∗t− with a constant ζτ < H−1(τ) (which may vary with the

censoring probability τ). In other words, we construct the vector Z̃∗t := (ζ′τ , (Z
∗
t+)′)′, where

ζτ := (ζτ , . . . , ζτ )′ denotes a vector of appropriate length, so that Z̃∗t is of dimension d and of
the same format as the original vector Zt. Motivated by Proposition 1, we then propose to
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train the NBE using an augmented dataset At := (I′t, (Z̃
∗
t )
′)′, t = 1, . . . ,m. The new input is

passed to the NBE by replacing Zt in (3) with At arranged in a multi-dimensional array with
two outer dimensions corresponding to It and Z̃∗t , respectively. While the choice of marginal
distribution H(·) and constant ζτ are, in principle, arbitrary, a judicious choice can facilitate
the training of the NBE. In particular, we find that the estimator is more easily trained when
H(·) has a finite lower bound zH < ∞ and when ζτ ≤ zH . For example, one could choose
H(·) to be the unit exponential distribution function and ζτ ≤ 0; in this way, ζτ is outside
the possible set of uncensored values, which helps the neural network distinguish between
the two data types, and thereby learn to treat censored data differently to fully-observed
data. We further note that while the augmented data set At includes additional (artificial)
data, when compared to Zcens

t used to define the censored likelihood contribution (5), these
artificial values are fixed and independent of θ ∈ Θ. During training, the NBE therefore
learns to ignore these censored values; in our simulation study in Section 4, we verify that
our censored NBE has indeed a similar performance to censored likelihood estimators in
cases where the latter can be computed. A similar point estimation approach (that uses
both data and an indicator variable) was proposed by Pagendam et al. (2023) and Wang
et al. (2024) in the context of missing (not censored) data. There is a subtle but fundamental
difference between censoring and missingness; while the censoring mechanism is completely
determined by the data and the censoring level τ (and is thus itself dependent on θ), data
missingness mechanisms are often independent of the data generating process.

2.2.2 Varying censoring level

To accommodate varying censoring levels, we feed τ as an input to the outer neural network
of the NBE; that is, with a slight abuse of notation, we replace (3) with

θ̂(A, τ ;γ) = φ(T(A;γψ), τ ;γφ), (6)

where T(A;γψ) is as defined in (3) but with Z replaced by the augmented data set A :=

(A′1, . . . ,A
′
m)′ and with Zt replaced with At. The NBE θ̂(A, τ ;γ) is approximately Bayes

for any A ∈ ΩA,τ and τ ∈ T ⊆ [0, 1) if it minimises, with respect to γ, the Bayes risk,

rcens
Π (θ̂(·, · ;γ)) :=

∫
Θ

∫
T

∫
ΩA,τ

L(θ, θ̂(a, τ ;γ))f(a | τ,θ)p(τ)da dτ dΠ(θ), (7)

where p(τ) is a prior density for τ , and ΩA,τ is the sample space of the augmented dataset
A, which is τ -dependent. This adaptivity to τ may be useful where, for example, data-
collection devices only store values that exceed a certain threshold, but where the threshold
is variable. In Appendix B, we show that this augmented Bayes estimator is invariant to
the choice of p(τ), provided that T is a subset of its support and that τ is independent of
θ (as is always the case in applications of the peaks-over-threshold censoring framework).

To train the NBE, we use a Monte Carlo approximation to (7) similar to (4), obtained
by sampling θ and τ from their prior distributions, and simulating A by conditioning on
these samples.
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3. Spatial extremal processes

Here we concisely describe the spatial extremal processes that we consider in our simulations
and application; we provide details of the processes and their inference using censored
likelihoods. Section 3.1 details max-stable, r-Pareto, and inverted max-stable processes.
In Appendix C, we give further details on r-Pareto and Matérn Gaussian processes in
Sections C.3 and C.2, respectively, with the latter used to build the random scale mixture
processes described in Section 3.2. For comprehensive reviews of the considered processes,
see Davison et al. (2012), Davison et al. (2019) and Huser and Wadsworth (2022). For the
software used for inference and simulation, see Section C.4 of Appendix C.

3.1 Max-stable, r-Pareto, and inverted max-stable processes

Suppose that {Xt(s) : s ∈ S} are i.i.d. stochastic processes with continuous sample
paths on S ⊂ R2 and there exists sequences of functions am(s) > 0 and bm(s), such

that {am(s)}−1

[
max

t=1,...,m
{Xt(s)} − bm(s)

]
, converges weakly, as m → ∞, to a process

{Z(s) : s ∈ S} with non-degenerate margins. Then Z(s) is a max-stable process (MSP)
with generalised extreme value margins (de Haan, 1984); see, for example, Davison and
Huser (2015) and Section C.1 of Appendix C. Following marginal standardisation to unit
Fréchet, denoted by Z̃(s), and under mild regularity conditions (de Haan, 1984; de Haan
and Ferreira, 2006), a MSP can be constructed through the spectral representation

Z̃(s) = sup
k≥1

RkWk(s), (8)

where {Rk}k∈N are points of a Poisson process on (0,∞) with intensity r−2dr and
{Wk(s)}k∈N are i.i.d. copies of a non-negative stochastic process W (·) satisfying E[W (s)] = 1
for all s ∈ S.

Specification of the process W (s) in (8) leads to a limited selection of parametric mod-
els for MSPs (see e.g., Smith, 1990; Schlather, 2002; Kabluchko et al., 2009; Opitz, 2013).
Whilst Sainsbury-Dale et al. (2024a) consider inference for the Schlather process (Schlather,
2002), we instead focus on the more flexible Brown–Resnick model (Brown and Resnick,
1977; Kabluchko et al., 2009; Engelke et al., 2011); Lenzi et al. (2023) have previously
considered neural estimators for this process, albeit in the uncensored setting. The Brown–
Resnick model is defined by specifying W (s) = exp{ε(s) − σ2(s)} for ε(s) a zero-mean
Gaussian process (GP) with variance σ2(s) > 0 for all s ∈ S, and which satisfies ε(0) = 0
almost surely. Extremal dependence in Z̃ is controlled by the semivariogram of the under-
lying process ε(·), denoted γ(si, sj). A typical model for γ is the stationary and isotropic
semivariogram γ(si, sj) = (‖si − sj‖/λ)κ, with range and smoothness parameters λ > 0
and κ ∈ (0, 2], respectively; in this case, σ2(s) = 2γ(s,0) = 2(‖s‖/λ)κ. We adopt this
model and hence inference for this process requires estimation of the unknown parameter
vector θ = (λ, κ)′. Note that whilst we focus on a single class of MSP, it is trivial to ex-
tend our censored NBE framework to other parametric max-stable processes, provided that
simulation is feasible.

As for r-Pareto processes, they arise as the only possible limits of properly renormalised
threshold exceedances defined in terms of a homogeneous risk functional r(·) that determines

8



Neural Bayes estimators for censored inference

the ‘magnitude’ of the process. Their characterization is intrinsically linked to max-stable
processes; in particular, r-Pareto processes can be sampled by generating the random func-
tions RkWk(·) in (8) and retaining only those such that r{RkWk(·)} > 1. For more details
on risk functionals and r-Pareto processes, see Section C.3 of Appendix C.

We quantify the strength of asymptotic dependence through the measure χ(·, ·), the
upper-tail index (Joe, 1997). Assuming Z(si) ∼ Fi, Z(sj) ∼ Fj with continuous Fi, Fj ,
then χ(si, sj) = limq→1 Pr[Fi{Z(si)} > q | Fj{Z(sj)} > q], where the process Z(·) exhibits
asymptotic independence between sites si and sj if χ(si, sj) = 0, and asymptotic dependence
otherwise. Max-stable and r-Pareto processes are either inherently asymptotically depen-
dent (i.e., χ(si, sj) > 0 for all si, sj ∈ S) or exhibit exact independence everywhere; this lim-
itation may not be appropriate for some environmental applications where extreme events
become increasingly localised with severity (Huser and Wadsworth, 2019). Wadsworth and
Tawn (2012) propose an alternative collection of flexible sub-asymptotic models for spatial
extremal processes, which exhibit asymptotic independence (but not exact independence).
One such model is the inverted max-stable process (IMSP), which is obtained by applying a
monotonically-decreasing marginal transformation to a MSP. An IMSP Y (s) with standard
exponential margins can be constructed from a MSP Z̃(·) by setting Y (s) = 1/Z̃(s) for all
s ∈ S: if Z̃(·) is a Brown–Resnick process, then we term Y (·) an “inverted Brown–Resnick
process”. Inference for an inverted Brown–Resnick process requires estimation of the same
parameter vector, θ = (λ, κ)′, as its max-stable counterpart.

Inference for MSPs is computationally problematic as the full d-dimensional density is
generally intractable even for moderate d (i.e., for d > 12, see Castruccio et al., 2016); note
that, by construction, IMSPs inherit the intractable likelihood and computational issues of
MSPs (Huser and Wadsworth, 2022). Computational speed-ups can be exploited in certain
cases, see, for example, Stephenson and Tawn (2005), Davison and Gholamrezaee (2012),
Wadsworth and Tawn (2014) and Dombry et al. (2017), but their use can lead to biased pa-
rameter estimation (Wadsworth, 2015; Huser et al., 2016) and still incur high computational
demand in relatively low dimension, that is, d < 20 (Huser et al., 2019). Intractability of the
full likelihood has motivated the use of composite pairwise likelihood methods, developed
by Padoan et al. (2010), for inference with MSPs; these approaches falsely assume mutual
independence between all observation pairs and construct the (surrogate) pairwise likeli-
hood as a (potentially weighted) product over all bivariate densities. Under mild regularity
conditions, pairwise likelihood inference leads to valid inference, whereby the correspond-
ing estimators exhibit consistency and asymptotic normality (Padoan et al., 2010; Varin
et al., 2011), but they suffer from a reduction in efficiency relative to methods using the
full likelihood (Huser and Davison, 2013; Castruccio et al., 2016). Computational expense
for the pairwise likelihood grows with rate O(d2), so a common approach is to use only
observation pairs with sampling locations with pairwise distance subceeding a fixed cut-off
distance, hmax say; this has been shown to improve both statistical, and computational,
efficiency of the pairwise likelihood estimator (Bevilacqua et al., 2012; Sang and Genton,
2014). Due to their popularity, we adopt censored pairwise likelihood estimators as the com-
peting likelihood approach for MSPs, IMSPs, and GPs, in the simulation study detailed in
Section 4.

The aforementioned issues with likelihood-based inference with MSPs and IMSPs are
compound with the requirement of left-censoring for unbiased inference (see Section 2.2.1);
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for expressions of the censored pairwise likelihood for the Brown–Resnick process and asso-
ciated IMSP, see Huser and Davison (2013) and Thibaud et al. (2013), respectively.

3.2 Random scale mixtures

Max-stable and r-Pareto processes can be constructed from scale mixture processes of the
form Z(s) = RW (s), for an asymptotically independent stochastic process W (s) with light
or bounded upper-tails and an independent Pareto-tailed random variable R; such mixture-
based processes exhibit asymptotic dependence due to the heavy-tailed random variable
R (Huser and Wadsworth, 2022). Modification of R and/or W (·) can lead to processes
with more flexible extremal dependence than the inherent asymptotic dependence of MSPs
and r-Pareto processes. Popular examples include Gaussian scale (Huser et al., 2017) and
location (Krupskii et al., 2018; Castro-Camilo and Huser, 2020) mixtures, but we constrain
our focus to the random scale mixture process proposed by Huser and Wadsworth (2019),
which provides a model that parsimoniously bridges the gap between asymptotic dependence
and asymptotic independence in the interior of the parameter space.

Following Huser and Wadsworth (2019), we define a process {Z(s)} = Rδ{W (s)1−δ} for
δ ∈ [0, 1], and where R ≥ 1 is a unit Pareto random variable and {W (s) : s ∈ S} is a stochas-
tic process with unit Pareto margins that exhibits asymptotic independence, for example,
a marginally transformed GP or IMSP. The parameter δ controls the extremal dependence
class of the process Z; if δ < 1/2, then Z inherits the extremal dependence class of W and,
hence, exhibits asymptotic independence; if δ ≥ 1/2, Rδ is heavier-tailed than W (s)1−δ, and
so Z is asymptotically dependent. As this model interpolates between an asymptotic de-
pendence, and asymptotic independence, regime, it provides a flexible extremal dependence
model that does not require choosing the extremal dependence class of data a priori. We
follow Huser and Wadsworth (2019) and take W (·) to be a (marginally transformed) GP;
we adopt the Matérn class with range λ > 0 and smoothness κ > 0, described in Section C.2
of Appendix C. Hence, inference for Z follows by estimating θ = (λ, κ, δ)′. Note that whilst
R and W (·) have unit Pareto margins, this does not hold for Z(·); hereafter we assume that
the margins of Z(·) have been standardised to unit Pareto.

Huser and Wadsworth (2019, 2022) use the full d-dimensional likelihood for inference,
rather than the pairwise alternative described in Section 3.1; this is approximated via a
quasi-Monte Carlo algorithm (described in Section C.3 of Appendix C). We note that Zhang
et al. (2022) adapt the model of Huser and Wadsworth (2019) to a hierarchical Bayesian
setting, where the full d-dimensional censored likelihood becomes more easily amenable to
high dimensions by adding a tiny noise term; however, as we are considering the Huser and
Wadsworth (2019) model in the original frequentist setting, we use the quasi-Monte Carlo
estimator as the competing likelihood approach for this model (see Section 4). Note that
the full likelihood does not scale well with d, and so previous applications of this model have
been limited to moderate dimensions (mostly d ≤ 30, and d ≤ 200 for Zhang et al., 2022);
in Section 5, we illustrate that much higher dimensional inference (d > 1000) is possible
using our fast NBE-based approach.
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4. Simulation studies

We now conduct several simulation studies to highlight the efficacy of our novel NBE against
competing censored (pseudo) likelihood approaches. In Section 4.1, we outline the general
setting for the simulation studies. In Section 4.2, we consider studies where the censoring
threshold τ is fixed, while in Section 4.3 we consider studies where τ varies during training.

4.1 General setting

We illustrate our methodology by application to a variety of spatial extremal processes
{Z(s) : s ∈ S}, described in Section 3, indexed by the spatial location s ∈ S ⊂ R2. Inference
on Z(·) is made using replicated observations Zt = (Zt,1, . . . , Zt,d)

′ for t = 1, . . . ,m, where
each Zt is an independent realisation of Z(·) at gridded sampling locations {s1, . . . , sd} ⊂ S
at time t. The domain of interest, S, is taken to be a 16×16 regular grid on [0, 16]× [0, 16],
which gives |S| = 162 = 256 sampling locations.

Our NBEs use the architecture given in Table 1, with ψ(·) and φ(·) in (3) constructed
using the first four and last two rows, respectively, of Table 1. Following Sainsbury-Dale
et al. (2024a), we use a convolutional neural network (CNN) to model ψ(·); for details, see
Gu et al. (2018). Note that CNNs are only applicable if the inputs are completely observed
over a regular grid; hereon we assume this to be the case, but discuss alternative approaches
for non-gridded data in Section 6. We use m = 200 independent replicates throughout, and
the pre-training scheme described in Section 2.1, with m̃ = (10, 50, 100, 200)′; L(·, ·) in (2)
is taken to be the absolute-error loss. NBEs are trained and validated with parameter sets
of length K and K/5, respectively, where K differs between studies. For each sampled
parameter vector θ(k), k = 1, . . . ,K, we generate a random censoring level τ together with
m mutually independent random samples of the augmented (censored) data, i.e., pairs
{A(k), τ (k)}; see Section 2.2.2. For the general case where the NBE is dependent on the
censoring level (as in (6)), the empirical marginal risk for the parameter corresponding

to the i-th component θ
(k)
i of θ(k) is K−1

∑K
k=1 L(θ

(k)
i , [θ̂(A(k), τ (k);γ)]i); we also consider

the fixed-τ case, which is a special case where the prior density p(τ) is degenerate at a
fixed value of τ , i.e., all sampled values of τ are the same. All NBEs and likelihood-based
estimators are tested by evaluating this empirical marginal risk (under both the absolute
and squared-error loss) on a test set of 1000 parameter vectors; as the absolute and squared-
error losses are additively separable, summing the empirical marginal risks for i = 1, . . . , p
gives a Monte Carlo approximation of the risk in (7). We assume that the parameters are a
priori independent with marginal prior distributions λ ∼ Unif(2, 10), κ ∼ Unif(0.5, 2) and
δ ∼ Unif(0, 1) across all models.

We conduct our experiments using the package NeuralEstimators (Sainsbury-Dale,
2024), which is available in Julia and R. NBEs are trained on GPUs randomly selected
from within KAUST’s Ibex cluster, whilst likelihood-based estimators are evaluated on
CPUs from KAUST’s Shaheen II supercomputer, see https://docs.hpc.kaust.edu.sa/

systems/ibex and https://www.hpc.kaust.edu.sa/content/shaheen-ii-0 for details
(last accessed 19/12/2024).
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Table 1: Neural network architecture used in Section 4. Each convolution filter uses zero
padding and unit stride. The function vec(·) refers to a flattening of an array
to a vector. All layers, except the final layer, used rectified linear unit (ReLU)
activation functions; the final layer uses the identity function. Note that p is the
number of model parameters.

layer type input dimension output dimension filter dimension parameters

2D convolution [16, 16, 2] [7, 7, 64] 10× 10 6400c+ 64
2D convolution [7, 7, 64] [3, 3, 128] 5× 5 204,928
2D convolution [3, 3, 128] [1, 1, 256] 3× 3 295,168
vec(·) [1, 1, 256] [256] 0
dense [256] [500] 128,500
dense [500] [p] 501p

total trainable parameters: 641,460+501p

4.2 Fixed censoring threshold

We here consider a fixed censoring threshold of τ = 0.9 that does not change during training.
We compare our NBEs to estimators based on both the pairwise and full likelihood.

4.2.1 Comparison to pairwise likelihood estimators

We compare NBEs to censored pairwise likelihood estimators for fitting Matérn GPs (see
Section C.2 of Appendix C), MSPs and IMSPs; note that inference with each requires
estimation of a range and smoothness parameter, λ and κ, respectively. For the censored
pairwise likelihoods (CPL), we consider two cut-off distances (see Section 3.1): hmax = 3
units and hmax =∞ units (i.e., where all pairs are used).

Each NBE takes under three hours to train, with K = 100, 000 training samples, and
estimation (given a single parameter set) is incredibly fast, taking on average 0.0016 seconds.
In comparison, estimation with the pairwise likelihood is much slower; for hmax = ∞, the
GP and MSP/IMSP required approximately 10 and 20 minutes on average, respectively,
with these averages lowering to 2.1 and 1.8 minutes when hmax = 3; thus, the NBE provides
a speed-up of the order of 67,500–750,000 (post-training) in this case.

Results for the three considered processes are given in Tables 2 and A1, which present
the marginal test risk with respect to the absolute and squared-error loss, respectively.
We observe lower marginal test risk (with respect to both loss functions) for both param-
eters when using an NBE compared to the censored pairwise likelihood, suggesting that
the former is more statistically efficient. Overall, our proposed NBE for censored data ex-
hibits substantial increases in both statistical and computational efficiency relative to the
competing likelihood-based approach.

Figure 1 presents the joint distribution of parameter estimates for a single test parameter
vector with 1000 sets of replicates. The NBE captures the dependence in estimates of (λ, κ)′

that is also present when utilising the competing pairwise likelihood estimator (hmax = 3),
but our NBE clearly has lower sampling variability than the pairwise likelihood estimator.
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Table 2: Results for the simulation study detailed in Section 4.2.1. Marginal test risks (s.d.)
under the absolute-error loss are provided separately for λ (×10−1) and κ (×10−2).
Test risks under the squared-error loss are presented in Table A1 of Appendix E.
The lowest value in each column is given in bold.

GP MSP IMSP
λ κ λ κ λ κ

NBE 3.1 (0.1) 4.5 (0.1) 2.4 (0.1) 1.8 (0.1) 2.6 (0.1) 2.2 (0.1)
CPL (hmax = 3) 4.4 (0.1) 5.7 (0.2) 3.5 (0.1) 2.2 (0.1) 4.6 (0.2) 3.2 (0.1)
CPL (hmax =∞) 9.3 (0.2) 16.0 (0.5) 4.3 (0.1) 6.4 (0.2) 5.4 (0.2) 6.8 (0.2)

Figure 1: Empirical joint distribution from 1000 parameter estimates for (left) GP, (centre)
MSP and (right) IMSP, given replicates from a single test parameter set (green
cross). Black and blue points denote estimates from the CPL with cut-off dis-
tances hmax =∞ and hmax = 3, respectively, whilst the brown points correspond
to estimates from the NBE.

4.2.2 Comparison to full likelihood estimators

We now consider inference for the HW and r-Pareto processes detailed in Sections 3.1–3.2.
Typical likelihood-based inference for both processes uses the full d-dimensional likelihood,
approximated via quasi-Monte Carlo methods; we compare the efficacy of such an approach
against our proposed NBE. Inference with the r-Pareto process requires estimation of the
Brown–Resnick variogram parameters described in Section 3.1.

For the HW model, previous attempts at inference have been limited to moderate di-
mension d ≤ 30 due to the computational expense of evaluating the likelihood (with the
exception of Zhang et al. (2022), who pushed it to d ≤ 200 using specialised Bayesian
methods); we find that likelihood inference for replicates on the previously defined 16× 16
grid (d = 256) is not computationally feasible. Hence, we perform inference for the model
simulated on a smaller spatial domain S∗, which is taken to be a regular 6 × 6 grid on
[0, 16]× [0, 16] (with d = 62 = 36). Whilst we compare NBE- and likelihood-based inference
on this smaller grid, we further illustrate that inference for the process observed on the
larger 16 × 16 grid is feasible with an NBE; for the r-Pareto process, however, we only
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consider the larger grid. We slightly adjust the architecture in Table 1 to account for the
smaller size of S∗ relative to S; this architecture is given in Table A6.

We use K = 100, 000 (K = 500, 000) for the r-Pareto process and HW process on S
(and S∗). As relatively less information is contained within a single replicate, we found that
larger K was required to train the NBEs with the smaller domain S∗; see also, Section 5.
NBE estimation time using either architectures (Table 1 or Table A6 of Appendix E) is
comparable with that described in Section 4.2.1. Estimation time with the full likelihood is
unpredictable as it is dependent on the number of censored locations within a field, which
varies between replicates. For the r-Pareto process, the estimation time varies between
approximately 2.5 and 12 hours, and for the HW process (on S∗), it varies between ap-
proximately 1 and 10 hours, but with some cases requiring upwards of 24 hours. These
times clearly show that likelihood-based inference for a HW process observed on S is not
computationally feasible, even when using astute quasi-Monte Carlo approximations.

Results for the r-Pareto process and HW processes are presented in Tables A2–A5 of
Appendix E. For the r-Pareto process, our NBE significantly outperforms the likelihood-
based estimator; the marginal test risk (with respect to both considered losses) is lower
for both parameters, suggesting a gain in statistical efficiency when using the NBE. For
the HW process (with domain S∗), the NBE is more computationally efficient than the
likelihood-based approach, and it exhibits gains in statistical efficiency, especially for the
parameter δ considered the most difficult parameter to infer (Huser and Wadsworth, 2019).
Computational limitations mean that we are prohibited from using the full likelihood-based
approach for inference of the process on the larger domain S, but the NBE does not have
the same limitation.

Figure 2 presents the joint distribution of parameter estimates, for both the r-Pareto,
and HW, processes, given a single test parameter vector with 1000 sets of replicates. For the
r-Pareto process, we observe that the NBE provides unbiased estimation of θ = (λ, κ)′, with
a reduction in the variance of the estimator relative to the likelihood-based approach. For
the HW process, we observe that, when considering S∗, the joint distribution of parameter
estimates is similar for NBE- and likelihood-based inference; when the size of S grows, a
substantial reduction in estimator variance is observed.

4.3 Varying censoring threshold

We now investigate the amortised nature of NBEs, in particular their efficiency in handling
variable censoring levels using a single estimator (trained only once); we constrain our
focus to censoring levels τ ∈ [0.85, 0.95], which is the typical range for such values in
applications of spatial peaks-over-threshold models, and set K = 125, 000 training samples
throughout. We consider inference for the IMSP and HW processes, defined over the 16×16
grid S, as considered in Section 4.2.2 and with the same priors on their respective parameter
sets. An estimator, accommodating variable τ , is constructed using the scheme described
in Section 2.2.2: the “τ -random” NBE is trained by sampling τ from a Unif(0.85, 0.95)
prior. For testing, we construct 1000 parameter sets with a fixed τ drawn randomly from
Unif(0.85, 0.95) and for comparison, we also train an NBE for this fixed τ (as in Section 4.2),
denoted the “τ -fixed” NBE. The marginal test risk is compared across the two different
estimators, with the test value of τ being 0.893 and 0.919 for the IMSP and HW process,
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Figure 2: Empirical joint distribution with 1000 parameter estimates for (left) r-Pareto
and (centre/right) HW processes, given replicates from a single test parameter
set (green cross); left/centre and right panels plot estimates of (λ, κ)′ and (κ, δ)′,
respectively. Black points denote estimates from the likelihood inference scheme.
Brown points are NBE-based estimates for processes observed on the larger do-
main S; yellow points are NBE-based estimates for the HW process observed on
the small domain S∗.

Table 3: Results for the variable τ simulation study detailed in Section 4.3. Marginal test
risks (s.d.) under the absolute-error loss are provided separately for λ (×10−1), κ
(×10−2) and δ (×10−2). Test risks under the squared-error loss are presented in
Table A7 of Appendix E The lowest value in each column is given in bold.

IMSP HW
τ λ κ λ κ δ

random 2.97 (0.07) 2.41 (0.06) 2.62 (0.07) 2.13 (0.05) 2.98 (0.09)
fixed 3.03 (0.07) 2.11 (0.05) 2.75 (0.06) 2.41 (0.06) 3.25 (0.10)

respectively. Note that the training parameter sets are the same across both types of NBE.
The NBE architecture for τ -fixed is given in Table 1; the NBE architecture for τ -random
differs slightly to Table 1, with an input dimension of 257 in the first dense layer. Table 3
presents the marginal test risk estimates for all processes and estimators; these are evaluated
for τ at the τ -fixed level (see above). For the IMSP, the marginal tests risk for λ and κ
are minimised by the τ -random and τ -fixed NBE, respectively; for the HW process, the
marginal test risks for all parameters are minimised by the NBE trained with τ varying
during training (see Section 2.2.2). Overall, the results in Table 3 suggest that the τ -
random NBE often performs slightly better than the τ -fixed NBE, although the differences
in the marginal test risk are quite small and not always statistically significant. Therefore,
in practice, both NBEs perform almost equally well. This has substantial implications for
the generalisability of our estimator and highlights its amortised nature; a single estimator
can be trained for a general τ , rather than an estimator for every choice of τ , which greatly
reduces the computational expense of training.
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Figure 3: Empirical joint distribution with 1000 parameter estimates given m = 200 repli-
cates from a single test parameter set (green cross); top and centre rows give
estimates of (λ, κ)′ for the IMSP and HW processes, respectively, and the bot-
tom row illustrates (κ, δ)′ for the HW process. Black and orange points denote
estimates using a τ -fixed and τ -random NBE, respectively. Test parameter sets
and censoring level τ differ across panels; note that τ -fixed was trained for the
fixed τ reported in panels in the first column.

To further evidence the efficacy of the new estimator, we illustrate in Figure 3 the joint
distribution of parameter estimates from the two NBEs, for three different test parameter
sets and true censoring levels; results for three additional test sets are provided in Figure A1
of Appendix D. We observe good performance for τ -random, the NBE trained for general τ ,
across all test parameter sets and censoring levels; the estimates appear generally unbiased
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Figure 4: Observation of (left) surface average PM2.5 concentration (µg/m3) for July 2012
and (right) its corresponding standardised field.

as the test parameter estimates are centred on the true parameter set, except in the cases
where the true parameter set is close to the boundaries of the prior support (e.g., κ close to
0.5); unsurprisingly, the efficacy of the τ -fixed NBE is only comparable with the τ -random
NBE when its training τ is equal (or very close) to the true censoring level (the first column
in Figure 3). The τ -fixed NBE cannot extrapolate to previously unseen censoring levels,
and so it should be applied only with the specific τ used during training.

5. Application

Inhalation of ambient fine micro-scale particulate matter (PM2.5) can lead to fatal respira-
tory and cardiovascular diseases (Polichetti et al., 2009; Xing et al., 2016); globally, poor air
quality is responsible for millions of deaths per annum (Lelieveld et al., 2019). A country
that is particularly affected by poor air quality is Saudi Arabia, due in part to its heavy
oil combustion rates, industrial and traffic emissions (Khodeir et al., 2012), and its arid
climate, which is conducive to frequent dust storms (Alharbi et al., 2013). In order to mit-
igate the impacts of extreme air pollution in Saudi Arabia, an understanding of the spatial
characteristics of extreme air pollution across the entire region is required; whilst studies of
the spatial characteristics of PM2.5 across the Arabian Peninsula have been conducted by,
for example, Munir et al. (2017) and Tariq et al. (2022), they often focus on quantifying
marginal trends or investigating the spatial profile of events through empirical methods,
rather than considering extremal dependence. We provide the first analysis of the spatial
extremal dependence of PM2.5 concentrations across Saudi Arabia using asymptotically-
justified spatial extremal dependence models.

Data are taken from version 5 (V5.GL.02) of the global ground level product developed
by Van Donkelaar et al. (2021), which consists of monthly mean surface PM2.5 concentra-
tions (µg/m3) from 1998 to 2020 (m = 276); the product is constructed by combining satel-
lite data from a number of sources with ground level observations, through a geographically-
weighted regression, and samples over land only. Our observations are arranged on a regular
242×182 grid encompassing Saudi Arabia; each observation corresponds to the average over
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a 0.1◦ by 0.1◦ spatial grid-cell. As our interest is in modelling extremal dependence only,
we use a simple rank transform to standardise the data to Unif(0, 1) margins; to account
for spatial non-stationarity in the margins, we perform the transformation site-wise. The
observed field for July 2012, which exhibits the largest pointwise value over the observation
period, and its standardised values are presented in Figure 4.

We assess extremal dependence in the data through fits of an anisotropic extension of
the Huser and Wadsworth (2019) process. Dependence in our model is represented as a
function of the great-circle distance between transformed sites,

s∗ =

(
1 0
0 1/α

)(
cosω − sinω
sinω cosω

)
s, (9)

where ω ∈ [−π/2, 0] and α > 0 control the rotation and coordinate stretching effect, re-
spectively; hence inference requires estimation of θ = (λ, κ, δ, α, ω)′, for (λ, κ, δ)′ in Sec-
tion 3.2. To account for spatial non-stationarity in the data, we perform local extremal
dependence model fits. We train a single estimator for a G × G regular grid of sites, with
G ∈ {4, 8, 16, 24, 32}, and apply it on all subsets of similarly arranged data; the value of
G determines the level of smoothing in maps of the parameter estimates. The estimator
is only applied to subsets of data that contain no values sampled over water, and so we
require between 16,393 (G = 32) and 35,589 (G = 4) model fits for each G; although only
five estimators are trained for the analysis, they facilitate estimation, and parameter un-
certainty assessment, for over 130,000 local spatial models. Recall from Section 3.2 that
applications of the isotropic Huser and Wadsworth (2019) model using the full likelihood
have been limited to low dimension d ≤ 30 (or d ≤ 200, in the special case of Zhang et al.,
2022); here we consider much higher d up to 322 = 1024.

Each NBE is trained on a reference domain S taken to be a G×G regular grid of loca-
tions, which is centred within the spatial domain of interest, see Figure 4. We fix τ = 0.9
throughout and consequently adopt the τ -fixed estimator, as discussed in Section 4.3; we
choose an NBE optimised for fixed rather than variable τ as the latter is more computa-
tionally expensive to train and the gains in its use are comparably slight (relative to the
gains in using an NBE over the competing likelihood approach, see Table 2). We train
each NBE using m̃ = (46, 138, 276). To improve model training and reduce computational
memory requirements, we adopt “simulation-on-the-fly” (for an overview, see Chan et al.,
2018; Gerber and Nychka, 2021; Sainsbury-Dale et al., 2024a). For training, we begin with
an initial |ϑtrain| = K and |ϑval| = K/5 training and validation parameter sets, respectively.
Before every 30th epoch, the parameters are refreshed and new values are drawn from the
prior and, at the end of every fifth epoch, new training data are refreshed using the current
parameter sets. We use the maximum, computationally-feasible value of K, which, due
to increasing computational expense, changes with the dimension G; we take K equal to
750, 000, 330, 000, 100, 000 and 38, 000 for dimension 4 or 8, 16, 24 and 32, respectively.
The architecture of each NBE is also dependent on G; these are given in Appendix E.
Parameter sets are a priori independent with priors λ ∼ Unif(20, 1250), κ ∼ Unif(0.1, 4),
δ ∼ Unif(0, 1), α ∼ Unif(0.5, 3.5) and ω ∼ Unif(−π/2, 0). Although the various NBEs take
up to 72 hours to train, their evaluation on observed datasets is extremely fast: a single
evaluation takes approximately 1 × 10−3 and 4.1 × 10−3 seconds for G = 4 and G = 32,
respectively.
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For brevity, we constrain our focus to the case G = 16; results for all other values of G are
provided in Appendix D. As the final activation function in each architecture is the identity
(see Tables A8–A11 of Appendix E), the parameter estimates are not guaranteed to lie in
their respective prior support; we simply truncate such values. Although we could choose
an architecture that enforces parameter estimates to lie within their prior support, we found
that training of the NBE was more numerically stable with our approach. Figures A2–A6
in Appendix D provide the joint distribution of parameter estimates for four different test
parameter sets and across all values of G. We observe good performance for the NBEs across
all test parameter sets, except in cases where the test parameter set is on the boundary of
the prior parameter space.

We illustrate estimates of (λ, κ, δ)′ and (α, ω)′ parameters for G = 16 in Figure 5. As
expected, we observe a clear increase in spatial smoothness of parameter estimates as G
increases. Estimates of λ are high (> 600km) across most of the Arabian Peninsula, sug-
gesting strong spatial persistence in PM2.5 extremes; smaller estimates of λ are observed in
parts of Iran, Jordan and Oman, and close to the coastline of the Arabian Gulf, with partic-
ularly large estimates in the Empty Quarter to the south of Saudi Arabia and north-east of
Yemen. Estimates of κ illustrate the smoothness of the extremal process, with larger values
in the Empty Quarter suggesting that the process here is smoother. Recall that the param-
eter δ determines if the process is asymptotically dependent (δ ≥ 1/2) or asymptotically
independent (δ < 1/2); Figure 5 illustrates that Arabian PM2.5 is composed of a mixture
of locally asymptotically dependent, and asymptotically independent, processes. In central
Saudi Arabia and Iran, the estimated process is asymptotically dependent whilst it appears
to be increasingly asymptotically independent as we move towards the coast. For other
countries such as Iraq, Jordan and Sudan, the estimated process exhibits asymptotic inde-
pendence. For the anisotropy parameters, (α, ω)′, we observe in Figure 5 larger estimates
of the stretch parameter α along the coastline, and large parts of Iran. A directional effect
on the extremal dependence structure corresponds to values of α 6= 1; we observe strong
directionality in the south of Yemen and Iraq, as well as the north of Saudi Arabia.

Parameter uncertainty assessment is performed using a non-parametric bootstrap. Ob-
served fields are sampled with replacement and used to obtain 1000 bootstrap parameter
estimates. These are obtained relatively quickly as the estimators do not require re-training;
all model fits can indeed be performed using the same five trained estimators, each taking
only a few millisecond to evaluate post-training. For all G and each model parameter,
marginal 2.5% and 97.5% bootstrap quantile estimates are provided in Figures A9–A11
of Appendix D. Note that upwards of 130 million individual extremal dependence models
are estimated to perform our analysis (using only the five trained estimators); to the best
of our knowledge, this is a far greater number than any other study utilising the mod-
els described in Section 3, and shows that NBEs enable large-scale bootstrap studies with
complex models that were impossible to run previously. While here we use NBEs to fit a
large ensemble of models, we still expect to see significant computational gains (compared
to a likelihood-based approach) when using NBEs to fit a single model. For G ≥ 8, fitting
the Huser and Wadsworth (2019) process model using the full likelihood-based approach
is expected to take substantially longer than the total training and evaluation time for a
single NBE (> 72 hours; see comparative computation times for G = 6 in Section 4.2.2).
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Figure 5: Parameter estimates for the HW process model with G = 16. The top and bot-
tom rows give estimates of dependence and anisotropy parameters, (λ, κ, δ)′ and
(α, ω)′, respectively. Note that every pixel corresponds to a parameter estimate
for a model fitted locally over the surrounding G×G grid of pixels.

6. Discussion

We develop neural Bayes estimators (NBEs) for performing fast likelihood-free inference
with popular peaks-over-threshold models, providing a paradigm shift challenging tradi-
tional statistical inference with censored data. Our novel approach to handling censored
inputs for neural networks facilitates the construction of efficient estimators for a wide
range of spatial extremal dependence models, including max-stable, r-Pareto, and random
scale mixture processes, and we illustrate substantial gains in both the computational,
and statistical, efficiency of NBEs relative to competing likelihood-based approaches. We
have illustrated our proposed methodology with an application to Saudi Arabian PM2.5

concentrations, where we show that high-dimensional models can be fitted in a matter of
milliseconds (post-training). The ability to fit hundreds-of-thousands of models accurately
in a reasonable time frame allows us to study our dataset on a scale that is much higher than
was previously possible with standard likelihood-based inference techniques, and we reveal
new insights into the extremal dependence of air pollution across the Arabian Peninsula.

The efficacy and speed of NBEs opens the door to fitting complex extreme value process
models to data of unprecedented size in an operational and online manner (thanks to their
amortised nature). Although the training phase may require substantial time, it needs to be
performed only once, after which an NBE can be reapplied, in perpetuity, for a negligible
computational cost. Simulation of data during training can be costly, particularly when
the size K of the training data or number of sampling locations d are large. Approximate
methods for data simulation may alleviate this challenge.

20



Neural Bayes estimators for censored inference

In the simulation study in Section 4.3, we demonstrate that it is possible to build an
NBE for an arbitrary, user-specified censoring level. However, as we take the censoring
threshold to be a function of a single probability τ , our proposed framework does not
cover site-specific or random censoring that may arise, for example, when modelling rainfall
(Richards et al., 2022, 2023b). Estimation under general, user-specified censoring schemes
is a future consideration. Our framework also has the constraint that S is a regular grid
with fixed dimension. To increase the generality of our framework, this constraint should
be removed as it implies that for new data observed over a different domain S, we must
retrain a brand new estimator from scratch. For gridded domains, we may be able to build
a CNN-based estimator that handles arbitrary grid dimensions by exploiting the scalable
CNNs developed by He et al. (2015), but this would still constrain S to be a regular grid.
Sainsbury-Dale et al. (2024b) instead leverage graph neural networks (see the review by
Wu et al., 2020) to build NBEs which can be applied to irregular data and which are not
wedded to a specific number d or a specific configuration of spatial locations. Combining
these estimators with our censoring framework is treated as future work. We also note that,
whilst here we focus on inference for spatial processes with NBEs, our methodology can
be easily adapted to other application types which utilise left-, right-, or interval-censored
data (as, e.g., in survival data analysis, Klein and Moeschberger, 2003), or to other types
of neural inference methods (see the review by Zammit-Mangion et al., 2025), by adapting
the architecture and inputs.

We did not provide a comparative study to assess the sensitivity of our NBEs to the
choice of neural network architecture; such a study, and theoretical results pertaining to this
question, are left as future work. Our choice of architecture was based on that proposed by
Gerber and Nychka (2021) for data observed on a 16×16 grid; we made minor adjustments
for different grid dimensions. With this architecture we were able to construct NBEs that
significantly outperform (in terms of both computational speed and estimation accuracy)
the gold-standard likelihood-based inference approach. This suggests that this architecture
might be suitable for many applications of a similar nature.

We have only considered stationary models. Non-stationary spatial processes, such
as those proposed by Huser and Genton (2016), Zammit-Mangion and Rougier (2020),
Richards and Wadsworth (2021), and Shao et al. (2024), provide a more realistic assessment
of environmental risk and local impacts for data observed over complex domains. However,
as these models are often characterised by a high-dimensional parameter set, the training
of NBEs in this context may require more complex neural-network architectures and larger
training datasets; we here limit the parameter-set dimension to five and, whilst this is
representative for many stationary spatial extremal dependence models, some models, like
the spatial conditional extremes model of Wadsworth and Tawn (2022), can have dozens of
parameters (see, e.g., Richards et al., 2022, 2023b). Whilst Sainsbury-Dale et al. (2024a)
illustrate inference of models with up to eight parameters, the extension of NBEs to higher
dimensions remains the subject of future work.

Throughout, we have used uniform priors for model parameters; these are the most
commonly used in practice and, by equipping them with a reasonably large support, they
allow us to construct NBEs that can be widely applied in various applications. Similarly to
traditional Bayes estimators, NBEs are optimal with respect to the chosen prior measure,
and are thus affected by the choice of prior. Finally, we note that we have here only
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considered settings where the process model is well-specified. Investigating the efficacy of
our trained estimators under model misspecification (see, e.g., Radev et al., 2023; Schmitt
et al., 2023) remains future work.
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Appendix

Appendix A provides proof of Proposition 1. Appendix B provides a discussion and proof
of the Bayes estimators’ invariance to the distribution of the marginal censoring level.
Appendix C provides further details for the spatial extremal dependence models that we
consider in our simulation studies. Appendices D and E provide supplementary figures and
tables, respectively.

Appendix A. Proof of Proposition 1 for the likelihood function of
censored data

Here we provide a proof of Proposition 1, which derives the likelihood function of censored
data. Recall Proposition 1, as stated in the main paper:

Proposition 1 Let Zt = (Zt,1, . . . , Zt,d)
′, d ∈ N, t = 1, . . . ,m, be random vectors de-

fined by a statistical model parameterised by θ with joint distribution F (· | θ) and density
f(· | θ). Let Zt+ := (Zt,j : Zt,j > cj , j = 1, . . . , d)′ denote the subvector of uncensored values
of Zt, where c := (c1, . . . , cd)

′ is a vector of censoring levels with time-dependent subvector
ct− = (cj : Zt,j ≤ cj , j = 1, . . . , d)′. Given indicators It := (1{Zt,j ≤ cj} : j = 1, . . . , d)′, the
likelihood contribution of Zcens

t := (I′t,Z
′
t+)′ is∫ ct−

−∞
f(zt | θ)dzt− =

∂|Jt|∏
j∈Jt∂zj

F (z | θ)

∣∣∣∣
z=bt

, t = 1, . . . ,m, (5)

where zt = (zt,1, . . . , zt,d)
′ is the realisation of Zt, Jt := {j : zt,j > cj} denotes the indices

of the uncensored components of zt with subvector zt− := (zt,j : zt,j ≤ cj , j = 1, . . . , d)′, and
bt := (max{zt,j , cj} : j = 1, . . . , d)′.

Proof As in the main paper, we split the observation vector as Zt = (Z′t−,Z
′
t+)′, its

realised value as zt = (z′t−, z
′
t+)′, and the censoring threshold vector as ct = (c′t−, c

′
t+)′. Let

it = (it,1, . . . , it,d) be the realised value of It; that is, for Zt arranged as Zt = (Z′t−,Z
′
t+)′,
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we have it = (1′t−,0
′
t+)′, where 1t− and 0t+ are vectors of ones and zeros of dimensions

dt− :=
∑d

j=1 it,j and dt+ := d − dt−, respectively, which denote the numbers of censored
and uncensored values, respectively. Then, since zt+ > ct+ by definition, we note that

Pr (It = it, Zt+ ≤ zt+) = Pr (Zt− ≤ ct−, Zt+ > ct+, Zt+ ≤ zt+)

= Pr (Zt− ≤ ct−, ct+ < Zt+ ≤ zt+)

= Pr (Zt ≤ bt)− Pr (Zt ≤ b∗t ) , (A.1)

where b∗t = (b∗t,1, . . . , b
∗
t,d)
′ and bt = (bt,1, . . . , bt,d)

′ are vectors with components b∗t,j = cj
if zt,j > cj and b∗t,j = −∞, otherwise, and bt,j = max{zt,j , cj} for j = 1, . . . , d. Therefore,
because the rightmost term in (A.1) does not depend on zt+, the censored density/likelihood
contribution (obtained by differentiating (A.1) with respect to zt+) is

∂dt+

∂zt+
{Pr (Zt ≤ bt)− Pr (Zt ≤ b∗t )} =

∂|Jt|∏
j∈Jt∂zj

F (z | θ)

∣∣∣∣
z=bt

,

which corresponds to the rightmost expression in the proposition. Leveraging the fact that
the joint distribution function can be obtained as an integral of the joint density function,
this censored likelihood contribution can be rewritten differently as

∂|Jt|∏
j∈Jt∂zj

F (z | θ)

∣∣∣∣
z=bt

=

∫ ct−

−∞
f(zt | θ)dzt−,

which concludes the proof.

Appendix B. Invariance of Bayes estimator to the distribution of the
censoring level

Here we give the conditions for which the Bayes estimator is invariant to the distribution
of the censoring level, p(τ). For ease of exposition, we assume that hereon all distributions
admit a density with respect to Lebesgue measure. Notation used in the proof is defined in
Section 2.

Theorem 1 Let L : Θ×Θ→ [0,∞) denote a strictly convex nonnegative loss function and
let p(θ | a, τ) denote the posterior density of θ corresponding to the augmented data A = a

and censoring level τ . Assume that the Bayes estimate θ̂
?

has finite posterior expected loss∫
Θ L(θ, θ̂

?
)p(θ | a, τ)dθ for all fixed a ∈ ΩA,τ and τ ∈ T ⊆ [0, 1). Then the Bayes estimator

θ̂
?
(a, τ), a ∈ ΩA,τ , τ ∈ T , is invariant to the distribution of τ , p(τ), provided that p(τ) > 0

for τ ∈ T and that τ and θ are independent.

Proof The proof follows a similar argument to that of Sainsbury-Dale et al. (2024b, Theo-

rem 1). For a given τ ∈ T and augmented data a ∈ ΩA,τ , the Bayes estimate θ̂
?

minimises
the posterior expected loss, that is,

θ̂
?

= argminθ̂

∫
Θ
L(θ, θ̂)p(θ | a, τ)dθ, (A.2)
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and, by assumption,
∫

Θ L(θ, θ̂
?
)p(θ | a, τ)dθ < ∞. Consider now the Bayes estimator

θ̂
?
(a, τ) that returns the Bayes estimate for each a ∈ ΩA,τ and censoring level τ ∈ T . Since

the posterior expected loss is nonnegative, if p(τ) > 0 for τ ∈ T then it is also the case that

θ̂
?
(·) = argminθ̂(·)

∫
T

∫
ΩA,τ

[∫
Θ
L(θ, θ̂(a, τ))p(θ | a, τ)dθ

]
p(a | τ)p(τ)da dτ ;

see Zammit-Mangion et al. (2025) for details. Applying Bayes rule and assuming τ and θ
are independent yields Equation (7) of the main text, thus completing the proof.

Appendix C. Spatial extremal dependence model details

C.1 Univariate extreme value distributions

We give here the forms of the generalised extreme value (GEV) and generalised Pareto
(GPD) distributions used for modelling univariate extreme values; see Coles (2001) for
details.

The generalised extreme value GEV(µ, σ, ξ) distribution function is

FGEV(z | µ, σ, ξ) =

{
exp

[
−
{

1 + ξ
( z−µ

σ

)}−1/ξ

+

]
, ξ 6= 0,

exp
{
− exp

(
− z−µ

σ

)}
, ξ = 0,

(A.3)

with {y}+ = max{0, y}, location, scale, and shape, parameters µ ∈ R, σ > 0, and ξ ∈ R,
respectively, and support {z ∈ R : 1 + ξ(z − µ)/σ > 0}.

A GPD(σ, ξ) random variable has distribution function FGPD(z) = (1 + ξz/σ)−1/ξ and
support z ≥ 0 for ξ ≥ 0 and 0 ≤ z ≤ −σ/ξ for ξ < 0.

C.2 Matérn Gaussian processes

Gaussian processes (GPs) have extensive use in classical spatial statistics due to their conve-
nient statistical properties (see Gelfand and Schliep, 2016), but are not necessarily appropri-
ate for modelling spatial extremes due to their inability to capture asymptotic dependence
(Davison et al., 2013), that is, a non-zero limit probability of joint threshold exceedances at
any two sites. However, we still consider their inference as they have been previously applied
to model spatial extremal dependence and, more importantly, they provide the foundation
for many other spatial extremal dependence models (Sang and Gelfand, 2010), for example,
MSPs and IMSPs (see Section 3.1 of the main text), random scale/location mixtures (see
Section 3.2 of the main text) and the spatial conditional extremes model (Wadsworth and
Tawn, 2022).

Unlike MSPs and IMSPs , the full d-dimensional density for a GP is tractable with com-
putationally inexpensive evaluation, and many methods have been developed to facilitate
their fast evaluation for large d (see, e.g., Aune et al., 2014). However, under the censoring
regime described in Section 2.2.1 of the main text, evaluation of the full likelihood becomes
computability expensive. Hence, for modelling of spatial extremes, inference for GPs usually
proceeds with the same censored weighted pairwise likelihood (with cut-off distance hmax)
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as described in Section 3.1 of the main text (see, e.g., Davison et al., 2013; Thibaud et al.,
2013; Richards et al., 2022, 2023b). Due to their popularity, we adopt censored pairwise
likelihood estimators as the competing likelihood approach for MSPs, IMSPs, and GPs, in
the simulation study detailed in Section 4 of the main text.

We constrain our focus to isotropic and stationary Matérn GPs. Specifically, we consider
Gaussian copula models where, after arbitrary marginal transformation, the distribution of
the process observed at a finite collection of sites {s1, . . . , sd} is zero mean, unit variance,
d-variate Gaussian with the correlation between the process observed at sites si, sj ∈ S
determined by the isotropic Matérn correlation function

C(si, sj) = 21−κ{Γ(κ)}−1 (‖si − sj‖/λ)Kκ (‖si − sj‖/λ) ,

where Γ(·) is the gamma function, Kκ(·) is the Bessel function of the second kind of order
κ, and λ > 0 and κ > 0 are range and smoothness parameters, respectively; with the
marginal transformations assumed known, inference for these processes involves estimation
of θ = (λ, κ)′. Similar processes were inferred using (uncensored) NBEs by Gerber and
Nychka (2021) and Sainsbury-Dale et al. (2024a).

C.3 r-Pareto processes

Whilst max-stable processes are limits for renormalised maxima, the generalised Pareto
process describes the limit of renormalised exceedances, defined as X | {sups∈S X(s) >
u} for large u, where the process X(·) has unit Pareto margins; these can be seen as
analogues of the univariate generalised extreme value (GEV), and generalised Pareto (GPD),
distributions respectively. For details on the univariate extreme value distributions, see
Section C.1. Following Buishand et al. (2008) and Ferreira and de Haan (2014), consider
the process [

1 + ξ(s)

{
X(s)− bm(s)

am(s)

}]1/ξ(s)

+

| sup
s∈S

X(s)− bm(s)

am(s)
> 1, (A.4)

where am and bm are as defined in Section 3.1, ξ(s) ∈ R is the associated GEV or GPD
shape parameter (see Section C.1) at site s ∈ S, and z+ = max{0, z}; then if this process
converges weakly, as m → ∞, to a process with non-degenerate margins, this process is a
generalised Pareto process. As with max-stable processes, we typically consider the process
on standardised margins; a transformation of X(s) to unit Pareto margins, denoted X̄(s),
leads to a standard Pareto process with (A.4) becoming X̄(s)/m | sups∈S X̄(s) > m; this
same standardisation is used to create a max-stable process with unit Fréchet margins.

Dombry and Ribatet (2015) extend formulation (A.4) by replacing the conditioning event
with an exceedance of some functional of the entire process. They term these processes “`-
Pareto processes”, whilst later developments by de Fondeville and Davison (2018, 2022)
refer to them as “r-Pareto processes”; we adopt the latter terminology. Consider a risk
functional r(·), which is homogeneous of order 1 (i.e., r(·) satisfies, for any c > 0, that
r(cX) = c r(X)), and takes in as input the entire process X̄ and returns some scalar value;
examples include r(X̄) =

∫
S X̄(s)ds or r(X̄) = sups∈S X̄(s), or their finite-dimensional

equivalents. An r-Pareto process, denoted Z(s) and with standard unit Pareto marginals,
is defined by Z(s) = limr0→∞ X̄(s)/r0 | r(X̄) > r0. Similarly to (8), we can construct an
r-Pareto process through the scale mixture Z(s) = RW (s), but here R is a unit Pareto
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random variable which is independent of the non-negative stochastic process W (s), which
satisfies r(W ) = 1 almost surely; hence we can relate each r-Pareto process to a max-stable
counterpart. We constrain our focus to inference for r-Pareto processes that arise from log-
Gaussian random functions, that is, with Brown–Resnick max-stable counterparts, as these
are a popular choice (see, e.g, Healy et al., 2024; Béwentaoré and Barro, 2022); however,
we note that extremal-t counterparts are an alternative (Thibaud and Opitz, 2015).

Likelihood-based inference for r-Pareto processes follows with specification of a risk
functional and use of a censored likelihood. In the case where r(X̄) = maxi=1,...,d X̄(si), the
full d-dimensional censored likelihood can be represented as a censored Poisson process like-
lihood (Wadsworth and Tawn, 2014; Asadi et al., 2015); hereon we use this risk functional
for inference. Evaluation of the full censored likelihood is computationally troublesome as
it requires evaluation of d−-variate Gaussian distributions for 1 ≤ d− ≤ d − 1. To circum-
vent this issue, de Fondeville and Davison (2018) detail a quasi-Monte Carlo algorithm to
approximate these integrals and hasten computations, see, also, Genz and Bretz (2009); we
take their approach to inference as the competing likelihood-based approach in Section 4 of
the main text. Inference requires estimation of the Brown–Resnick variogram parameters
described in Section 3.1 of the main text.

C.4 Computational details

For full details on the software used for likelihood-based inference and simulation of the
considered spatial extremal processes, see Belzile et al. (2023).

To simulate from the Brown–Resnick process, we use the SpatialExtremes package
in R (Ribatet, 2022); realisations from the associated inverted Brown–Resnick process are
computed by taking the marginal reciprocal. Simulation of the Brown–Resnick r-Pareto
processes and their inference with the full d-dimensional censored likelihood is conducted
using the mvPOT package (de Fondeville and Belzile, 2022). For the HW process, both sim-
ulation and inference are conducted using the R package SpatialADAI (Wadsworth, 2018),
with inference using the quasi-Monte Carlo approximation requiring the mvPOT package
(de Fondeville and Belzile, 2022).
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Appendix D. Supplementary figures

Figure A1: Joint distribution of 1000 parameter estimates given m = 200 replicates from
a single test parameter set (green cross); top and centre rows give estimates
of (λ, κ)′ for the IMSP and HW processes, respectively, and the bottom row
illustrates (κ, δ)′ for the HW process. Black, orange and blue points denote
estimates using a τ -fixed, τ -random and τ -sequence NBE, respectively (see Sec-
tion 4.3 of the main text). The test parameter sets and censoring level τ differ
across panels.
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Figure A2: Joint distribution of 1000 parameter estimates (orange) when G = 4 in Section 5
of the main text. Four test parameter sets (green) are drawn randomly from the
prior and differ across rows. The left, centre and right columns give estimates
of (δ, κ)′, (λ, δ)′ and (ω, α)′, respectively.
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Figure A3: Joint distribution of 1000 parameter estimates (orange) when G = 8 in Section 5
of the main text. Four test parameter sets (green) are drawn randomly from the
prior and differ across rows. The left, centre and right columns give estimates
of (δ, κ)′, (λ, δ)′ and (ω, α)′, respectively.
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Figure A4: Joint distribution of 1000 parameter estimates (orange) when G = 16 in Sec-
tion 5 of the main text. Four test parameter sets (green) are drawn randomly
from the prior and differ across rows. The left, centre and right columns give
estimates of (δ, κ)′, (λ, δ)′ and (ω, α)′, respectively.
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Figure A5: Joint distribution of 1000 parameter estimates (orange) when G = 24 in Sec-
tion 5 of the main text. Four test parameter sets (green) are drawn randomly
from the prior and differ across rows. The left, centre and right columns give
estimates of (δ, κ)′, (λ, δ)′ and (ω, α)′, respectively.
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Figure A6: Joint distribution of 1000 parameter estimates (orange) when G = 32 in Sec-
tion 5 of the main text. Four test parameter sets (green) are drawn randomly
from the prior and differ across rows. The left, centre and right columns give
estimates of (δ, κ)′, (λ, δ)′ and (ω, α)′, respectively.
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Figure A7: Extremal dependence parameter estimates for the HW model used in the appli-
cation, Section 5 of the main text. The smoothing level G changes with the row
(1st, 4; 2nd, 8; 3rd, 24; 4th, 32). The left, centre and right columns illustrate
estimates of λ, κ and δ, respectively.
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Figure A8: Anisotropy parameter estimates for the HW model used in the application,
Section 5. The smoothing level G changes with the row (1st, 4; 2nd, 8; 3rd, 24;
4th, 32). The left and right columns illustrate estimates of α and ω, respectively.
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Figure A9: Parameter uncertainty assessment for G = 4 (top two rows) and G = 8 (last two rows) in the application, Section 5.
First and second (third and fourth) rows give estimates of the 2.5% and 97.5% bootstrap quantiles, respectively, of
(left to right) λ, κ, δ, α, and ω.
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Figure A10: Parameter uncertainty assessment for G = 16 in the application, Section 5. Top and bottom rows give estimates of
the 2.5% and 97.5% bootstrap quantiles, respectively, of (left to right) λ, κ, δ, α, and ω.
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Figure A11: Parameter uncertainty assessment for G = 24 (first two rows) and G = 32 (last two rows) in the application,
Section 5. First and second (third and fourth) rows give estimates of the 2.5% and 97.5% bootstrap quantiles,
respectively, of (left to right) λ, κ, δ, α, and ω.
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Appendix E. Supplementary tables

Table A1: Results for the simulation study detailed in Section 4.2.1 of the main text.
Marginal test risks (s.d.) under the squared-error loss are provided separately
for λ (×10−1) and κ (×10−2). The lowest value in each column is given in bold.

λ κ
GP

NBE 1.74 (0.09) 0.37 (0.02)
CPL (hmax = 3) 3.74 (0.24) 0.71 (0.05)
CPL (hmax =∞) 14.62 (0.69) 4.84 (0.27)

IMSP
NBE 1.38 (0.10) 0.078 (0.004)
CPL (hmax = 3) 4.82 (0.39) 0.160 (0.008)
CPL (hmax =∞) 6.13 (0.44) 0.758 (0.036)

MSP
NBE 1.18 (0.10) 0.055 (0.003)
CPL (hmax = 3) 2.51 (0.18) 0.080 (0.003)
CPL (hmax =∞) 3.75 (0.25) 0.686 (0.035)

Table A2: Results for the r-Pareto process simulation study detailed in Section 4.2.2 of the
main text. Marginal test risks (s.d.) under the absolute-error loss are provided
separately for λ (×10−1) and κ (×10−2). The lowest value in each column is
given in bold.

λ κ

NBE 2.29 (0.07) 1.87 (0.05)
Quasi-Monte Carlo censored likelihood 4.92 (0.20) 4.31 (0.23)

Table A3: Results for the r-Pareto process simulation study detailed in Section 4.2.2 of the
main text. Marginal test risks (s.d.) under the squared-error loss are provided
separately for λ (×10−1) and κ (×10−2). The lowest value in each column is
given in bold.

λ κ

NBE 0.99 (0.06) 0.060 (0.003)
Quasi-Monte Carlo censored likelihood 6.30 (0.64) 0.731 (0.101)
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Table A4: Results for the HW process simulation study detailed in Section 4.2.2 of the
main text; the process is observed over either S, a 16 × 16 regular grid, or S∗,
a 6× 6 regular grid. Marginal test risks (s.d.) under the absolute-error loss are
provided separately for λ (×10−1), κ (×10−2) and δ (×10−2). The lowest value
in each column is given in bold.

λ κ δ

NBE (S) 5.77 (0.19) 7.42 (0.31) 3.94 (0.17)
NBE (S∗) 6.30 (0.19) 9.49 (0.26) 3.24 (0.11)
Quasi-Monte Carlo censored likelihood 5.82 (0.18) 9.53 (0.36) 4.80 (0.30)

Table A5: Results for the HW process simulation study detailed in Section 4.2.2 of the main
text; the process is observed over either S, a 16× 16 regular grid, or S∗, a 6× 6
regular grid. Marginal test risks (s.d.) under the squared-error loss are provided
separately for λ (×10−1), κ (×10−2) and δ (×10−2). The lowest value in each
column is given in bold.

λ κ δ

NBE (S) 6.87 (0.47) 1.54 (0.25) 0.46 (0.14)
NBE (S∗) 7.42 (0.50) 1.57 (0.09) 0.23 (0.02)
Quasi-Monte Carlo censored likelihood 6.61 (0.48) 2.19 (0.28) 1.13 (0.24)

Table A6: Neural network architecture for the HW process observed on the smaller domain
S∗, see Section 4.2.2 of the main text. Each convolution filter uses zero padding
and unit stride. The function vec(·) refers to a flattening of an array to a vector.
All layers, except the final layer, used rectified linear unit (ReLU) activation
functions; the final layer uses the identity function.

layer type input dimension output dimension filter dimension parameters

2D convolution [6, 6, 2] [4, 4, 128] 3× 3 2,432
2D convolution [4, 4, 128] [2, 2, 256] 3× 3 147,584
2D convolution [2, 2, 256] [1, 1, 256] 2× 2 262,400
vec(·) [1, 1, 256] [256] 0
dense [256] [500] 128,500
dense [500] [3] 1503

total trainable parameters: 542,419
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Table A7: Results for the variable τ simulation study detailed in Section 4.3. Marginal test
risks (s.d.) under the squared-error loss are provided separately for λ (×10−1),
κ (×10−2) and δ (×10−2). The lowest value in each column is given in bold.

IMSP HW
τ λ κ λ κ δ

random 1.40 (0.07) 0.089 (0.004) 1.14 (0.06) 0.070 (0.004) 0.16 (0.01)
fixed 1.43 (0.07) 0.068 (0.003) 1.18 (0.05) 0.092 (0.004) 0.21 (0.01)

Table A8: Neural network architectures used for the application, see Section 5 of the main
text, when G = 4. Each convolution filter uses zero padding and unit stride. The
function vec(·) refers to a flattening of an array to a vector. All layers, except
the final layer, used rectified linear unit (ReLU) activation functions; the final
layer uses the identity function.

G = 4

layer type input dimension output dimension filter dimension parameters

2D convolution [4, 4, 2] [3, 3, 64] 2× 2 576
2D convolution [3, 3, 64] [2, 2, 128] 2× 2 32,896
2D convolution [2, 2, 128] [1, 1, 256] 2× 2 131,328
vec(·) [1, 1, 256] [256] 0
dense [256] [500] 128,500
dense [500] [5] 2505

total trainable parameters: 295,805

Table A9: Neural network architectures used for the application, see Section 5 of the main
text, when G = 8. Each convolution filter uses zero padding and unit stride. The
function vec(·) refers to a flattening of an array to a vector. All layers, except
the final layer, used rectified linear unit (ReLU) activation functions; the final
layer uses the identity function.

G = 8

layer type input dimension output dimension filter dimension parameters

2D convolution [8, 8, 2] [4, 4, 64] 5× 5 3,264
2D convolution [4, 4, 64] [2, 2, 128] 3× 3 73,856
2D convolution [2, 2, 128] [1, 1, 256] 2× 2 131,328
vec(·) [1, 1, 256] [256] 0
dense [256] [500] 128,500
dense [500] [5] 2505

total trainable parameters: 339,453
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Table A10: Neural network architectures used for the application, see Section 5 of the main
text, when G = 16. Each convolution filter uses zero padding and unit stride.
The function vec(·) refers to a flattening of an array to a vector. All layers,
except the final layer, used rectified linear unit (ReLU) activation functions;
the final layer uses the identity function. Note that the layer denoted by the
asterisk (∗) features in Table A11.

G = 16

layer type input dimension output dimension filter dimension parameters

2D convolution [16, 16, 2] [7, 7, 64] 10× 10 12,864
2D convolution∗ [7, 7, 64] [3, 3, 128] 5× 5 204,928
2D convolution [3, 3, 128] [1, 1, 256] 3× 3 295,168
vec(·) [1, 1, 256] [256] 0
dense [256] [500] 128,500
dense [500] [5] 2505

total trainable parameters: 643,965

Table A11: Neural network architectures used for the application, see Section 5 of the main
text, when G = 24 and G = 32. Each convolution filter uses zero padding and
unit stride. The function vec(·) refers to a flattening of an array to a vector.
All layers, except the final layer, used rectified linear unit (ReLU) activation
functions; the final layer uses the identity function.

G = 24

layer type input dimension output dimension filter dimension parameters

2D convolution [24, 24, 2] [16, 16, 32] 9× 9 5,216
2D convolution [16, 16, 32] [7, 7, 64] 10× 10 204,864

As in ∗ and subsequent layers of Table A10.

total trainable parameters: 841,181

G = 32

layer type input dimension output dimension filter dimension parameters

2D convolution [32, 32, 2] [16, 16, 32] 17× 17 18,528
2D convolution [16, 16, 32] [7, 7, 64] 10× 10 204,864

As in ∗ and subsequent layers of Table A10.

total trainable parameters: 854,493
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S. Béwentaoré and D. Barro. Space-time trend detection and dependence modeling in ex-
treme event approaches by functional peaks-over-thresholds: application to precipitation
in Burkina Faso. International Journal of Mathematics and Mathematical Sciences, 2022,
2022.

Y. Boulaguiem, J. Zscheischler, E. Vignotto, K. van der Wiel, and S. Engelke. Model-
ing and simulating spatial extremes by combining extreme value theory with generative
adversarial networks. Environmental Data Science, 1:e5, 2022.

B. M. Brown and S. I. Resnick. Extreme values of independent stochastic processes. Journal
of Applied Probability, 14(4):732–739, 1977.

T. A. Buishand, L. de Haan, and C. Zhou. On spatial extremes: With application to a
rainfall problem. The Annals of Applied Statistics, 2(2):624 – 642, 2008.

A. J. Cannon. A flexible nonlinear modelling framework for nonstationary generalized
extreme value analysis in hydroclimatology. Hydrological Processes: An International
Journal, 24(6):673–685, 2010.

D. Castro-Camilo and R. Huser. Local likelihood estimation of complex tail dependence
structures, applied to U.S. precipitation extremes. Journal of the American Statistical
Association, 115(531):1037–1054, 2020.

S. Castruccio, R. Huser, and M. G. Genton. High-order composite likelihood inference
for max-stable distributions and processes. Journal of Computational and Graphical
Statistics, 25(4):1212–1229, 2016.

42



Neural Bayes estimators for censored inference

J. Chan, V. Perrone, J. Spence, P. Jenkins, S. Mathieson, and Y. Song. A likelihood-
free inference framework for population genetic data using exchangeable neural networks.
Advances in Neural Information Processing Systems, 31, 2018.

D. Cisneros, J. Richards, A. Dahal, L. Lombardo, and R. Huser. Deep graphical regression
for jointly moderate and extreme Australian wildfires. Spatial Statistics, page 100811,
2024.

S. Coles. An Introduction to Statistical Modeling of Extreme Values, volume 208. Springer,
2001.

K. Cremanns and D. Roos. Deep Gaussian covariance network. arXiv preprint
arXiv:1710.06202, 2017.

A. C. Davison and M. M. Gholamrezaee. Geostatistics of extremes. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 468(2138):581–608, 2012.

A. C. Davison and R. Huser. Statistics of extremes. Annual Review of Statistics and its
Application, 2:203–235, 2015.

A. C. Davison, S. A. Padoan, and M. Ribatet. Statistical modeling of spatial extremes.
Statistical Science, 27(2):161–186, 2012.

A. C. Davison, R. Huser, and E. Thibaud. Geostatistics of dependent and asymptotically
independent extremes. Mathematical Geosciences, 45:511–529, 2013.

A. C. Davison, R. Huser, and E. Thibaud. Spatial extremes. In A. E. Gelfand, M. Fuentes,
J. A. Hoeting, and R. L. Smith, editors, Handbook of Environmental and Ecological Statis-
tics, pages 711–744. CRC Press, 2019.

R. de Fondeville and L. Belzile. mvPot: Multivariate Peaks-over-Threshold Modelling for
Spatial Extreme Events, 2022. URL https://CRAN.R-project.org/package=mvPot. R
package version 0.1-5.

R. de Fondeville and A. C. Davison. High-dimensional peaks-over-threshold inference.
Biometrika, 105(3):575–592, 2018.

R. de Fondeville and A. C. Davison. Functional peaks-over-threshold analysis. Journal of
the Royal Statistical Society: Series B, 4(84):1392–1422, 2022.

L. de Haan. A spectral representation for max-stable processes. The Annals of Probability,
12(4):1194–1204, 1984.

L. de Haan and A. Ferreira. Extreme Value Theory: An Introduction, volume 3. Springer,
2006.

C. Dombry and M. Ribatet. Functional regular variations, Pareto processes and peaks over
threshold. Statistics and Its Interface, 8(1):9–17, 2015.

C. Dombry, S. Engelke, and M. Oesting. Bayesian inference for multivariate extreme value
distributions. Electronic Journal of Statistics, 11(2):4813–4844, 2017.

43

https://CRAN.R-project.org/package=mvPot


Richards, Sainsbury-Dale, Zammit-Mangion, and Huser

S. Engelke, Z. Kabluchko, and M. Schlather. An equivalent representation of the Brown–
Resnick process. Statistics & probability letters, 81(8):1150–1154, 2011.

A. Ferreira and L. de Haan. The generalized Pareto process; with a view towards application
and simulation. Bernoulli, 20(4):1717–1737, 2014.

A. H. Galib, A. McDonald, T. Wilson, L. Luo, and P.-N. Tan. DeepExtrema: A deep
learning approach for forecasting block maxima in time series data. Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22), pages
2980–2986, 2022.

A. E. Gelfand and E. M. Schliep. Spatial statistics and Gaussian processes: A beautiful
marriage. Spatial Statistics, 18:86–104, 2016.

M. G. Genton, Y. Ma, and H. Sang. On the likelihood function of Gaussian max-stable
processes. Biometrika, pages 481–488, 2011.

A. Genz and F. Bretz. Computation of Multivariate Normal and t Probabilities, volume
195. Springer Science & Business Media, 2009.

F. Gerber and D. Nychka. Fast covariance parameter estimation of spatial Gaussian process
models using neural networks. Stat, 10(1):e382, 2021.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT press, 2016.

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,
J. Cai, et al. Recent advances in convolutional neural networks. Pattern Recognition, 77:
354–377, 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(9):1904–1916, 2015.

D. Healy, A. Parnell, P. Thorne, and J. Tawn. Inference for extreme spatial temperature
events in a changing climate with application to Ireland. Journal of the Royal Statistical
Society: Series C, 2024. To appear.

E. C. Hector and B. J. Reich. Distributed inference for spatial extremes modeling in high
dimensions. Journal of the American Statistical Association, 119(546):1297–1308, 2024.

R. Huser and A. C. Davison. Composite likelihood estimation for the Brown–Resnick
process. Biometrika, 100(2):511–518, 2013.

R. Huser and A. C. Davison. Space–time modelling of extreme events. Journal of the Royal
Statistical Society: Series B, 76(2):439–461, 2014.

R. Huser and M. G. Genton. Non-stationary dependence structures for spatial extremes.
Journal of Agricultural, Biological, and Environmental Statistics, 21:470–491, 2016.

R. Huser and J. L. Wadsworth. Modeling spatial processes with unknown extremal depen-
dence class. Journal of the American Statistical Association, 114(525):434–444, 2019.

44



Neural Bayes estimators for censored inference

R. Huser and J. L. Wadsworth. Advances in statistical modeling of spatial extremes. Wiley
Interdisciplinary Reviews: Computational Statistics, 14(1):e1537, 2022.

R. Huser, A. C. Davison, and M. G. Genton. Likelihood estimators for multivariate ex-
tremes. Extremes, 19:79–103, 2016.

R. Huser, T. Opitz, and E. Thibaud. Bridging asymptotic independence and dependence
in spatial extremes using Gaussian scale mixtures. Spatial Statistics, 21:166–186, 2017.

R. Huser, C. Dombry, M. Ribatet, and M. G. Genton. Full likelihood inference for max-
stable data. Stat, 8(1):e218, 2019.

R. Huser, M. L. Stein, and P. Zhong. Vecchia likelihood approximation for accurate and
fast inference with intractable spatial max-stable models. Journal of Computational and
Graphical Statistics, 33:978–990, 2024.

H. Joe. Multivariate Models and Multivariate Dependence Concepts. CRC press, 1997.

Z. Kabluchko, M. Schlather, and L. de Haan. Stationary max-stable fields associated to
negative definite functions. The Annals of Probability, 37(5):2042–2065, 2009.

M. Khodeir, M. Shamy, M. Alghamdi, M. Zhong, H. Sun, M. Costa, L.-C. Chen, and
P. Maciejczyk. Source apportionment and elemental composition of PM2.5 and PM10 in
Jeddah City, Saudi Arabia. Atmospheric Pollution Research, 3(3):331–340, 2012.

J. P. Klein and M. L. Moeschberger. Survival Analysis: Techniques for Censored and
Truncated Data, volume 1230. Springer, 2003.

P. Krupskii, R. Huser, and M. G. Genton. Factor copula models for replicated spatial data.
Journal of the American Statistical Association, 113(521):467–479, 2018.

E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer, 2nd edition, 1998.

J. Lelieveld, K. Klingmüller, A. Pozzer, U. Pöschl, M. Fnais, A. Daiber, and T. Münzel.
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