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Abstract

We consider stochastic strongly-convex-strongly-concave (SCSC) saddle point (SP) problems
which frequently arise in applications ranging from distributionally robust learning to game
theory and fairness in machine learning. We focus on the recently developed stochastic
accelerated primal-dual algorithm (SAPD), which admits optimal complexity in several
settings as an accelerated algorithm. We provide high probability guarantees for convergence
to a neighborhood of the saddle point that reflects accelerated convergence behavior. We
also provide an analytical formula for the limiting covariance matrix of the iterates for
a class of stochastic SCSC quadratic problems where the gradient noise is additive and
Gaussian. This allows us to develop lower bounds for this class of quadratic problems which
show that our analysis is tight in terms of the high probability bound dependence on the
problem parameters. We also provide a risk-averse convergence analysis characterizing the
“Conditional Value at Risk”, the “Entropic Value at Risk”, and the x2-divergence of the
distance to the saddle point for the iterate sequence, highlighting the trade-offs between
the bias and the risk associated with an approximate solution obtained by terminating the
algorithm at any iteration.

Keywords: stochastic min-max optimization, high-probability guarantees, risk measures,
accelerated primal-dual methods

1. Introduction
We consider strongly convex/strongly concave (SCSC) saddle point problems of the form:

mip max £z, ) + f(@) + ©(a.y) — 9(1). (1)

where X' and ) are finite-dimensional Euclidean spaces, f : X — Ru{+w} and ¢ :
Y—Ru{+w} are closed convex functions, and ® : X x ) — R is a smooth convex-concave
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function such that £(z,y) is strongly convex in x and strongly concave in y, i.e., SCSC —
see Assumption 1 for details. Throughout the paper, we assume that f and g are strongly
convex; indeed, whenever £ is SCSC, this assumption holds without loss of generality as
strong convexity /concavity can be transferred from ® to f and g by adding and subtracting
simple quadratics (see also Remark 1 for details).

Such saddle point (SP) problems arise in many applications and different contexts. In con-
strained optimization problems, saddle-point formulations arise naturally when the problems
are reformulated as a minimax problem based on the Lagrangian duality. Furthermore, the
SP formulation in (1.1) encompasses many key problems such as robust optimization (Ben-Tal
et al., 2009) — here g is selected to be the indicator function of an uncertainty set from which
nature (adversary) picks an uncertain model parameter y, and the objective is to choose
x € X that minimizes the worst-case cost max,ey L£(z,y), i.e., a two-player zero-sum game.
Other applications involving SCSC problems include but are not limited to supervised learning
with non-separable regularizers (where ®(x,y) may not be bilinear) (Palaniappan and Bach,
2016), fairness in machine learning (Liu et al., 2022), unsupervised learning (Palaniappan
and Bach, 2016) and various image processing problems, e.g., denoising, (Chambolle and
Pock, 2011, 2016).

In this work, we are interested in the setting where the partial gradients V,® and V,®
are not deterministically available; but, instead we postulate that their stochastic estimates
V,® and %y‘b are accessible. Such a setting arises frequently in large-scale optimization
and machine learning applications where the gradients are estimated from either streaming
data or from random samples of data (Zhu et al., 2023; Giirbiizbalaban et al., 2022; Bottou
et al., 2018). First-order (FO) methods that rely on stochastic estimates of the gradient
information have been the leading computational approach for computing low-to-medium-
accuracy solutions for these problems because of their cheap iterations and mild dependence
on the problem dimension and data size. In this paper, our focus is on the first-order
primal-dual algorithms that rely on stochastic gradient estimates for solving (1.1).

Existing relevant work. Stochastic primal-dual algorithms for solving SP problems
generate a sequence of primal and dual iterate pairs z, = (zp,yn) € X x Y = Z starting from
an initial point (xg,yo) € dom f x dom g = Z. Two popular metrics to assess the quality of
a random solution (&, ) returned by a stochastic algorithm are the expected gap and the
expected squared distance defined as

G(&,9) =E[ sup {L(&,y) - L(x,9)}], D9 =E[z x>+ 7y, (1.2)
(z,y)eX xY

respectively, where (x*,y*) denotes the unique saddle point of (1.1), due to the strong
convexity of f and g. The iteration complexity of FO-methods in these two metrics depend
naturally on the block Lipschitz constants L., Lgy, Lyy and Ly,, i.e., Lipschitz constants of
Vo ®(,y), Va®(z,-), Vy®(z,-) and V4 P(-,y) as well as on the strong convexity constants
te and p, of the functions f and g —see Assumption 1 for precise definition of these
constants. In particular, Fallah et al. (2020) show that a multi-stage variant of Stochastic
Gradient Descent Ascent (SGDA) algorithm generates (z, ye) such that D(x,,ye) < € within

O(k?In(1/e) + 2—2%) gradient oracle calls, where §% = max {02, 6}, while 67 and 4., are bounds

on the variance of the stochastic gradients %x@ and %yq), respectively; p £ min{p,, puy} and
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L = max{Lyy, Lyy, Lys, Lyy} are the worst-case strong convexity and Lipschitz constants,
and k = L/p is defined as the condition number. SGDA analyzed in (Fallah et al., 2020)
employs Jacobi-type updates, i.e., stochastic gradient descent and ascent steps are taken
simultaneously. Jacobi-type updates are easier to analyze than Gauss-Seidel updates in
general, and can be viewed as solving a structured variational inequality (VI) problem, for
which there are many existing techniques that directly apply, e.g., (Gidel et al., 2018; Chen
et al., 2017). For deterministic SCSC problems, Zhang et al. (2022) consider gradient descent
ascent (GDA) with Gauss-Seidel-type updates i.e., the primal and dual variables are updated
in an alternating fashion using the most recent information obtained from the previous update
step. Their results show that an accelerated asymptotic convergence rate can be obtained for
the Gauss-Seidel variant of GDA, i.e., iteration complexity scales linearly with & instead of
k2. However, as discussed in (Zhang et al., 2022), this comes at a price: Gauss-Seidel style
updates greatly complicate the analysis because every iteration of the algorithm turns out to
be a composition of two half updates. Furthermore, extending the acceleration result to non-
asymptotic rates requires using a momentum term in either the primal or the dual updates,
and this further complicates the convergence analysis. Fallah et al. (2020) also considered
using momentum terms both in the primal and dual updates, and show that the multi-stage
Stochastic Optimistic Gradient Descent Ascent (OGDA) algorithm using Jacobi-type updates
achieves an iteration complexity of O(kIn(1/e) + 3—226) to guarantee an e-solution in terms
of expected squared distance. There are also several other algorithms that can achieve
the accelerated rate, i.e., log(1/¢) has the coefficient » instead of x2 - see, e.g. (Beznosikov
et al., 2022). We call this term that depends on the condition number as initialization
bias since it captures how fast the error due to initial conditions decay and reflects the
behavior of the algorithm in the noiseless setting. Among the algorithms that achieve an
accelerated rate, the most closely related work to ours is (Zhang et al., 2024) which develops a
stochastic accelerated primal-dual (SAPD) algorithm with Gauss-Seidel type updates. SAPD
using a momentum acceleration only in the dual variable can generate (z.,y.) such that
2
E[Mz”xe —x* H2 + Ny”ye _ y* HQ] < € within O((% + \/% -+ % + (% + %) %) log(%)>
iterations; this result implies O(x In(e ') 4+ p~26%¢ 1) bound in terms of the expected squared
distance — this complexity is optimal for bilinear problems. To our knowledge, SAPD is also
the fastest single-loop algorithm for solving stochastic SCSC problems in the form of (1.1)
that are non-bilinear; furthermore, using acceleration only in one update, as opposed to in

both variables (Fallah et al., 2020), leads to smaller variance accumulation (see Zhang et al.
(2024) for more details).

=

While the aforementioned results provide performance guarantees in expectation based
on the metrics defined in (1.2) and their variants, unfortunately having guarantees in these
metrics do not allow us to control tail events, i.e., the expected gap and distance can be
smaller than a given target threshold € > 0; but, the iterates can still be arbitrarily far away
from the saddle point with a non-zero probability. In this context, high probability guarantees
are key in the sense that they allow us to control tail probabilities and quantify how many
iterations are needed for the iterates to be in a neighborhood of the saddle point with a
given probability level p € (0,1). This is illustrated Figure 1 (Left) where we run the SAPD
algorithm for two different values of the momentum parameter § = 0.95 and 6 = 0.99 for a
toy problem mingcg maxyegr %x2 +zy + %yQ with strong convexity parameters p, = py = 1
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Figure 1: (Left) Convergence of SAPD on the saddle point problem mingeg maxyer 22/2 4+ zy + y2/2, initialized
at z9 = yo = 10 with momentum parameters § = 0.95 and 6 = 0.99. (Middle) Histogram of the
distribution of the SAPD iterates (xn,yn) after n = 1000 iterations for 500 runs, with corresponding
momentum parameters 6 = 0.95 and 6 = 0.99. (Right) Illustration of the expectation E(X), p-th quantile
(VaRp(X) = Qp(X)) and CVaR,(X) for p = 80%, where X is a gamma-distributed random variable with
shape parameter 3 and scale parameter 5.

admitting a saddle point at x* = y* = 0. SAPD is initialized at (z¢, y0) = (10, 10), primal and
dual stepsizes are chosen according to the Chambolle-Pock parametrization as suggested in
(Zhang et al., 2024). In this specific example, for simplicity, the stochastic gradients %xé and
ﬁyti) are set to V,® and V,® perturbed with additive i.i.d. Gaussian N(0,0.1) noise, and we
assume that V,® and %yq) are independent from each other and also from the past history
of the algorithm. For each parameter choice, we call SAPD for 500 runs, and for each run we
compute n = 1000 iterations —see Figure 1 (Left), and plot the distribution of the squared
distance of (2, y,) to the unique saddle point (x*,y*), i.e., B = |z, — x* 2 + |y — y* ||%,
in Figure 1 (Middle).

As we can see in the middle plot, the random error F,, can take significantly larger values
than its expectation D(zy, yn) = E[E,]. This motivates estimating the p-th quantile of the
error E,,, which is also called the value at risk at level p, traditionally abbreviated as Qp(En)
in the financial literature. While quantiles represent a worst-case error FE, associated with
a probability p, they do not capture the behavior if that worst-case threshold is ever crossed.
Conditional value at risk (CVaR) at level p, on the other hand, is an alternative risk measure
that can be used characterizing the expected error if that worst-case threshold is ever crossed.
CVaR is in fact a coherent risk measure with some desirable properties (Rockafellar and
Royset, 2013). In Fig. 1(Middle), we report the average, the quantile, and the CVaR at
the safety threshold p = 80% for n = 1000. We can see that quantile and the conditional
value at risk capture the tail behavior better than the expectation. Similar behavior can
be seen on other distributions, e.g., in Figure 1(Right), we illustrate the expectation, the
p-th quantile, and the p-conditional value at risk of a gamma-distributed random variable
with shape parameter 3, and scale parameter 5 corresponding to p = %80. Since CVaR
at level p € (0,1) estimates the average of the tails after the p-th quantile, it is useful for
capturing the average risk associated to tail events beyond the p-th quantile. In addition
to CVaR, there are also other coherent risk measures such as entropic value at risk (EVaR)
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and y2-divergence which have been of interest in the study of stochastic optimization
algorithms as they can provide risk-averse guarantees capturing the worst-case tail behavior
and deviations from the mean performance (Can and Giirbiizbalaban, 2022).

While high-probability guarantees (quantile guarantees) and risk guarantees in terms
of risk measures such as CVaR and EVaR are available in the optimization setting for the
iterates of stochastic gradient descent-like methods (Harvey et al., 2019; Rakhlin et al.,
2012; Davis and Drusvyatskiy, 2020; Can and Giirbiizbalaban, 2022), results in a similar
nature are considerably more limited in the SP setting. Among existing results, Juditsky
et al. (2011) obtained high-probability guarantees for the stochastic mirror-prox algorithm
for solving stochastic VIs with Lipschitz and monotone operators. This algorithm can be
used to solve smooth stochastic convex/concave SP problems, corresponding to the case
f =g = 0 with ®(z,y) being smooth, convex in x and concave in y, and implies that
with probability p € (0,1), after n iterations, the gap metric for the VI will be bounded
by O(ﬁ + log(ﬁ)%) assuming that the domain is bounded and the stochastic gradient
noise is light-tailed with a sub-Gaussian distribution. In (Gorbunov et al., 2022), it is
shown that the same high-probability results as in (Juditsky et al., 2011) can be attained by
clipping the gradients properly without resorting to the sub-Gaussian and bounded domain
assumptions. It should be emphasized that (Gorbunov et al., 2022) is designed for solving
stochastic variational inequalities (stochastic VIs), uses the Lipschitz constant of the gradient
operator in determining step sizes, and does not exploit the block Lipschitz structure of
the minmax problem; furthermore, it also does not handle closed convex functions f and
g. In another line of work (Yan et al., 2020), it is shown for the SGDA algorithm that the

expected gap guarantee G(x,,y,) < € can be achieved with probability at least p € (0,1)
after n = O (% log( ﬁ) + Z—z log(ﬁ)> oracle calls for possibly non-smooth SCSC problems.

Moreover, in (Wood and Dall’Anese, 2022), high probability bounds are given for online
algorithms applied to stochastic saddle point problems where the objective is time-varying
and revealed in a sequential manner —the data distribution over which stochastic gradients
are estimated depends on the decision variables. However, these high-probability guarantees
are obtained for non-accelerated algorithms with Jacobi-style updates; therefore, the high
probability bounds do not exhibit accelerated decay of the initialization bias, and scale as k2,
i.e., quadratically with the condition number «, instead of a linear scaling. To our knowledge,
high-probability bounds for algorithms with Gauss-Seidel style updates are not available in
the literature on SP problems even if they do not incorporate momentum, see the survey
by Beznosikov et al. (2022). Similarly, we are not aware of any risk guarantees (in terms of
CVaR and EVaR of the performance metric over iterations) for any primal-dual algorithm
for solving stochastic SP problems.

Contributions. In this paper, we present a risk-averse analysis of the SAPD method (Zhang
et al., 2024) to solve saddle point problems of the form (1.1). A key novelty of our work
lies in providing the first analysis of an accelerated algorithm for SCSC problems with high
probability guarantees, where our bounds reflect the accelerated decay of the initialization bias
scaling linearly with the condition number . Indeed, our high-probability bounds provided in
Section 3 imply that given target accuracy € > 0, SAPD, with a proper choice of parameters that
we state explicitly, can generate a solution (zn, yn) satisfying piz|@, —x* |2+ pylyn —y* |2 < €
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with probability p € (0,1) after n iterations for n € Z, satisfying

2
2 2 L) Ly
n0 [Lxx+Lyx+Lyy+ T - N -7 Mg(]1g<<”>5)
o Hafly  Hy Ly L2 fho iy € £ ’

(1.3)
where Sy = pg|xo — x* |? + pyllyo — y* |- When the partial gradients V,® and V,® are
continuously differentiable, which is the case for bilinear problems and for many SCSC
problems arising in practice (Zhang et al., 2024; Palaniappan and Bach, 2016; Chambolle and
Pock, 2011, 2016), we can take Ly, = Lyx (as discussed in Remark 13) and the complexity
in (1.3) simplifies to

— Lixe Lyx Lyy LF 573) 41+10g(ﬁ7) 1
n—O([Mz+m+uy —|—max<uz,uy - log(E) ,

hiding constants depending on the initialization. Simplifying the terms further, we can

conclude that n = O (H log(1) + (1 + log(flp))%> iterations are sufficient, where
5?2 = max((sz,csg). To achieve this, under a light-tail (subGaussian) assumption on the

norm of the gradient noise, we develop concentration inequalities tailored to the specific
Gauss-Seidel structure of SAPD. The Gauss-Seidel type updates and the use of a momentum
term within SAPD complicate the analysis significantly as the evolution of the iterates and
the performance metric over the iterations need to be studied with respect to a non-standard
filtration for having the right measurability properties (as discussed in Section 5.2 in detail).
Deriving these results requires construction of a new Lyapunov function, V,,, with some
favorable contraction properties. To our knowledge, SP problems, these are the first high-
probability guarantees for an algorithm with Gauss-Seidel updates, and first high-probability
guarantees involving acceleration in the sense that the iteration complexity’s dependence on
the initialization bias scaling linearly with the condition number . Indeed, one of our main
contributions is to show that this desirable k-dependence can be preserved when extending
the guarantees in expectation to high probability bounds for the SAPD algorithm.

Table 1 provides a summary of our results, providing a comparison with the existing
relevant work. To the best of our knowledge, our work is the only one that can provide
high-probability bounds in the presence of non-smooth regularizers, i.e., when there are
closed convex functions f and ¢g. In addition, existing high-probability guarantees are
obtained only for Jacobi-style algorithms, our results are the first high-probability results for
a primal-dual algorithm with Gauss-Seidel-type updates in the minimax setting —although
Gauss-Seidel (GS) type updates are harder to analyze, adopting GS updates often leads
to faster and theoretically better methods than those using Jacobi-type updates Zhang et al.
(2022). Finally, our analysis exploits the structure information of the minimax problems
better than the analyses provided for stochastic VI methods; indeed, our high-probability
results (in Corollary 12) are the only ones that capture the precise effect of the block
Lipschitz/strong convexity constants (Lyx, Lxy, Lyx, Lyy, tiz, fty) on the iteration complexity.
The previous high-probability bounds for min-max problems in the literature were given in
terms of worst-case constants L = max(Lyx, Lyy, Lyx, Lyy) and g = min(g,, 1ty) which result
in a significantly loose analysis as the block Lipschitz constants Ly, Ly, Lyx, Lyy and strong
convexity constants i, i, are generally not of the same order. Basically, our primal and dual
stepsizes, 7 and o, as well as the momentum parameter, #, can adapt to the block Lipschitz
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Algorithm Complexity — Exploits Structure f,g | Acceleration E:i}; Metric
| Hsich et al. (2019) o (g + 2 —X X X X D
| Fallah t al. (2020) ( og ( 52 %) X X X D
*Zhang et al. (2024) ( g 52 M) X D
Yan et al. (2020) o fT og(l/(l - )) —X X X g
| Gorbunov et al. (2022)f O (max {s, 2 J1og (1) n (1)) — X X D
Our Paper (Cor. 12) | O (nlog (é) + (1 + log (ﬂ)) %) — D

Table 1: Summary of relevant work for SCSC problems. The second column reports the complexity
(number of iterations needed) to achieve e-accuracy and whether the results exploit the block
primal-dual structure (by specifying the dependence to constants pi, fty, Lxx, Ly, Lyx, Lyy
explicitly); if the block structure is not exploited, that means the results are given in terms
of the worst-case constants ¢ = min(pu,, pt,) and L = max(Lyy, Lyy, Lyx, Lyy) instead. The
third column reports whether possibly non-smooth, closed convex f and g are supported in
the analysis. The fourth column is about acceleration, whether the bias term proportional
to log(1/¢) has linear dependence to k. The fifth column indicates whether the results
provide high-probability bounds. The sixth column indicates the metric used to quantify
convergence, as defined in (1.2). Table notes: T Yan et al. (2020) requires two nested
loops. ¥ Gorbunov et al. (2022) employ gradient clipping techniques.

structure; therefore, SAPD can leverage the structure specific to the minimax problems that
VI problems do not possess. Furthermore, our analysis technique based on the concentration
inequality derived in Proposition 20 can be of independent interest: in principle, it can
be used to analyze various different primal-dual methods for solving minimax problems,
including SAPD and GS-style stochastic gradient descent ascent! (SGDA) methods.

We also provide finite-time risk guarantees, in terms of the CVaR, EVaR and y2-divergence
of the distance to the saddle point. In addition, we provide an in-depth analysis of the behavior
of SAPD on a class of quadratic problems subject to i.i.d. isotropic Gaussian noise where we can
characterize the behavior of the distribution of the iterates explicitly. In particular, we derive
an analytical formula for the asymptotic covariance matrix of SAPD’s iterates, which demon-
strates the tightness of our high probability bounds with respect to several parameter choices
in SAPD. To our knowledge, these are the first risk-averse guarantees that quantify the risk asso-
ciated with an approximate solution generated by a primal-dual algorithm for SP problems.
Notations. Throughout this manuscript, X = R" and ) = R™ denote finite dimensional
vector spaces equipped with the Euclidean norm |u| 2(u, u>2 and Z = X x ). We adopted
Z4 + for positive integers and Z, = Z, 1 v {0}. For A, B e R™" we denote Vec(A) € R™
the vector composed of the vertical concatenation of the columns of A, and A ® B the
Kronecker product of A and B. We let |A| denote the spectral norm of A and let p(A)
denote the spectral radius of A, i.e., the largest modulus of the eigenvalues of A. For a finite
sequence of reals x1,...,x, (resp. matrices Xy,...,X,), we denote Diag(xy...,z,) (resp.
Diag(X; ..., X,)) the associated (block) diagonal matrix. If A is diagonalizable, Sp(A)
denotes the set of the eigenvalues of A. For any convex set C, Z¢ denotes the indicator

1SGDA can be seen as a special case of SAPD with the momentum parameter 6 = 0.
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function of C| i.e., Z¢(z) = 0 if x € C, and equal to 400 otherwise. For a given proper, closed
and convex function p: X — R u{+00}, prox,(-) denotes the associated prozimal operator:
z — argmin,ey p(u) + 3|u — 2% We use the Landau notation to describe the asymptotic

behavior of functions. That is, for u € R u{+00}, a function f(x) = o(g(x)) in a neighborhood
f(z)

of u if Ti) — 0 as * — u, whereas f(z) = O(g(x)) if there exist a positive constant C
such that |f(z)| < Clg(z)| in some neighborhood of u. Similarly, we say f(z) = O(g(x)),

if f(z) = O(g(x)) and g(x) = O(f(x)). Given random vectors U, : @ — R? for n > 0,
we let U, D, U if U, converges in distribution to another random vector U : ) — R?. In
Appendix A, we provide a table summarizing the key notation used within the paper together
with references to where they are introduced in the text.

2. Preliminaries and Background

2.1 Stochastic Accelerated Primal-Dual (SAPD) Method

SAPD, displayed in Algorithm 1, is a stochastic accelerated primal-dual method developed in
(Zhang et al., 2024) which uses stochastic estimates V,® and %yq) of the partial gradients
V,® and V,®. SAPD extends the accelerated primal-dual method (APD) proposed in
(Hamedani and Aybat, 2021) to the stochastic setting, which itself is an extension of the
Chambolle-Pock (CP) method (Chambolle and Pock, 2011, 2016) developed for bilinear
couplings ®. Given primal and dual stepsizes 7 and ¢ and a number of iterations n, SAPD
applies momentum averaging to the partial gradients with respect to the dual variable, and
updates the primal and the dual variables in an alternating fashion computing proximal-
gradient steps. While the gradients of ® are stochastic and inexact, it is assumed that
proximal steps with respect to non-smooth terms f and g are computed in an exact fashion.?

Algorithm 1 SAPD Algorithm

Require: Parameters 7,0, 6. Starting point (x,yo). Horizon N.

1: Initialize:

T_1 < To, Y-1< Yo, Qo< O

2: forn=0,...,N—1do

3: Sp « @y D(p, Yn,w¥) + 04, > Momentum averaging
4: Yn+1 < ProX,,(yn + o 8p)
5
6

Tpy1 < ProxX, p(Tn — T Vi ®(Zr, Yrs1, w?))

: fln+1 <« @y (I)(:En-&-layn-i-hwz.q.l) - @yq)(xnayvuwz)
return zy = (£n,yN)

The high-probability convergence guarantees of SAPD derived in this paper rely on
several standard assumptions on f, g, ®, and on the noisy estimates V,® and V,® of the
partial gradients of ®. The first assumption on the smoothness properties of the coupling

2In many cases, these proximal steps are easy to compute exactly or up to high accuracy; for instance when
f and g are taken as indicator functions of some convex sets, or when f and g are ¢;-regularizers; see also
Parikh et al. (2014) for other examples where the proximal operators prox,,(-) and prox, ;(-) admit an
explicit formula.
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function ® is standard for first-order methods (see e.g.. (Mokhtari et al., 2020; Gidel et al.,
2018; Zhang et al., 2021)).

Assumption 1 f: X > Ru{+w} and g: Y — R u{+mo} are strongly convex with convexity
modulit fiz, p1y > 0, respectively; and P R x RY — R is continuously differentiable on an
open set containing dom f x dom g such that

(i) ®(-,y) is convex on dom f, for all y € dom g;
(ii) ®(x,-) is concave on domg, for all x € dom f;

(1i1) there exist Lyy, Lyy = 0 and Lyy, Lyx > 0 such that

H VX(I)(x7y) - vxq)('f7g)
|Vy @(2,y) — Vy ©(2,9)

Lyx |2 — 2| + Lyy ly — 9l
Lyx |z — | + Lyy |y — 9l

for all (z,y),(Z,y) € dom f x domg.

By strong convexity /strong concavity of £ from Assumption 1, the problem in (1.1) admits
a unique saddle point z* =(x*,y*) which satisfies

L y) < L y") < L(z,y7), V(z,y)e X x Y. (2.1)

Remark 1 In case ® is pg-strongly convex with respect to x and p,-strongly concave with
respect to y, one can redefine the problem so that Assumption 1 holds. Indeed, consider
O(z,y) = D(z,y) — flzlo + Flyle, f(2) 2 flo) + & 2|3 and § = g(y) + B [y[3 and
reformulate the problem in (1.1) as mingey maxyey f(x) + ®(z,y) — §(y). Note that &, f
and g satisfy Assumption 1, i.e., é(:c,y) is conver,/concave, f 1S g -strongly convex and g is
y-strong convez, and these two formulations are equivalent. Furthermore, the evaluation of
proz; for f=7Ff+ AR |3 is computationally similar to evaluating prozy, see (Zhang et al.,
2024, Remark 1) for further details.

Following the literature on stochastic saddle-point algorithms (Nemirovski et al., 2009;
Juditsky et al., 2011; Chen et al., 2017), we assume that only (noisy) stochastic estimates
@y D (2, Yn, wh), Vi O(zp, Yn+1,wy) of the partial gradients Vy ®(xy,, ypn), Vx ®(2n, Yynt1) are
available, where w¥, wy, are random variables that are being revealed sequentially. Specifically,
we let (w}),>0, (Wh),=o be two sequences of random variables revealed in the following order

in time which is the natural order for the SAPD updates:

wi > wj > w] >l > wd >

and we let (FY)n>0 and (F7)n>0 denote the associated filtrations, i.e., 7§ = o(wf) is the
sigma algebra generated by the random variable w§, F§ = o(wf,wd) and

Frn=0(Fn10wp), Fp=0(Fo0wy), Vk=1
For any k& > 0, we introduce the following random variables to represent the gradient noise:

AY £V, O(zp, yn,wl) — Vy ®(an,yn), A7 = @Xq)(xn,ynH,wﬁ) — V< ®(Tn, Ynt1)-
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Often times, stochastic gradients are assumed to be unbiased with a bounded variance
conditional on the history of the iterates. Such an assumption is standard in the study
of stochastic optimization algorithms and stochastic approximation theory (Harold et al.,
1997) and frequently arises in the context of stochastic gradient methods that estimate the
gradients from randomly sampled subsets of data (Bottou et al., 2018).

Assumption 2 There exists scalars vg,v, > 0 such that for all n = 0,
E[AYFr 1] =0, E[A7|FI] =0, E[JALPIF ] <v? E[IATPIFL] < v’

Under Assumptions 1 and 2, given a set of parameters (7,0, 0), SAPD iterates (z,y,) were
shown to converge to a neighborhood of the solution linearly in expectation where the size of
the neighborhood gets smaller when the gradient noise levels v, v, > 0 gets smaller (Zhang
et al., 2024); in particular, in the absence of noise (when v, = v, = 0), the iterates (xy, yn)
converges to (x*,y*) at a linear rate p € (0,1) provided that there exists some a € [0,071)
for which the following inequality holds:

R = 0 0 0 0
0 Lap-% (2-1)Lp (2-1)Ly 0
0 -1)Ly t-Lu 0 8L, |=0. (2.2)
0 & —1) Ly, 0 1o —2L,,
0 0 —%Lym —%Lyy a

An important class of solutions to the matrix inequality in (2.2) takes the following form:
given an arbitrary ¢ € (0, 1], choose
1-6 1-6

T = 9 o = ] 6 2 é()? 23
011z O1iy (23)

for some 0, € (0, 1) explicitly given in (Zhang et al., 2024, Corollary 1) — (7, 0, 6) satisfying
(2.3) solves (2.2) with p = § and o = £ — VOL,, with ¢ € (0,1]. SAPD generalizes the
primal-dual algorithm CP proposed in (Chambolle and Pock, 2011) — CP algorithm can
solve SP problems with a bilinear coupling function ® when a deterministic first-order oracle
for @ exists; indeed, for bilinear coupling functions with deterministic first-order oracles,
SAPD reduces to the CP algorithm. It is shown in (Chambolle and Pock, 2016) that for a
particular value® of 6, the choice of primal and stepsizes (7,0) according to (2.3) achieves
the accelerated rate. For SAPD, Zhang et al. (2024) study the squared distance of iterates
to the saddle point in expectation and extends the same acceleration result to the case when
® is not bilinear and when one has only access to a stochastic first-order oracle rather than a
deterministic one.

As we focus on SCSC problems, we can rely on the squared distance of the iterates
(Zn, yn) to the solution (x*,y*) to quantify sub-optimality. Precisely, sub-optimality will be
measured in terms of a weighted squared distance to the solution, i.e.,

1 . 1/1 .
Wat —laa =% 1+ 5(5 =) lya =y I% (2.4)

3see (Chambolle and Pock, 2016, Eq.(48)).

10
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for some a € [0,071). This weighted metric turns out to be more convenient for the
convergence analysis of SAPD, but it is clearly equivalent to the unweighted squared distance
E, = |zn —x*|?> + |yn — v*|? up to a constant that depends on the choice of (7,0, ). For
the sake of completeness of the paper, we first recall the convergence of SAPD in expected
weighted squared distance, established in (Zhang et al., 2024).

Theorem 2 ((Zhang et al., 2024), Theorem 1) Suppose Assumptions 1 and 2 hold and
let z, = (Tn,Yn)n>1 be the iterates generated by SAPD, starting from an arbitrary tuple
(xo,y0) € X x Y. ForallneN, 1,0 >0, and 6 = 0 satisfying (2.2) for some p € (0,1) and
a€[0,071), it holds that

14 T = 2
E[Wn] <p" Wro + =
[ n] P 7,0 1— p (1 + Tl 7'70'79]/3,’

=Y 2) , (2.5)

+ —= v
1+op, 700

where Wy g 2= 5t |wo —x* |2+ 5= |y —y* |? denotes the initial bias, and B e=1+

00(1+0) Ly
—y s TO(+0)Lys 0+00(1+6) Ly, T700(1460)Lyz Loy

2(1+ouy)
oo = S T <1 +20+ — (1+w:c)(1+cwy)) (1 + 26) are noise related

constants that depend on the problem and algorithm parameters.

As stated above, the convergence of SAPD in expected squared distance presents the classical
bias-variance trade-off, which can be controlled through adjusting the SAPD parameter choice.
The bias term p"W; ,, captures the rate at which the error due to initialization (bias) decays,
ignoring the noise. It is shown in (Zhang et al., 2024) that for certain choice of parameters,
convergence of initialization bias to 0 occurs at an accelerated rate p = 1 — @(%) instead
of the non-accelerated rate p = 1 — ©(;%) of methods such as (Jacobi-style) SGDA. The
variance term constitutes the (remaining part) second term at the right-hand side of (2.5)
and is due to noise accumulation that scales with the stepsize and the noise variance. For
a particular choice of SAPD parameters, it is shown that in expectation SAPD exhibits
the optimal complexity of @(1 /€) up to a logarithmic factor, and achieves an accelerated
decay rate for the bias term; however, in a number of risk-sensitive situations, convergence in
expectation can prove to be insufficient. In this paper, we further investigate the properties
of SAPD for several measures of risks, that we detail in Section 2.3.

2.2 Assumptions on the gradient noise

Although according to Theorem 2, (2.2) describes a general set of parameters for which
SAPD will admit guarantees in terms of the ezpected weighted squared distance to the solution,
risk-sensitive guarantees for SAPD, including high-probability bounds are not known. In
the forthcoming sections, we study SAPD for parameters satisfying (2.2), and we obtain
convergence guarantees in high probability, in CVaR, in EVaR, and also in the y?-divergence-
based risk measures, which are properly defined in Section 2.3. In other words, our focus
here is to obtain high probability guarantees as well as bounds on the risk associated with
B = |z — z* ||. To this end, we will make a “light-tail" assumption on the magnitude of
the gradient noise, adopting a subGaussian structure. Before giving our assumption on the
gradient noise precisely, we start with introducing the family of norm-subGaussian random
variables, and recall their basic properties.

11
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Definition 3 A random vector X : Q — R4 is norm-subGaussian with prozy 6 > 0, denoted
2
by X € nSG (), if we have P [||X —-E[X]| = t] < Qeﬁ, vVt e R.

Random vectors with norm-subGaussian distribution were introduced in (Jin et al., 2019),
and encompass a large class of random vectors including subGaussian random vectors. First,
note that given an arbitrary o > 0 and a random variable X :  — RY such that X € nSG (9)
for some ¢ > 0, we immediately have the following implication:

X enSG(§) = aX enSG (ad). (2.6)

Moreover, X : Q — R is norm-subGaussian when X is subGaussian, or it is bounded, i.e.,
3B > 0 such that | X| < B with probability 1. As discussed in (Jin et al., 2019, Lemma
3), the squared norm of a norm-subGaussian vector admits a sub-Exponential distribution,
which is defined next.

Definition 4 A random variable U: Q) — R is subExponential with prozy K > 0 if it satisfies
E [e)‘lul] <M, vae[o, K71

In particular, if we take U = | X |? for X € nSG (§) with E[X] = 0, then the following result
shows that U is subExponential with proxy K = 8§2.

Lemma 5 Let X € nSG (§) be such that E[X] = 0. Then, for any \ € [O, &],
E [eAHXHQ] < 26?1 < 8N? (2.7)

Lemma 6 Let X € nSG (6) such that E[X] = 0. Then, for any u e R and X\ = 0, it holds
that E [eX»X0] < SN2 [ul?0?

For completeness, the proofs of these two elementary results are provided in Section B.1 of
the appendix. Next, we will introduce an assumption which says that gradient noise terms
AZ and A}, are light-tailed admitting a norm-subGaussian structure when conditioned on
the natural filtration of the past iterates.

Assumption 3 For any n > 0 the random vectors A% and A}, are conditionally unbiased
and norm-subGaussian with respective proxy parameters d.,06, > 0. More precisely, for all
t >0, we have B [A}| Fi_1| = 0,E[AZ| F¥] = 0, and

_¢2 42

PIIAY| > tFE_] <2¢F, P[IAZ] > t|FY] < 2¢5.

We note that such subGaussian noise assumptions are common in the study of stochastic
optimization algorithms (Rakhlin et al., 2012; Ghadimi and Lan, 2012; Harvey et al., 2019).
In machine learning applications, where stochastic gradients are often estimated on sampled
batches, noisy estimates typically behave Gaussian for moderately high sample sizes, as
a consequence of the central limit theorem (Panigrahi et al., 2019). Furthermore, there
are applications in data privacy where i.i.d. subGaussian noise is added to the gradients
for privacy reasons (Levy et al., 2021; Varshney et al., 2022). In such settings, we expect
Assumption 3 to hold naturally. In the rest of the paper, together with Assumption 1, we
will assume that Assumption 3 holds in lieu of Assumption 2.

12
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Risk measure Formulation Divergence
1
CVaRy, pe [0,1) ﬁ o —p Qp (U D’ o(t) = I[O,ﬁ] (t)
EVaRp, pe [0,1) infy>0 {%1—;7) + %log(IE(e”M))} p(t) =tlogt—t+1
Ry, 120 infy0 {VIF 2\ /EQU —m)% + 1} o(t) = Lt —1)2

Table 2: Three examples of p-divergence based risk measures studied in this paper.

2.3 VaR, CVaR, EVaR and y?-divergences

For any given n > 0, to quantify the risk associated with ||z, — z* |, i.e., the distance to the
unique saddle point, we will resort to ¢-divergence-based risk measures borrowed from the
risk measure theory (Ben-Tal and Teboulle, 2007), including CVaR, EVaR and x2-divergence.
The first risk measure of interest is the quantile function, also known as value at risk, defined
for any random variable U/:  — R as follows:

QpU) = inf{te R : P < t] > p}. (2.8)

Quantile upper bounds correspond to high-probability results, which have been already fairly
studied to assess the robustness of stochastic algorithms (Ghadimi and Lan, 2012; Rakhlin
et al., 2012; Harvey et al., 2019). One key contribution of this paper is the derivation of an
upper bound on the quantiles of the weighted distance metric W,,, defined in (2.4), such that
this upper bound exhibits a tight bias-variance trade-off —see Section 4.2.

Furthermore, we investigate the robustness of SAPD with respect to three convex risk
measures based on ¢-divergences (Ben-Tal and Teboulle, 2007). Generally speaking, for a
given proper convex function ¢ : Ry — R satisfying ¢(1) = 0 and lim;_, ¢+ ¢(t) = ¢(0), the
associated ¢-divergence, is defined as Dy, (Q|P) = i, ¢ (f%%) dP, for any input probability
measures Q, P such that Q « P, i.e., Q is absolutely continuous with respect to P. Different
choices of p-divergence result in different risk measures as discussed next.

Definition 7 For any r = 0, the p-divergence based risk measure at level r is defined as

Ro )= s Eglul, (2.9)
Q«P, Dy (Q|P)<r

where P denotes an arbitrary reference probability measure.

We refer the reader to (Ben-Tal and Teboulle, 2007; Shapiro, 2017) for more on p-divergence
based risk measures. In this paper, we investigate the performances of SAPD under three
p-divergence based risk measures, summarized in Table 2.
First, given p € [0,1), we consider the conditional value at risk at level p, i.e., CVaR,,
defined as .
1
CVaR,(U) = —— Qy (U) dp'. (2.10)
1-— D p'=p
The CVaR measure admits the variational representation (2.9) with ¢ : ¢+ Ty (_py-11(?)
for any r > 0. As an average of the higher quantiles of &, CVaR,,(i/) holds intuitively as a

13
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statistical summary of the tail of U, beyond its p-quantile. While high-probability bounds do
not take into account the price of failure tied to the event U > Q,(U), the CVaR presents
the advantage of averaging the whole tail of the distribution; therefore, it can quantify the
risk associated with tail events in a robust fashion.

The second convex risk measure we investigate is the Entropic Value at
Risk (Ahmadi-Javid, 2012), denoted by EVaR, and is defined as EVaR,(U) =
inf,~o {—n"'log(1 — p) + n* log(E(exp(nif)))}. The EVaR admits the variational representa-
tion (2.9) with ¢ : ¢ — tlog(t) — ¢t + 1 and the parameter r is set to —log(1 — p) for given

€ [0,1) —see e.g. (Shapiro, 2017). EVaR exhibits a higher tail-sensitivity than CVaR, in
the sense that CVaR, (/) < EVaR, () for all p € [0,1) whenever EVaR, (i) < o0. Finally
we will also derive results in terms of the x2-divergence based risk measure, defined as (2.9)
with ¢ 0t — (¢t —1)2

3. Main Results

In this section, we present the main results of this paper, which consist of convergence
analyses of SAPD in high-probability and provide guarantees in terms of the three convex risk
measures presented in Table 2. Later in Section 4, we derive analytical expressions related
to convergence behavior of SAPD applied on quadratic SP problems, and in Section 4.2 we
discuss some tight characteristics of our main results provided in this section. Finally, in
Section 5, we provide the proofs of our main result stated in Theorem 8.

Theorem 8 Suppose Assumption 1 and Assumption 3 hold. Given 7,0 > 0, and 6 = 0
satisfying (2.2) for some pe (0,1) and a € [0,071), let (T, Yn)n=1 denote the corresponding
SAPD iterates, initialized at an arbitrary tuple (xo,yo) € dom f x domg. For all n € N,
p € [0,1), it holds that

P[Wnﬂ + W, < qp,nﬂ} >p, where (3.1)
L+p\" CAFE-CINEC !
dpn+1 = <2> <C’T7U,6 WT,U + E ) +=; 0,0 + = —T1,0,0 10g (1_p>a (3'2)
where Wy, = =57 Hxn x* H2 ' aUHyn v* H2 = H«TO —x* ”2 HyO -y H2 o0 and
E(T,Lﬁ = ”50)952 + H(T 59(52 fori=1,23 depend only on the algomthm parameters (T,0,0)

and the problem parameters (jig, fty, Lxx, Lyy, Ly, Lyx). Furthermore, all these constants can
be made explicit* and in particular, under the CP parameterization in (2.3), they satisfy

Cro0 = O(1), E(Tzfé = 0(1), and ES(% =0O(1) for alli =1,2,3 as 6 — 1, which implies
that

imsup @y (12 — 12) = (9((1 — )82 (1 +log (1 ip)))

Proof The proof is provided in Section 5.2.1. |
Remark 9 Under the premise of Theorem 8, (3.1) implies that for all p € [0,1) and n = 0,
Qp (W) < @ (Warr + W) < )2, (3.3)

4These constants are explicitly given within the proof, provided in Section 5.
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Remark 10 For any given p € (0,1), to check if there exists SAPD parameters T,0,6 such
that the bias component of E[Wy,1+1 + W] decreases to 0 linearly with a rate coefficient
bounded above by p € (0,1), one needs to solve a 5-dimensional SDP, i.e., after fizing
p, checking the feasibility of (2.2) reduces to an SDP problem, see (Zhang et al., 2024)
for details. Below in Corollary 12, we provide a particular solution to (2.2), in the form
of (2.3), for which the choice of p leads to an accelerated behavior with a complexity of
O(rlog(e™t) + p~10%(1 + log((1 — p)~1))e ' log(e ™)) where 6 = max(62,02). Thus, the
bias term in Theorem 8 decays at an accelerated rate, which differs from the standard
decay of non-accelerated Jacobi-style algorithms where the initialization (bias) error scales

proportionally to 2 (Fallah et al., 2020).

Remark 11 Our bound for the p-th quantile, q,n41, ts tight, i.e., under the parameter
choice in (2.3), the dependency of qpn+1 to 8 and p cannot be improved when n is large
enough. See Theorem 19 for further details.

Next, we provide the oracle complexity of SAPD in high probability, which can be derived as
a corollary to our main Theorem 8.

Corollary 12 For pe [0,1) and € > 0, set 1,0,0,p as

1-6 1-6 I
Tt 0= g p=0=max (1/2,91,92,91,9@,) . where (3.4)
x Y
2
glél_w <\/1+8“1Lyx22_1>’ 5, |- a-py —— ( 1+(f$3’%:5 —1> if Lyy >0
4Lyx Bﬂy (LXX +,U41) 0 Zf Lyy =0
b = 1- Fs
x - < 2 ’
(e + e+ P12 ) 62 (1 + log(1/(1 = p)
b, = 1- Fs

() + e+ e ) 62 (14 log(1/(1 — 1)

with B = min{1/2, pg /1y, py/ e}, and for universal positive constants c(xl),cg(f) fori=1,23
that are large enough®. Then, (2.2) is satisfied for o = % — \/@Lyy and SAPD guarantees that
P [tal@n — X" |2 + tylyn — ¥* | < €] = p for n satisfying (1.3).

Proof The result follows directly from Theorem 8 after plugging in our choice of parameters
based on tedious but straightforward computations. For the sake of completeness, we provide
the details of these computations in Appendix G of the online-only supplementary material -
see the extended version of the paper Laguel et al. (2023). |

Remark 13 By Assumption 1, the partial gradients V,® and V,® are Lipschitz continuous;
therefore, they are almost everywhere differentiable by Rademacher’s Theorem. If we assume
slightly more, i.e., if V@ and V,® are continuously differentiable, then the partial derivatives
commute and we have V,V,®(x,y) = V,V,®(x,y), as a consequence of Schwarz’s Theorem.
In this case, we can take Ly, = Lyy in Assumption 1 and in Corollary 12.

SFor simplicity of the presentation, we do not provide these universal constants explicitly here; that said, the
constants can be made explicit in a straightforward manner following the step-by-step computations in our
proof provided in the extended version of the paper Laguel et al. (2023).
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Remark 14 Our (7,0,0) choice in Corollary 12 depend on the convexity moduli fi, f1y > 0
and Lipschitz constants Lyg, Lyy, Lyz, Lyy, the noise level 62 and 55 and the target probability

€ (0,1). Our 0 choice here, which depends on the given probability p € (0,1), is different
from the existing literature on SAPD given in (Zhang et al., 2024, Theorem 2) for analysis
of SAPD iterate sequence in expectation. Since strong convexity and Lipschitz constants
corresponding to the stochastic minimax problems of interest may not be available, designing
adaptive (stepsize) methods with high-probability guarantees and that are oblivious to these
problem parameters s an interesting open research problem; but, this is beyond the scope
of this work. That being said, for some problems these constants may be known or can be
estimated. For example, strong convexity constants are known for lo-reqularized problems of
the form: min, max, ®(z,y) + )‘—QIHJCHQ — %Hy”2 where @ is convex in x and concave in y, and
Az, Ay > 0 are reqularization parameters; in this case we can simply take piz = Ay and py, = Ay,
this setting may arise for instance in distributionally robust learning Zhang et al. (2024). If
the strong convexity constants are not known, we could also rely on estimation techniques
such as Barré et al. (2020); Malitsky and Mishchenko (2019). When ® is twice continuously
differentiable, Lipschitz constants can also be estimated by approximately mazximizing the
norm of V2®; but, this can be computationally expensive in high dimensions. Alternatively,
for some structured minimazx problems, Lipschitz constants can be estimated explicitly, e.q.,
distributionally robust logistic regression Zhang et al. (2024), and distributionally robust linear
regression, where the dual domain is the probability simplex, in which case the norm of V>®
can be characterized explicitly and one can obtain precise estimates for the Lipschitz constants.

Using Theorem 8 and building on the representation of the CVaR in terms of the quantiles,
1

we can deduce a bound on CVaRp(WE ) as shown in Theorem 15, where we also provide
bounds on the entropic value at risk and on the x2-based risk measure, as defined in Table 2.

Theorem 15 (Bounds on Risk Measures) Under the premise of Theorem §,

CVaR, <W§+l> < \/(1.gp>"/2 (CrimoWro +20) ) +282) , + \/ag?;a (1+10g (%)) (3.5)

-D

1 1 n/2 1 N\1/2
EVaR,(W2, ) < \/<;”> (CromoWro +20) ) +22) , +4/28) <log (ﬂ) + ﬁ) . (36)

hold for allm € N and p € [0, 1), where W, =) =@ ind § are as defined in Theorem 8.

—r,0,0° —1,0,0
Furthermore, for all n € N and r > 0, the right-hand side of (3.6) with p =1 — —— is an

1+7
upper bound on sz,r(erlfl),

Proof The proof is provided in Section 5.2.2. |

In the next section, we discuss a family of quadratic SP problems for which we can compute
the asymptotic covariance matrix of the iterates in expectation explicitly, assuming additive
i.i.d. Gaussian noise on the partial gradients. This will allow us to gain insights about the
effect of parameter choices and argue about the tightness of our analysis.

Remark 16 There are notable differences among the risk measures considered in this work.
First, their domain of definition differs significantly. Indeed, the quantile function Qp(-)
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is defined on any random variable X satisfying P(|X| < o0) = 1, while CVaR and EVaR
require | X| to be integrable, and | X| to be sub-exponential, respectively. Second, while high
probability bounds do mot account for the price of failure associated with the tail event
when we are above the p-th quantile of the error W, convex risk measures such as CVaR
integrate these high-values, and are as such more sensitive to the worst-case scenarios;
this can also be observed from our example given in Fig. 1. While CVaR, EVaR and
x2-divergences belong to the general class of ¢-divergence-based risk measures, each of these
risk measures differ in terms of how they consider or average the tail events (see Section
2.3). Note that these risk measures are all coherent (possessing favorable properties as a risk
measure such as monotonicity, sub-additivity, homogeneity, and translational invariance),
and are of interest in the study and design of stochastic optimization algorithms (Can
and Girbizbalaban, 2022; Ahmadi-Javid, 2012; Chouzenouz et al., 2019). In our context,
obtaining risk-averse guarantees in these risk measures are relevant because they allow us
to obtain finer characterizations of the tail events associated to the optimization error Wiy,
quantifying deviations from the average performance (expected error E[W,]) in different ways.

Our results in Theorem 8 and Corollary 15 prove that under the norm-subGaussian assump-
tion, the upper bounds for these risk measures, i.e., Qp(-), CVaR,(-) and EVaR,(-), behave
similarly in terms of their dependence on the problem parameters. This is due to the tight
control we manage to get over the moment generating function corresponding to the error
W, at stage n in our analysis given in Section 5.2. However, we suspect that beyond the
subGaussian regime, in the heavy-tail scenario, the error bounds for these risk measures
may exhibit different decay properties. Indeed, existence of a finite EVaR is more restrictive
than CVaR being finite as it requires for the moment generating function of the underlying
random variable to be well defined, whereas CVaR requires less restrictive conditions on its
moments (see also Remark 16).

4. Analytical solution for quadratics

In this section, we study the behaviour of SAPD on quadratic problems subject to additive
isotropic Gaussian noise. More specifically, we consider

. I I
min max *z|* + (Kz,y) — 22yl (4.1)
reRd yeRd 2 2

where K € R™? ig a symmetric matrix, and g, iy > 0 are two regularization param-
eters. The unique saddle point of (4.1) is the origin z* = (x*,y*) = (0,0). At each
iteration n = 0, suppose we have access to noisy estimates @yq)(mn,yn) = Kz, + wj
and Vy ®(2n,yni1) = K yni1 + w® of the partial gradients of ® : (z,y) — (Kx,y),
where the (w?),>o and (wp)p>o denote i.i.d. centered Gaussian vectors satisfying
Elwiw® '] = E[w%w%T] = d~16%] for some 6 > 0. In this special case, we have the gradient
noise vectors A% = w% AY = wy. Our main motivation to study this toy problem is to gain
some insights into the sample paths SAPD generates, and use these insights while studying
the tightness of high-probability bounds provided in Section 3.

This problem was first studied in (Zhang et al., 2024) where it was shown that, under
certain conditions on 7,0,0, the sequence of iterates (Z,)n>0 generated by SAPD, where
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Zn = (®n—1,Yn), converges in distribution to a zero-mean multi-variate Gaussian random
vector whose covariance matrix % satisfies a certain Lyapunov equation of dimension 2d x 2d.
The authors of (Zhang et al., 2024) manage to split this equation into d many 2 x 2 Lyapunov
equations:

FOA _ A 0 (AMNT + R e R2*2, v e Sp(K), (4.2)

i.e., for each eigenvalue X\ of K, there is a 2 x 2 Lyapunov equation to be solved, where
A* R e R?*? depend only on 7, 0,6, 62 and A € Sp(K) —for completeness, we provide these
steps in detail in Section D.1 of the appendix.

Given an arbitrary symmetric matrix K, in (Zhang et al., 2024), the small-dimensional
Lyapunov equation in (4.2) is solved numerically. On the other hand, to establish the
tightness of our high-probability bounds for the class of SCSC problems with a non-bilinear
® subject to noisy gradients with subGaussian tails (see Section 3), we need to analytically
solve (4.2). However, analytically solving (4.2) for general parameters satisfying the matrix
inequality (2.2) is a challenging problem that standard symbolic computation tools were
not in a position to properly address. That said, as we shall discuss next, we can provide
analytical solutions for (4.2) under the Chambolle-Pock (CP) parameterization in (2.3),
where primal and dual stepsizes are parameterized in 6, i.e., the momentum parameter. We
recall that in this case, the momentum parameter value coincides with the convergence rate
bound for SAPD, i.e., 8 = p. We should note that CP parameterization represents a rich
enough class of admissible SAPD parameters in the sense that under this parameterization
SAPD can achieve accelerated bias decay in the expected squared distance metric (Zhang
et al., 2024) and the accelerated high probability results we derived in Corollary 12.

4.1 Covariance matrix of the iterates under the CP parameterization

The main result of this section is an explicit analytical formula for the asymptotic covariance
matrix 3% of SAPD’s iterates (zy, ypn) as n — 00. Our proof yields closed-form solutions under
the Chambolle-Pock parameterization (2.3), useful for understanding the effect of parameters
on the solution. Due to lengthy calculations involved, the proof is provided in Section D.2 of
the Appendix. Our proof technique is based on identifying the conditions on the parameters
so that the Lyapunov matrix in (4.2) admits a unique solution and we solve it as a function
of A by diagonalizing A* given in (4.2) with a proper change of basis.

Theorem 17 Let ke 2 p(K)/\/Bzfly. For any given 0 > (\/1+ K2, — 1)/Kmas fized,

set T = (1 —0)/(0us) and o = (1 —0)/(0py). Suppose gradient noise sequences are i.i.d.
centered Gaussian, satisfying E[w?w?® | = Elwiwy '] = %Id. Then, the iterates zp, = (Tp, Yn)
generated by SAPD applied to the SCSC problem in (4.1) with the given parameters 7,0 > 0
and 0 € (0,1) converge in distribution to a centered Gaussian distribution with covariance

matriz ° satisfying 2 = VISV where V is orthogonal, and X® is block diagonal

with d blocs ¥®°™e R2*2 for i = 1,...,d, where (Ai)1<i<a denote the eigenvalues of K.
Specifically, for each X € Sp(K), block £ has the following form: For A =0,
52 (1-90) 622 0
EOO’O _ Y 4.3
dugug(ue)[ 0 u§(1+2(1—92)9)]’ (43)
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otherwise, for A # 0,

& (PEY 0.0 + 2 PT20.0) 5k (PEV0.5) + 2 P52 0,0)

Yo\ _ 6% _1-0 ua : Py ;
d P.(0,x )y 2 s , 2 ,
PO S (PEVOm) + 2 P520.0) 35 (BSV0.8) + P57 0,5))

(4.4)

where Pl(’of’k), Pl(?;’k) and PQ(?;)’k) for k =1,2, and P, are polynomials of (0, k) that can be
made explicit and are provided in Table 7 of Appendiz E. Moreover, for any A € Sp(K), all
elements of the matriz XN € R4 scale with (1 —0) as 6 — 1.

Proof The proof is given in Section D.2. |

According to Theorem 17, the matrix % has the property that it scales with (1 — ) as
0 — 1; we leverage this fact to establish the tightness of our analysis in the next section
(Section 4.2).

In Figure 2, we illustrate Theorem 17 on a simple quadratic problem where primal and dual
iterates are scalar, i.e., d = 1 and K = cis a scalar. In the three panels of Figure 2, we consider
three problems P1, P2, P3 from left to right where the problem constants, (c, i, ity,0), are
chosen as P1: (1,4.4,1.5,35) - P2: (1,2,20,50) - P3: (1073,0.205,0.307,5). SAPD was run
2000 times for 500 iterations using CP parameterization in (2.3) with 6 = 0.99. For each
problem, we estimate the empirical covariance matrix 3, for n e {2F: k=0, ...,1log,(500)}.
The level set {z: 2" X%z = 1} for the theoretical covariance matrix ¥® derived in Theorem
17 is represented by a brown edged ellipse on each plot. Figure 2 suggests the linear
convergence of the matrices to the equilibrium matrix ¥*. Subsequently, we observe on
these three examples how noise accumulates along iterations, producing covariance matrices
that are non-decreasing in the sense of the Loewner ordering. This monotonicity behavior
is intuitively expected as the noise accumulates over the iterations, but can also be proven
using the fact that covariance matrix ¥, of z, = [z}, y,!]" follows a Lyapunov recursion
(Laub et al., 1990; Hassibi et al., 1999). We elaborate further on this property by showing
below that convergence of 3, to X® happens at a linear rate characterized by the spectral
radius of a particular matrix related to the SAPD iterations. The proof builds on the spectral
characterizations of the covariance matrix X% obtained in the proof of Theorem 17.

Corollary 18 In the premise of Theorem 17, for any 6 € (/@:n}w(«/l + K20 — 1), 1), the

sequence of covariance matrices ¥, = E[z, 2, | satisfies

IS0 — %) = O (p(4)™) . (45)
1 —T
S T K
1+7pe (1+7ua) ;
where zp, = (x) y)T, A= [ o(146) o (140) ] with p(A) < 1.
e 1+z17,uy (14—7’,1@ o 09) K 1+¢17uy (Id T 14T Kz)
Proof The proof is provided in Appendix D.3. |

4.2 Tightness analysis

We discuss in this section that the constants given in Theorem 8 are tight in the sense that
under the CP parameterization given in (2.3), which corresponds to a particular solution
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P1 P2 P3
1.00 1.00 1.00
0.75 A 0.75 A 0.75 A
400
0.50 - 0.50 A 0.50 A
0.25 0.25 0.25 300 =
s
o
>
—-0.251 -0.251 —0.25 A 200 3
—0.50 1 —0.50 1 —0.50 A
100
—0.75 - —0.75 A -0.751
-1.00 T T T -1.00 T T T -1.00 T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0

Figure 2: Noise accumulation over SAPD iterates: {3,,} converges to an equilibrium covari-

ance % due to the convergence in distribution of z, D, 2% derived in Thereom 17.
By Corollary 18, convergence occurs at a linear rate which is plotted for the level
sets {z € R2: 275,z = 1} for d = 1. The constants (c, fi, i1/, ) for each problem
from left to right: P1: (1,4.4,1.5,35) - P2: (1,2,20,50) - P3: (1072,0.205,0.307, 5),
where K = ce R.

of the matrix inequality in (2.2), the dependency of these constants to # and p cannot be
improved when the number of iterations n is sufficiently large. To this end, we consider
quadratic problems subject to additive isotropic Gaussian noise for which we can do exact
computations, i.e., both {A%} and {A}} are i.i.d zero-mean Gaussian random vector sequences
with isotropic covariances, and these sequences are independent from each other as well.

In Section 4.1, under the isotropic Gaussian noise assumption, we show that the distri-
bution , of the iterates z, =(x,,y,) converges to a Gaussian distribution 7, with mean
z* = (x*,y*) and a covariance matrix 3* for which we provide a formula in (4.4). If we let
Zy denote a random variable with the stationary distribution 7y, Theorem 8 implies for any

€ [0,1) that

Qplllz — 2 2) = Imsup @yl — 24 2) = O((1 = 0)(1 4 10g (= ))).  (46)
n—0o0 1- p

as # — 1. This upper bound (grows) scales linearly with respect to 1 — 6 and log(ﬁ),
and a natural question is whether this scaling can be improved. In the next proposition we
provide lower bounds on the quantiles of |2o[? that also grows linearly with respect to 1 — 6
and log(ﬁ), matching the upper bound in (4.6). Therefore, we conclude that our analysis
is tight in the sense that we cannot expect to improve our bound in (4.6) in terms of its
dependency to p and 1 — 6.

Theorem 19 Let (z,)n=0 be the sequence initialized at an arbitrary tuple zo = (x0,yo)
generated by SAPD under the parameterization (2.3) on the quadratic problem (4.1) where
z* = (0,0). Then, the sequence (zn)n>0 converges in distribution to a Gaussian vector zo.
Furthermore, for any p € (0,1), p-th quantile Qp(||ze — z* |?) admits the bound

1(p,0) < Qpl[lze0 — 2" |7) < ¥2(p, 0),
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where 11(p, 0) = (1 —0)log(1/(1 —p))O(1) and 2(p,0) = (1 = 0)O(1 + log(1/(1 = p))), as
0—1.

Proof The proof is provided in Section D.4 of the appendix. |

5. Proof of Main Results

5.1 Concentration inequalities through recursive control

This section presents general concentration inequalities that will be specialized later for
the analysis of SAPD. The first result is a recursive concentration inequality extending the
result provided in (Cutler et al., 2021, Proposition 6.7), which is used in the analysis of the
stochastic gradient descent (SGD) method for minimization of a smooth strongly convex
function in (Cutler et al., 2021). Our variant of this inequality enables us to analyze saddle
point problems with acceleration, providing new insights on their robustness properties.

Proposition 20 Let (Fp)n=0 be a filtration on (Q,F,P). Let (Vi)ns0, (Tn)n>0, and
(Rn)n>0, be three scalar stochastic processes adapted to (Fyp)nso with following properties:
there exist op,or > 0 such that for allm = 0,

e V, is non-negative;

o E [e)‘T"“ ] fn] < eNotVn for all X >0, i.e., Th11 conditioned on F is subGaussian;

e E [eAR"“ | Fn] < MR for all X e [0, 1/0?3], i.e., Rpy1 conditioned on F,, is subEzpo-

nential.

If there exists p € (0,1) such that

Vn+1—Tn+1 — Rn+1 < P Vn, Yn = 0, (51)
then for all X € (0, min{#, }1;—2’) ), it holds that E [e)‘vn“] < MRE |:e>\(12+p) Vn], forn = 0.
R T

Proof Our proof follows closely the arguments of (Cutler et al., 2021, Proposition 6.7).
The main difference is in the term T}, which takes the specific form T}, 11 = Gni1v/ Vs
in (Cutler et al., 2021), where G, 11 conditioned on F,, is assumed to be subGaussian. For
any A = 0, (5.1) together with Cauchy-Schwarz inequality implies that

E [ewnﬂ‘]_—n] < MR [eA(Tn+1+Rn+1)|]:n] < MR [62/\Tn+l\fn] 1/2IE [ezARn+1’Fn] 1/2.

Thus for A € (0, #], we have E[eAV”+1|.7:n] < AR PH2007) Vi Setting 0 < A <
R

min {#, }1;—2”} and taking the non-conditional expectation, we ensure that E [e’\V"H] <
R T
14
MRE [e)‘TpV"]. This completes the proof. |

Unrolling the above recursive property on the moment generating function of V,, provides us
with high probability results on (V},)n>0, given in the next result.
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Proposition 21 Let V,,,T,, R, be defined as in Proposition 20. Then, for alln = 0 and
1 1
e [0 mln{4 2”,20 }]
2>\o% 14+p\™
E [eAV"] <el—+rE [e)‘(7) VO] . (5.2)

Furthermore, if Vo = Cy is constant, then

1+ p\" 201%2 U% 1
PV, < —F 1 1,2 27 44 > p. .
[V ( 5 ) CO+1—p + max =) og - D (5.3)

Alternatively, if Vi can be expressed as Vo = Co + U such that Cy = 0 is constant and U
satisfies E [e)‘u] < eo"\+5)‘2, for all A e [0, é], for some constants a,& > 0 and 8 = 0, then
for any p € [0,1) and X € [0,] where v = 1=p

max{&,20%,402.}’

14+p\" 1+p\*" 2% 1 1
P(V,<|—F ——r ~log ([—— ] | = p. 4
(Vn ( 5 > (Co—l—a)—i—( 5 ) /\B—i—l_p—l—)\og T D (5.4)

Proof Let us first prove by induction on n that for all A € (0, min {ﬂ L}),

we have

Equ@qe<>WHmma;f} (5.5)

For n = 0, this property holds tr1v1ally with the convention ¥)'_ 1 = 0 when n = 0. Assuming
the inequality holds for some n > 0, next we show it also holds for n + 1. According to
Proposition 20,

E [e’\V"“] < e)\aRE[ ,\lipvn]

< MR [evw 52)"VorAti2ol, z:sc;pf] :E{ewzﬂ)"“vww%zz_o(l;f’)’“]

)

where the second inequality follows from the induction hypothesis since

1—p 1
0< A1 2<A<min{ ——5-, = )

1
(5.5). The remaining statements follow from a Chernoff bound; indeed, if Vi = Cj is constant,

k
and this completes the induction. Thus, (5.2) follows from using »};'_ (Hp ) < %p within

we obtain . )
1+ 2
PV, > (~12) cp+ 208 4| <,
2 1—p
for A = m and ¢t = %log(ﬁ), which implies the desired result. Next, suppose

Vo =Co+U for some constant Cy and U as in the hypothesis. First, observe that for
Ae <O mm{}1 o 2;2 , i})

E&WJ<J§EerW%Wﬂ<J@ ) SRR (s)
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Thus, for all ¢ = 0,

n 2 n
p(vn > (1;’)> (Co+a) + 120’R +t> < 6)2(#)2 B=At

2n
Fixing an arbitrary non-negative A such that A < ———=%—— we have exp(\2 (m> B—
max{a,20%,407 } 2
M) =1—p < t=A2)*"B + Llog(1/(1 — p)), which proves (5.4). |

Based on Proposition 21, as a corollary, one can derive convergence rates for the CVaR and
EVaR risk measures of the scalar process (V,)n>0.

Corollary 22 Let V,,, Ty, Ry, be defined as in Proposition 21, with Vo of the form Vy =
Co+U. Then, for any p € [0,1) and X € [0,7],

1 1 2 2 1 1
CVaR,(V;?) < <—;p> : VCo+ a+ A3+ \/ o% + X (1 + log (1}))> (5.7)

1—p

Proof Note that the first and second terms on the right-hand side of (5.4) satisfy

1+ n 1+ 2n 1+ n
<2”> (Co+ ) + <2p> M < (2] (Co+atr),
Hence, by integrating the resulting looser bound with respect to p, and using CVaR’s integral
formulation in (2.10), we obtain

1+ p\" 203 1 1
CVaRp(Vn)<<2 > (Co+oz+/\5)+1_p+>\<1+log<1_p>>,

which directly implies (5.7), due to Lemma (28) and the sub-additivity of ¢ — /. |

Corollary 23 Let V,,T,, Ry, be defined as in Proposition 21. Then, for any p € [0,1),
and X € [0,7],

1 1 n/2 [2 1 1
EVaR,, <Vn2> < (;p> Co+a+ A5+ 7 _paR+( Xlog(ﬂ) + g) (5.8)

Proof The bound in (5.4) of Proposition 21 ensures that for all p € [0,1) and A € [0, 7], the
p-th quantile of V,, satisfies

1+p

Qy (V) < | —— n(C+ +>\5)+2U’2%+51 L),
pitn) S\ Ty o 1—p X 8\1-p)’

hence, non-negativity of V,, Lemma 28 and sub-additivity of ¢ — +/t together imply that

1 n/2 2 1 1 1/2
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n/2
Forn >0, let U, = T g (#) VCy +a+ AB — 4 /%pO'R, and note that (5.9) implies
P(U,>t)<e ™ V=0 (5.10)
Therefore, following standard arguments from (Vershynin, 2018), we have for any 7 > 0 that

00) 0
B = [Tt s dai= [ R[> e eta

0 —0

0 0
f P [e"U” > e“] edu + J P [e"U" > e“] e“du
. 0

0 w * R T n? * 74(u7ﬁ)2 ﬁ * — A2
e“du + e 7 e'du=1+e2x e n? 22 du = 1+ex e 7*7 ds
—00 0 0 _gi

14 ek 7T<(1+ 7r)g
e — < — )esx,
n ) KAV

where we used (5.10). On the other hand,

N

N

EVaR, [U,] = 7171;%{ —n'log(1 —p) + 7 'ogE [e"V"] }
< inf =y~ log(1—p) + 07! (772/(4)\) + nﬁ/ﬁ) = \Jlog(;— )/\7+ VTV,

where we used log(1l + z) < z for x = 0. Finally, by translation invariance of the EVaR, we
1

obtain EVaR,, [Vrf] < (Hp) VCo +a+ A3+ /15 O’R+ ( llog< )—i—‘\?) [ |

We finish with a bound on the y?-based risk measure, as defined in Table 2.

Corollary 24 Let V,,T,, Ry, be defined as in Proposition 21. Then, for any r > 0, and
Ael09],

2 JE A
szﬂﬂ (Vn> < < 5 > Co—i—a—i—)\ﬁ—i—ﬂl OR+ 4/)\log(1+r)+ YA (5.11)

Proof By(Gibbs and Su, 2002, Theorem 5), for all Q « P, we have Dy, (Q|P) <
log (1 + Dy , Q| ]P’)), where @k, (t) = tlog(t) —t + 1. Therefore, for any integrable random
variable U : Q — R,

sup Eo[U]< sup Eq[U] = EVaRy 114 (U),
Q:DV,)<2 Q| P)<r Q: Dy, (Q P)<log(1+7)

whenever EVaR;_; /(1+r)(U ) < o0, where we used the EVaR representation given in Table 2.
The statement follows directly from Corollary 23. |

In the next section, we design scalar processes V,,, T;,, R,, which satisfy the above assumptions
while dominating the error W,, on SAPD iterates, so that Proposition 20, Corollaries 23 and 24
will allow us to prove our main results, stated in Theorem 8 and Theorem 15.
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F& U222 , Y3 F U3, 3, Ys F Ua,%4, s F U5 , Zs , s

Figure 3: Measurability of SAPD sequences. Our analysis is made possible by the introduction
of predictable counterparts x,,5,, yn to the iterates x,, ¥, as defined in (5.12).

5.2 Proofs of Theorem 8 and Theorem 15

For proving the main results of this paper, namely Theorem 8 and Theorem 15, the application
of the recursive control inequality from Section 5.1 is not straightforward. In particular,
Gauss-Seidel type updates within SAPD significantly complicate the measurability properties
of SAPD iterate sequence, as illustrated in Figure 3: the iterates x, and ¥, are measurable
with respect to different filtrations F,, (@ )1 and F, ( )1 We circumvent this issue by introducing
a stochastic process {V,},>0 that almost surely upper bounds the distance to the saddle
point while exhibiting simpler measurability characteristics as discussed next. We note that
even though algorithms with Gauss-Seidel type updates, such as SAPD, are significantly more
complicated to analyze than their Jacobi counterparts, such an analysis is rewarding in the
sense that algorithms with Gauss-Seidel type updates can often be faster than those using
Jacobi type updates, see (Zhang et al., 2024, 2022). Indeed, our analysis for SAPD allowed us
to obtain high-probability bounds that demonstrate an accelerated behavior for a stochastic
primal-dual algorithm for SP problems.

5.2.1 PROOF OF THEOREM &

Our proof combines several ingredients. Let (7, 0,0, p, a) be a solution to the matrix inequality

n (2.2). Recall the weighted distance square metric Wy,=5- ”ZL‘n —x* | + 522y, — y* |
we introduced in (2.4). In the proof, we use a scaled version &, = W, /p for n = 0 that
simplifies the analysis. We first introduce the following auxiliary iterates ¥y, §n, f/n which
can be interpreted as the “noise-free counterparts" to the actual iterates x,,y, in the sense
they represent roughly how the algorithm would behave if the gradients were deterministic
in lieu of being stochastic at step n:

%o = 20, X412 prox, ¢ (2n — 7 Vi ®(Zn, ¥ y1)) 5 (5.12)
570 = §,O & Yo, yn-&-l = prOXo'g (Z/n + 0(1 + 9) Vy (I)<$nu yn) — ot vy (D(xn—lv yn—l))a (513)
fan = prox,, (yn +0(1+0)Vy @(ﬁn,yn) —00Vy ®(xp_1, yn,1)> . (5.14)

where we recall that x_1 = xy and y_1 = yo (see Algorithm 1). These auxiliary iterates
were first introduced in Zhang et al. (2024) to derive convergence rates for SAPD in terms of
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expected weighted distance square, to establish Theorem 2. Here, we further leverage their
measurability properties, as illustrated in Figure 3, in order to apply Proposition 21 and to
obtain high-probability results for SAPD. Our proof is based on establishing an almost sure
upper bound of the quantity £,.1 + &, by a scalar process V,,, and then showing that our
choice of V,, satisfies the assumptions of Proposition 20. This will then directly yield the
desired high-probability estimates for SAPD. We start with a proposition that provides an
almost sure bound to the scaled squared distance metric &,. Although this bound is already
present in substance in (Zhang et al., 2024), it does not appear explicitly. For completeness,
in Appendix C.1, we provide its proof based on various arguments developed in (Zhang et al.,
2024).

Proposition 25 Let (x,,yn) be the sequence generated by SAPD, intialized at an arbitrary
tuple (x—_1,y—1) = (x0,90) € X x Y. Provided that there exists 7,0 > 0, and 6 = 0 that
satisfy (2.2) for some pe (0,1) and a € [0,071), the following almost sure bound on &,

n—1

En <P Wrg + Y] pnflf’“(mi,x* —zpr1) + {1+ O)AY — 0AY | Y1 — y*>), (5.15)
k=0

holds for all n = 1, where Sn:%\\xn —x* |2 + 12_;“\]3;” —v* |2, and Wro=5-|z0 — x* |* +
1 * (|2
30 9o — ¥ ||

Proof The proof is provided in Appendix C.1. [ |

Now, equipped with Proposition 25, we can write

n—1

En <P Wi+ Z pnik (<A7;:,x* —zpy1) 1+ O)AY —OAY | ypi1 — y*>)
k=0
n—1 ~ R
=" Wro + Z prih (<AJI§’X* —Xi41) + (1 + )AL T =) = 0D, Thy1 — y*>)
k=0
n—1 R R
+ >k (<Ai7§<k+1 —xpy1) + (1 + AL k1 — Tpp1) — OAL 1 Ykt1 — 5’k+1>) :

k=0

(5.16)

For k > 0, introducing the scalar quantities

2

T x N ~ * a _0 A *
PV 2(AT X" — %) + (1+ OKAL 5~y B = 7<AZ7YI€+2 =y, (5.17a)

Qr =AY, X1 — 1) + (1 + OAY g1 — Fr1) — AY L Ykr1 — Tesi (5.17b)

rearranging the sums in (5.16) and using AY, = 0, we may write (5.16) equivalently as
follows:

n—1 n—2 n—1
_ —1— 1 —1— 2 _1—
E, <pn 1W770 + Z pn 1 kP]E ) + Z pn 1 kP]E ) + Z pn 1 ka
k=0 k=0 k=0
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Now notice that for n > 0,
1 n—1 n—2 n—1
Ens1+En < (1 + p) (p"wf,a DI D WA SR Y p”"“%) + P+ pP2, + Qu
k=0 k=0 k=0

1 n n
- (1 + > (p"WT,,T + Z p"ikP,gl) + Z p"kP,g2)>
p k=0 k=0
1 —1 p 2) 1 = _
+(1+=)|——pO_pa_ L p® __- o N kg, .
( p><1+p" " 1+p ™1t 1+pQ ];Op @
(5.18)

We next present a lemma which bounds the terms on the right-hand side of the above
equality.

Lemma 26 Let P,(Ll), P7§2) and @y, be defined as in (5.17). Then, for any n = 0,

—1 P 2) 1 = _
7]3(1) _ P(2) _ P( o E n—=k

n

(Ent1+ &) Z (Qall AR + QyIAYIP),

2(1+p)

for some positive constants Q, and Q,, which depend only on the algorithm and problem
parameters, and are provided explicitly in Table 4 of Appendiz E.

Proof The proof is provided in Appendix C.2.1. |
Applying Lemma 26 to the inequality (5.18), we obtain

P (e 4 E) < Wep + 3 P 1 3 kB 4 3 e “(QuIagl? + g lal?).
2(1+ ) k=0 k=0 k=0
(5.19)
For n € N, we define V,,, T;,+1 and R, 11 as follows:
Vit p"Weo + 3 p"F (P + PP "M ( QAT + 1A%
Z ( )+ Z ( WIAIE). (5.20)
Ts1 = Py +P,§+>1, Rosi= QoA +1\\2+ QA 44l
therefore, (5.19) implies that
P
571 1 5 \én n) < Vn, =0, .S. 21
2(1+p)(€+1+€) Vi, ¥Ym=0, as (5.21)

Next, we argue that V,, satisfies the assumptions of the recursive control inequality in (20).
To achieve this goal, we will use the following lemma.
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Lemma 27 For anyn € N and p € (0,1), the following inequalities,

82n—*2<A2L<‘,’n En—
Fna =" P < LA s (Bt &),
16(1+0)] §y1 — 3" |2 < [A2)? 5 -2 (En + Eam1)
nt 2(1 + p) ’ (5.22)
16*92 [$ra =" I < [ 45]2 52— (En + Eaa)
p2 n+ 2(1+p) )

hold almost surely with the convention that €1 = &, for some vectors Ay, Ay, A3 € R*
which are explicitly provided in Table 5 of Appendiz E.

Proof The proof is provided in Appendix C.2.2. |

Let us now show that V,, satisfies the assumptions of the recursive control inequality in (20).
1
Indeed, for any n = 0, Vay1 — Vi = (p— DV + PV 4+ P24 0 AT 12+ ,)AY, |12,
which is equivalent to V,,41=pV,+Ty+1 + Ryt1. Let (Fp )n>_1 be the filtration defined as
F_12{,Q}, and F, = F- = 0 (Fpo1 v a(A}) U o(AL)), for all n = 0.

We first observe that for all n € N, V,,, T;, and R,, are F,-measurable; moreover, V,, is
non-negative due to (5.21). Second, for any n > 0, since AZ and A}, are norm-subGaussian
conditioned respectively on F¥ and F; _;, for any A > 0, we get that

ta 7

n—1»

E [6>\Tn+1 | F ] . ]E[e)\<An+17 (1+9)<§’n+2 _y*)_9071(§’n+3 _y*)> E [eA<A£+1’X Xn+2>
nl =

< AV (IFns2 = x* PZ+[(140) (Fa2 = %) =007 (Fnss —v") I757)

< SN ([ Rnt2 =x* P82 4+2(140) §pyn — ™ [7+26%97 2 I g3 — " \\255)7

where we used Lemma 6 and the inequality (a +b)? < 2a® + 2b? for scalars a, b in the last
step, noting that xn+2, Vnios yn+3 are all F,-measurable. Hence, in view of Lemma 27
provided above and the bound in (5.21), we have

2(1+p) ,

2 252 2 12\ 52
E [eAT”“Ifn] < e>\2(\|A1\\26§+(\|A2H2+\|A3H )02) 57— (Ens1+En) < eA (HAlH 62+(]| Az)2+] Az )%)VH

(5.23)

where we used (5.21) to obtain the second inequality. Third, for all n > 0 and X\ €
(0, W‘%)’ we have in view of Lemma 5

E [ 7,] = B[00 B[220 P 71 | Fo] < exp (83 (02 + ©,53))
(5.24)

Finally, we next argue that Vj can be expressed as Vo = W, , + U for some U satisfying
E [e’\u] < eo‘/\+5)‘2, VA e [0, é], for some constants o, @ > 0 and § > 0. First, note that

V1, %1 and §/2 are all deterministic quantities as they depend only on the initialization; hence,
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using the inequality u'v < 2(17_p) |ul? + 1 p) |v|? for any v > 0, we observe that for all

Ae [o, (4max{<% v Qx) 52, (“;—y”) v Qy) 5@) 1}, we have

E [@(%—m,ﬂ] - E [eA(Pé%PéQHQIAz%QyAg |2)}

- F [6A<AS7X* —X)+AAY(140) (51 —y*) =2 (T2 —y* D +AQ: |AF |\2+>\QyHA3H2]

<E [62@,‘,) (el = x* [24+(140) 20y [ 31— y* 1P +6%0720, [ 52— y* |?)
A _ x x
e“2”)(;;A02+,;||A%|2+,3yAS?)HQZAOQH%AE{?]
2 * PN * — 2 * 1— T 1—
_ ooy (el e = 24 (140) 2y | 50 = y* 24620211y 30 -y 2)E[€A((2mfg+gx)A02+(H;’+Qy)A82)]'

Thus,

E [ewofwf,o)]
2 . N . _ 2 . 1— 1—
< ooy (el = P (14020 | 51 =" 1246072y | 52— y* 12) SN (572 +Q2 )2+ ((52 +24) )

e IS ) ity e (5202 ()1

< ery (e 1A (A2 2 1 43 2))Wro SA((572 +Q0) 82+ (35 +24)87)

where the first inequality follows from Lemma 5, in the second inequality we used Lemma 27
given above, and the relation & + €1 = 2&=2W,/p < 2W;,/p, which follows from
1 —ao < 1 and the relations x¢g = x_1, yg = y—1. Hence, we can apply Proposition 21 to the
Vi, Ry, Th, sequence defined in (5.20) with the following choice of parameter values,

Co=Wro, U=PF"+ PP +Q,|AL% + Q,|AY)2,
0% = [A1|?62 + (| Az|? + | As[) 62, 0% = 8 (Qu02 + Q,62),

= (ol Ar)? + B2 A + 145)?) ) Wi
@ = Ty (el AP + 21 Aal? + Laal?)) W,

+ <4(1 —n . 89x> 52 + <8(1;yp) s 8Qy> . (5.25)

Ha

d—4max<<l_p + Qm> 62, ((1—p) +Qy> 533), B =0,
2,“1‘ Hy

where W, is defined in the statement of Theorem 8. When we invoke Proposition 21, we set
A =4 within (5.4) for some particular 4 > 0 such that 4 < v as required by the proposition.
Thus, for any p € (0,1) and n > 0, the following inequality

1+p\" 1 2 My s )
Vn<< 2 ) [<1+16(1—,0) (uzllAl\l + 5 (A2 + [ As] )))Wm
o My =, T
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holds with probability at least p, with the choice of

- 1—-0p 1—0p
O S , 5.26
7 V202 + 02 7 max{a, 20%, 40%.} (5.26)
where
1-— 1-—
=282 160, + a2, oy =482 4160, + 414 + [ 4s?).  (5.27)

T Y

In view of (5.21), and noting that W,, = p&,, we obtain Wy, 11 + W,, < 2(1 + p)V,, < 4V,,.
Therefore,

T,0,0 T,0,0 ( ) + 32Qy,

x Hy
5.28
=(z,2) _ 64Q"c =(z,3) _ 4’YT (y,2) 64Qy =(y,3) _ 47@1 ( )

—r,0,0 (1 _ p)7 —r,0,0 1— p’ T,0,0 (1 _ p)’ T,0,0 1— p7

1 7
6:47(AQJA2A2),
ao = (14 e (el AP + 22 Aol + 401

=0 1602 4 30, =Wl =32
I

[1]

completes the proof of (3.1). The remaining items to prove regarding the asymptotic
properties of = ( ) 5.0 and = ”(2) 0.0 38 6 — 1 follows from straightforward but tedious computations;

for completeness we prov1de the details in the online-only supplementary material (see
Lemma 36 in Appendix G.1 of Laguel et al. (2023)).

5.2.2 PROOF OF THEOREM 15

We can deduce Theorem 15 from the above analysis. Indeed, the CVaR bound in (3.5)
directly follows from Corollary 22 applied to the process V,, introduced in (5.20), with the
associated constants defined in (5.25). Furthermore, the EVaR bound in (3.6) follows from
Corollary 23 applied to the same (V},)n>0. Finally, the bound on RXQ,T(W}/ 2) follows from
Corollary 24.

6. Numerical Results

In this section, we illustrate the robustness properties of SAPD when solving bilinear games
and distributionally robust learning problems involving both synthetic and real data. First
we consider the regularized bilinear game presented in (4.1),

min mabx—HxH2 +z Ky — Hy Hsz, for K = 10K/||K||, K=(M+M")/2,
zeRd yeRd 2

where M = (M; ;) is a 30 x 30 matrix with entries sampled from i.i.d standard normal
variables. We set the regularization variables as u, = pu, = 1. We explore two values of
the momentum parameter 6 as 6 and 1 — (1 — 0)2, with 6 =(1 + x2,,)"? — 1 computed
based on the threshold value from Theorem 17. We then determine the stepsizes 7,0
according to the CP parameterization (2.3) where p = 6. Finally, SAPD is initialized at
a random tuple (z9,%0) = 50(Zo, o), where Zg, 7o € R3® have entries sampled from i.i.d.
standard normal distributions. In Figure 4, we report the histogram of the distance squared
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E, = |2n —x* |2 + |yn — y* |? to the saddle point z* = 0 after n = 2000 (top, middle panel)
and n = 5000 iterations (top, right panel) based on 500 sample paths and for both choice of
(momentum) parameter values. The expected distance E[E,,] over iterations is also reported
on the top, left panel along with the error bars around it. The continuous vertical line in the
convergence plots represents the sample average (estimating the expectation E[E,]), while
the dashed vertical line represents the p-quantile of E,, for p = 0.90, i.e., the 90" percentile
of the error E,,. We observe that the performance is sensitive to the choice of parameters and
there are bias/risk trade-offs in the choice of parameters; indeed, when the number of steps is
smaller (for n = 2000), the noise accumulation is not dominant and a smaller rate parameter
p = 6 allows faster decay of the initialization bias, resulting in better guarantees for the
value at risk with p = 0.90 or equivalently for the 90-th quantile. On the other hand when
the number of steps is larger (for n = 5000), there is more risk associated to accumulation of
noise and a larger choice of p = 0 close to 1 is preferable, as this results in smaller primal
and dual stepsizes which allows to control the tail risk at the expense of a slower decay of
the initialization bias.

Next, we aim to solve the following distributionally robust logistic regression problem
introduced in (Zhang et al., 2024): min,cps maxyep, L[z + 7, yidi(z) — 5 |y|?, where
¢i(z) =log(1+exp(—bsa) x)), and Pr 2{y e R} :1Ty = 1, |y —1/m|? < L3}, with r = 2y/m.
We consider two datasets from the UCI Repository®, DryBean, and Arcene, and follow the
preprocessing protocol outlined in (Zhang et al., 2024). For each dataset, we run SAPD with
two values 61,03 that are greater than the threshold value # given in (Zhang et al., 2024,
Corollary 1). SAPD is initialized for both datasets at zg = [2,...,2] and yo = 1/m. In the
middle and bottom panels of Figure 4, we display the average of the error E,, over the course
of the iterations as well as the error histogram for SAPD over 500 runs as we did in the
previous experiment.

Our numerical findings are similar to the bilinear case, i.e., to obtain the best risk
guarantees, one needs to choose the algorithm parameters in a careful fashion —which is
inline with our theoretical results, where obtaining the accelerated iteration complexity in
Corollary 12 requires choosing the parameters in an optimized fashion over the class of
admissible CP parameters. However, our parameter choice in Corollary 12 optimizes the
complexity bounds in the worst-case, i.e., these bounds apply to any SCSC problem; moreover,
these worst-case bounds involve some universal O(1) constants that are not fully optimized
in our complexity results. In practice choosing # specific to the problem at hand is beneficial.
Indeed, a practical alternative to our 6 choice in Corollary 12 would be to implement a grid
search on 6 and to set 7 and o according to the Chambolle-Pock parameterization in (2.3)
for each 6 choice in the grid.

7. Conclusion

We consider a first-order primal-dual method that relies on stochastic estimates of the
gradients for solving SCSC saddle point problems. We focused on the stochastic accelerated
primal dual (SAPD) method Zhang et al. (2024). We obtained high-probability bounds for
the iterates to lie in a given neighborhood of the saddle point that reflects accelerated
behavior. For a class of quadratic SCSC problems subject to i.i.d. isotropic Gaussian noise

Shttps://archive.ics.uci.edu/ml/index.php
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Figure 4: The figure shows the convergence behavior and distribution of performance scores
for SAPD across three datasets. The left column displays the expected distance
squared E, of SAPD iterates to the solution over iterations, while the middle and
right columns show histograms of FE,, at fixed iterations. The continuous line in
the convergence plots represents the average score £(E,,), while the dashed line
represents the 90" percentile. The datasets include a synthetically generated
bilinear game, and Dry Bean and Arcene from the UCI repository.

and under a particular parameterization of the SAPD parameters, we were able to compute the
distribution of the SAPD iterates exactly in closed form. We used this result to show that our
high-probability bound is tight in terms of its dependency to target probability p, primal and
dual stepsizes and the momentum parameter §. We also provide a risk-averse convergence
analysis characterizing the “Conditional Value at Risk”, x2-divergence and the “Entropic
Value at Risk” of the distance to the saddle point, highlighting the trade-offs between the bias
and the risk associated with an approximate solution. In a follow-up to this work, Laguel et al.
(2024) demonstrates that the concentration inequality-based techniques developed here can be
applied to achieve high-probability guarantees for stochastic non-convex minimax problems.
This highlights the potential of our techniques beyond convex saddle-point problems.

For light-tailed gradient noise, under the norm-subGaussian assumption, our results show
that all the risk measures we considered behave similarly in the sense that they admit similar
iteration complexity bounds. However, when the gradient noise has heavier tails beyond
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the subGaussian regime, we suspect that these measures can exhibit significantly different
behaviors, and we leave investigating this as future work. In the future, we also plan to
consider the extension of our results to the “online” setting, where the coupling function can
be time-varying instead of being fixed.
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Appendix A. Index of Notations

Category Notation Reference
Lo fog XY Eqn. (1.1)
ws Mys Law, Ligyy Lyz, L Assumption 1
Problem Feb V. ®, VZ@ e Above ASSI:antiOEQ
Oz, Oy Assumption 3
. Ty Ynsy Zn, T, 0, 0 Algorithm 1
Algorithm yp’ o Ein. 2.9]
g, D Eqn. (1.2)
Evaluation Metrics Wros Wh, En Theorem 8 - Above Eqn. (5.12)
Qp, CVaR,EVaR, R, . Eqn. (2.8) - Table 2
AZAY, Assumption 2
Vo, Ty, Rn, o1, 0R Prop. 20 - Eqn. (5.20), (5.25)
Auxiliary iterates Co,U,a, &, 3,7 Prop. 21 - Eqn. (5.25), (5.26)
P, Qx Eqn. (5.17)
(Eg_izfg)1<i$3 Theorem 8, Eqn. (5.28)
Convergence rate-related Qz, Qy Lemma 26, Table 4
Aq, Ag, Ag Lemma 27, Table 5
Zoo Above Eqn. (4.6)
K,d,wy”,6 Eqn. 4.1 and below
Quadratic case $OA Eqn. (4.2)
YRSIDIESEIN VA Yegr Theorem 17

Py, Pagys Pog), P

Theorem 17, Table 7

Table 3: Key notations and references to where they are defined in the text.

Appendix B. Elementary proofs for subGaussians and convex risk

measures

We provide in this section proofs of elementary properties of subGaussian vectors and convex

risk measures.

B.1 Elementary Properties of Norm-subGaussian Vectors

In this section, we provide elementary proof of Lemma 5 and Lemma 6. The proofs follow

from standard arguments that can be found in textbooks such as [8, 6].
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B.1.1 PrROOF OF LEMMA 5

We follow standard arguments from (Vershynin, 2018). First note that, for any k > 0, we
have

E[|X|*] = +OOIP’ X5 > t]dt = +OOIP’X > YR dt
[X"] - X" = 1] X = t7"]

0 2 0 k
< 2J e tF/R0%) gy = k:(2<72)g f ey dy = k(202)§F (2> ,
t=0

u=0

where I" denotes the gamma function. Hence, noting that I'(k) = (k — 1)!, by the monotone
convergence theorem,

2 o Ak o Ak
E[eNX17] Z T E[| X ] < Z 7 (2h) (202)FT (k)

1
o0

2
(200%) = —=— —1
g 7 T

the last equality being valid for any A € [0, ﬁ) Since for any u € [0, ], = 2u

5], 7= < €77, we
221 1—q )
obtain E [e/\HX HQ] < 2eM9% _ 1 for any \ € [0, ﬁ] Finally, last inequality follows from

2e2% — 1 < e*, where we chose u = 2\02. o

B.1.2 PROOF OF LEMMA 6

For u = 0, the inequality to prove is trivial. Assume u # 0. From Lemma 5 and Cauchy-
Schwarz inequality, we have

E [6A2<u7X>2] < B[N IePIXIP] < X ul?o? (B.1)

for all A € [0, m] Thus, for any such ), noticing that e <t + et for t e R, we obtain

E [e)‘<“’X>] <E [)\<u, X+ N X >2] < 68)‘2“"“2"2, where the second inequality follows from

(B.1) and the assumption that E[X] = 0. Moreover, for A > we have by Cauchy

1
2\/§HUHU’
82 2o?u)? | X2

Schwarz’s inequality and Lemma 5 that E[e*®%X] < +W] < ez (148¥%ul?)

8N lul?o , where the last inequality is due to e =R <elfort>1. o

B.2 Elementary properties of Convex Risk Measures

The following lemma is used in the derivation of CVaR and EVaR bounds.
Lemma 28 For any non-negative random variable U: Q — R, we have for all p € [0,1):
Q,(U)2=Q,(U),  CVaR,(U%)2 > CVaR,(U).

Proof We first show that Q,(X?) = Q,(X)? for any p € (0,1). Indeed, for any 0 < t <
Qp(U)?, we have P[U? < t] = P[U < +/t] < p which follows from non-negativity of U and
definition of Q,(U). This implies ¢t < Q,(U?); thus, Q,(U)? < Q,(U?). Conversely, we
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note that p < P[U < Q,(U)] = P[U? < Q,(U)?], which implies Q,(U)? > Q,(U?); hence,
Qp(X?) = Qp(X)?%. Using this result,

1
CVaR,(U?) = (1 Qp/(Uz)dp’> w~ulpa][Qp (U)?]

1-— P »'=p
= IEp’~1/{[p,1] [Qp’(U)]2 = CV&RP(U)Qa

where U[p, 1] denotes the uniform distribution on [p, 1], and the last inequality follows from
the identity E[X?] = E[X]? + E[(X — E[X])?]. [ ]

Appendix C. Intermediate results and proofs for the non-quadratic case

To start with, for the sake of completeness, we cite two results from (Zhang et al., 2024).
The first lemma is used to derive the almost sure bound result of Proposition 25, which is
provided below in Appendix C.1, while the second lemma is used for deriving the convex

inequalities provided in Appendix C.2.

Lemma 29 (See (Zhang et al., 2024, Lemma 1)) The iterates (z,,yn) of SAPD satisfy

E(fEn-&-lay*) _'C( ayn+1) <Qn+1ayn+l y*>+€<Qn’yn _y*>+An — Ynt1 + Tnpr
<An7 * _$n+1> + <(1 + G)A% - 0A7y1717 Yn+1 — y*>’

for all n = 0, where

* 1 *
Qnﬁqu)(xmyn) V q)(xn 1, Yn— 1) nﬁiHX _anZ‘F%Hy _yn”2>

L n
Yni1 = <2+2m> Ix* —$n+1H +< % 2y> y _yn+1||2>

Lk 1
Coin (52 = 00 ) lowin = 0al® = o Tonea = l® 4 8 Lu it = 00l s ol

+ 9Lyy ”yn - yn—lH Hyn+1 - yn” .

Lemma 30 (See (Zhang et al., 2024, Lemma 3)) Let (2, Yn)n>0 denote the SAPD it-
erate sequence. Then, the following inequalities hold for all n € N,

~ g
19001 ~sll € 775 ((1+O1AK+ 0182 ]),

T

(o
< AZ Loy —— ((1+ 0)|AY N ’
14+ Tpy (' nll + y1+0ﬂy (( +O)IA%] + 0| n_1|)>

H }:(TLJrl 71‘7’%‘1’1”

N g 7'(1 + 9) L < .
a1 —gstll < ( AT |+ (14 0)|AY

1+opy 1+ 7p,

1+0(14+60)Lyy  70(1+40)LyxLyy
* <9+( +9)< Trom, T Ot +ony) ) Al

1+0(1+06)L To(1 +6) Lyx L
v AL Y g )
1+ opy (1 +7uz)(1 + opy)
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C.1 Proof of Proposition 25 (Almost sure domination of SAPD iterates)

Letting Tn=Ky(p)~ Zk Op ka, and Un = Ky (p )_ szé P_ Yk+1, with

Kn(p) =Yz (l)p*k pnl,l X 11 , by Jensen’s inequality , we have for all p € (0,1],

n—1
Kn(p) (‘C (:i‘nvy*) - L (X*agn)) < Z p_k (‘C’ ($k+1ay*) - L (X*a yk+1)) .
k=0

Hence, in view of Lemma 29,

Kn(p) (£ (Zn,y") — L(x*,9n))
< —k * *

< Z p <— Gt 15Yk+1 =Y ) + 0ty =y ) + A — S + T (C.1)
k=0

ALK gy + (1 4+ OAL = OAY |y — ¥,
where g = Vy ®(xg, y) — Vy ®(24—1,Yr—1). By Cauchy-Schwarz inequality, observe that

[<qk+1, Yb+1 — YOI < Sk+1 = Lyx |21 — @k [yk+1 — vl +Lyy [vk+1 — veel lye+1 —v7Il, VE=0.

Hence, using gp = 0 due to our initialization of (z_1,y_1) = (x0,y0), we have

n—1 n—2

_ N . e . -
Zp M (= larrr, e — ¥+ 0ak e —¥7)) = Zp k(p—1> (k1 yrar =¥ = 0" s yn — ¥
k=0

From (C.l), it follows that
Kn(p) (£ (T, y*) - L (X*v Un)) + pinJrlgn

<U,+ Z ok <<A£,X* —z1) + (1 + H)Az — QA%_l, Ykl — y*>>,
k=0

9
1—7 1—75k+1+p*”“ Sh.
P

Sk +p "8, Z

where U, = Zk 0P (Fk+1 + A — Xp1 + ’1 — %‘ Sk+1) — p it (—5n - %Sn>. Now, ob-

serve that for all n > 1,

1" _ 0
Un = 5 2 P b ( I;rAgk - §;+1B§k+1> —p il <_€n - p5n>
k=0
1 13 1 1 0
=& A& —5 > 0! [&I (B - A) &] —p (252 Bn — & — Sn) !
where A, B € R%*® and &, € R® are defined for k£ > 0 as
Lt g 0 0 0 0
L0 o0 0 0 T
0L o0 0 0 0 T hy "1*%”" ‘1* Lyy 0
A=l 0 0 0 0 0Ly |, B= 0 —p-fL. L. 0 o |,
00 0 0 0Ly e 1_
0 0 6Ly 6Ly, —o 0 1= 2| Ly 0 e 0
0 0 0 0 0
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and & = (o —x"[, Jus =yl lox—a@xal, vk —weal, s —wel )" € R By (Zhang
et al., 2024, Lemma 5), the matrix inequality condition (2.2) is equivalent to having B —
p 1A > 0. In this case, we almost surely have

Un < 563 Aty — o1 (;ngfn — & f)5> : (C.2)
Finally, denoting
H0p) em s (Chgl- e (b
G" = —[1=9=2)Lyx 1L 0 :
L R 0 1o

we have G” > 0 in view of (Zhang et al., 2024, Lemma 6); thus,

%(1—%)4'#95 O1x3 0

1 T (7 1 2 1 1 « 2 1 T
$6B6 - S50 = o=l + 5 (o - 2 ) I —olP + €] s G 0 |G
0 O1x3 0
> a2+ == (1-a0) fyn — | =&
= o2pr " 2p0 Yn =Yl = on

Therefore, using (C.2), we can conclude that U, < $&J A&o<o=|lzo —x* |2+ 55 [yo —y* | =
W;.». Finally, by non-negativity of £ (Z,,y*) — £ (x*, Jn), we obtain (5.15). o

C.2 Convex inequalities
C.2.1 PROOF OF LEMMA 26

We first start with a technical result we will use in the proof of Lemma 26.

Lemma 31 For anyn =1,

A N 1
| Fns1 =5 | < [Aol(En + En-1)*+——

1+ oy ((1 +0(1+6)Lyy) lyn — 3, | + o(1 4+ 0) Ly |z — %n H) ’

where §’n+1>§’n7§n are defined in (5.12), and Ay € R* is defined as

2pTo(1 +6) Ly

e K22 (1+0(1+6)Lyy)
0=

1+opy A/ 2,07' - o0 Lyx €
ez
(] 00 Lyy

Proof Since (x*,y*) is a solution of (1.1), x* and y* are fixed points of two deterministic
proximal gradient maps, i.e.,

X = prox, ; (X —7 Vi O(x',¥")), ¥t = prox,, (v +o Vy (¢ yY).  (C3)

Thus, by the contraction properties of the prox for strongly convex functions, and convexity
of the squared norm, we have

AR In+0(1+0) Vy (X0, §,,) — 00 Vy S(n-1,yn—1) —y" —0 Vy (", y7)] .

1+ opy
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By the triangular inequality and smoothness assumptions on Vy ®, we deduce

2 * 1 ~ * N * * *
e =¥ 1< g (14004 O Ty 190 =3+ 000+ 0) Ty [0 =" |+ 00 Ly frns = + 00Ty lyns — 3 )
Y

1

< Trom (L +0o@+0) Ly )lyn — 3" | + 0(1 + ) Lyx |[2n — x* | + 00 Lyx |2n—1 — X" | + 00 Lyy [yn—1 — ¥ |)
Oy
o (00 + 0 L) 5=l + 01+ 0) Ly | R~ )
The statement finally follows from Cauchy-Schwarz inequality. |

Now we are ready to prove Lemma 26. By Young’s inequality, for any ~;,7, > 0,

-1 A R
— (Pél) + (AL X1 —Tpt1)+ (1 +60) (AY yni1 — Yn+1>>

1+p
1 N
= 1 (AR =+ (L4 0) ALy — )
~(A% Fnir —ni1) = (L4 0) (Al st = Fur1))

1
1 (€A%, na1 —x7) + (1 + 0)(AY, ¥y —ynt1))

Vz P x o (14+0)y 2 (1+90) |2
< e+ %"~z + — A"+ ————lyn1 =¥

» 80(1+40)

Setting v, = 87 and vy, = we ensure that

l—ao ?

-1 2 .
1, <P7$1) +(AY, Xn1 —Tny1) + (14 60) (AY Ynt1 — Fns1))
< L ¢ o AUEOR e
S+ ) 1+ p)(1 - a0)
(C.4)
where &, = W,/p and W, is defined in (2.4). Moreover, we also have %Pff)l +
%<A271’yn+1 Yn+1> 1+p<An 1 Ynt1 — ¥ < 12,; (71”’ [A% 1H2+ 2 Iy* —Yn1] )

80c
1o leads to

for any ~; > 0. Hence, setting v, =

P 5@ 0y : P 409® 2
PP YA = S —L g+ AY C5
1+p n—1 1_|_p< n—1 Yn+1 y +1> 8(1+p) +1 (1+p)(1 )H 1“ ( )

Finally, observe that for any v > 0,

97 0
—p@ < AY|? + S —vr 2
n H H 2’YPH Yn+2 =Y H
97 2, 0 1+0(14+0)L . 9
AY Ao|?(En 3( U
2, 8417 + (3| ol* €t + &) +3( ) i~
O'(1+9)Lyx 2 ~ 2
() T —onnl ).
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where the last inequality follows from Lemma 31 and the simple inequality (a + b + ¢)? <
2
3a® + 3b? + 3¢ for any a, b, c € R. Setting v = W ensures that

36%| Ao|(1 + p)

_P(Q) < _r Ens1 + &) + AY |2 6
T (1 +p)( +1+ &) e A% (C.6)
P 1+0(1+0)Ly\?, . )
* —In
4[Ag[2(1+ p) ( L+ on, |91 =ynal
P (14 60) L\, 2 )
+ n —dn .
4] Ao (1 + p) ( Trop ) It —onl

Hence, using the trivial upper bound &,+1 < (€41 +&,) and combining the bounds egs. (C.4)
to (C.6) we obtained above, we get

L pm_pey_ P p@& L 5
L+p " s
P
S Ens1+En
2(1+p)( +1 )
47 » 4o(1 +9)2 4062 392(1 +P)HA0H2
+ A T A e 1A+ s g e 1A P AR
’ (1 +p){1 ~ o) (1+p)(1 ~ a0) p
sy (B e )
4| Ao[*(1 + p) 1+ opy ntl ~Yn
2
p o(1+6)Lyx . ,
" ‘ n —4n .
AJAo[(1 + p) ( v o, ) |Fmrt—2nnl

-
Let us now introduce (, = [HA%H, AL, pl/ZHAZ_lH] e R3 for n > 0; then, by similar
computations the following bounds follow from Lemma 30:

. . 202(1 + 0)2 2020%2)p~ !
[$ms1 —ynstl® < ¢ Diag [o, (1+9) p ]c

(1+ opy)?’ (1 + opuy)?
372 37202(1 + 0)? ny2 3720%0%p~ ! ny2 ] ¢
(U4 7p2)? " (L4 7p) 2 (1 + op1y)? " (14 Tpe)2(1 4 opy)? |

I2ns1 —2n|? < ¢ Diag [

and we deduce that

-1 P 2) 1
- p)_p@) _ p@
1+P n n 1+p n—1 1_|_an

P T x Y
< 57— (& n Diag | B, BY, BZ, | (n,
2(1_1_’0)(8 +1+5 )+Cn lag[ 1]C

where B*, BY, BY, are constants specified in Table 4 of Appendix E.
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We now treat the sum > _, p"kQy. Observe first that for all n € N, Lemma 30,

Qn < AN %ns1 —znial + X+ DAL [yntr = Fnaa | + 0 1A% ] [yns1= g |

T g
< x x x i Yy
il | (1814 L 2 (01821 01AL))) |
g
(14016 (1 + 0)I6%] + 01, )
1+ op,
o T(14+0)Lyx | «»
I el e LA
Yy X
(14 0)Ia)
1+0(1+6)L 70(1 4+ 0) Lyx L
2] 1 2] Yy Y Y A"/
+< T >< L+opy +(1+Tﬂm)(1+‘7/‘y) |20l
1+0(1+6)L 70 (1 4 0) Lyx Ly
0 Yy Y Yy Ay ,
i ( L+opuy i (1 + 7pa) (1 + opy) il

which, after organizing the terms and using ab < a?/2 + b?/2 for any scalars a, b, becomes

1+06)2
Qn < ——Jazjr + X aype
1+ 7p, L+ opy
0 1 1+6)L 1+ 0)LyxLy
;o 9+(1+0)< + o+ Oy | 1o+ )Lyl ))nAzlz
L+opuy L+ opuy (L4 7pz) (1 + opy)
af 7(1+6) Lyx ob T(L+0) Lyx | 1z
n YIAY 2 + A2
2(1 + opy) L+ Tpx AL +opy) 1+ 7Tpe
0'0 0'0
1+ 0)|AY|? + 1+0)|AY_,|?
1ery( AL 1+Uuy< AR
P (Lol oLt Ol )y
14+ opy 2 1+ ouy (1+7ps) (1 +opy) !
o 0 (1+ o(1+6)Lyy 7o(1 + 0)LyxLyy IAY |2
1+opy2 1+opy, (1+ 7pz) (14 opy) "
Y |AT|? + o 1N |
2(1+ 7pta) (1 + Tty 2(1+ Tpg) (1 + Tpy)
700 Ly . 700 Lk
y |AZ|2 + L |An_4]?

2(14 7pa) (L4 Tpy) 2(1 4 Tug) (L4 Toy)

Thus, we obtain @, < C* [|AL[? + CZy p|AT_i|> + CY [AR* + CYy p|AY_[? +
CY, p?|AY_,|? for some constants C%, C*,,CY,CY,,CY, (that are explicitly given in Table 4
of Appendix E). Hence, setting A” | = AY | = A", = 0, we obtain,

n

1 1
n—k L pM) _p@ _ P p@ _
_ P P P n
kzzop R N R ET
p S —k(rx |2 T T 2
< — (€&, " & A C* p|A%_
S Bt + £+ 20 "M IATIE + C2ipl AL

k=0
+ CyHAZ\!2 + Cﬁlpllﬂi_ll\z + 03292HA%—2H2)
+ B*|AL|? + BY|AY)* + BY p|AY_ |
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therefore, rearranging the terms together we get

n 1 14 2 1
Z RQ — 713751) _p2__P p® _ Q.

n n—1
= 1+p 1+p 1+p
p
< —(Ens1+&n

n n—1 n
£ C7 Y PP EIAGR € Y P HIARIR + O Y oA

k=0 k=0 k=0
n—1 n—2

+ O 3 P T EIAYP + Oy X T RIALIR + BRI AL + BY|AY|? + BY o AY_ |17
k=0 k=0

<l (Epr T E) + Q0 Y A2 1 0, 3 R AY 2,
2(1+p) " 1;0 ’ y;;o *

where Q, = B* + C* + C* and Q, = BY + BY, +CY + CY, + CY,. This completes the
proof. o

C.2.2 PROOF OF LEMMA 27

Let n € N be fixed. In view of (C.3), we have

A * 1 * * *
(1= | € T + 0114 0) Uy B(a ) = 009y Bl ur) =" =0 ¥y 0 y7)|
Y

1 * * *
< Trom (Hyn —y* [+ (1 +0)| Vy (20, yn) — Vy (x*, 3]

+ 00 Vy ®(wn-1,5n-1) — Ty (", 37)]))

1
<
1+op

(004 0) Ly = x| + (1 + (1 + 0) Lyy) 1y — ¥ |
Y

+00 Lyx [2n—1 —x" || + 00 Lyy |yn—1 — ¥~ H)a

where the third inequality follows from the smoothness assumptions on Vy ® and Vy ®, and

for the n = 0 case, we have x_1 = ¢ and y_; = yo. Using similar arguments, we also obtain

N * 1 * o *

oo =% € 7 (U 7L = 7 Ly [ 900 =37 )
1 146) Ly L . 0Ly, L .
< 1+TLXX+TO( JLyx Ly [z, — x| +w|\$n—1—x [

14+ 7y 1+ opy 1+ opy
TLyy(1 +0(1+6)Lyy) N 706 Lyy Lyy .
+ v I+ —yn-1— ;

ol =y T e =y
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from which we deduce the following bound:

1

I9nse =¥ I < - (H Y1 =¥ [+ 0L+ 0) Lyx | Xnp1 =x" | + 0(1+0) Lyy | 501 —v7 |
O Ly

+ 00 L [ = X" | + 00 Ly g — ¥ )

1 o(1+6)Lyx
< 1 1+6)Lyy) —
1+J,uy<<( +o(1+60)Lyy) 1+ om,
(1 + TLXX +TU(1<1‘F9) Lyx ny)
+0(1+0) Lyy oty + 00 Lyx> |2 — x* |

1+ 7py
T Lyy(1 +o(1 4 6)Lyy)
(L4 opy) (1 + Tpa)

o L 706 Ly Lyx?
1 14+6)L,,)—2— 1+6 XY _YX 1 —x"
(ot 0L s o+ T e =

(Ao DLty gy g 100 Lo Lol )ynl—y*u).

N <(1 +0(1+ 0)Lyy)?

1+460)Lyx
1+ op, +o(l+0)Ly

+of Lyy> —

1+ opy 1+ opy)(1 + Tpy)

Combining the above bounds with Cauchy-Schwarz inequality implies (5.22) and we conclude.

]

Appendix D. Details and proofs for the quadratic setting
D.1 Properties of SAPD on the quadratic SP problem given in (4.1)

In this section, we briefly recall the discussion in (Zhang et al., 2024) regarding the convergence

behaviour of SAPD on the SP problem in (4.1). Precisely, denoting Z, = [2,_1,yn]" and

T ~ . .
wp = [wf_jwl_j;wi] , the authors observe that (Z,)n>0 satisfies the recurrence relation

Zni1 = AZ, + Bw,, where A and B are defined as

1 — _
- 1 1+0) 1 1+0 ’ = —7o(1+ —00 o(1+
T+ouy ({i-%—rux - 00) K T+ouy <Id - 7—1(7-%—‘1',111)I(2> (T +7pe)(1+opuy) l+guy I T+ouy I
(D.1)
As a result, the covariance matrix X, of Z, satisfies for all n > 0,
i1 = AS,AT 4+ R, (D.2)

where R = %BBT + AE [anTTL ] B' + BE [wnég ] AT. Using the independence assumptions
on the w®’s and w}’s, elementary derivations lead to expressing R as

5 T2 ( 720(1+6) T5%0(1+6) )
R = (i (I+7p0)° (I+7pe) > (1 +opuy) (T+opy)2(1+7pa)
T d ( 720 (1+60) T7020(1+0) )K a?(140)? ( T2 2700 24 o2 (1 + 29(1-%—9)0;@) I
(I47pa)*(1+opy) (I+opy)*(1+7p0) (I4omy)® \ (1+7ps)? (I+7pe)(1+opy) (1+omy)* Ltouy d

Provided that the spectral radius p(A) of A is less than 1, the sequence (2,)n=0 converges
to a matrix X% satisfying
$° = AS®AT + R. (D.3)
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Leveraging the spectral theorem, it is shown in (Zhang et al., 2024) that an orthogonal
change of basis enables to reduce the 2d x 2d Lyapunov equation to d systems of the following
form for each A € Sp(K):

50N = AARPANT 4 R (D.4)
such that A* and R are 2 x 2 matrices defined for each \ € Sp(K) as

_1 =T\
A/\ N [ 1(+7';;§ (1+7pe) 146) ]
- 1 o(1+ o 1 _ 70 1+ 2
1+opy <1+7';1,z 00) A 1+opy (Id 1+7pye A )
72 ( T20(1+6) T5%0(1+6) )
R = 62 (+7p2)* (+rpe)’(Hopy) (o) (14+7ps)
720 (1+0) T520(1+6) ))\ 2(146)2 [ T2 + 2700 24 o? ( + 20(1+0)0'N!/>

((1+7#£>2(1+0#y> <1+Uﬂy)2<1+7,um) (1+Ul‘y)2 (1+Tp.,,-)2 (I+7pa)(A+ouy) <1+U;Ly)2 T+opy

and A is similar to the matrix Diag(A* ..., A*).  Therefore, we have p(A) =

max;—1 2.4 p(AM).

D.2 Proof of Theorem 17
In this section, we solve the Lyapunov equations (D.4) analytically under the parameterization
in (2.3). Throughout, given A € Sp(K), we introduce the quantity k) = \/ﬁ which is closely

related to the condition number x = max{Lyy, Lyz, Lyy}/ min{gy, pi}. Indeed, for py = py,
we have £ = max{|x)| : A€ Sp(K)}. For each A € Sp(K), let »% be a solution to (D.4),
i.e., X% solves the following 2 x 2 Lyapunov equation:

SO = AAEEANT L R (D.5)

Furthermore, such a solution is unique if p(A)‘) <1 (NLaub et al., 1990; Hassibi et al., 1999).
The following result provides an explicit formula to X®* whose proof is deferred to Section
D.5.

Proposition 32 Under the Chambolle-Pock parameterization in (2.3), for A # 0 and 0 €
<1< 1+ (/@\)2 — 1> ) 1>, we have p(A*) < 1, and the unique solution X to the equation

R

in (D.5) is given by

2 (1 2 5(2 (1 2 5(2
o 20-0) | 2z (POm) + BPD6.m0) i (PEOR) + 5P 6.m)
AP0 k0) | A (PO, m3) + 2 P30, m)) 590, 55) + 25 P (0, 1)
xr k) y b} 9 y bl

where P, and Pq(fz) forq=1,2 and ¢ = 1,2 are polynomials in 0 and k), defined in the top

part of Table 7. Otherwise, for A =0 and 0 € [0, 1), we also have p(A*) < 1 and the unique
solution X of (D.5) is given by

ioo,ozfi2 (1-0) [ui 0 ]
d p2p2(1+0)L 0w (1+2(1-60%0) |

Theorem 17 will then follow directly from Proposition 32.
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Proof [Proof of Theorem 17| Proposition 32 characterizes the asymptotic covariance matrix
of (zp—1,yn) in the limit as n — oo, which we will use to deduce the covariance matrix
Y% of (zpn,yn) in the limit as n — oco. First, recall from (Zhang et al., 2024) that the
orthogonal matrix leading to the reduced Lyapunov (D.4) is given by Z = PV where
P is the permutation matrix associated to the permutation P of {1,...,2d} defined as
P(gd+7) = q+2r—1mod [d], for all g € {0,1},7 € {1,...,d}, and V = Diag(U, U) € R24x2d
where U describes an orthogonal basis for K with K = U Diag(Ag, ... ,)\d)UT. Now, since

Ty = ﬁ(mn_l — 7Kyy), we have [z}, yl 1" = T[x) 1, y1]" where

1 I —T
T =2 147y 1+7py .
R

Thus, ©° = TS®TT, and noting that T admits the block diagonalization T = ZTWM) ZT
where TW) = Diag(T3) ..., 7)) and

1 —TA;
7)) — { 1+6ux 1+{#x } Vie{l,...,d},

we obtain X% = Z~T(A)X~]°C’A(T(A))TZT, where XA = Diag(X®, ..., 2%). Finally, we
observe that T LOAMTMNT = Diag(R@ ... B%) where

~ ~ —0)2)\2 ~ ) ~ . =
- [ 922?31)\1' —20(1 — 9)&200)\1' + ¢! i)c A7 E;%,Az 92202)\1 —0(1 — 0)%2329\1 ] .

- i i SH00, A
0375 —0(1—9) So Yoy

Plugging A = ); into the expression of X computed in Proposition 32, we obtain %0 =

6;#(1919) Diag [92#@2,, p2(1+2(1—6%)0)], if A\; = 0; otherwise,

$0Ai

o8]
1
AN} P (0, k) V0,8) + 25 P50.8) PS5V 0.8) + 2 P2(°§2)(9 )

A2 , A , )

(1 - )52 [#ggpff?”(e )+ PP 0.m) A (PEY 0.8 + 5 PSP 0, n))]
(o0 A7 ’
Py —&-7

Ha
where the polynomials Pl-(o.o’k) and P. are given explicitly in the bottom part of Table 7
of Appendix E. From the closed-form expressions of these polynomials, the fact that the
elements of the matrix ©** scale with (1 — ) as § — 1 can be checked in a straightforward
manner. |

D.3 Proof of Corollary 18

Let V., J denote the Jordan decomposition of A. For n € N| let Y, = V-ly, (Vfl)T, N0 &
y-ly® (V_I)T, and Rt = VIR (V_I)T. In view of the recursion (D.2), we have in_i,_l =
J¥,J + R, and vectorizing again this recursion lead to Vec(Xp41) = (J®J) Vee(S,) + R, ie.,
¥, = (JRJ) L S +30 71 (J®J)F 1 Vee(R). Hence, noting that %% = 3% (J®J)* Vec(R)
we obtain

o0
|20 = 5% = [Sn = 5% = | Vee(En) = Vee(EP) | = [(J@ )" S+ . (J@J)F ! Vee(R)|
k=n—1
p(J®J)" |51+ 57,
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and the claimed convergence rate follows from observing that p(J ® J) = p(A)%2. Note
that here p(A) < 1 because by Proposition 32 we have p(A*) < 1 for every i and p(A) =
max; p(AN).

D.4 Proof of Theorem 19

We start with proving the lower bound, and then we will proceed to the upper bound.

D.4.1 LOWER BOUND

In view of Theorem 17, z4 follows a centered Gaussian distribution with covariance matrix
Y% as defined in (4.4). Hence, let X ~ N(0, I;) be such that ||ze[? = X TE*X. We almost
surely have [2o0]|> = | X[? minSp(Z®) = ¢1(p, 0). By (Inglot, 2010), we have Q,(| X|?) =
2d + 2log (1/(1 — p))) — 5/2, where we used z* = (0,0). Thus, it suffices to show that
min Sp(X®) = ©(1 — 0) as § — 1. Given the bloc decomposition of 3% in (4.4), we have

1 | | | N2
minSp(E®) = min Sp(EPM) = min fo“l+2§§“l—\/(Eﬁ”Al—Eﬁ’M) +45%57% ).
ie{l,...,d} ie{l,...,d} 2

2
We will now show that for all A € Sp(K), 25 + 57 — \/ (55t -5%") +4m5? -
O(1—0),as 0 — 1. If 0 € Sp(X™), given (4.3), we have

270 4+ mg - \/ (5 - 2;‘30)2 + A7)
_ 52 (1 — 0) 2,2 2 2 2 2 2
_dua%u+9)@;@+Mxl+z@_e)@_qe@_uxu+2@_e)m\)
0% 20(1—0)

o° 2(l—0) . o9 o _02))) B
- du%ui(l-ﬁ-@ min (,u,y,ugC (1+2(1 0 ))) O(1-90),

where second equality follows from having a + b — |a — b| = 2min(a,b). If A # 0 is in Sp(K),
in view of Table 7 of Appendix E, we have as 6 — 1,

Pf?l’l(e, k) = —16K% + o(1 — 0), Pf?z’l(e, k) = —8k* + o(1 — ), P2°7°2’1(9, k) = —8k% + o(1 — ),
PI(0,k) = —8k2+0(1—0), PI5°(0,k) =8k2+0(1—0), Py5°(0,r) = —16x2 + o(1 —0),

and P.(0,k) = —32, k% + o(1 — ), so that

A 1—0)6> 2 4 A 1-0)52 3 3
BT = d((—32r€)2)/\2 (=8+%) (//)73 + ugui) +o(l—0), iy m(&{z) (Hg\l‘«m - u?:\uy) +o(1-6),

52
E;O,’z/\ = d((—1321)’f),\2 (—8r?) (/\*; + A ) +o(1—0).

uZ o opEpd

Hence, we deduce that

2
00, 00, o0, A o0,A 0,
2171 + 2272 — \/(2171 — 22,2 ) + 4(2172 )2

1—0)5?
= O (a2 s =\~ ) Nl — )?) + o1 —0),
xfy
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and it suffices to show that A + p2 + 2 — \/(ui — 112)2 + X2(pa — py)? > 0. Now given the

a?—b?
a+b

identity a — b = for a + b # 0, we have

)‘2(UI B My)Q + )‘4
N2 g2 (2 = )2 4 N2 (s — )

> 0,

Nl A+ gy — \/(ui — 1)+ Ny — py)? =
which completes the proof.

D.4.2 UPPER BOUND

The CP parametrization corresponds to choosing a = % — \/5Lyy in the matrix inequality
(Zhang et al., 2024, Cor. 1). Under this parameterization, since 1 — ac > 1/2, we have
Wy, = ﬁ (talzn —x* |2 + pyllyn — y* [?) and we have z* = (x*,y*) = (0,0). Since {2, }n>0 con-
verges in distribution to zs, (3.1) implies that the p-quantile of |2, |? satisfies Q,([zx[?) < ¥2(p,0)

4(1—6 =(1) =(2) 1 i
WMLJ} (HT@G +E o0 log (ﬂ)) . Thus, the asymptotic

property of our upper bound follows from Lemma ?7.

for any p € (0,1), where 1s(p,0) =

D.5 Proof of Proposition 32
We first note that under the parameterization (2.3), the matrices A and R* simplify to

A 0 —(1—9),%
Y=l a-0e2 g-a-opacoe |
o 0210 Hy (1= 0%) (Opre + ) A
T2 | (162 (Bpe F ) A (1 0)(1+6)? (1+29%) A2 42 (1+2(1—62)0)

(D.6)
If A\ = 0, then A* = Diag(#,6). Hence, using the relation Vec(ABC) = (CT ® A) Vec(B), we have
22 = AANPAAN 4 R < Vec (ff’o”\> = (A*® A*) Vec (floo’)‘> + Vec(R")

< Vec (f]“”‘) = (I - A* ®A>‘)71 Vec (R)‘) .

. —1 . .
Noting that (I — AN ®A>‘) = D1ag(1_192, 1_102, 1_102, 1—192)’ we obtain %0 = 1_192 R for any

6 € [0,1). It remains to consider the case when X # 0. We first provide an eigenvalue decomposition
to the matrix A*.

Lemma 33 For any 6 € ((m— 1)/|/§>\|, 1) and XA # 0, the matriz A introduced in (D.4)
admits the diagonalization A» = VX JX(VA)~1 where

x| via O Al | A2 A
J _[ 0 VQ,A]’ V_[H—VL)\ 0—wvan |’ (D7)

. . 0—(1—0)%(14+0)k3 ) +ir /|A 0—(1—0)%(14+0)k3 ) —ir /| A
with comples cigenvalucs Vué(Q (1-0)2(1+0)r3 ) +iv/] |7 Vz,xé(Q a )(1+2)m) ir/] A|7 and

2
Ay = (1-0)41+0)2k% — 46%(1 — 0)%k32. Moreover, in this case, Ay < 0 and p(A*) < 1.
Proof Noting that Tr(A4*) = 20— (1—0)%(1+6)x3 and Det(A*) = 6% —(1—0)?0x3, the characteristic
polynomial of A* has for discriminant Ay = Tr(A4*) —4Det(A*) = (1 —0)*(1+0)%k3 — 402(1 —0)2x3.
Note also that xy # 0 since A # 0 by assumption, and

462 26 1
Ay <0 = (1-0)2< 5 = 1-0) <= < 0>—(/1+r2-1),
A ( ) H?\ ( ) |I€)\| |I€)\|( A )
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and in such case, it is straightforward to check that A* admits the two complex conjugate values
V1 x, V2 x. Furthermore, observe that A 5#0asA#0and § <1and forveC, z,yeC,

0—v)z+ Ay =0 —(0—v)
A o “]=0<:>{( e ey=—0=V
( U)[y A+ (A3, =)y =0 Y Aty v

1 —Ai
< (x,y) € Span (0—v) | = Span ’ .
Ay, 0—v

Therefore, the columns of the V* matrix are in fact eigenvectors corresponding to the complex
conjugate eigenvalues v; y and vy, and we conclude that the eigenvalue decomposition A* =
VAJMVA) 7L holds. Finally, p(A*)2 = |11,]? = Det(A*) = 6% — (1 — 0)%k3 so that we have

p(AM)?2 -1 = Det(A)‘) —1=—-1-6)(1+60(1+~r3) —6%3), and p(A*)? = 1 if and only if 0 €

{1, 5+ 2K + 2,{ (14 k%)% + 4&/\} Observing that /(1 + x3)% + 4x3 > 1 + k3, we deduce that

i+ 2}{} + 2’{ (1 +r3)2+4k3 >1and 5 + 507 — 2}{ (14 k3)? + 4K3 < 0. Hence, we conclude

p(A*) < 1 for any 6 € (K—i(«/l+n?\fl),1). [ |

In the following lemma, we also provide basic identities satisfied by the eigenvalues v x and v »
which will be key for the exact computation of X**. The proof of this lemma is omitted as it follows
from straightforward calculations.

Lemma 34 Let vy y,va.5, be the two complex conjugate eigenvalues of A*, as specified in Lemma 35.
Then,
viavas =02 —0(1 —0)%kK3,

Vi + o =20 — (1—0)%(1+0)x3,

Vi + V55 =207 —20(1 —0)*(1+20)k3 + (1 — 0)*(1 + 0)°k3,

Viy+ sy = (20— (1—0)*(1+0)x3) (6> —0(1—0)*(1 +46)k3 + (1 —0)* (1 + 0)°k3) ,

Vix+vaa = 20" — (1—60)°k36°(4 + 166) + (1 — 0)* K367 (6 + 246 + 200°)

— (1—0)°x546 (1 + 40 + 56 + 26%) + (1 — 0)®x5(1 + 0)*,

A
Ha by

where k) =

The following lemma says that the solution %%* of (D.5) can be computed by solving 4-
dimensional linear equations.

Lemma 35 For any A # 0 and 0 € <K(«/1 + l€>\ -1, >, the solution £ of (D.5) satisfies
Vec (iw) — (L= PRI Vee(RY), (D.8)

where £ ﬁ(V)‘)’lioc’)‘((VA)fl)T, R =(V*)~IR> ((V)‘)fl)—r and J, V> are the matrices arising
in the eigenvalue decomposition of A®, as in Lemma 3.

Proof Given Lemma 33, the equation (D.5) can be rewritten as X%* =

VAJMVM)TIERA (V)TN T(VMT + RY, which amounts to

(VA)—IEOO,/\((VA)—I)T _ J)\(VA)—Iioo,/\(u/)\)—l)T(J/\)T + (V)\)—IR/\((VA)—I)T’
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or equivalently A = JAY®XJMT 4 R, Taking Vec(+) of both sides, and noting the relation
Vec(ABC) = (CT ® A)Vec(B), it suffices to show that the 4 x 4 matrix I, — J* ® J* is invertible.

Observing that Diag

[ —

I/iA,Vl))\l/27)\,1/1’)\V27/\,l/22’>\:|, it is sufficient to show that vy o) # 1 for

0 € (= (/1 + K2 —1),1), and this directly follows from the proof of Lemma 33. ]

N

Equipped with the representation (D.8), we complete the proof of Proposition 32 in three steps:
(I) explicit computation of B> | (II) explicit computation of %®* from R* based on (D.8), (III)
explicit computation of £°* from Y% based on the relationship given in Lemma 35.
(I) Computation of R. Using the Cramer rule, first observe that V ~! satisfies

(VA1 = 1 [ (0 —12n)  +A4;, ]
Apg(ax—vin) [ — (O —via) —As |’

from which we deduce

é()\) _ (V)\)—lR/\((V/\)—l)T _ 62<1 — 9)2 |: Qi,l Q§72 ] ,
d(AY )2 (v —vep ) 22 | @12 @22

where

. 2
Qil = (0 —12,) /if,

+(A7,)° <(1 —-0)*(1+96)° (1 + 29’“) N4l (1+2(1-067) 9))

Hy

+ 2Ai‘72 (0 —v20) (1 — 92) (Opg + yy) A,
Q3o (0 —v1)° 1

(0 opae o2 (1ot ) o200 @0) 9

Hy

+ 247, (0 —v10) (1= 0%) (Bpa + yy) A,
— (0 —vax) (0 —vin)

— (A},)? ((1 —0)*(1+06)* (1 + 29’”) Nt g (1+2(1-6%) 9))

Hy
+ (1= 67) (O + p1y) NAY 5 (1,0 + 12,0 — 26) .

Il

A
Q1,2

(ITI) Computation of ¥®©XA,  From the definition of J given in (D.7), observing that
(I4 -JI'® J’\)_l = Diag [1711/ L L L ], we deduce from Lemma 35 that

f,k7 1—vy av2,a? 1—vy1 av2, 2’ 171/3’A

1 A 1 A
2 2 RN S _
$o0 _ 6*(1-10) [ or, Qi T Qi ]

2 1 A 1 A
A in— )i | o @2 o @

(IlT) Computation of ¥}, From Lemma 35, we also have

S & 2(1—6)2 A A
e L s I 1 Ll BRGS0
d(Ai\,Q)z (Vl,A - V2) M%M% 51,2 52,2
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with
A e/ AN 22 11 Q3 1o
ST =(A7 ) (1 —7, +t1z 2, +27— V1,>\V2> ;
A A 11 Q35 12
51?2 = —A1’2 [(9 — VL)\) q + (9 — VQ) W + (29 — (1/17)\ + 1/2)) m , (Dll)
A s 2 i\,l 2 Q%,Q {\’2
Syo=(0—v1) W + (0 —vy) m +2(0—v15) (0 —12) m

While (D.10) provides a formula for %, the dependence of this formula to &y and @ are not
very clear. We provide in Section F of the extended version of this paper Laguel et al. (2023) a
simplification of the terms in (D.10) in terms of their dependence to k) and 6. As a consequence, in
view of (D.10), we may write

2 [~ 2 ~ ~ 2 ~
g 020-0) (23 (PO +PEOR) (PR + PR )
dAPPe(0,m2) \ A (P (0, 55) + %P{ﬁ}(a, Ka) B0, k) + %152{22)(9,@)
where the ]5(7(’]2) and P, are polynomials in 6, k), defined in the top part of Table 7. This proves
Proposition 32.

Appendix E. Symbols and constants used in the paper

The convergence analysis of SAPD relies on a series of convex inequalities that we wrote in matrix
form for compactness. All the constants arising in these inequalities (including those mentioned in
the statement of Lemma 26 and Lemma27) are made explicit as follows in Table 4 and Table 5. For
convenience of the reader, in Section H of the online supplementary material Laguel et al. (2023),
we also provide the expressions of these constants under the CP parameterization (2.3) which is a
particular class of parameters where our complexity results can be achieved. We finally detail in
Table 7 the polynomials involved in the entries of the covariance matrix £** given in Theorem 17.
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BT — N 2 (1460)% Ly, 2 0 3,2 Ccr — T 70 (1+26) Ly x 750 (14+6) Lyx
1+P (I+opy)®  4[Ao?(1+p) (1+7pa)?’ Irpe  2(1+7pe)(T+opy)’ -1 7 2p(1+opy)
By — _40+46)% n 3 Ao|*(140)6% o (1+o(1 4 0) Lyy)® 20%(1 + )2
(T+p)(T-ao) o’ 41402 (1 (L + opy)? 1
of*(1+p) Hy ( +auy)
02(1+0)2Lyy2 P 37202(1 + 0)% Ly,”

(L+omy)®  4Al* (L +p) (L +7p2)* (L4 ony)

BY. = 400 + P (14+0(14+6) Lyy)? 20%6%p~1 o (146)% Lyy> P 3r%0%6%p" " Ly, ”
—L 7 p(ltp)(1-ac) T 4JAcP(1+p)  (Ttopy)?  (1+opy)? (Itopy)?  4]AolP (1+p) (1+Tpa)*(T+opuy)?”
CY = o(1+20)(1+6) 70 (140) Lyy Y. — 06? 1+0(1+6)Lyy 70 (1460)LyxLyy
I+opy 2(14+7pa)(T+opuy)” -2 2p%(1+opy) Itopy (A+7pe)(1+opy)

_ 30 14+0(1+6)L 70 (1460)Lyx Ly
Cgl W (1+29+ 21+T“ ) ((1+9)Lyx+ny)+(1+7) ( 1+0'Hy rY + (1+Tﬂw)(1igﬂz)))’

Q,=B*+C*+C*, Q,=BY+BY, +Cv+CY, +CY,.
Y 1 1 2

Table 4: Summary of the constants B*,C*,C*,, Q% BY, BY,,CY,CY,,CY,, and QY used through-
out the analysis.

70(140) Lyy Ly
) o0y
T Lxy(I+o(1+ vy .
A - Ho”i C Aye 1+0(1+0)Lyy 7
o1l 00 Ly
(1+a,u ) vy
0-7—9 Lvy yy
(1+‘7Hy)
Coar (14 )1+ 7112) L + 0 (1 + ) Ly (14 7L )1+ 711y) + 70 (1 + ) Ly Ly )]
R +O’9Lyx(1+7_ﬂm)(1+0'l‘y)
Ag = 1+ T/L;c)cg’g +0(1+60)Lyx T Lyy Co9 + 00 Lyy (1 + Tpie ) (1 + opty) ,
0(00,99 Ly (1 4 7p12) + (14 0)700 Ly Lyx2>
U(Cm,e@ Lyy(1 4 Tps) + (1 +0)700 Lyy Lyx Lyy)
4 AT .
AT | i ol —a
, . JIT 4V2(140) 4T . o/(1—ao ,
A=Al | = \/ﬁp Tron, A] Diag Ners , Cop2xl+o(l+6)L
Al W20p' AT
(TFony)? (Th7is) 3 2p0/(1 — ao)

Table 5: Summary of the constants A;, As, A3 used throughout the analysis.
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P (0, k) = — 4r36% (1 + 6) . PP(0,r) = —4k36% (14 20 — 6% — 26° 1 26")
4 1420 —62—86° 2o 1440+ 462 —66°
+”*< —90" + 665 + 6 U0 y1gt 1 0p7 1 968
+(1—0)%k5 (0 + 46 + 46° — 6°) + (1= 0)*:80(1 + 0)2(1 + 20)
P (0,k) = —4ri0? (1+20 — 6%) PO, r) = k346" (1420 — 6°) ,

e[ 14304062803 g [ 54156 4562 — 2063
+a 9)’”<71194+95+96 (=0 1167 4 065 1 66

+(1—0)3.86(1 + 6)*(1 + 26)

+26 + 207
+ (1= 0)°650(1 + 0)3(1 + 26)

1+ 50 + 862 — 363
+(1—0368 | —210* — 146°

PO, k) = —4rS0% (1420 — 02 —26° +20%) | PL3)(0,r) = w346 (1 + 0)? (~1 — 26 + 26%) ,
+ (1= 028 1+ 40 + 46* — 66° 1+ 46 + 362 — 2063
A\ —110% 4 20° + 269 + k3 | —456% — 20° 4 5306
+ (1= 0)*k300(1 + 0)%(1 + 20) +20607 — 2008 — 2¢°
3 + 140 + 206?
+(1-0)%x80 —86% — 476*
—300° + 46° + 467
+ (1 —0)*6520%(1 + 0)3(1 + 20)

Table 6: Polynomials involved in the description of the equilibrium covariance matrix % of

lirnn—>oo [(L'n— 1, yn] .
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PV (0, k) = — 4r26%(1 +0)?
o 0% +106% 4+ 76* — 2465
+ K
—1766 + 1467 + 68
2 4+ 106 + 962 — 2463

_ .6 _ 2
(1 =00 ( 346" 1 1067 + 366

1+ 46 + 202 — 1463 — 216*

R(1-6) ( —26° + 200
1001 —0)50(1 + 0)*(1 + 26)

120+ 6%

611 1430 + 567
el 9)9( —156% — 765 + 96°

_58(1_9)39(1+39—1193 )

PV (0.8) = + 4x'63(—

130* + 260° + 265
— k(1= 0)%02(1 + 0)%(1 + 26)

P 0,k) = — 4k%0% (1 +20 — 62 — 20° + 26%) |
9 s 1+40+46% 663
+(1=0)x ( —116% + 26° + 266
+(1—6)*x1%(1 + 6)%(1 + 20)

Pe(0,k) = —4k%0% (1 +0)® + &* (1 + 30 + 6> — 176
+ (1 —0)K50 (3 + 146 + 130> — 24¢° —
+(1-6)%s8

—(1-0)%:%(@1 +6)*(1 + 26)

Pf,ozo 20, k) = k2(463 + 120" + 867 — 1265 —

P57 (0,k) = 62467 (1 + 0)* (—1

)

— 102 _ 3 1
’ Pfff’Q)(H,n)=n2< 460% — 80 +49>

+86° — 8¢5

1 g2 1+40+46% —66°
~(1-96) ( 110" + 20° + 20°
KO(1 —0)*0(1 + 0)%(1 + 26)

)

1667 + 46 + 86°),
—1—46 — 862 + 56°
kY1 —0)0 | +400* + 2205 — 4265
—29607 + 1968 + 26°
0 + 262 — 603 — 230*
KS(1—0)3 | —136° + 336°
+3207 — 268 — 46°
K81 —20)(1 — 6)°0%(1 + 0)3(1 + 20)
— 20 +26%) ,

L 1+ 46 + 36% — 2003 — 450* — 205
+5365 + 2007 — 200% — 26°
2.6, 3+ 140 +200% — 863
+ (1= 0)x%6 ( —476% — 3067 + 465 + 467
+ (1 —0)*K526%(1 + 6)3(1 + 20)

— 330" — 30" + 156° + 07).
350* + 100° + 36°)
(=1 — 460 — 20° + 146° + 216" + 20° — 26°)

Table 7: Polynomials involved in the description of the equilibrium covariance matrices %%

of limy, o0 [@n, yn] (bottom).
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