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Abstract
Entropic optimal transport (EOT) presents an effective and computationally viable alterna-
tive to unregularized optimal transport (OT), offering diverse applications for large-scale
data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators
of the EOT cost and show that their statistical performance in the entropy regularization
parameter ε and the sample size n only depends on the simpler of the two probability
measures. For instance, under sufficiently smooth costs this yields the parametric rate n−1/2

with factor ε−d/2, where d is the minimum dimension of the two population measures. This
confirms that empirical EOT also adheres to the lower complexity adaptation principle, a
hallmark feature only recently identified for unregularized OT. As a consequence of our the-
ory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized
version for measures on Euclidean spaces also obey this principle. Additionally, we comment
on computational aspects and complement our findings with Monte Carlo simulations.
Our technique employs empirical process theory and relies on a dual formulation of EOT
over a single function class. Central to our analysis is the observation that the entropic
cost-transformation of a function class does not increase its uniform metric entropy by much.
Keywords: Optimal transport, convergence rate, metric entropy, curse of dimensionality,
Gromov-Wasserstein distance

1. Introduction

The mathematical theory of optimal transport (OT) offers versatile methods to compare
complex objects that are modeled as probability distributions. From the problem of optimally
moving soil as considered by the French mathematician Monge (1781), and its use in
economics paved by the work of the Soviet mathematician Kantorovitch (1942, 1958) in
the 20th century, it has evolved by now to a well-studied area of mathematics (Rachev
and Rüschendorf, 1998a,b; Villani, 2003, 2009; Santambrogio, 2015; Panaretos and Zemel,
2020) and an active field of modern research. Its scope of applications spans across various
disciplines such as machine learning (Courty et al., 2014, 2017; Flamary et al., 2016; Arjovsky
et al., 2017; Gulrajani et al., 2017; Ho et al., 2017; Grave et al., 2019), econometrics (Galichon,
2018; Hallin and Mordant, 2022; Hallin et al., 2022), computational biology (Evans and
Matsen, 2012; Schiebinger et al., 2019; Tameling et al., 2021; Wang et al., 2021; Weitkamp
et al., 2022), statistics (Munk and Czado, 1998; del Barrio et al., 1999; Sommerfeld and Munk,
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2018; Panaretos and Zemel, 2019; Deb et al., 2021; Nies et al., 2021; Mordant and Segers,
2022), and computer vision (Solomon et al., 2015; Bonneel and Digne, 2023). Nevertheless,
despite continuous progress, OT-based methodology is often burdened by computational and
statistical limitations, restricting its utility for large-scale data analysis. This gave rise to the
consideration of OT surrogates like entropic optimal transport (EOT) (Cuturi, 2013; Peyré
and Cuturi, 2019; Nutz, 2021) in the hope of more favorable properties.

1.1 Optimal Transport

To formalize the OT problem, let X and Y be Polish spaces equipped with Borel-σ-fields
B(X ) and B(Y). Then, the OT cost between two probability measures µ ∈ P(X ), ν ∈ P(Y)
with respect to (w.r.t.) a Borel measurable cost function c : X × Y → R is defined as

Tc(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

cdπ. (1)

Herein, Π(µ, ν) denotes the set of all transport plans between µ and ν, i.e., every element
π ∈ Π(µ, ν) is a probability measure on X × Y such that π(A× Y) = µ(A) for all A ∈ B(X )
and π(X × B) = ν(B) for all B ∈ B(Y). In case of a common Polish metric space X = Y
and costs chosen as the power of the metric, the OT cost quantifies the dissimilarity of µ and
ν in a manner that is consistent with the ground space geometry (Villani, 2009, Chapter 6).

For most applied purposes the measures µ and ν are not available and instead one has only
access to independent and identically distributed (i.i.d.) random variables X1, . . . , Xn ∼ µ
and independent thereof Y1, . . . Yn ∼ ν. This gives rise to empirical measures

µ̂n :=
1

n

n∑
i=1

δXi , ν̂n :=
1

n

n∑
i=1

δYi ,

which serve to define empirical plug-in estimators for the OT cost,

T̂c,n ∈ {Tc(µ, ν̂n),Tc(µ̂n, ν),Tc(µ̂n, ν̂n)}. (2)

The statistical performance of such estimators has been investigated extensively for
various settings of which we only provide a selective overview, for a detailed recent account
we refer to Staudt and Hundrieser (2024, Section 2). First contributions were made for
metric costs with identical measures (Dudley, 1969; Boissard and Le Gouic, 2014; Fournier
and Guillin, 2015; Weed and Bach, 2019), but recently the analysis was refined to more
general costs with possibly different measures (Chizat et al., 2020; Niles-Weed and Rigollet,
2022; Hundrieser et al., 2024b; Manole and Niles-Weed, 2024; Staudt and Hundrieser, 2024).
A central quantity of interest in all these works is the mean absolute deviation of the empirical
estimator to the true OT cost,

E[|T̂c,n − Tc(µ, ν)|] ,

whose convergence behavior intricately depends on the regularity of the cost function, the
intrinsic dimension of the measures µ and ν as well as their concentration. Elaborating on
this, let us exemplarily consider Euclidean ground spaces X = Y = [0, 1]d with d 6= 4 and
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squared Euclidean costs c(x, y) = ‖x− y‖22 for which it has been shown that (Chizat et al.,
2020; Hundrieser et al., 2024b; Manole and Niles-Weed, 2024)1

sup
µ,ν∈P([0,1]d)

E[|T̂c,n − Tc(µ, ν)|] � n−2/(d∨4). (3)

Manole and Niles-Weed (2024) in fact also show that the empirical plug-in estimator is
minimax rate optimal (up to logarithmic terms) among all measurable functions T̂ of
X1, . . . , Xn and Y1, . . . , Yn. In particular, we observe that the statistical performance of the
empirical plug-in estimator deteriorates exponentially with higher dimension d and that
estimation of OT costs is affected by the curse of dimensionality.

Hence, the only way to hope for faster convergence rates is by imposing additional
structural assumptions on the underlying population measures. For instance, if both µ and
ν are supported on [0, 1]s × {0}d−s ⊆ [0, 1]d for s 6= 4 the ground space is effectively only
s-dimensional and the convergence rate improves to the better rate n−2/s. A more surprising
result by Hundrieser et al. (2024b) is that only one of the probability measures needs to be
concentrated on a low-dimensional domain. If, say, µ is concentrated on an s-dimensional
sub-manifold and ν ∈ P([0, 1]d) is arbitrary, then the empirical OT cost estimator converges
with rate n−2/(s∨4) and thus adapts to the lower complexity of µ. This phenomenon is termed
lower complexity adaptation (LCA) principle. Nonetheless, note that the LCA principle
only yields close to parametric rates in n if one of the measures has sufficiently low intrinsic
dimension. Hence, unless s < 4, slower than parametric convergence rates for the estimation
of OT costs can still occur.

In addition, OT is generally plagued by a high computational complexity (Peyré and
Cuturi, 2019). For instance, the Auction algorithm (Bertsekas, 1981; Bertsekas and Castanon,
1989) or Orlin’s algorithm (Orlin, 1988) have a worst-case computational complexity of O(n3)
(up to polylogarithmic terms) where n is the number of support points of the input measures.
This effectively delimits the use of OT based methodology to measures with n ∼ 104 support
points.

1.2 Entropic Optimal Transport

To deal with the high computational complexity, Cuturi (2013) proposed to regularize the
objective (1) by adding an entropic penalization term. For probability measures µ ∈ P(X )
and ν ∈ P(Y) the EOT cost w.r.t. to the cost function c : X × Y → R is defined as

Tc,ε(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

cdπ + εKL(π | µ⊗ ν) , (4)

where ε > 0 is the entropic regularization parameter and KL(π | µ ⊗ ν) denotes the
Kullback-Leibler divergence of π relative the independent coupling of µ and ν, defined by∫
X×Y log( dπ

d[µ⊗ν]) dπ if π � µ ⊗ ν and +∞ else. This regularization allows the use of an
efficient and simple computational scheme called the Sinkhorn algorithm (Cuturi, 2013; Peyré
and Cuturi, 2019; Schmitzer, 2019). Given a fixed precision, the Sinkhorn algorithm has
computational complexity of order O(n2) (up to polylogarithmic terms) (Altschuler et al.,

1In case of d = 4 the upper bound in (3) admits an additional logarithmic term while the lower bound
does not. The sharp logarithmic order remains open.
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2017; Dvurechensky et al., 2018; Luo et al., 2023) to approximate the EOT cost and is thus
one order of magnitude faster than OT solvers. Owing to the computational appeal, EOT
has therefore been employed to approximate quantities from unregularized OT by reducing
the regularization parameter ε↘ 0, which proves to be consistent under minimal regularity
on the cost function (Pooladian and Niles-Weed, 2021; Altschuler et al., 2022; Bernton et al.,
2022; Delalande, 2022; Nutz and Wiesel, 2022; Pal, 2024).

The EOT cost also admits a more desirable sample complexity compared to that of
unregularized OT (Genevay et al., 2019; Mena and Niles-Weed, 2019; Chizat et al., 2020;
Bayraktar et al., 2022; Rigollet and Stromme, 2022). Following an empirical plug-in approach
as in (2),

T̂c,ε,n ∈ {Tc,ε(µ, ν̂n),Tc,ε(µ̂n, ν),Tc,ε(µ̂n, ν̂n)} , (5)

it was first shown by Genevay et al. (2019) under smooth costs and compactly supported
µ, ν ∈ P(Rd) that for a fixed ε > 0 the estimator T̂c,ε,n based on i.i.d. observations
X1, . . . , Xn ∼ µ and Y1, . . . , Yn ∼ ν converges to the population quantity Tc,ε(µ, ν) at the
parametric rate n−1/2. In the setting where c is selected as the squared Euclidean norm
their results imply that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] . (1 + ε−bd/2c) exp(D2/ε)n−1/2 , (6a)

where D is the diameter of the bounded subset µ and ν are supported on, and the implicit
constant only depends on d and D. Tailored to the squared Euclidean norm, Mena and
Niles-Weed (2019) and Chizat et al. (2020) improved upon these results by reducing the
exponential dependency in ε−1 to a polynomial one. Notably, the former also provide
statistical bounds for σ2-sub-Gaussian measures µ and ν,

E[|T̂c,ε,n − Tc,ε(µ, ν)|] . ε
(

1 + σd5d/2e+6ε−d5d/4e−3
)
n−1/2 , (6b)

where the implicit constant only depends on d. For probability measures µ and ν that are
supported on a joint set of diameter 1, the latter give for c being the squared Euclidean norm
the bound

E[|T̂c,ε,n − Tc,ε(µ, ν)|] . (1 + ε−bd/2c)n−1/2 . (6c)

More recently, Rigollet and Stromme (2022) showed for any bounded cost c, without imposing
smoothness assumptions, that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] . exp(‖c‖∞/ε)n−1/2 , (6d)

where we again observe an exponential dependency in ε−1 and ‖c‖∞. For all these results we
see that for fixed ε > 0 the empirical EOT cost admits faster rates in n than the empirical
unregularized OT cost. Such results are complemented by extensive research on distributional
limits for the empirical OT cost at scaling rate n1/2 which establish the parametric rate
to be sharp (Bigot et al., 2019; Mena and Niles-Weed, 2019; Klatt et al., 2020; del Barrio
et al., 2023; González-Sanz et al., 2022; González-Sanz and Hundrieser, 2023; Goldfeld et al.,
2024a,b; Hundrieser et al., 2024a).

However, as the regularization parameter decreases to zero, the statistical error bound
generally deteriorates in high dimensions polynomially or even exponentially in ε−1. This
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behavior is unavoidable, since for ε↘ 0 the EOT cost tends to the unregularized OT cost
which suffers from slower rates. Recalling the setting of X = Y = [0, 1]d with squared
Euclidean norm as c, it holds by Eckstein and Nutz (2024), see also Genevay et al. (2019),
for some constant K = K(d) > 0 depending on d that

sup
µ,ν∈P([0,1]d)

|Tc,ε(µ, ν)− Tc(µ, ν)| ≤ dε|log ε|+Kε .

Combining this with the previously mentioned minimax result for the OT cost by Manole
and Niles-Weed (2024) yields,

inf
T̂

sup
µ,ν∈P([0,1]d)

E[|T̂− Tc,ε(µ, ν)|] & (n log n)−2/d − dε|log ε| −Kε ,

where the infimum is taken over all measurable functions T̂ of X1, . . . , Xn and Y1, . . . , Yn.
Hence, we see that for ε ↘ 0 the statistical error in estimating the EOT cost in terms of
ε must be affected by the ambient dimension d and that the empirical EOT cost is also
burdened by the curse of dimensionality.

Nevertheless, in practical contexts it is often reasonable to expect that the data obeys
some additional structure, e.g., that it is concentrated on a low-dimensional domain. The
validity of this hypothesis is reflected by the performance of nonlinear dimension reduction
techniques like manifold learning (Lin and Zha, 2008; Talwalkar et al., 2008; Zhu et al., 2018).
Indeed, as for unregularized OT, if µ and ν are supported in [0, 1]s × {0}d−s, the bounds (6)
hold for d replaced by s, indicating that empirical EOT depends on the intrinsic dimension.
Qualitative results of this type were verified by Bayraktar et al. (2022) for settings where
both measures µ and ν lie on s-dimensional domains. However, their results only assert
slower than parametric convergence rates and do not shed light on the dependency of the
constants in ε.

1.3 Contributions

The main primitive of this work is to provide a comprehensive statistical analysis of the
empirical EOT cost with respect to n and ε in terms of the intrinsic dimension of the (possibly
different) underlying measures. Fueled by findings of Hundrieser et al. (2024b), which assert
that empirical (unregularized) OT adapts to lower complexity, we show that the empirical
EOT cost estimator also obeys this principle and thus enjoys better constants in ε−1 if only
one measure admits low intrinsic dimension.

To formulate our general LCA result, we first show for Polish spaces X and Y with a
bounded and measurable cost function c : X × Y → R that the EOT cost admits a dual
formulation over a single function class Fc,ε, defined in (12) in Section 2.1, which depends
on the cost function c and the regularization parameter ε (Proposition 3),

Tc,ε(µ, ν) = max
φ∈Fc,ε

∫
X
φ dµ+

∫
Y
φ(c,ε,µ) dν ,

where φ(c,ε,µ)( • ) := −ε log
∫
X exp[ε−1(φ(x)− c(x, • ))]µ(dx) is the entropic (c, ε)-transform

of φ. Based on this formula, it follows from techniques of empirical process theory that the
mean absolute deviation in (8) can be suitably bounded if the complexity of the function
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classes Fc,ε and F (c,ε,µ)
c,ε = {φ(c,ε,µ) | φ ∈ Fc,ε} as well as the empirical function class

F (c,ε,µ̂n)
c,ε = {φ(c,ε,µ̂n) | φ ∈ Fc,ε} can be suitably quantified. We characterize this via covering

numbers w.r.t. to the uniform norm ‖ • ‖∞ for scale δ > 0, defined by

N(δ, Fc,ε, ‖ • ‖∞) := inf{n ∈ N | ∃f1, . . . , fn : X → R s.t. sup
f∈Fc

min
1≤i≤n

‖f − fi‖∞ ≤ δ} .

Notably, the logarithm of the uniform covering number is called the uniform metric entropy.
A simple yet crucial observation for our approach is that the covering number of the

function classes F (c,ε,µ)
c,ε and F (c,ε,µ̂n)

c,ε at any scale δ > 0 is linked to that of Fc,ε (Lemma 5),

max
(
N(δ, F (c,ε,µ)

c,ε , ‖ • ‖∞), N(δ, F (c,ε,µ̂n)
c,ε , ‖ • ‖∞)

)
≤ N(δ/2, Fc,ε, ‖ • ‖∞) .

Then, assuming the existence of constants Kε, k > 0 such that for all δ > 0 sufficiently small,

logN(δ, Fc,ε, ‖ • ‖∞) ≤ Kεδ
−k , (7)

we show in Theorem 6 for all probability measures µ ∈ P(X ), ν ∈ P(Y) and any of the
empirical estimators T̂c,ε,n in (5) based on independent samples that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] .
√

1 +Kε


n−1/2 k < 2 ,

n−1/2 log(n+ 1) k = 2 ,

n−1/k k > 2 .

(8)

As we demonstrate in Section 3, suitable bounds as in (7) can be guaranteed if the space X
and the partially evaluated cost {c( • , y)}y∈Y are sufficiently regular, while the space Y can
be arbitrary, highlighting the adaptation to lower complexity.

For instance, in the semi-discrete setting, i.e., where X consists of finitely many points
we infer the parametric rate n−1/2 without ε-dependency (Theorem 13). Moreover, under
Lipschitz continuous costs on metric spaces (Theorem 14) or semi-concave costs on Euclidean
domains (Theorem 15), our theory implies ε-independent rates which are of order n−1/2

in low dimensions and slower in higher dimensions, matching those of the empirical OT
cost. Under sufficiently smooth costs on Euclidean domains, our approach is also capable
in asserting parametric rate n−1/2 with lead constant in ε−d/2, where d corresponds to the
minimum dimension of the two domains X and Y , and can be arbitrarily large (Theorem 18).
Tailored to the squared Euclidean norm, we also build on bounds by Mena and Niles-Weed
(2019) and demonstrate that an LCA principle also remains valid for sub-Gaussian measures
(Theorem 23).

In Section 4 we show that the Sinkhorn algorithm can be used to compute estimators
that also fulfill the bound (8). In Section 5 we confirm, as an application of our theory, that
the (entropic) Gromov-Wasserstein distance also obeys the LCA principle. In Section 6 we
perform diverse Monte Carlo simulations which highlight that the implications of the LCA
principle can be observed numerically. Lastly, in Section 7 we discuss possible directions for
future research. For the sake of exposition most proofs are deferred to Section A. Section B
contains auxiliary properties on uniform covering numbers, while Section C gives various
rescaling properties used throughout this work.
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1.4 Concurrent Work

Parallel to this work, Stromme (2023) derived statistical bounds for the empirical EOT cost
which complement our work on the LCA principle. For compactly supported probability
measures µ and ν on Rd and an L-Lipschitz continuous cost function c, it is shown that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] . (1 + ε)
√
N(ε/L, µ, ‖ • ‖2) ∧N(ε/L, ν, ‖ • ‖2)n−1/2 , (9)

where N(ε/L, µ, ‖ • ‖2) := N(ε/L, supp(µ), ‖ • ‖2) is the covering number of the support of
µ (and analogous for ν), a phenomenon Stromme refers to as minimum intrinsic dimension
scaling. The proof employs concavity of the dual formulation and a suitable bound on the
L2(µ ⊗ ν)-norm of the density of the EOT plan in terms of the covering number of the
support. In contrast, our results are build on empirical process theory and covering numbers
of Fc,ε at a scale that depends on the sample size n, see Remark 9 for a refined comparison
of the notion of complexities. Notably, the two approaches are distinct and do not imply the
results of one or the other, yet their implications are of comparable nature.

1.5 Notation

Let X and Y be two Polish spaces that are equipped with their Borel-σ-fields B(X ) and
B(Y), respectively. Denote with P(X ) the set of Borel-probability measures on X . Random
elements are always implicitly defined on an underlying probability space (Ω,A,P) and
E[ • ] is the expectation operator. For a function f : X → R denote the uniform norm
‖f‖∞ := supx∈X |f(x)|. Provided that f is measurable, define for p ≥ 1 and a probability
measure µ ∈ P(X ) the Lp(µ)-norm ‖f‖Lp(µ) :=

(∫
X |f |

p dµ
)1/p. With f : X → R and

g : Y → R, denote the outer sum f ⊕ g : X × Y → R, (x, y) 7→ f(x) + g(y). For vectors
x, y ∈ Rd and p ≥ 1, we denote the p-norm by ‖x‖p := (

∑d
i=1|xi|p)1/p and the inner product

by 〈x, y〉 :=
∑d

i=1 xiyi. Denote with Id ∈ Rd×d the d-dimensional identity matrix and for a
matrix A write ‖A‖2 for its Frobenius norm. Given a subset X ⊆ Rd we write X̊ to denote
its interior. For n ∈ N, we write JnK := {1, . . . , n}. To denote the floor and ceiling function
evaluated at a ∈ R we write bac and dae, respectively. Further, the minimum and maximum
of a, b ∈ R are denoted as a ∧ b and a ∨ b, respectively.

2. Entropic Optimal Transport

In this section, we first introduce preliminary facts about EOT (Subsection 2.1), and then
derive the statistical rates for the EOT cost which reflect the LCA principle based on the
dual formulation (Subsection 2.2) as well as a projection approach (Subsection 2.3). Unless
stated otherwise proofs are deferred to Section A. Our general results are stated under the
following assumption on the cost function c : X × Y → R.

Assumption (C). The cost function c is measurable and bounded in absolute value by 1.

Note that Assumption (C) essentially demands that the cost function c is bounded.
Indeed, if ‖c‖∞ ∈ (1,∞), we can rescale the cost function as detailed in Remark 44 in
Appendix C and still infer quantitative convergence statements for the original cost.
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2.1 Duality and Complexity

Central to our approach for the analysis of the empirical EOT cost is a suitable dual
representation. To this end, we follow first the work by Marino and Gerolin (2020). For
ε > 0 we define the function expε := exp( • /ε) and the set

Lexp
ε (µ) :=

{
φ : X → [−∞,∞) measurable with 0 <

∫
X

expε(φ) dµ <∞
}
,

and analogously Lexp
ε (ν). Further, for φ ∈ Lexp

ε (µ), ψ ∈ Lexp
ε (ν) we define the ε-entropic

cost-transform w.r.t. c, abbreviated by (c, ε)-transform, as

φ(c,ε,µ)(y) := −ε log

∫
X

expε(φ(x)− c(x, y))µ(dx) , y ∈ Y ,

ψ(c,ε,ν)(x) := −ε log

∫
Y

expε(ψ(y)− c(x, y)) ν(dy) , x ∈ X .

Note that φ(c,ε,µ) and ψ(c,ε,ν) are again measurable functions. Lastly, we state the entropy-
Kantorovich functional

Dµ,ν
c,ε (φ, ψ) :=

∫
X
φ dµ+

∫
Y
ψ dν − ε

∫
X×Y

expε(φ⊕ ψ − c) d[µ⊗ ν] + ε .

With this notation at our disposal, we can state a general dual formulation of EOT.

Theorem 1 (Marino and Gerolin 2020, Theorem 2.8 and Proposition 2.12). Let Assump-
tion (C) hold. Then, it holds for all probability measures µ ∈ P(X ) and ν ∈ P(Y) that

Tc,ε(µ, ν) = max
φ∈Lexp

ε (µ)
ψ∈Lexp

ε (ν)

Dµ,ν
c,ε (φ, ψ) . (10)

In particular, optimizers exist and a pair (φ, ψ) ∈ Lexp
ε (µ)× Lexp

ε (ν) is a maximizer of the
above if and only if

φ = ψ(c,ε,ν) µ-a.s. and ψ = φ(c,ε,µ) ν-a.s., (11)

and they can be chosen such that ‖φ‖∞, ‖ψ‖∞ ≤ 3/2. Furthermore, given a maximizing pair
(φ, ψ) in (10), the EOT plan in (4) is given by

dπ := expε(φ⊕ ψ − c) d[µ⊗ ν] .

Conversely, if there are potentials φ, ψ such that π ∈ Π(µ, ν), they are optimal.

Remark 2 (Canonical extension). Theorem 1 only asserts that a maximizing pair φ, ψ
satisfies the optimality conditions (11) µ- and ν-almost surely. By defining φ̃ := ψ(c,ε,ν) and
ψ̃ := (ψ(c,ε,ν))(c,ε,µ) we can uniquely extend the potentials beyond the support of the underlying
measures. Further, by possibly shifting the potentials (φ̃, ψ̃) by (a,−a) for suitable a ∈ R (see
Marino and Gerolin, 2020, Lemma 2.7), it still holds that ‖φ̃‖∞, ‖ψ̃‖∞ ≤ 3/2.

The canonical extension of dual potentials allows us to further rewrite the dual formulation
in (10) to reduce it to a supremum over a single function class.
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Proposition 3 (Duality). Let Assumption (C) hold and define the function class

Fc,ε :=
⋃

ξ∈P(Y)

{
φ : X → R such that ∃ψ : Y → R with

φ = ψ(c,ε,ξ) and ‖φ‖∞, ‖ψ‖∞ ≤ 3/2

}
. (12)

Then, for any µ ∈ P(X ) and ν ∈ P(Y) it holds that

Tc,ε(µ, ν) = max
φ∈Fc,ε

∫
X
φ dµ+

∫
Y
φ(c,ε,µ) dν . (13)

The dual representation of the EOT cost in Proposition 3 implies the following stability
bound for the EOT cost with respect to the underlying measures.

Lemma 4 (Stability bound). Let Assumption (C) hold. Then, it holds for any pairs of
probability measures µ, µ̃ ∈ P(X ) and ν, ν̃ ∈ P(Y) that

|Tc,ε(µ̃, ν̃)− Tc,ε(µ, ν)| ≤ 2 sup
φ∈Fc,ε

∣∣∣∣∫
X
φ d[µ̃− µ]

∣∣∣∣+ 2 sup
φ∈Fc,ε

∣∣∣∣∫
Y
φ(c,ε,µ̃) d[ν̃ − ν]

∣∣∣∣ .
Plugging in the empirical probability measures µ̃ = µ̂n and ν̃ = ν̂n in Lemma 4, it follows

that the absolute difference between empirical estimators of the EOT cost is dominated by the
sum of two suprema of empirical processes. Expectations of such quantities can be bounded
with methods from empirical process theory by controlling the uniform metric entropy of
the indexing function classes Fc,ε and F (c,ε,µ̂n)

c,ε = {φ(c,ε,µ̂n) | φ ∈ Fc,ε} (see, e.g., Wainwright,
2019, Chapter 4). An important observation in this context is that the uniform metric
entropy of a function class never considerably increases under entropic (c, ε)-transforms.

Lemma 5. Let c : X × Y → R be a measurable cost function that is bounded from below
and let µ̃ ∈ P(X ). Consider a function class F ⊆ Lexp

ε (µ̃) on X . Then, it holds for the
(c, ε)-transformed function class F (c,ε,µ̃) := {φ(c,ε,µ̃) | φ ∈ F} and any δ > 0 that

N(δ, F (c,ε,µ̃), ‖ • ‖∞) ≤ N(δ/2, F , ‖ • ‖∞) .

A similar result as in Lemma 5 was recently established by Hundrieser et al. (2024b) in
the context of unregularized OT for the unregularized c-transform, and serves as the basis
of the LCA principle. In the following subsection we use this insight to establish results of
similar nature for the empirical EOT cost.

2.2 Lower Complexity Adaptation: Dual Perspective

As described before, Lemma 4 together with tools from classical empirical process theory can
be used to bound the statistical error in terms of the uniform metric entropy of the function
classes Fc,ε and F (c,ε,µ̂n)

c,ε . An application of Lemma 5 further reduces this to controlling the
complexity of Fc,ε.

Theorem 6 (General LCA). Let Assumption (C) hold. Assume there exist constants k > 0,
Kε > 0 and δ0 ∈ (0, 1] such that

logN(δ, Fc,ε, ‖ • ‖∞) ≤ Kεδ
−k for 0 < δ ≤ δ0 . (14)

9



Groppe and Hundrieser

Then, for all probability measures µ ∈ P(X ), ν ∈ P(Y) and any of the empirical estima-
tors T̂c,ε,n from (5) for i.i.d. random variables X1, . . . , Xn ∼ µ and (independent to that)
Y1, . . . , Yn ∼ ν it holds that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] .
√

1 +Kε


n−1/2 k < 2 ,

n−1/2 log(n+ 1) k = 2 ,

n−1/k k > 2 ,

where the implicit constant only depends on k and δ0.

This theorem establishes the LCA principle for the empirical EOT cost. More precisely,
under regularity of the cost function c and constraints on the complexity of the space X , we
will see that suitable bounds on the covering numbers of Fc,ε are available, which do not
depend on the complexity of Y . Intuitively, the two measures µ and ν should be understood as
being defined on high-dimensional ambient spaces, but where the measure µ is concentrated
on a low-dimensional domain X . As a consequence, the statistical error bound for the
empirical EOT cost will be suitably bounded if one measure admits low intrinsic dimension.
By interchanging the roles of µ and ν, we notice that the statistical error will depend on the
minimum intrinsic dimension.
Proof of Theorem 6. We pursue a similar proof strategy as Hundrieser et al. (2024b,
Theorem 2.2), which is inspired by that of Chizat et al. (2020), for T̂c,ε,n = Tc,ε(µ̂n, ν̂n) and
note that the remaining one-sample estimators from (5) can be handled similarly. Using
Lemma 4, it holds that

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|] ≤ 2E

[
sup
φ∈Fc,ε

∣∣∣∣∫
X
φ d[µ̂n − µ]

∣∣∣∣
]

+ 2E

 sup
ψ∈F(c,ε,µ̂n)

c,ε

∣∣∣∣∫
Y
ψ d[ν̂n − ν]

∣∣∣∣
 . (15)

An application of Proposition 4.11 from Wainwright (2019) yields

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|] ≤ 4[Rn(Fc,ε) +Rn(F (c,ε,µ̂n)
c,ε )] ,

where Rn(Fc,ε) and Rn(F (c,ε,µ̂n)
c,ε ) are the Rademacher complexities of Fc,ε and F (c,ε,µ̂n)

c,ε ,
respectively, i.e., set

Rn(Fc,ε) := E

[
sup
φ∈Fc,ε

∣∣∣∣∣ 1n
n∑
i=1

σiφ(Xi)

∣∣∣∣∣
]
,

where σ1, . . . , σn ∼ Unif{±1} are i.i.d. Rademacher variables that are independent of
X1, . . . , Xn ∼ µ, and define Rn(F (c,ε,µ̂n)

c,ε ) similarly. Note that Fc,ε and F (c,ε,µ̂n)
c,ε are both

bounded in uniform norm by 3. Using Theorem 16 from von Luxburg and Bousquet (2004),
we have

Rn(Fc,ε/3) ≤ inf
δ∈[0,1]

(
2δ +

√
32n−1/2

∫ 1

δ/4

√
logN(3u, Fc,ε, ‖ • ‖∞) du

)
.

10
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With Lemma 5 we obtain by independence of the samples X1, . . . , Xn and Y1, . . . , Yn a similar
upper bound for Rn(F (c,ε,µ̂n)

c,ε /3) with 3u in the covering number replaced by 3
2u, i.e.,

Rn(F (c,ε,µ̂n)
c,ε /3) ≤ EX1,...,Xn

Eσ1,...,σn,Y1,...,Yn
 sup
φ∈F(c,ε,µ̂n)

c,ε /3

∣∣∣∣∣ 1n
n∑
i=1

σiφ(Yi)

∣∣∣∣∣
∣∣∣∣∣X1, . . . , Xn


≤ EX1,...,Xn

[
inf

δ∈[0,1]

(
2δ +

√
32n−1/2

∫ 1

δ/4

√
logN(3u, F (c,ε,µ̂n)

c,ε , ‖ • ‖∞) du

)]

≤ inf
δ∈[0,1]

(
2δ +

√
32n−1/2

∫ 1

δ/4

√
logN(3

2u, Fc,ε, ‖ • ‖∞) du

)
.

From the covering number bound (14) in conjunction with the fact that covering numbers
are non-decreasing for decreasing scale we conclude

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|]
≤ 12[Rn(Fc,ε/3) +Rn(F (c,ε,µ̂n)

c,ε /3)]

≤ 24 inf
δ∈[0,1]

(
2δ +

√
32n−1/2

∫ 1

δ/4

√
logN(3

2u, Fc,ε, ‖ • ‖∞) du

)

≤ 24 inf
δ∈[0,1]

(
2δ +

√
32Kεn

−1/2

∫ 1

δ/4
([3

2u] ∧ δ0)−k/2 du

)
(16)

and the choices of δ := 4n−1/(k∨2) yield the desired result.
In Theorem 6, we see that the statistical error bound may depend on the entropic

regularization parameter ε through the term Kε. Later in Subsection 3.4, we observe a
trade-off between Kε and k in leveraging the smoothness of the cost function. Namely, the
rates in n improve with higher degree of smoothness while the dependency on small ε gets
worse. As a consequence, depending on how fast ε tends to 0 with increasing sample size, an
error bound leveraging less smoothness can assert a smaller mean absolute deviation of the
empirical plug-in estimator.

Corollary 7 (Comparison of rates). Let Assumption (C) hold. Suppose that there exist
constants k1, k2, a > 0 such that for sufficiently small δ > 0 it holds that

logN(δ, Fc,ε, ‖ • ‖∞) . min{ε−aδ−k1 , δ−k2} .

Choose ε = n−γ for some γ > 0. Then, for all probability measures µ ∈ P(X ), ν ∈ P(Y) and
any of the empirical estimators T̂c,ε,n from (5) it holds (up to log(n+ 1)-factors) that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] . min{naγ/2−1/(k1∨2), n−1/(k2∨2)} .

In particular, it follows that the second term in the minimum is smaller if and only if

γ >

[
1

k1 ∨ 2
− 1

k2 ∨ 2

]
2

a
.

11
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Remark 8 (Unbounded costs). For the formulation of Theorem 6 we impose boundedness of
the cost function c via Assumption (C) which ensures that dual potentials are appropriately
bounded without assuming concentration properties of the underlying probability measures.
Later, in Subsection 3.5 we employ a similar approach to show the validity of the LCA
principle for squared Euclidean costs in the setting where one measure is sub-Gaussian while
the other is compactly supported and concentrated on a low-dimensional domain.

Remark 9 (Comparison with complexity scales of Stromme 2023). The proof of Theorem 6,
see Inequality (16), illustrates that condition (14) can be relaxed to an upper bound on the
metric entropy of Fc,ε at scales δ ≥ 4n−1/(k∨2), independent of ε, i.e.,

logN(δ, Fc,ε, ‖ • ‖∞) ≤ Kεδ
−k for 4n−1/(k∨2) ≤ δ ≤ δ0 .

This highlights that the empirical EOT cost serves as an effective estimator for the population
EOT cost, similar to unregularized OT (Weed and Bach, 2019; Hundrieser et al., 2024b;
Manole and Niles-Weed, 2024), if the uniform metric entropy of Fc,ε is small at scales of
order n−1/(k∨2). Moreover, it complements the concurrently derived bound (9) by Stromme
(2023) which asserts that the empirical EOT cost also performs well if the minimum covering
number of the supports of the underlying measures at an ε-dependent scale is sufficiently
small. Collectively, our results and those of Stromme (2023) show that empirical EOT benefits
from two distinct notions of covering number bounds operating at different scales. We like to
stress that these two notions differ in their implications and allow for a trade-off in terms of
the dependency in n and ε: While the bound (9) by Stromme (2023) achieves the parametric
rate n−1/2 at the cost of a strong dependency in ε, our results allow for potentially improved
dependency in ε with possibly slower than parametric rates in n.

Remark 10 (Comparison with unregularized OT). As opposed to the entropic (c, ε)-
transform, for unregularized OT the corresponding c-transform does not dependent on the
probability measures. This allows for an LCA principle based on two function class Fc, Fcc
that are independent of the underlying probability measures (Hundrieser et al., 2024b). In our
setting, it hinges on the two classes Fc,ε, F (c,ε,µ̂n)

c,ε , where one is dependent on an empirical
measure and thus causes additional technical difficulties. In particular, due to the complicated
dependency of F (c,ε,µ̂n)

c,ε on µ̂n, we are limit ourselves to imposing independence between the
two samples X1, . . . , Xn and Y1, . . . , Yn. The smooth nature of the entropic (c, ε)-transform
permits however (see Subsection 3.4) a refinement in terms of the constants: The LCA
principle for unregularized OT can only leverage smoothness up to order 2 of the underlying
cost function, whereas here we benefit from arbitrarily large degrees of smoothness.

2.3 Lower Complexity Adaptation: Primal Perspective

Our main result for the validity of the LCA principle (Theorem 6) employs metric entropy
bounds, however does not provide much intuition for why the LCA principle is reasonable to
expect. We therefore explore in the following a simple setting where the EOT plan entails a
projective action in order to foster some additional insight about the LCA principle.

Proposition 11 (Nutz 2021, Theorem 4.2 and Remark 4.4). Let Y = Y1×Y2 be the product
of two Polish spaces and suppose that the measurable cost function c decomposes for x ∈ X

12
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and y = (y1, y2) ∈ Y into
c(x, y) = c1(x, y1) + c2(y2) , (17)

where c1 : X × Y1 → R and c2 : Y2 → R. Then, it follows for all probability measures
µ ∈ P(X ) and ν ∈ P(Y) such that c1 ∈ L1(µ⊗ ν1) and c2 ∈ L1(ν2) that

Tc,ε(µ, ν) = Tc1,ε(µ, ν1) +

∫
Y2
c2 dν2 ,

where ν1 and ν2 are the marginals of ν on Y1 and Y2, respectively.

The representation of the EOT cost under cost functions of the form (17) asserts that
the EOT plan can be decomposed into a projective action ν 7→ ν2, which contributes a cost
of the magnitude

∫
Y2 c2 dν2, and the EOT plan between µ and ν1, which causes the term

Tc1,ε(µ, ν1).
Since for the squared Euclidean norm Proposition 11 remains valid for affine subspaces,

we obtain the following representation. To ease notation, for two random variables X and Y
on Rd we define Tc,ε(X,Y ) as the EOT cost between their laws.

Corollary 12 (Squared Euclidean costs). Let c(x, y) = ‖x− y‖22 be the squared Euclidean
norm on Rd. Let s ≤ d, U ∈ Rd×s be orthogonal 2 and v ∈ Rd. Then, it holds for random
variables X and Y with finite second moments on Rs and Rd, respectively, that

Tc,ε(UX + v, Y ) = Tc,ε(X,U
ᵀ
(Y − v)) + E[‖(Id − UU

ᵀ
)[Y − v]‖22] .

Example 1 (Unit cubes). Consider X = Y1 = [0, 1]d1 and Y2 = [0, 1]d2 and let c be the
squared Euclidean norm where we embed X into Y = Y1 × Y2 by appending zeros (or embed
via affine transformation). Then, it holds for x ∈ X and y = (y1, y2) ∈ Y that

c(x, y) = ‖x− y1‖22 + ‖y2‖22 ,

and Proposition 11 (or Corollary 12) reduces the (d1 + d2)-dimensional EOT problem to only
d1 dimensions.

The representation of the EOT cost in Proposition 11 yields the following additional
interpretation of the LCA principle. Let µ ∈ P(X ), ν ∈ P(Y) with empirical versions µ̂n, ν̂n,
then under the assumptions of Proposition 11 we see that

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|] ≤ E[|Tc1,ε(µ̂n, ν̂n,1)− Tc1,ε(µ, ν1)|]

+ E
[∣∣∣∣∫
Y2
c2 d[ν̂n,2 − ν2]

∣∣∣∣] .
The second term admits under a finite second moment

∫
Y2 c

2
2 dν2 <∞ a statistical error of

order n−1/2 that is independent of ε. Hence, the ε-dependence of the statistical error for
Tc,ε(µ̂n, ν̂n) reduces to that of Tc1,ε(µ̂n, ν̂n,1) which depends on the simpler measure ν̂n,1. In
particular, the convergence rate for Tc1,ε(µ̂n, ν̂n,1) only depends on the regularity of c1 on
the smaller space X × Y1 (compared to X × Y).

2By this we mean that the matrix U ∈ Rd×s fulfills the relation Uᵀ
U = Is.
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Moreover, note that Proposition 11 can also be employed to obtain lower bounds for the
statistical error of empirical EOT. More specially, the reverse triangle yields that

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|] ≥ E
[∣∣∣∣∫
Y2
c2 d[ν̂n,2 − ν2]

∣∣∣∣]
− E[|Tc1,ε(µ̂n, ν̂n,1)− Tc1,ε(µ, ν1)|] .

Hence, if the second term on the right-hand side contributes a comparably small statistical
error, the statistical error of Tc,ε(µ̂n, ν̂n) approximately matches that of

∫
Y2 c2 dν̂n,2. This

implies that, although the ε-dependency is only determined by the less complex space, the
underlying (ε-independent) constant can be affected by the more complex space.

This is a scaling effect and arises if c2 admits a large variance w.r.t. ν; we will revisit
this observation later in our simulations for squared Euclidean costs. To suppress this effect
we will mainly work in the subsequent section under Assumption (C), i.e., a cost function
that is uniformly bounded by one. However, for our result on sub-Gaussian measures in
Subsection 3.5 we cannot simply rescale the cost function and arrive at underlying constants
which do depend on the ambient dimension (Theorem 23).

3. Sample Complexity

In this section, we focus on concrete statistical implications of the LCA principle for the
empirical EOT cost and employ Theorem 6 in various scenarios to derive upper bounds for
the statistical error. To apply Theorem 6, we need to bound the uniform metric entropy of
the function class Fc,ε. Recall that each φ ∈ Fc,ε can be written as

φ(x) = −ε log

∫
Y

expε(ψ(y)− c(x, y)) ξ(dy) ,

for some function ψ : Y → R and probability measure ξ ∈ P(Y). Based on this integral
representation we see that suitable regularity properties of the partially evaluated cost
{c( • , y)}y∈Y are transmitted to φ, which allows us to bound the uniform metric entropy of
Fc,ε. Another important aspect for these bounds is that the domain X is not too complex.
We model this by assuming that X can be represented as a finite union

⋃I
i=1 g(Ui) of I ∈ N

spaces Ui embedded via gi : Ui → X where c(gi( • ), y) needs to satisfy certain assumptions.
This kind of structural assumption encompasses the setting where X consists of finitely many
points, but also covers the scenario that X is a smooth compact sub-manifold embedded in
a high-dimensional Euclidean space and where (gi,Ui)i∈JIK corresponds to the collection of
charts (see Lee 2013 for comprehensive treatment).

The following subsections explore various settings which are based on this approach: they
all rely on imposing regularity on the cost c and the space X to establish suitable uniform
metric entropy bounds for Fc,ε. For exposition, we relegate all proofs to Appendix A.1 while
technical insights on the uniform metric entropy are detailed in Section B.

3.1 Semi-Discrete

First, we consider the semi-discrete case, i.e., when X consists of finitely many points, while
Y is a general Polish space. Then, under uniformly bounded costs, the function class Fc,ε
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can be understood as a set of uniformly bounded vectors and its uniform metric entropy is
thus particularly simple to control.

Theorem 13 (Semi-discrete LCA). Let Assumption (C) hold and suppose that X =
{x1, . . . , xI}. Then, for all probability measures µ ∈ P(X ), ν ∈ P(Y) and any of the
empirical estimators T̂c,ε,n from (5) it holds for an implicit universal constant that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] .
√
In−1/2 .

Notably, the obtained bound is independent of the regularization parameter ε and the
parametric rate n−1/2 is attained. This is in line with convergence rates for semi-discrete
unregularized OT, see Theorem 3.2 from Hundrieser et al. (2024b), which is the limiting
behavior ε ↘ 0. Theorem 13 also slightly improves upon the bound given by Stromme
(2023, Example 4), asserting no dependence on ε and leaving out the condition on Lipschitz
continuity of the cost.

3.2 Lipschitz Cost

Next, we assume a more general representation for the space X and impose a Lipschitz
continuity condition on the cost function.

Assumption (Lip). It holds that X =
⋃I
i=1 gi(Ui) for I ∈ N connected metric spaces (Ui, di)

and maps gi : Ui → X such that c(gi( • ), y) is 1-Lipschitz w.r.t. di for all y ∈ Y.

Using the scaling property from Remark 44, note that other uniform Lipschitz constants
than 1 can be reduced to the above case. A central consequence of this condition is that
for any element φ ∈ Fc,ε the composition φ ◦ gi : Ui → R is again 1-Lipschitz. The uniform
metric entropy of the class of uniformly bounded, 1-Lipschitz functions on a metric space is
well-studied (Kolmogorov and Tikhomirov, 1961) and implies the following result.

Theorem 14 (Lipschitz LCA). Let Assumption (C) and Assumption (Lip) hold and suppose
that there exists some k > 0 such that for all i = 1, . . . , I it holds that

N(δ, Ui, di) . δ−k for δ > 0 sufficiently small.

Then, for all probability measures µ ∈ P(X ), ν ∈ P(Y) and any of the empirical estimators
T̂c,ε,n from (5) it holds for an implicit constant which only depends on U1, . . . ,UI that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] .


n−1/2 k < 2 ,

n−1/2 log(n+ 1) k = 2 ,

n−1/k k > 2 .

The rate for k ≥ 2 may appear suboptimal in terms of n when compared to the results by
Rigollet and Stromme (2022); Stromme (2023). However, we note that the obtained bound
does not depend on the regularization parameter ε. This is due to the fact that it does not
affect the Lipschitz constant of the function class Fc,ε. Similar to Corollary 7, we see that
the above bound might be superior if ε decreases sufficiently fast. As for the semi-discrete

15



Groppe and Hundrieser

case, the upper bounds are identical to that of the empirical OT under Lipschitz costs, see
Theorem 3.3 from Hundrieser et al. (2024b).

Furthermore, note that Assumption (Lip) requires connected metric spaces. For general
metric spaces, slightly worse uniform metric entropy bounds are available, see Lemma A.2
from Hundrieser et al. (2024b). In this setting, the assertion of Theorem 14 remains valid at
the price of an additional log(n+1)-term for k ≥ 2 (Staudt and Hundrieser, 2024, Remark 3.3
and Appendix B).

3.3 Semi-Concave Cost

In addition to Lipschitz continuity of the cost function c, we now assume semi-concavity.
More specifically, we suppose that c is Lipschitz continuous and semi-concave in the first
component with a uniform modulus over the second component. A function f : U → R on a
bounded, convex subset U ⊆ Rs is called Λ-semi-concave with modulus Λ ≥ 0 if the function

u 7→ f(u)− Λ‖u‖22

is concave. With this definition at our disposal we state the following set of assumptions.

Assumption (SC). It holds that X =
⋃I
i=1 gi(Ui) for I ∈ N bounded, convex subsets Ui ⊆ Rs

and maps gi : Ui → X such that c(gi( • ), y) is 1-Lipschitz w.r.t. ‖ • ‖2 and 1-semi-concave for
all y ∈ Y.

The additional assumption of semi-concavity improves the available uniform metric
entropy bounds for the function class Fc,ε (Bronshtein, 1976; Guntuboyina and Sen, 2013).
Again, invoking the scaling property from Remark 44, the Lipschitz constants and semi-
concavity moduli can be assumed to be 1.

Theorem 15 (Semi-concave LCA). Let Assumption (C) and Assumption (SC) hold. Then,
for all probability measures µ ∈ P(X ), ν ∈ P(Y) and any of the empirical estimators T̂c,ε,n

from (5) it holds for an implicit constant which only depends on U1, . . . ,UI that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] .


n−1/2 s < 4 ,

n−1/2 log(n+ 1) s = 4 ,

n−2/s s > 4 .

Note that for s ≥ 4 the rates are strictly slower than n−1/2 but do not depend on ε, recall
also Corollary 7. In particular, we see in the proof that the regularization parameter ε does
not affect the semi-concavity modulus of the function class Fc,ε. As for the semi-discrete and
Lipschitz case, the rates are identical for OT under semi-concave costs (Hundrieser et al.,
2024b, Theorem 3.8).

3.4 Hölder Cost

Overall, unregularized OT is not capable of leveraging higher degree of smoothness of the
underlying cost function for faster convergence rates (Manole and Niles-Weed, 2024). In stark
contrast, the entropic (c, ε)-transform transmits smoothness of the cost to the EOT potentials.
Smoothness of the cost function has indeed been employed by several works (Genevay et al.,
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2019; Mena and Niles-Weed, 2019; Chizat et al., 2020) for upper bounds on the statistical
error of the empirical EOT cost with a polynomial dependency in ε−1 determined by the
ambient dimension. In what follows, we show that this dimensional dependency obeys the
LCA principle.

Assumption (Hol). It holds that X =
⋃I
i=1 gi(Ui) for I ∈ N bounded, convex subsets

Ui ⊆ Rs with nonempty interior and maps gi : Ui → X such that c(gi( • ), y) is α-times
continuously differentiable with α ∈ N and bounded partial derivatives uniformly in y ∈ Y.

Under this assumption, we show that the function classes Fc,ε ◦ gi are α-Hölder, for which
suitable uniform metric entropy bounds are available (van der Vaart and Wellner, 1996,
Theorem 2.7.1). To formalize this, we introduce some additional notation. Let U ⊆ Rs be
bounded and convex with nonempty interior. For k ∈ JsKκ with κ ∈ N, define |k| := κ and
the differential operator

Dk :=
∂κ

∂ukκ · · · ∂uk1
.

Furthermore, for α > 0 let α = max{m ∈ N0 | m < α} and for a function f : U → R set

‖f‖α := max
|k|≤α

sup
u
‖Dkf(u)‖+ max

|k|=α
sup
u,v

|Dkf(u)−Dkf(v)|
‖u− v‖α−α

,

where the supremum is taken over u, v ∈ Ů : u 6= v. In addition, we consider for M > 0 the
class of α-Hölder functions on U with norm bounded by M ,

CαM (U) := {f : U → R continuous with ‖f‖α ≤M} .

Under Assumption (C) and Assumption (Hol), a simple consequence of the dominated
convergence theorem is that the first α partial derivatives of the functions in Fc,ε ◦ gi exist.
By definition of the entropic (c, ε)-transform, it follows that they adhere to a certain recursive
structure, see Lemma 36. Using this, Genevay et al. (2019) show that the κ-th partial
derivatives are bounded in uniform norm by a polynomial in ε−1 of order κ− 1. We adapt
their proof to make the dependence on the cost function more explicit.

Lemma 16 (Bounds for derivatives). Let Assumption (C) and Assumption (Hol) hold.
Denote the quantities

Ci,m := sup
|j|=m

‖Dj [c ◦ (gi, idY)]‖∞

and define

C(i,1) := Ci,1 , C(i,κ+1) := max

(
Ci,κ+1, C

(i,κ), max
m=1,...,κ

Ci,mC
(i,κ)

)
.

Then, it holds for all φ ∈ Fc,ε, k ∈ JsKκ, κ ≤ α that

‖Dk[φ ◦ gi]‖∞ . (ε ∧ 1)−(κ−1)C(i,κ) ,

where the implicit constant only depends on κ.
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The above bounds can be used to uniformly bound the α-Hölder norm of functions in
Fc,ε ◦ gi. As a consequence, we obtain the following uniform metric entropy bound.

Proposition 17. Let Assumption (C) and Assumption (Hol) hold. Then, it follows for
δ > 0 that

logN(δ, Fc,ε, ‖ • ‖∞) .

(
I∑
i=1

[C(i,α)]s/α

)
(ε ∧ 1)−s

α−1
α δ−s/α ,

where the implicit constant only depends on s, α and U1, . . .UI .

An application of Theorem 6 directly yields the following LCA result.

Theorem 18 (Hölder LCA). Let Assumption (C) and Assumption (Hol) hold. Then, for
all probability measures µ ∈ P(X ), ν ∈ P(Y) and any of the empirical estimators T̂c,ε,n from
(5) it holds that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] .

(
1 +

I∑
i=1

[C(i,α)]
s
2α

)
(ε ∧ 1)−

s
2
α−1
α


n−1/2 s/α < 2 ,

n−1/2 log(n+ 1) s/α = 2 ,

n−α/s s/α > 2 ,

where the implicit constant only depends on s, α and U1, . . . ,UI .

Note that in the bound of Theorem 18 we have a trade-off between the exponent of
ε and n. Namely, with increasing smoothness α the rate in ε or n get worse or better,
respectively. In particular, in the case that Assumption (Hol) is satisfied for α > s/2, we
get the parametric rate n−1/2. This condition is met by costs that are smooth in the first
component with bounded derivatives uniformly over the second.

Example 2 (Squared Euclidean norm). Let Br(0) := {x ∈ Rd | ‖x‖2 ≤ r} be the centered ball
of radius r ≥ 1 and assume that we have X = Br(0) = Y with the scaled and squared Euclidean
norm c(x, y) = 1

4‖x − y‖
2
2. As ‖c‖∞ = r2 ≥ 1, we rescale via Remark 44 and Remark 45.

This way, we obtain pushforwards µr2 , νr2 , µ̂r2n , ν̂r
2

n that are all supported on B1(0). Hence,
for d < 4 we can apply Theorem 15 and for d > 4 Theorem 18 with α := dd/2e+ 1 to obtain
the n−1/2-rate. Putting everything together, it follows for n ∈ N,

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|] = r2 E[|Tc/r2,ε/r2(µ̂n, ν̂n)− Tc/r2,ε/r2(µ, ν)|]

= r2 E[|Tc,ε/r2(µ̂r
2

n , ν̂
r2

n )− Tc,ε/r2(µr
2
, νr

2
)|]

. n−1/2

{
r2 d < 4 ,

r
d
dd/2e
dd/2e+1

+2
(ε ∧ r2)

− d
2
dd/2e
dd/2e+1 d ≥ 4 .

This is in line with bounds obtained by Stromme (2023, Example 3) and Chizat et al. (2020,
Lemma 5). Notably, this bound can also be obtained by combining Theorem 18 with the
rescaling approach as described in Remark 46, which treats more general cost functions.

Remark 19 (Comparison of bounds). Let Assumption (C) and Assumption (Hol) hold,
and let 0 < ε ≤ 1 be arbitrary. We consider the following three cases:
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1. For α = 1, we are also in the setting of Assumption (Lip) w.r.t. ‖ • ‖2. Notably,
Theorem 14 and Theorem 18 yield the same rates for the statistical error in n and ε.

2. Let α = 2. Then, Assumption (SC) holds. Theorem 15 and Theorem 18 again yield the
same rates in n. However, under semi-concavity we have no dependence on ε whereas
the Hölder condition has the factor ε−s/4.

3. If α ≥ 3, as before we are in the setting of Assumption (SC). In this case, the Hölder
condition yields better rates in n whereas under semi-concavity we have no dependence
on ε. Hence, loosely speaking, for a fixed or slowly decreasing ε the statistical error
obtained by Theorem 18 is better. More specially, choosing ε = n−γ for some γ > 0,
Corollary 7 yields that the bound obtained under semi-concavity yields a smaller error
if and only if

γ >

[
1

s/α ∨ 2
− 1

s/2 ∨ 2

]
α

α− 1

2

s
.

In particular, for s > 4 and s/α < 2 the above condition reduces to

γ >

[
1

2
− 2

s

]
α

α− 1

2

s
>
s− 4

s2
.

Notably, for increasing dimension s it follows that the regime ( s−4
s2
,∞), where the

bounds induced by semi-concavity yield a smaller bound, gets larger.

Example 3. Let c be the squared Euclidean norm and choose ε = n−γ for some γ > 0.
For d ≤ 4, Theorem 15 yields the parametric rate n−1/2 (up to log(n+ 1)-term for d = 4)

without any ε-dependency. This rate is faster than (or for d = 1 equal to) the one obtained
from Theorem 18, independently of γ.

For d > 4, we have by Remark 19.3 that the rate obtained under semi-concavity is faster
to the Hölder bound with α ∈ N if and only if

γ >

[
1

d/α ∨ 2
− 2

d

]
α

α− 1

2

d
.

Choosing α := dd/2e+ 1 such that d/α < 2, the above inequality reduces to

γ >

[
1

2
− 2

d

]
· 2dd/2e+ 2

dd/2ed
>
d− 4

d2
.

3.5 Squared Euclidean Norm with Sub-Gaussian Measures

All the previously given statistical error bounds are derived under Assumption (C) which
requires the cost function to be bounded. In this subsection, we show a version of the LCA
principle for a (partially) unbounded setting. Namely, we build on Mena and Niles-Weed
(2019) and consider the squared Euclidean norm as cost and require the measures to be
sub-Gaussian (Vershynin, 2018). A probability measure µ ∈ P(Rd) is called σ2-sub-Gaussian
for σ > 0 if ∫

Rd
exp

(
‖x‖22
2dσ2

)
µ(dx) ≤ 2 .

19



Groppe and Hundrieser

We denote with SGd(σ
2) the set of all σ2-sub-Gaussian probability measures on Rd. Mena

and Niles-Weed (2019) derive statistical error bounds for the empirical EOT cost under
sub-Gaussian measures by controlling suprema over empirical processes using L2-metric
entropy bounds (and not the uniform norm as we do). However, this approach does not
seem to directly produce a result that shows the LCA principle as it is not compatible with
Lemma 5 which requires the use of the uniform norm. To circumvent this technical limitation,
we impose the condition that one of the measures has bounded support. Note that while the
general proof strategy stays the same, the unboundedness requires different arguments than
the ones used in the proof of Theorem 6. The proofs can be found in Section A.

Assumption (SG). It holds that X =
⋃I
i=1 gi(Ui) ⊆ Rd for I ∈ N bounded, convex subsets

Ui ⊆ Rs with nonempty interior and maps gi : Ui → X that are α-times continuously
differentiable with bounded partial derivatives where α ∈ N with s/α < 2. Furthermore, let
Y = Rd, c(x, y) = 1

2‖x − y‖
2
2 be the squared Euclidean norm, σ2 ≥ 1 and supx∈X ‖x‖2 ≤ r

with r ≥ 1.

Note that µ ∈ P(X ) is always sub-Gaussian because of its bounded support. To apply
results from Mena and Niles-Weed (2019) directly, we assume that µ ∈ P(X ) ∩ SGd(σ

2) and
ν ∈ SGd(σ

2), i.e., that σ2 is large enough to include the sub-Gaussianity of both measures.
Further, because of Remark 45 we can fix ε = 1 without loss of generality.

We proceed similar to the approach in Section 2. First, we formulate a version of duality
(compare with Proposition 3).

Proposition 20 (Duality, Mena and Niles-Weed 2019, Proposition 6). Let Assumption (SG)
hold, fix ε = 1 and define the function class

Fσ :=


φ : X → R such that ∃ξ ∈ SGd(σ

2), ψ : Y → R

with φ = ψ(c,ε,ξ) , ‖φ‖∞ ≤ 6d2r2σ4

and ψ(y)− 1

2
‖y‖22 ≤ dσ2 +

√
2dσ‖y‖2 ∀y ∈ Y

 .

Then, for any µ ∈ P(X ) ∩ SGd(σ
2) and ν ∈ SGd(σ

2) it holds that

Tc,ε(µ, ν) = max
φ∈Fσ

∫
X
φ dµ+

∫
Y
φ(c,ε,µ) dν .

As the squared Euclidean norm is smooth, it follows in conjunction with the strong
concentration assumption via the Leibniz integral rule that elements of Fσ ◦ gi are α-times
differentiable. Note that the dominated convergence theorem is still applicable because of
sub-Gaussianity. To employ the uniform metric entropy bounds for Hölder classes, we need
uniform bounds for the partial derivatives as in Lemma 16.

Lemma 21 (Bounds for derivatives). Let Assumption (SG) hold and fix ε = 1. Define

Gi,m := sup
|j|=m

‖Djgi‖∞

and
G(i,0) := 1 , G(i,κ+1) := max(Gi,κ+1, G

(i,κ), max
m=1,...,κ

Gi,mG
(i,κ)) .
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Then, it holds for all φ ∈ Fσ and indices tuples k ∈ JsKκ, 1 ≤ κ ≤ α, that

‖Dk[φ ◦ gi −
1

2
‖ • ‖22 ◦ gi]‖∞ . G(i,κ)σ3κ ,

where the implicit constant only depends on α and d.

Having uniform bounds on the partial derivatives, we arrive by combining Lemma 39,
Lemma 40, and Lemma 43 at the following novel uniform metric entropy estimate.

Proposition 22. Let Assumption (SG) hold and fix ε = 1. Then, it follows for δ > 0,

logN(δ, Fσ, ‖ • ‖∞) .

(
I∑
i=1

[G(i,α)]s/α

)
σ3sδ−s/α ,

where the implicit constant only depends on α, d, s and U1, . . . ,UI .

This result enables us to derive an LCA result for the setting where one measure is
compactly supported while the other is sub-Gaussian.

Theorem 23 (Partially unbounded LCA). Let Assumption (SG) hold and fix ε = 1. Then,
for all probability measures µ ∈ P(X ) ∩ SGd(σ

2), ν ∈ SGd(σ
2) and any of the empirical

estimators T̂c,ε,n from (5) it holds that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] .

(
I∑
i=1

1 + [G(i,α)]s/α

)
r2σ4α∨(4+3s/2)n−1/2 ,

where the implicit constant only depends on α, d, s and U1, . . . ,UI . In particular, for s ≥ 8
by Assumption (SG) we must have α > 4 and the exponent of σ equals 4α.

Using Remark 45, we obtain the following result for more general ε 6= 1.

Corollary 24. Let Assumption (SG) hold and let ε > 0. Then, for all probability measures
µ ∈ P(X ) ∩ SGd(σ

2), ν ∈ SGd(σ
2) and any of the empirical estimators T̂c,ε,n from (5) it

holds that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] .

(
I∑
i=1

1 + [G(i,α)]s/α

)
r2σ4α∨(4+3s/2)(ε ∧ 1)−[2α∨(2+3s/4)]−s/2n−1/2 ,

where the implicit constant only depends on α, d, s and U1, . . . ,UI . In particular, for s ≥ 8
by Assumption (SG) we must have α > 4 and the exponent of ε ∧ 1 equals −2α− s/2.

Note that the implicit constant in the above bound still depends on the dimension d
of the ground space Rd. Nevertheless, only the dimension s of the (lower-dimensional) Ui
influences the dependency of the bound on ε, σ2 and the gi. Hence, it also shows the validity
of the LCA principle.

Further, observe that if the second measure ν is compactly supported, the setting of
Theorem 18 is also satisfied (up to scaling of the cost function). However, as a trade-off, by
staying under Assumption (SG) and not making use of the compactness of the support, we
get a worse dependency in ε.
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4. Computational Complexity

As seen in the previous section, there are several settings where the empirical EOT cost
benefits from the LCA principle. However, in practice the plug-in estimator Tc,ε(µ̂n, ν̂n) is in
turn only approximated using the Sinkhorn algorithm. For this reason, we now investigate if we
can construct a computable estimator that reflects the LCA principle. For the considerations
to follow, we rely on the analysis of the Sinkhorn algorithm by Marino and Gerolin (2020) as
well as Dvurechensky et al. (2018).

First, we briefly recall the Sinkhorn algorithm. Let µ ∈ P(X ), ν ∈ P(Y) be two
probability measures. Given a bounded start potential ψ0 : Y → R, the Sinkhorn algorithm
can be viewed as approximating dual optimizers by alternatingly applying the entropic
(c, ε)-transform to it (Marino and Gerolin, 2020). More precisely, for m ∈ N we recursively
define

φm :=

{
ψ

(c,ε,ν)
m−1 m odd,
φm−1 m even,

ψm :=

{
ψm−1 m odd,
φ

(c,ε,µ)
m−1 m even.

Then, for m → ∞ the pair (φm, ψm) converges to a pair of dual optimizers of (10) for µ
and ν (Marino and Gerolin, 2020). To employ these potentials for a EOT cost estimator we
define the transport plan

dπ(m) := expε(φm ⊕ ψm − c) d[µ⊗ ν] ,

whose marginal measures we denote by µ(m) and ν(m). Then, by definition of the (c, ε)-
transform it follows that µ(m) = µ for oddm and ν(m) = ν for evenm, asserting that µ(m) and
ν(m) are always probability measures. In fact, this construction also yields that (φm+1, ψm+1)
are for any m ∈ N optimal potentials for the measures (µ(m), ν(m)) (see Lemma 38), which
implies the representation

Tc,ε(µ
(m), ν(m)) =

∫
φm+1 dµ(m) +

∫
ψm+1 dν(m) .

Further, by convergence of the potentials (φm, ψm) to dual optimizers for µ and ν as
m→∞, the measures (µ(m), ν(m)) also tend towards (µ, ν). A suitable termination criterion
for the Sinkhorn algorithm is therefore to stop once the difference between (µ(m), ν(m)) and
(µ, ν) drops below a certain prespecified threshold. This difference can be quantified for odd
m by the TV-norm ‖µ(m) − µ‖1 and for even m by ‖ν(m) − ν‖1.

Theorem 25 (Computational complexity). Let Assumption (C) hold and consider µ ∈ P(X ),

ν ∈ P(Y). Denote with T̂
(m)

c,ε,n =
∫
φm+1 dµ̂

(m)
n +

∫
ψm+1 dν̂

(m)
n the empirical EOT cost

estimator based on the Sinkhorn algorithm after m+ 1 iterations with empirical measures µ̂n
and ν̂n as input. Furthermore, suppose for some Kε,n > 0 that

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|] ≤ Kε,n .

Then, for some deterministic Lε,n > 0 we have after m = b2+20L−1
ε,n(3 log n+ε−1)c iterations,

E[|T̂
(m)

c,ε,n − Tc,ε(µ, ν)|] ≤ Lε,n +Kε,n .
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Proof Invoking Lemma 38 from Appendix A.3 we know for any m ∈ N that the potentials
(φm+1, ψm+1) are optimal for (µ̂

(m)
n , ν̂

(m)
n ), asserting that T̂

(m)

c,ε,n = Tc,ε(µ̂
(m)
n , ν̂

(m)
n ). Further,

recall that either µ̂(m)
n = µ̂n or ν̂(m)

n = ν̂n, depending on the parity of m. We therefore
consider w.l.o.g. the first case, i.e., µ̂(m)

n = µ̂n, the argument for the latter case is analogous.
Using Lemma 4, we find that

E[|T̂
(m)

c,ε,n − Tc,ε(µ̂n, ν̂n)|] = E[|Tc,ε(µ̂n, ν̂
(m)
n )− Tc,ε(µ̂n, ν̂n)|]

≤ 2E

[
sup
φ∈Fc,ε

∣∣∣∣∫
Y
φ(c,ε,µ̂n) d[ν̂(m)

n − ν̂n]

∣∣∣∣
]

≤ 5E[‖ν̂(m)
n − ν̂n‖1] ,

where the last step uses that F (c,ε,µ̂n)
c,ε is bounded in uniform norm by 5/2. Choosing

δ := Lε,n/5, according to Theorem 1 from Dvurechensky et al. (2018) we can achieve

‖ν̂(m)
n − ν̂n‖1 ≤ δ

after m = b2 + 4δ−1(log n− log `)c iterations, where we set

` := min
i,j=1,...,n

1

n2
expε(−c(Xi, Yj)) .

As ` ≥ n−2 expε(−‖c‖∞), it holds that − log ` ≤ 2 log n + ε−1. In particular, this implies
that

5E[‖ν̂(m)
n − ν̂n‖1] ≤ Lε,n

after m = b2 + 20L−1
ε,n(3 log n + ε−1)c iterations. Finally, by assumption and the triangle

inequality, we conclude that

E[|T̂
(m)

c,ε,n − Tc,ε(µ, ν)|] ≤ E[|T̂
(m)

c,ε,n − Tc,ε(µ̂n, ν̂n)|] + E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|]
≤ Lε,n +Kε,n .

Remark 26. In the above proof, the inequality

|T̂
(m)

c,ε,n − Tc,ε(µ̂n, ν̂n)| ≤ Lε,n

is even met deterministically after m = b2 + 20L−1
ε,n(3 log n+ ε−1)c iterations. We emphasize

that this does not depend on the input measures µ̂n and ν̂n.

Remark 27. For the dual perspective of the LCA principle (Theorem 6), we obtain with

Theorem 25 that the Sinkhorn estimator T̂
(m)

c,ε,n after m = Ω(K
−1/2
ε n1/(k∨2)[log n+ ε−1]) steps

satisfies the statistical error rate O(K
1/2
ε n−1/(k∨2)) (up to log-terms). Since every Sinkhorn

iteration encompasses O(n2) arithmetic operations we conclude that the proposed estimator
has a computational complexity of order O(K

−1/2
ε n2+1/(k∨2)[log n+ε−1]). Herein, we observe

a trade-off between statistical accuracy and computational effort. Lastly, let us point out that
Theorem 25 is also applicable to the upper bound (9) by Stromme (2023).
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Remark 28. In Theorem 25, computation accuracy Lε,n can always be chosen to be of
order n−1/2. As the bound on the mean absolute deviation Kε,n is typically also at least of
this order, we see that an estimator with similar statistical efficiency can be calculated at
computational cost of order O(n2.5) (up to log-factors).

Example 4. Consider the setting of Example 2, i.e., c is the squared Euclidean norm. Then,
for d < 4 we can obtain the statistical error rate given in the aforementioned example with
computational complexity O(ε−1n2.5) and else O(εd/2−1n2.5), if ε is small enough. Hence, in
high dimensions d and for small regularization parameter ε we notice a reduced computational
complexity due to the worse statistical accuracy.

Overall, we conclude that the Sinkhorn algorithm for empirical measures outputs an
estimator for the empirical EOT cost that also adheres to the LCA principle. Provided that
the statistical errorKε,n is independent of the ambient dimension of the ground spaces, e.g., in
settings where one measure is of low intrinsic dimension, Theorem 25 yields a well-computable
estimator with good statistical accuracy.

5. Implications to the Entropic Gromov-Wasserstein Distance

The Gromov-Wasserstein distance provides an OT based tool to quantify the dissimilarity
between two metric measure spaces (a metric space equipped with a probability measure)
up to isometry3 (Mémoli, 2011; Sturm, 2012). Hence, by modeling heterogeneous data as
metric measure spaces the Gromov-Wasserstein distance serves as a conceptually appealing
discrimination measure for registration invariant comparison, e.g., in the context of protein
matching (Weitkamp et al., 2022). Unfortunately, practical usage of the Gromov-Wasserstein
distance faces severe obstacles due to significant computational challenges. Indeed, for
finitely supported measures computation of the Gromov-Wasserstein distance reduces to a
non-convex quadratic assignment program, which are known to be NP-complete in general
(Commander, 2005).

Motivated by the computational benefits of entropy regularization for the OT cost, the
entropic Gromov-Wasserstein distance was introduced by Peyré et al. (2016); Solomon et al.
(2016). To formalize it w.r.t. the Euclidean norm, let X ⊆ Rs and Y ⊆ Rd be Polish subsets
and consider µ ∈ P(X ) and ν ∈ P(Y) which admit finite fourth moments. Then, their
entropic (2, 2)-Gromov-Wasserstein distance for regularization parameter ε > 0 is defined as

GWε(µ, ν) := inf
π∈Π(µ,ν)

[∫
X×Y

∫
X×Y
|‖x− x′‖22 − ‖y − y′‖22|2 π(dx, dy)π(dx′,dy′)

+ εKL(π | µ⊗ ν)

]
.

The corresponding unregularized Gromov-Wasserstein distance is defined by omitting the
entropy penalization term and denoted by GW0.

Remarkably, despite GWε(µ, ν) also encompassing a non-convex optimization problem,
the recent work by Rioux et al. (2023) show that it can be computed up to arbitrary precision

3Two metric measure spaces (X , ρX , µ) and (Y, ρY , ν) are said to be isometric, if there exists a bijective
isometry Γ: (X , ρX ) 7→ (Y, ρY) such that Γ#µ = ν.
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using a gradient method that employs the Sinkhorn algorithm. In particular, for input
measures with n support points it admits a computational complexity of order O(n2) (up to
polylogarithmic terms). This makes it a viable tool for statistical data analysis. To analyze
its sample complexity consider the empirical plug-in estimators

ĜWε,n ∈ {GWε(µ, ν̂n),GWε(µ̂n, ν),GWε(µ̂n, ν̂n)} . (18)

In this context Zhang et al. (2022, Theorem 2) show for 4-sub-Weibull probability measures
µ ∈ P(X ) and ν ∈ P(Y) with concentration parameter σ > 0 that

E[|ĜWε,n −GWε(µ, ν)|] . (1 + σ4)n−1/2 + ε

(
1 +

[
σ√
ε

]9d s∨d2 e+11
)
n−1/2 . (19)

In this upper bound, we see that the parametric rate is attained but the polynomial scaling
in ε−1 depends on the maximum dimension of s and d. The analysis of the authors hinges
on the following representation of the entropic Gromov-Wasserstein distance for centered
probability measures µ, ν,

GWε(µ, ν) = GW1,1(µ, ν) + GW2,ε(µ, ν) ,

where the two terms on the right-hand side are defined as

GW1,1(µ, ν) :=

∫
X×X
‖x− x′‖42 µ(dx)µ(dx′) +

∫
Y×Y
‖y − y′‖42 ν(dy) ν(dy′)

− 4

∫
X×Y
‖x‖22‖y‖22 µ(dx) ν(dy) ,

GW2,ε(µ, ν) := inf
π∈Π(µ,ν)

[
−4

∫
X×Y
‖x‖22‖y‖22 π(dx,dy)− 8

s,d∑
i,j=1

(∫
X×Y

xiyj π(dx,dy)

)2

+ εKL(π | µ⊗ ν)

]
.

Note that this decomposition does not directly hold for the plug-in estimators (18) as the
empirical distributions are in general not centered. To this end, Zhang et al. (2022) debias
the empirical measures which contributes an additional σ2n−1/2-term (see their Lemma 2).
Then, the empirical plug-in estimator for the first term GW1,1 is a Monte-Carlo estimator
and can be analyzed via V -statistics, contributing the first term on the right-hand side of
(19). For the empirical estimator to the second term they link GW2,ε to the EOT cost w.r.t.
a class of cost functions and obtain statistical error bounds by controlling empirical processes
uniformly over the class of cost functions. Applying an adjusted version of Lemma 5, we
can confirm an LCA principle for the entropic (2, 2)-Gromov-Wasserstein distance. As in
Subsection 2.2, we require the cost(s) to be bounded and therefore impose the following
compactness assumption.

Assumption (GW). Let X ⊆ Rs and Y ⊆ Rd be compact with s ≤ d as well as diam(X ) ≤ r
and diam(Y) ≤ r for some r ≥ 1.

First, we give the aforementioned link between GW2,ε and a collection of EOT costs.
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Theorem 29 (Duality, Zhang et al. 2022, Theorem 1). Let Assumption (GW) hold. Denote
the set of matrices D :=

[
−r2/2, r2/2

]s×d and for A ∈ D define the cost function

cA : X × Y , (x, y) 7→ −4‖x‖22‖y‖22 − 32x
ᵀ
Ay .

Then, it holds for all µ ∈ P(X ) and ν ∈ P(Y) that

GW2,ε(µ, ν) = min
A∈D

32‖A‖22 + TcA,ε(µ, ν) .

Upon defining for arbitrary µ̃ ∈ P(X ) the two function classes

FD,ε :=
⋃
A∈D
FcA,ε , F (D,ε,µ̃)

D,ε :=
⋃
A∈D
F (cA,ε,µ̃)
D,ε ,

an application of Theorem 29 in combination with Lemma 4 yields the following stability
bound for GW2,ε. The proof of this result and subsequent assertion of this section are
detailed in Appendix A.4

Lemma 30 (Stability bound). Let Assumption (GW) hold. Then, it holds for any pairs of
probability measures µ, µ̃ ∈ P(X ) and ν, ν̃ ∈ P(Y) that

|GW2,ε(µ̃, ν̃)−GW2,ε(µ, ν)| ≤ 2 sup
A∈D
|TcA,ε(µ̃, ν̃)− TcA,ε(µ, ν)|

≤ 4 sup
φ∈FD,ε

∣∣∣∣∫
X
φ d[µ̃− µ]

∣∣∣∣+ 4 sup
ψ∈F(D,ε,µ̃)

D,ε

∣∣∣∣∫
Y
ψ d[ν̃ − ν]

∣∣∣∣ .
Hence, bounding E[|GWε(µ̂n, ν̂n) − GWε(µ, ν)|] reduces to controlling two empirical

processes over the function classes FD,ε and F (D,ε,µ̂n)
D,ε (i.e., by selecting µ̃ := µ̂n). As the

class of cost functions {cA}A∈D is Lipschitz continuous in A w.r.t. to the uniform norm
‖ • ‖∞, we observe that the union over entropic cost transforms do not increase the uniform
metric entropy of a function class by much.

Lemma 31. Let Assumption (GW) hold and let µ̃ ∈ P(X ). Consider a function class
F ⊆ Lexp

ε (µ̃) on X . Then, it holds for the union over (cA, ε)-transformed function classes
F (D,ε,µ̃) :=

⋃
A∈D F (cA,ε,µ̃) and any δ > 0 that

N(δ, F (D,ε,µ̃), ‖ • ‖∞) ≤ N(δ/4, F , ‖ • ‖∞)N(δ/[64r2], D, ‖ • ‖∞) . (20)

A modified version of Theorem 6, adjusted to Lemma 31, yields the following LCA result.

Theorem 32 (Entropic Gromov-Wasserstein LCA). Let Assumption (GW) hold. Then,
for all probability measures µ ∈ P(X ), ν ∈ P(Y) and any of the empirical estimators ĜWε,n

from (18) it holds that

E[|ĜWε,n −GWε(µ, ν)|] . r4n−1/2 + r4(s∧d)+4(ε ∧ r4)−(s∧d)/2n−1/2 , (21)

where the implicit constant only depends on s, d and X .
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Note that the implicit constant in (21) still depends on s ∨ d. However, the dependency
in ε−1 is determined by s ∧ d and thus obeys the LCA principle.

Remark 33. Following our arguments from Subsection 3.4, we would like to point out that
Assumption (GW) could be refined to assuming that X is a union

⋃I
i=1 gi(Ui) for I ∈ N

bounded, convex subsets Ui ⊆ Rs with nonempty interior and maps gi : Ui → X that are
α-times continuously differentiable with bounded partial derivatives where α ∈ N. Then, for
all probability measures µ ∈ P(X ), ν ∈ P(Y) and any of the empirical estimators ĜWε,n

from (18) it holds for sufficiently small ε that

E[|ĜWε,n −GWε(µ, ν)|] . ε−s/2


n−1/2 s/α < 2 ,

n−1/2 log(n+ 1) s/α = 2 ,

n−α/s s/α > 2 .

An explicit dependency on the bounds for the partial derivatives can be obtained along the
lines of Lemma 16 and is omitted here.

Remark 34 (Unregularized Gromov-Wasserstein LCA). Zhang et al. (2022) also derive a
representation of the unregularized (2, 2)-Gromov-Wasserstein distance as an infimum of
unregularized OT costs over a suitable class of cost functions. Hence, invoking methods for
statistical error bounds on the empirical unregularized OT cost by Hundrieser et al. (2024b,
Section 3.3), the validity of the LCA principle can also be confirmed for the unregularized
(2, 2)-Gromov-Wasserstein distance. More specifically, under Assumption (GW) it follows,

E[|ĜW0,n −GW0(µ, ν)|] .


n−1/2 s ∧ d < 4 ,

n−1/2 log(n+ 1) s ∧ d = 4 ,

n−2/(s∧d) s ∧ d > 4 ,

where the implicit constant only depends on s, d, r and X . A proof is detailed in Section A.

6. Simulations

In the previous sections, we analyzed various settings where the LCA principle holds for
empirical EOT. We now investigate whether the LCA principle can also be observed numeri-
cally. More specifically, for probability measures µ ∈ P(X ) and ν ∈ P(Y), various ε and one
of the empirical estimators from (5) we approximate the mean absolute deviation

∆n := E[|T̂c,ε,n − Tc,ε(µ, ν)|]

for different sample sizes n by Monte Carlo simulations with 1000 repetitions. Due to a lack of
explicit formulas, the population quantity Tc,ε(µ, ν) is also approximated using Monte Carlo
simulations with 1000 repetitions and a large sample size specified below for each simulation
setting. The empirical estimators T̂c,ε,n are approximated via the Sinkhorn algorithm such
that the error of the first marginal is less than 10−8 w.r.t. the norm ‖ • ‖1.4

4The code used for our simulations can be found under https://gitlab.gwdg.de/michel.groppe/
eot-lca-simulations.
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We also consider the Sinkhorn divergence in our simulations. Assuming that X = Y and
thus c : X × X → R, the Sinkhorn divergence between µ and ν is defined as

Sc,ε(µ, ν) := Tc,ε(µ, ν)− 1

2
Tc,ε(µ, µ)− 1

2
Tc,ε(ν, ν) .

The last two terms have a debiasing effect such that Sc,ε(µ, ν) = 0 for µ = ν. Under certain
assumptions on the cost function, the Sinkhorn divergence is even positive definite (Feydy
et al., 2019). Moreover, by its definition it is not clear if it also benefits from the LCA
principle. Indeed, all available bounds for the statistical error of Tc,ε(ν̂n, ν̂n) depend at least
on the intrinsic dimension of ν and do not suggest that the LCA principle holds.

Overall, we examine the following simulation settings:

1. Cube: For d1 ∈ J10K and d2 = 5 take

µ = Unif([0, 1]d1 × {0}d1∨d2−d1) , ν = Unif([0, 1]d2 × {0}d1∨d2−d2)

and as the cost the by d1∨d2 normalized squared Euclidean norm ‖ • ‖22 or 1-norm ‖ • ‖1.
For n ∈ {100k | k ∈ J10K} we compute the two-sample estimator T̂c,ε,n = Tc,ε(µ̂n, ν̂n).
The true value Tc,ε(µ, ν) is approximated using n = 6000 samples.

2. Semi-discrete: For each I ∈ {5, 10, 50} and d ∈ {10, 100, 1000}, we define

µ =
1

I

I∑
i=1

δ
x
(I,d)
i

, ν = Unif[0, 1]d ,

where x(I,d)
1 , . . . , x

(I,d)
I are fixed and drawn i.i.d. from Unif[0, 1]d, and as the cost

the uniform norm ‖ • ‖∞. Now, for n ∈ {100, . . . , 5000} we calculate the one-sample
estimator Tc,ε(µ, ν̂n) and use n = 20000 samples to approximate Tc,ε(µ, ν).

3. Sinkhorn divergence: We again consider the cube setting with cost ‖ • ‖22 but instead of
the EOT cost Tc,ε we employ the Sinkhorn divergence Sc,ε.

Figure 1 and Figure 2 show the results for the cube setting with smooth cost ‖ • ‖22 and
non-smooth ‖ • ‖1, respectively. As they are very similar we therefore focus on the former.
In particular, we see for fixed ε > 0 that ∆n roughly has a convergence rate of order n−1/2,
which is in line with Example 2 for ‖ • ‖22, and the combination of Rigollet and Stromme
(2022) (recall (6d)) with our projective perspective on the LCA principle (Subsection 2.3)
for ‖ • ‖1. Furthermore, we observe that the underlying constant decreases from d1 = 1 to
d1 = 5, and from d1 = 6 to d1 = 10 approximately stays the same. In the latter case, it
seems as if the constant only depends on the smaller dimension d2 = 5, thus corroborating
the LCA principle.

At first glance the behavior of the constant for d1 = 1 to d1 = 5 appears surprising as it
decreases with growing dimension. This behavior can be explained with Proposition 11. Here
(and also similarly with ‖ • ‖1 as cost), we have X = [0, 1]d1 , Y1 = X and Y2 = [0, 1]d2−d1

with c1(x, y1) = ‖x − y1‖22 and c2(y2) = ‖y2‖22. Note, that Y2 has the highest dimension
for d1 = 1 and is empty for d1 = 5 = d2. Hence, the dependence on the additional part
c2 decreases from d1 = 1 to d1 = 5. This suggests that the constant for the statistical
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Figure 1: Simulations of the mean absolute deviation ∆n (solid) and the by
√

2/π scaled
asymptotic standard deviation of the fluctuations

√
n[Tc,ε(µ̂n, ν̂n) − Tc,ε(µ, ν)]

(dashed) in the cube setting with cost ‖ • ‖22.
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Figure 2: Simulations of the mean absolute deviation ∆n in the cube setting with cost ‖ • ‖1.

error of the integral term
∫
Y2 c2 dν̂n,2 dominates the one for Tc1,ε(µ̂n, ν̂n,1). Further, note

that in this setting the fluctuations
√
n[Tc,ε(µ̂n, ν̂n) − Tc,ε(µ, ν)] asymptotically admit a

zero-mean normal distribution with variance σ2 equal to the sum of the variances of the
optimal potentials (González-Sanz and Hundrieser, 2023, Theorem 1.1). Hence, we roughly
have that

√
n∆n ≈

√
2/πσ. Approximating said variance within our Monte Carlo simulation,

we see in Figure 1 that the scaled standard deviation seems to behave similar to the statistical
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Figure 3: Simulations of the mean absolute deviation ∆n in the semi-discrete setting.
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Figure 4: Simulations of the mean absolute deviation ∆n for the Sinkhorn divergence.

error ∆n in Figure 1 (which also explains the latter). In particular, the variance obeys the
LCA principle.

Figure 3 showcases the simulation results for the semi-discrete setting. We observe
that the mean absolute deviation ∆n decreases with higher d and I. This indicates that
the normalization by d1 ∨ d2 is only proper in the sense that it achieves ‖c‖∞ ≤ 1, but
does not capture the sharp dependency in the underlying constant for the convergence. A
possible explanation for the behavior in I is due to the fact that with more points (I) the
expected distance at which mass is assigned with respect to the uniform norm ‖ • ‖∞ decreases.
Meanwhile, for increasing dimension (d) the average distance between two random points
in the unit cube increases to one, and thus the cost function tends to be more homogenous
with increasing dimension. Note in particular that for a constant cost function c(x, y) ≡ a,
the entropic OT cost fulfills Tc,ε(µ, ν) = a for every µ, ν ∈ P(Rd) and ε > 0. This indicates
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that statistical problem of estimating the population EOT cost in the semi-discrete setting
rather simplifies as the dimension increases. In particular, this behavior is remarkable as
it suggests for the semi-discrete setting that the empirical EOT cost might benefit from
additional structure.

Lastly, Figure 4 shows the results for the Sinkhorn divergence. We see a behavior which
is in line with the cube setting, except for d1 = 5 where the error decreases with increasing
sample size. This is a consequence of the fact that the Sinkhorn divergence converges at the
rate n−1 under identical population measures (González-Sanz et al., 2022; Goldfeld et al.,
2024b). Moreover, the Sinkhorn divergence also seems to be affected by the LCA principle.
However, recalling the discussion of the cube setting, note that in this case for the debiasing
terms Tc,ε(µ, µ) and Tc,ε(ν, ν) in the setting of Proposition 11 the additional part c2 is zero.
As a consequence, the estimation error caused by the debasing terms appears for these
medium dimensional settings rather negligible in comparison to the estimation error for the
estimation of Tc,ε(µ, ν).

7. Discussion

In this work, we showed that the empirical EOT cost, just like the empirical OT cost,
adheres to the LCA principle. More precisely, for suitably bounded costs, we derived an
upper bound for the statistical estimation error of the empirical EOT cost in terms of n
and ε which only depends on the simpler probability measure. We stress that this holds
for the empirical EOT estimator and no additional knowledge of the underlying space is
necessary, i.e., the estimator automatically adapts. Further, we observed that the empirical
EOT cost can be approximated using the Sinkhorn algorithm in at most O(n2.5) arithmetic
operations such that the resulting quantity still obeys the LCA principle. Most of our results
are derived under boundedness of the cost function. This allows us to leverage bounds
on the uniform metric entropy of the function class Fc,ε which in turn is needed for the
crucial Lemma 5. Nevertheless, Theorem 23 shows that the LCA principle can also hold in a
(partially) unbounded setting. As of now, this setting is limited to the squared Euclidean
norm. We leave a more extensive analysis in the case of unbounded costs to future work.

Such an analysis will most likely entail the use of concentration constraints for the
probability measures that are tailored to the cost function (like sub-Gaussianity for the
squared Euclidean norm). More specifically, based on the convergence behavior for empirical
OT in unbounded settings (Fournier and Guillin, 2015; Staudt and Hundrieser, 2024), we
conjecture for non-negative costs dominated by c(x, y) ≤ κ (‖x‖p + ‖y‖p) for some κ > 0
that finite moments of order 2p+ δ for δ > 0 for the two population measures are sufficient
to infer parametric convergence rates in n. We also conjecture that under sufficient moment
concentration the entropic LCA principle manifests for totally unbounded settings, i.e., that
the dependency in ε only depends on the smoothness of the cost function and the minimum
intrinsic dimension of the two population measures.

Moreover, for a complete statistical analysis of the empirical EOT cost it is critical to
also obtain complementing lower bounds on the convergence rates. Such lower bounds will
likely depend on the dual optimizers for empirical and population measures. Indeed, recently
derived distributional limits by González-Sanz and Hundrieser (2023) assert that the empirical
estimator Tc,ε(µ̂n, ν̂n) asymptotically fluctuates around its population counterpart Tc,ε(µ, ν)
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at variance VarX∼µ[φ(X)] + VarY∼ν [ψ(Y )], where (φ, ψ) are optimal EOT potentials for µ
and ν. For fixed ε > 0 this implies the parametric rate n−1/2 to be sharp in n, nevertheless,
the sharp dependency of the mean absolute deviation in terms of ε still remains open.
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Appendix A. Omitted Proofs

A.1 Duality and Complexity

Proof of Proposition 3. First, note by Assumption (C) that Fc,ε ⊆ Lexp
ε (µ) and

F (c,ε,µ)
c,ε = {φ(c,ε,µ) | φ ∈ Fc,ε} ⊆ Lexp

ε (ν). Furthermore, from Remark 2 we know that there
exists a maximizing pair φ, ψ of (10) such that

φ = ψ(c,ε,ν) and ψ = φ(c,ε,µ)

as well as ‖φ‖∞, ‖ψ‖∞ ≤ 3/2. This implies that φ ∈ Fc,ε and thus

Tc,ε(µ, ν) = Dµ,ν
c,ε (φ, ψ) = max

φ∈Fc,ε
Dµ,ν
c,ε (φ, φ(c,ε,µ)) .

Moreover, by the Tonelli-Fubini theorem we have for φ ∈ Fc,ε that∫
X×Y

expε(φ(x) + φ(c,ε,µ)(y)− c(x, y))µ(dx) ν(dy)

=

∫
Y

expε(φ
(c,ε,µ)(y))

[∫
X

expε(φ(x)− c(x, y))µ(dx)

]
ν(dy)

=

∫
Y

expε(φ
(c,ε,µ)(y)) expε(−φ(c,ε,µ)(y)) ν(dy) = 1 ,

which yields

Dµ,ν
c,ε (φ, φ(c,ε,µ)) =

∫
X
φ dµ+

∫
Y
φ(c,ε,µ) dν ,

and we conclude (13).
Proof of Lemma 4. We follow the proof of Proposition 2 from Mena and Niles-Weed
(2019). First, according to Remark 2 there are φ, φ̃ ∈ Fc,ε with

φ = ψ(c,ε,ν) , ψ = φ(c,ε,µ) ,

φ̃ = ψ̃(c,ε,ν) , ψ̃ = φ̃(c,ε,µ̃) ,
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such that
Tc,ε(µ, ν) = Dµ,ν

c,ε (φ, ψ) , Tc,ε(µ̃, ν) = Dµ̃,ν
c,ε (φ̃, ψ̃) .

By optimality, it holds that

Dµ,ν
c,ε (φ̃, ψ̃)−Dµ̃,ν

c,ε (φ̃, ψ̃) ≤ Dµ,ν
c,ε (φ, ψ)−Dµ̃,ν

c,ε (φ̃, ψ̃)

≤ Dµ,ν
c,ε (φ, ψ)−Dµ̃,ν

c,ε (φ, ψ) ,

which implies

|Tc,ε(µ, ν)− Tc,ε(µ̃, ν)| = |Dµ,ν
c,ε (φ, ψ)−Dµ̃,ν

c,ε (φ̃, ψ̃)|
≤ |Dµ,ν

c,ε (φ̃, ψ̃)−Dµ̃,ν
c,ε (φ̃, ψ̃)|

+ |Dµ,ν
c,ε (φ, ψ)−Dµ̃,ν

c,ε (φ, ψ)| .

As φ̃ = ψ̃(c,ε,ν), we obtain using the Tonelli-Fubini theorem that∫
X×Y

expε(φ̃⊕ ψ̃ − c) d[(µ− µ̃)⊗ ν]

=

∫
X

expε(φ̃(x))

∫
Y

expε(ψ̃(y)− c(x, y)) ν(dy) [µ− µ̃](dx)

=

∫
X

expε(φ̃(x)) expε(−φ̃(x)) [µ− µ̃](dx) = 0 ,

which yields for the first term

|Dµ,ν
c,ε (φ̃, ψ̃)−Dµ̃,ν

c,ε (φ̃, ψ̃)| =
∣∣∣∣∫
X
φ̃ d[µ− µ̃]

∣∣∣∣ ≤ sup
φ∈Fc,ε

∣∣∣∣∫
X
φ d[µ− µ̃]

∣∣∣∣ .
Analogously, we get the same bound for the second term |Dµ,ν

c,ε (φ, ψ)−Dµ̃,ν
c,ε (φ, ψ)| and thus

|Tc,ε(µ, ν)− Tc,ε(µ̃, ν)| ≤ 2 sup
φ∈Fc,ε

∣∣∣∣∫
X
φ d[µ− µ̃]

∣∣∣∣ .
Similarly, we obtain that

|Tc,ε(µ̃, ν)− Tc,ε(µ̃, ν̃)| ≤ 2 sup
φ∈Fc,ε

∣∣∣∣∫
Y
φ(c,ε,µ̃) d[ν − ν̃]

∣∣∣∣ .
Using the triangle inequality and combining the two bounds, we obtain the assertion.
Proof of Lemma 5. Note by assumption on F that its (c, ε)-transform is well-defined.
W.l.o.g. we can assume that N := N(δ/2, F , ‖ • ‖∞) < ∞, else the asserted inequality is
vacuous. Let {φ̃1, . . . , φ̃N} be a δ/2-covering for F w.r.t ‖ • ‖∞. For each i = 1, . . . , N , we
can pick a φi ∈ F such that ‖φi − φ̃i‖∞ ≤ δ/2. Using the triangle inequality, we see that
{φ1, . . . , φN} is a δ-covering for F w.r.t. ‖ • ‖∞. By construction, note that every function of
the δ-covering is measurable and its entropic transform well-defined. Let φ ∈ F , then there
exists a φi such that ‖φ− φi‖∞ ≤ δ or equivalently φi − δ ≤ φ ≤ φi + δ. The monotonicity
of the entropic (c, ε)-transform yields that

φ
(c,ε,µ̃)
i − δ = (φi + δ)(c,ε,µ̃) ≤ φ(c,ε,µ̃) ≤ (φi − δ)(c,ε,µ̃) = φ

(c,ε,µ̃)
i + δ .

Hence, we see that ‖φ(c,ε,µ̃) − φ(c,ε,µ̃)
i ‖∞ ≤ δ and {φ(c,ε,µ̃)

1 , . . . , φ
(c,ε,µ̃)
N } is a δ-covering for

F (c,ε,µ̃) w.r.t. ‖ • ‖∞.
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Remark 35. In Lemma 5 and its proof the scale δ/2 appears in N(δ/2, F , ‖ • ‖∞) to sidestep
potential measurability issues. Indeed, if we knew that the optimal covering of F for every δ
consisted only of measurable functions, then the factor 1/2 would not be needed. However,
this is not the case, in general. The measurability is crucial since the entropic (c, ε)-transform
requires the integration of the function.

A.2 Sample Complexity

W.l.o.g. we assume in the following proofs that I = 1 and g1 = idX , i.e., U1 = X . Based on
Lemma 40 and Lemma 39 this is not a genuine restriction.
Proof of Theorem 13. By definition, it holds for φ ∈ Fc,ε that ‖φ‖∞ ≤ 3/2. Hence, it
follows for all i = 1, . . . , I that

N(δ, Fc,ε
∣∣
{xi}

, ‖ • ‖∞) ≤ d3/δe

and using the union bound Lemma 39 we obtain

logN(δ, Fc,ε, ‖ • ‖∞) . Iδ−1 .

An application of Theorem 6 yields the assertion.
Proof of Theorem 14. Note that by assumption c is 1-Lipschitz in the first component.
By Proposition 2.4 from Marino and Gerolin (2020), it follows that ψ(c,ε,ν) ∈ Fc,ε,ν is also
1-Lipschitz. Hence, the class Fc,ε is contained in the set of uniformly bounded 1-Lipschitz
functions. An application of Lemma 41 combined with Theorem 6 yields the assertion.
Proof of Theorem 15. Upon defining

c̃ : X × Y → R , (x, y) 7→ c(x, y)− ‖x‖22 ,

1-semi-concavity of c means that for all y ∈ Y, t ∈ (0, 1) and x1, x2 ∈ X it holds that

c̃(tx1 + (1− t)x2, y) ≥ tc̃(x1, y) + (1− t)c̃(x2, y) .

This and the Hölder inequality with p := 1/t, q := 1/(1− t) yield for ψ(c,ε,ξ) ∈ Fc,ε that∫
Y

expε(ψ(y)− c̃(tx1 + (1− t)x2, y)) ξ(dy)

≤
∫
Y

expε(ψ(y)− c̃(x1, y))t expε(ψ(y)− c̃(x2, y))1−t ξ(dy)

≤
[∫
Y

expε(ψ(y)− c̃(x1, y)) ξ(dy)

]t [∫
Y

expε(ψ(y)− c̃(x2, y)) ξ(dy)

]1−t
,

and therefore

ψ(c̃,ε,ξ)(tx1 + (1− t)x2) ≥ tψ(c̃,ε,ξ)(x1) + (1− t)ψ(c̃,ε,ξ)(x2) .

Since for any x ∈ X it holds that

ψ(c̃,ε,ξ)(x) = (ψ + ‖ • ‖22)(c,ε,ξ)(x) = ψ(c,ε,ξ)(x)− ‖x‖22 ,

we conclude that ψ(c,ε,ξ) is 1-semi-concave. Further, note that Assumption (SC) includes
Assumption (Lip). Hence, Fc,ε is contained in the set of bounded, 1-Lipschitz and 1-semi-
concave functions. Lemma 42 combined with Theorem 6 thus yield the assertion.
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Lemma 36 (Structure of derivatives, Genevay et al. 2019, Lemma 1). Let Assumption (C)
and Assumption (Hol) (w.l.o.g. I = 1 and g1 = idX ) hold. Then, for φ = ψ(c,ε,ξ) ∈ Fc,ε,
k ∈ JsKκ, κ ≤ α, and x ∈ X̊ it follows that

Dkφ(x) =

∫
Y

Φk
κ(x, y)γε(x, y) ξ(dy) ,

where
γε := expε(φ⊕ ψ − c) , Φk

1 :=
∂

∂xk1
c ,

and for m = 2, . . . , κ we set

Φk
m :=

∂

∂xkm
Φk
m−1 +

1

ε

[
∂

∂xkm
φ− ∂

∂xkm
c

]
Φk
m−1 .

Proof of Lemma 16. W.l.o.g. we can assume that gi = idX and write Cm = Ci,m and
C(m) = C(i,m). Recall Lemma 36. We show that for all k ∈ JdKκ, κ ≤ α, m = 0, . . . , κ− 2
and indices tuple |j| = 0, . . . ,m it holds that

‖DjΦk
κ−m‖∞ . (ε ∧ 1)−(κ−m+|j|−1)C(κ−m+|j|) ,

where the implicit constant only depends on κ. Note that the above bound also holds for
κ = 1 by definition of Φk

1. Then, we can conclude by noting that

‖Dkφ‖∞ ≤ ‖Φk
κ‖∞ .

We follow the proof of Lemma 2 from Genevay et al. (2019) and prove this by induction
over κ = |k|. W.l.o.g. we can assume that 0 < ε ≤ 1. Indeed, for ε > 1 in all the following
manipulations the term 1/ε can be bounded by 1.

We have the base case κ = 2 which implies m = 0 and |j| = 0. Hence,

|DjΦk
κ−m| = |Φk

2| =
∣∣∣∣ ∂

∂xk2

∂

∂xk1
c+

1

ε

[
∂

∂xk2
φ− ∂

∂xk2
c

]
∂

∂xk1
c

∣∣∣∣
≤ C2 +

1

ε
[C1 + C1]C1 . ε−1C(2) = ε−(κ−m+|j|−1)C(κ−m+|j|) .

We now suppose the validity of the assertion for given κ and verify it for κ+ 1. To this
end, assume that we have

‖DjΦk
κ−m‖∞ . ε−(κ−m+|j|−1)C(κ−m+|j|)

for all |k| = κ, m = 0, . . . , κ − 2 and |j| = 0, . . . ,m, and we want to extend this to
‖DjΦk

κ+1−m‖∞ for |k| = κ+ 1, m = 0, . . . , κ− 1 and |j| = 0, . . . ,m.
Denote with k′ the first κ components of k. Then, as Φk

m only depends on the first
m components of k, note that Φk

m = Φk′
m for all m = 0, . . . , κ. Hence, it follows for

m = 1, . . . , κ− 1 and |j| = 0, . . . ,m− 1 by the induction assumption that

‖DjΦk
κ+1−m‖∞ = ‖DjΦk′

κ−(m−1)‖∞ . ε−(κ+1−m+|j|−1)C(κ+1−m+|j|) .
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Consequently, it remains to show the validity of the bounds for m = 0 . . . , κ− 1 and |j| = m.
To this end, we employ reverse induction on m.

Now, the base case is m = κ− 1 and thus κ+ 1−m = 2, |j| = κ− 1. The multivariate
Leibniz rule yields

DjΦk
κ+1−m = DjΦk

2 = Dj

(
∂

∂xk2

∂

∂xk1
c

)
+

1

ε
Dj

([
∂

∂xk2
φ− ∂

∂xk2
c

]
∂

∂xk1
c

)
= D(j,k2,k1)c+

1

ε

∑
i⊆j

(
j

i

)[
D(i,k2)φ−D(i,k2)c

]
D(j−i,k1)c .

As
∫
Y γε(x, y) ξ(dy) = 1, note that

‖D(i,k2)φ‖∞ ≤ ‖Φ(i,k2)
|i|+1 ‖∞ . ε−(|i|+1−1)C(|i|+1)

by the first induction assumption as |(i, k2)| = |i|+ 1 ≤ |j|+ 1 = κ. Consequently,

|DjΦk
κ+1−m| . C|j|+2 + ε−1

∑
i⊆j

(
j

i

)[
ε−|i|C(|i|+1) + C|i|+1

]
C|j|−|i|+1

. C(κ+1) + ε−1ε−|j|C(|j|+2)
∑
i⊆j

(
j

i

)
. ε−(κ+1−m+|j|−1)C(κ+1−m+|j|) .

Assume that we have the bounds for ‖DiΦk
κ+1−m‖∞ where m ≤ |i| ≤ κ− 1 and extend

them to m− 1. For |j| = m− 1, we get similarly to before

|DjΦk
κ+1−(m−1)| = |D

jΦk
κ+2−m|

=
∣∣∣D(j,kκ+2−m)Φk

κ+1−m + ε−1
∑
i⊆j

(
j

i

)[
D(i,kκ+2−m)φ−D(i,kκ+2−m)c

]
Dj−iΦk

κ+1−m

∣∣∣
. ε−(κ+1−m+|j|+1−1)C(κ+1−m+|j|+1)

+ ε−1
∑
i⊆j

(
j

i

)
[ε−|i|C(|i|+1) + C|i|+1]ε−(κ+1−m+|j|−|i|−1)C(κ+1−m+|j|−|i|)

. ε−κC(κ+1) + ε−(κ−1)C(κ+1)
∑
i⊆j

(
j

i

)
. ε−κC(κ+1) = ε−(κ+1−(m−1)+|j|−1)C(κ+1−(m−1)+|j|) .

Proof of Proposition 17. W.l.o.g. assume that 0 < ε ≤ 1 and let φ ∈ Fc,ε. Using
Lemma 16, we get for |k| = α− 1 that

‖Dkφ‖∞ . ε−(α−2)C(α−1) .

Similarly, we have for x1, x2 ∈ X̊ that

‖Dkφ(x1)−Dkφ(x2)‖2 ≤ ‖∇Dkφ‖2‖x1 − x2‖2 . ε−(α−1)C(α)‖x1 − x2‖2 .
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Since ‖x1 − x2‖2 ≤ diam(X ), this yields

‖φ‖α . ε−(α−2)C(α−1) + ε−(α−1)C(α) diam(X ) . ε−(α−1)C(α) .

Hence, we conclude that Fc,ε ⊆ CαM (X ) for M := ε−(α−1)C(α)K with some K > 0 that only
depends on X and α. Now, Lemma 43 yields

logN(δ, Fc,ε, ‖ • ‖∞) ≤ logN(δ, CαM (X ), ‖ • ‖∞)

.M s/αδ−s/α . [C(α)]s/αε−s(α−1)/αδ−s/α .

Proof of Lemma 21. Write g = gi and Gm = Gi,m, G(m) = G(i,m). We extend the
bounds provided by Mena and Niles-Weed (2019, Proposition 1) to compositions φ ◦ g with
φ = ψ(c,ε,ξ) ∈ Fσ for some measure ξ ∈ SGd(σ

2). Denoting φ̄ := φ ◦ g − 1
2‖ • ‖

2
2 ◦ g, we want

to bound for k ∈ JsKκ, κ ≤ α, u ∈ Ů the partial derivative

Dkφ̄(u) = −Dk log(exp[−φ̄(u)])

via the multivariate Faá di Bruno formula (Constantine and Savits, 1996). First, note that
for all x > 0 it holds with some constant λκ that

∂κ

∂x
log(x) = λk

1

xκ

Furthermore, we obtain similarly to Lemma 36 that

Dk exp(−φ̄(u)) =

∫
Y

Φk
κ(u, y) exp(ψ(y)− 1

2
‖y‖22 + 〈g(u), y〉) ξ(dy) ,

where Φk
0(u, y) := 1 and for m = 1, . . . , κ we set

Φk
m(u, y) :=

∂

∂ukm
Φk
m−1(u, y) + Φk

m−1(u, y)

d∑
q=1

∂

∂ukm
g(u)qyq . (22)

Hence, upon defining

Ψk(u) :=

∫
Y Φk

κ(u, y) exp(ψ(y)− 1
2‖y‖

2
2 + 〈g(u), y〉) ξ(dy)∫

Y exp(ψ(y)− 1
2‖y‖

2
2 + 〈g(u), y〉) ξ(dy)

,

it follows by the multivariate Faá di Bruno formula that

Dkφ̄(u) = −Dk log(exp[−φ̄(u)]) =
∑
j1,...jκ

λκ,j1,...,jκ

κ∏
i=1

Ψji(u) , (23)

where the sum runs over all sub-indices j1, . . . , jκ that partition k, i.e., (j1, . . . , jκ) is equal
to a permuted version of k, and the λκ,j1,...,jκ are some constants related to the derivatives
of the logarithm. We show that

|Ψk(u)| . G(κ)
κ∑
r=1

d∑
q1,...,qr=1

∫
Y
∏r
t=1|yqt | exp(ψ(y)− 1

2‖y‖
2
2 + 〈g(u), y〉) ξ(dy)∫

Y exp(ψ(y)− 1
2‖y‖

2
2 + 〈g(u), y〉) ξ(dy)

,
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where the implicit constant only depends on κ. Together with (23) and using the bound by
Mena and Niles-Weed (2019, Lemma 3 in Appendix B) for each summand, we obtain the
desired result.

It suffices to show that for k ∈ JsKκ it holds with m = 0, . . . , κ − 1 and indices tuples
|j| = 0, . . . ,m that

|DjΦk
κ−m(u, y)| . G(κ−m+|j|)

κ−m∑
r=1

d∑
q1,...,qr=1

r∏
t=1

|yqt | ,

where the implicit constant only depends on κ. Then, with m = 0 = |j| we can conclude.
We prove this similar to Lemma 16 by double induction. In the following, we write

Φk
m ≡ Φk

m(u, y). First, we do induction over κ = |k|.
For the base case κ = 1 and thus m = 0 = |j|, it holds due to (22) that

|DjΦk
κ−m| = |Φk

1| =
∣∣∣ d∑
q=1

∂

∂uk1
g(u)qyq

∣∣∣ . G(1)
d∑
q=1

|yq| = G(κ−m)
κ−m∑
r=1

d∑
q1,...,qr=1

r∏
t=1

|yqt | .

Let the bound on |DjΦk
κ−m| hold for all |k| = κ, m = 0, . . . , κ − 1 and |j| = 0, . . . ,m.

We extend this to κ+ 1. Again, we only have to bound the new diagonal m = 0, . . . , κ and
|j| = m. We do this by reverse induction on m.

The base case m = κ = |j| holds as

|DjΦk
κ+1−m| = |DjΦk

1| =
∣∣∣ d∑
q=1

D(j,k1)g(u)qyq

∣∣∣
. G(|j|+1)

d∑
q=1

|yq| = G(κ+1−m)
κ+1−m∑
r=1

d∑
q1,...,qr=1

r∏
t=1

|yqt | .

Suppose that |DiΦk
κ+1−m| is bounded as required for m ≤ |i| ≤ κ. Then, we need to

extend this to m− 1. Using (22) and the multivariate Leibniz rule yields for |j| = m− 1 that

|DjΦk
κ+1−(m−1)|

=
∣∣∣D(j,kκ+2−m)Φk

κ+1−m +
d∑
q=1

Dj

[
Φk
κ+1−m

∂

∂ukκ+2−m

g(u)qyq

]∣∣∣
=
∣∣∣D(j,kκ+2−m)Φk

κ+1−m +

d∑
q=1

yq
∑
i⊆j

(
j

i

)
D(i,kκ+2−m)[g(u)q] Dj−iΦk

κ+1−m

∣∣∣
. G(κ+1−m+|j|+1)

κ+1−m∑
r=1

d∑
q1,...,qr=1

r∏
t=1

|yqt |

+
d∑
q=1

|yq|
∑
i⊆j

(
j

i

)
G(|i|+1)

G(κ+1−m+|j|−|i|)
κ+1−m∑
r=1

d∑
q1,...,qr=1

r∏
t=1

|yqt |


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. G(κ+1−m+|j|+1)
κ+1−m∑
r=1

d∑
q1,...,qr=1

r∏
t=1

|yqt |

+G(κ+1−m+|j|+1)
κ+1−m+1∑

r=1

d∑
q1,...,qr=1

r∏
t=1

|yqt |
∑
i⊆j

(
j

i

)

. G(κ+1−(m−1)+|j|)
κ+1−(m−1)∑

r=1

d∑
q1,...,qr=1

r∏
t=1

|yqt | .

Lemma 37. Let σ > 0 and µ ∈ SGd(σ
2), ν ∈ SGd(σ

2). Let σn be the infimum over all
τ > 0 such that µ, µ̂n, ν, ν̂n ∈ SGd(τ

2). Then, it holds that

P(σ2
n > 6σ2) ≤ 4n−1 ,

E[σ2k
n ] ≤ 2kkσ2k (k ∈ N) .

Proof The second assertion follows from Mena and Niles-Weed (2019, Lemma B.4 in
supplement). For the first assertion, denote

τ1,n := EX∼µ̂n [exp4dσ2(‖X‖22)] , τ1 := EX∼µ[exp4dσ2(‖X‖22)] ,

τ2,n := EY∼ν̂n [exp4dσ2(‖Y ‖22)] , τ2 := EY∼ν [exp4dσ2(‖Y ‖22)] .

As in the proof of Lemma B.4 in the supplement of Mena and Niles-Weed (2019), it follows
that σ2

n ≤ 2σ2 max(τ1,n, τ2,n). Hence, it holds that

P(σ2
n > 6σ2) ≤ P(max(τ1,n, τ2,n) > 3) ≤ P(τ1,n > 3) + P(τ2,n > 3) .

We bound the first term and conclude, the second term can be dealt with analogously. Using
the Chebyshev inequality, we get

P(τ1,n > 3) ≤ P(|τ1,n − τ1| > 3− τ1) ≤
VarX∼µ[exp4dσ2(‖X‖22)]

(3− τ1)2
n−1 ≤ 2n−1 ,

where we used that by sub-Gaussianity τ1 ≤ 2 as well as

VarX∼µ[exp4dσ2(‖X‖22)] ≤ EX∼µ[exp2dσ2(‖X‖22)] ≤ 2 .

Proof of Theorem 23. First, recall that according to Lemma 39 we can consider the
case that I = 1. Given empirical probability measures µ̂n, ν̂n, we have due to Lemma 37
a random σ2

n such that µ, µ̂n, ν, ν̂n are all in SGd(σ
2
n). Similar to Corollary 2 in Mena and

Niles-Weed (2019) (and Lemma 4), we get

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|] ≤ 2E

[
sup
φ∈Fσn

∣∣∣∣∫
X
φ d[µ− µ̂n]

∣∣∣∣
]

(24)

+ 2E

[
sup
φ∈Fσn

∣∣∣∣∫
Y
φ(c,ε,µ̂n) d[ν − ν̂n]

∣∣∣∣
]
.
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We now bound the two terms separately and conclude. We decompose the first term of (24)
into

E

[
sup
φ∈Fσn

∣∣∣∣∫
X
φ d[µ− µ̂n]

∣∣∣∣
]
≤ E

[
σ4α
n sup

φ∈Fσn

∣∣∣∣∫
X
σ−4α
n [φ− 1

2
‖ • ‖22] d[µ− µ̂n]

∣∣∣∣
]

+ E
[∣∣∣∣∫
X

1

2
‖ • ‖22 d[µ− µ̂n]

∣∣∣∣]

. (E[σ8α
n ])1/2

(
E

[
sup
φ∈Fσn

∣∣∣∣∫
X
σ−4α
n [φ− 1

2
‖ • ‖22] d[µ− µ̂n]

∣∣∣∣2
])1/2

+ r2n−1/2 ,

where the last step uses the Cauchy-Schwarz inequality. The expectation of σ8α
n can be

bounded via Lemma 37 by an explicit constant that depends on α times σ8α. Further, by
definition the function class Fσn is bounded by 6d2r2σ4

n, and hence [Fσn − 1
2‖ • ‖

2
2] is bounded

by 6d2r2σ4
n + 1

2r
2 ≤ 8d2r2σ4

n. In conjunction with Lemma 21 we thus infer that

σ−4α
n [Fσn −

1

2
‖ • ‖22] ⊆ CαM (U) with M := [G(α)]s/α + 8d2r2 ,

where the first term in M controls the derivatives of functions in σ−4α
n [Fσn − 1

2‖ • ‖
2
2] and the

second term arises from our aforementioned upper bound. Note that the function class on the
right-hand side is deterministic and independent of σ2

n. Hence, we can apply Theorem 2.14.5
from van der Vaart and Wellner (1996), Theorem 3.5.1 from Giné and Nickl (2015) and
Lemma 43 to obtain

nE

[
sup
φ∈Fσn

∣∣∣∣∫
X
σ−4α
n [φ− 1

2
‖ • ‖22] d[µ− µ̂n]

∣∣∣∣2
]

.

(
√
nE

[
sup
φ∈Fσn

∣∣∣∣∫
X
σ−4α
n [φ− 1

2
‖ • ‖22] d[µ− µ̂n]

∣∣∣∣
]

+M

)2

.

(
E
[∫ M

0

√
log 2N(δ, CαM (U), ‖ • ‖∞) dδ

]
+M

)2

.

(∫ M

0

√
1 +M s/αδ−s/α dδ +M

)2

. (M +M s/(2α)M1−s/(2α) +M)2 .M2 ,

where we used that s/α < 2 and the implicit constant only depends on α, d, s and U .
Combining these inequalities we obtain

√
nE

[
sup
φ∈Fσn

∣∣∣∣∫
X
φ d[µ− µ̂n]

∣∣∣∣
]
. ([G(α)]s/α + d2r2)σ4α + r2 .
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For the second term of (24), we decompose into the parts σ2
n > 6σ2 and σ2

n ≤ 6σ2 and use
the Cauchy-Schwarz inequality to obtain

E

[
sup
φ∈Fσn

∣∣∣∣∫
Y
φ(c,ε,µ̂n) d[ν − ν̂n]

∣∣∣∣
]

= E

[
[I(σ2

n > 6σ2) + I(σ2
n ≤ 6σ2)] sup

φ∈Fσn

∣∣∣∣∫
Y
φ(c,ε,µ̂n) d[ν − ν̂n]

∣∣∣∣
]

≤ (P[σ2
n > 6σ2])1/2

E

( sup
φ∈Fσn

∫
Y
|φ(c,ε,µ̂n)|dν + sup

φ∈Fσn

∫
Y
|φ(c,ε,µ̂n)| dν̂n

)2
1/2

+ E

[
sup

φ∈F√6σ

∣∣∣∣∫
Y
φ(c,ε,µ̂n) d[ν − ν̂n]

∣∣∣∣
]
.

The probability can be bounded via Lemma 37. Furthermore, employing that Fσ is bounded
in uniform norm by 6d2r2σ4, the definition of the entropic transform and that for x ∈ X ,
y ∈ Y : ‖x− y‖2 ≤ r2 + 2r‖y‖2 + ‖y‖22 ≤ 4r2 + 4r‖y‖22, it follows for φ ∈ Fσ that

|φ(c,ε,µ̂n)(y)| ≤ 8d2r2σ4 + 2r‖y‖22 . (25)

Hence, it holds that

sup
φ∈Fσn

∫
Y
|φ(c,ε,µ̂n)| dν ≤ 8d2r2σ4

n + 2rEY∼ν [‖Y ‖22]

and similar for ν̂n. Thus,

E

( sup
φ∈Fσn

∫
Y
|φ(c,ε,µ̂n)|dν + sup

φ∈Fσn

∫
Y
|φ(c,ε,µ̂n)|dν̂n

)2
1/2

(26)

≤ (E[(16d2r2σ4
n + 2rEY∼ν [‖Y ‖22] + 2rEY∼ν̂n [‖Y ‖22])2])1/2

. d2r2σ4 ,

where we used the Cauchy-Schwarz inequality and the moment bounds provided in Lemma 37
and Lemma B.1 in the supplement of Mena and Niles-Weed (2019). Recalling (25), we have

b2 := sup
φ∈F√6σ

‖φ(c,ε,µ̂n)‖2L2(ν̂n) ≤ EY∼ν̂n [(8d2r2(
√

6σ)4 + 2r‖Y ‖22)2]

= EY∼ν̂n [(288d2r2σ4 + 2r‖Y ‖22)2].
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Employing Theorem 3.5.1 from Giné and Nickl (2015) in combination with Lemma 5 and
Proposition 22, we obtain

√
nE

[
sup

φ∈F√6σ

∣∣∣∣∫
Y
φ(c,ε,µ̂n) d[ν − ν̂n]

∣∣∣∣
]
. E

[∫ b

0

√
log 2N(δ/2, F√6σ, ‖ • ‖∞) dδ

]
. E[b+ [G(α)]s/(2α)σ3s/2b1−s/(2α)]

≤ (1 + [G(α)]s/(2α)σ3s/2)E[1 + b]

≤ (1 + [G(α)]s/(2α)σ3s/2)
(

1 + E[b2]1/2
)

. (1 + [G(α)]s/(2α)σ3s/2)d2r2σ4,

where for the last inequality we used Lemma B.1 in the supplement of Mena and Niles-Weed
(2019), Lemma 37 and d, r, σ ≥ 1 to upper bound E[b2]1/2, and the implicit constant only
depends on α, d, s, and U . Putting everything together, we obtain that

√
nE[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|] . ([G(α)]s/α + r2d2)σ4α + r2 + d2r2σ4

+ (1 + [G(α)]s/(2α)σ3s/2)d2r2σ4

. (1 + [G(α)]s/α)r2σ4α∨(4+3s/2) ,

where the implicit constant only depends on α, d, s, and U .
Proof of Corollary 24. Consider the case T̂c,ε,n = Tc,ε(µ̂n, ν̂n), the one-sample plug-in
estimators can be dealt with analogously. Furthermore, w.l.o.g. we can assume that 0 < ε < 1.
By Remark 45, it holds that

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|] = εE[|Tc,1(µ̂εn, ν̂
ε
n)− Tc,1(µε, νε)|] ,

where µε is supported on ε−1/2X =
⋃I
i=1 ε

−1/2gi(Ui) with supx∈ε−1/2X ‖x‖2 ≤ ε−1/2r and µε,
νε are σ2/ε-sub-Gaussian. Hence, it follows from Theorem 23 that

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|]

. ε

(
I∑
i=1

1 + [G(i,α)
ε ]s/α

)
[ε−1/2r]2[ε−1/2σ]4α∨(4+3s/2)n−1/2 ,

where G(i,α)
ε are the constants from Lemma 21 where gi is substituted with ε−1/2gi. As ε < 1,

it follows from the definition that G(i,α)
ε ≤ ε−α/2G(i,α). As a consequence,

E[|Tc,ε(µ̂n, ν̂n)− Tc,ε(µ, ν)|]

.

(
I∑
i=1

1 + [G(i,α)]s/α

)
r2σ4α∨(4+3s/2)ε−[2α∨(2+3s/4)]−s/2n−1/2 .
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A.3 Computational Complexity

For our computational analysis of a computable estimator for the empirical EOT cost we
make use of the following characterization of dual potentials which arise from Sinkhorn
iterations. Its proof is based on an insight which was previously formulated for cost chosen
as the squared Euclidean norm by Pooladian and Niles-Weed (2021, Proof of Theorem 6).

Lemma 38 (Potentials from Sinkhorn algorithm). Let Assumption (C) hold and consider
probability measures µ ∈ P(X ), ν ∈ P(Y). For ψ0 ∈ Lexp

ε (ν) define its single and double
(c, ε)-transform as φ := ψ

(c,ε,ν)
0 and ψ := φ(c,ε,µ) Further, define the measure ν̃ on Y by

dν̃

dν
(y) :=

∫
X

expε (φ(x) + ψ0(y)− c(x, y))µ(dx) .

Then, the measure ν̃ is a probability measure on Y. Further, the potentials (φ, ψ) are the
dual optimizers of (10) for µ and ν̃, and it holds that

Tc,ε(µ, ν̃) =

∫
X
φ dµ+

∫
Y
ψ dν̃ = max

φ∈Fc,ε

∫
X
φ dµ+

∫
Y
φ(c,ε,µ) dν̃ .

Proof For the first assertion note that ν̃ has a non-negative density with respect to ν, hence
it suffices to show that ν̃ integrates to one. Invoking the Tonelli-Fubini theorem it follows by
definition of the (c, ε)-transform of ψ0 that

ν̃(Y) =

∫
Y

∫
X

expε (φ(x) + ψ0(y)− c(x, y))µ(dx) ν(dy)

=

∫
X

expε(φ(x))

[∫
Y

expε (ψ0(y)− c(x, y)) ν(dy)

]
µ(dx)

=

∫
X

expε(φ(x)− φ(x))µ(dx) = 1.

For the second assertion we employ the characterization for optimality of EOT plans and
potentials from Theorem 1. To this end, we define the measure π on X × Y,

dπ := expε(φ⊕ ψ − c) d[µ⊗ ν̃]

and verify that π ∈ Π(µ, ν̃). Once this is confirmed, the remaining assertions follow at once
from Theorem 1 and Proposition 3. To show the marginal constraints we first observe for
any y ∈ Y that the marginal density of π on Y fulfills∫

X
expε (φ(x) + ψ(y)− c(x, y))µ(dx)

= expε

(
φ(c,ε,µ)(y)

)∫
X

expε (φ(x)− c(x, y))µ(dx)

= expε

(
φ(c,ε,µ)(y)− φ(c,ε,µ)(y)

)
= 1.
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For the marginal density of π on X we note by definition of φ and ν̃ for any x ∈ X that∫
Y

expε (φ(x) + ψ(y)− c(x, y)) ν̃(dy)

=

∫
Y

expε (φ(x)− c(x, y))∫
X expε (φ(x̃)− c(x̃, y))µ(dx̃)

ν̃(dy)

=

∫
Y

expε (φ(x) + ψ0(y)− c(x, y))∫
X expε (φ(x̃) + ψ0(y)− c(x̃, y))µ(dx̃)

ν̃(dy)

=

∫
Y

expε (φ(x) + ψ0(y)− c(x, y)) ν(dy)

= expε

(
ψ

(c,ε,ν)
0 (x)

)∫
Y

expε (ψ0(y)− c(x, y)) ν(dy)

= expε

(
ψ

(c,ε,ν)
0 (x)− ψ(c,ε,ν)

0 (x)
)

= 1.

A.4 Implications to the Entropic Gromov-Wasserstein Distance

Proof of Lemma 30. For A ∈ D, denote

Uµ,νε (A) := 32‖A‖22 + TcA,ε(µ, ν) ,

such that by Theorem 29 it holds

GW2,ε(µ, ν) = min
A∈D

Uµ,νε (A) .

In particular, there exist A, Ã ∈ D such that

GW2,ε(µ, ν) = Uµ,νε (A) , GW2(µ̃, ν̃) = U µ̃,ν̃ε (Ã) .

By optimality, it follows that

Uµ,νε (A)− U µ̃,ν̃ε (A) ≤ Uµ,νε (A)− U µ̃,ν̃ε (Ã) ≤ Uµ,νε (Ã)− U µ̃,ν̃ε (Ã) .

Hence,

|GW2,ε(µ, ν)−GW2,ε(µ̃, ν̃)| ≤ |Uµ,νε (A)− U µ̃,ν̃ε (A)|+ |Uµ,νε (Ã)− U µ̃,ν̃ε (Ã)|
= |TcA,ε(µ, ν)− TcA,ε(µ̃, ν̃)|+ |TcÃ,ε

(µ, ν)− TcÃ,ε
(µ̃, ν̃)|

≤ 2 sup
A∈D
|TcA,ε(µ, ν)− TcA,ε(µ̃, ν̃)| .

An application of Lemma 4 yields the second inequality.
Proof of Lemma 31. First note by the assumption on F that elements of F (D,ε,µ̃) are
well-defined and real-valued. W.l.o.g. we can assume that covering numbers on the right-hand
side of (20) are finite since otherwise the bound is vacuous. As in the proof of Lemma 5, we
construct a δ/2-covering {φ1, . . . , φN} ⊆ F of F with N := N(δ/4, F , ‖ • ‖∞). Furthermore,
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let {A1, . . . , AM} ⊆ D with M := N(δ/[64r2], D, ‖ • ‖∞) be a δ/[64r2]-covering of D. We
show that {

φ
(cAj ,ε,µ̃)

i

∣∣∣ i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}}
is a δ-covering of F (D,ε,µ̃) and conclude. For ψ ∈ F (D,ε,µ̃), by definition there is a φ ∈ F and
A ∈ D such that ψ = φ(cA,ε,µ̃). In particular, there exists φi and Aj with ‖φ− φi‖∞ ≤ δ/2
and ‖A−Aj‖∞ ≤ δ/[64r2]. The triangle inequality yields that

‖φ(cA,ε,µ̃) − φ
(cAj ,ε,µ̃)

i ‖∞ ≤ ‖φ(cA,ε,µ̃) − φ(cA,ε,µ̃)
i ‖∞ + ‖φ(cA,ε,µ̃)

i − φ
(cAj ,ε,µ̃)

i ‖∞
≤ ‖φ− φi‖∞ + ‖cA − cAj‖∞
≤ ‖φ− φi‖∞ + 32r2‖A−Aj‖∞ ≤ δ/2 + δ/2 = δ .

Proof of Theorem 32. Consider the two-sample estimator ĜWε,n = GWε(µ̂n, ν̂n) and
note that the one-sample estimators from (18) can be handled similarly. First, note that by
the proof of Theorem 2 from Zhang et al. (2022) and Assumption (GW), it holds that

E[|ĜWε,n −GWε(µ, ν)|] . r4n−1/2 + E[|GW2,ε(µ̂n, ν̂n)−GW2,ε(µ, ν)|] .

Hence, it remains to bound the second term involving GW2,ε. Following the proof of
Theorem 6 with Lemma 30 and Lemma 31, we see that if there exist constants Kε, k > 0
such that for δ > 0 suffices small it holds

logN(δ/4, FD,ε, ‖ • ‖∞) + logN(δ/[64r2], D, ‖ • ‖∞) ≤ Kεδ
−k ,

then
E[|GW2,ε(µ̂n, ν̂n)−GW2,ε(µ, ν)|] .

√
1 +Kεn

−1/2 .

Since for any δ > 0 it holds,

logN(δ, D, ‖ • ‖∞) . sdr2δ−1 ,

it remains to show that the uniform covering numbers of FD,ε are suitably bounded. Fur-
thermore, we need to rescale {cA}A∈D by a constant such that Assumption (C) is met for
each element. To this end, note by Theorem 29 for a > 0 that

1

a
GW2,ε(µ, ν) = min

A∈D

32

a
‖A‖22 + TcA/a,ε/a(µ, ν) ,

which only depends on the scaled cost functions cA/a. Furthermore, we have uniformly over
all A ∈ D that

‖DkcA‖∞ ≤


20r4 if |k| = 0 ,

(8 + 16
√
d)r3 if |k| = 1 ,

8r2 if |k| = 2 ,

0 if |k| > 2 ,

(27)

and can therefore set a := 20r4. In particular, we see that the functions classes FcA,ε are
α-Hölder smooth for any α ∈ N with uniform Hölder constant over all A ∈ D. Hence, as
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in the proof of Proposition 17 we obtain the desired upper bound on the uniform covering
numbers of FD,ε. Putting everything together, via the rescaling

E[|GW2,ε(µ̂n, ν̂n)−GW2,ε(µ, ν)|] = aE[|a−1 GW2,ε(µ̂n, ν̂n)− a−1 GW2,ε(µ, ν)|] ,

and Remark 46, the assertion follows.
Proof of Remark 34. We follow the proof of Theorem 32 and consider ĜW0,n =
GW0(µ̂n, ν̂n). First, note that since the decomposition GWε(µ, ν) = GW1,1(µ, ν)+GW2,ε(µ, ν)
for centered µ, ν also holds in the unregularized case ε = 0 (Zhang et al., 2022, Section 4),
it remains to bound the statistical error of GW2,0(µ̂n, ν̂n). Considering Corollary 1 from
Zhang et al. (2022) and the proofs of Lemma 2.1 and Theorem 2.2 from Hundrieser et al.
(2024b), we see that Lemma 30 and Lemma 31 remain valid for ε = 0, where the entropic
(c, ε)-transform is to be understood as the (measure-independent) c-transform. Hence, we
can apply an adjusted version of Theorem 2.2 from Hundrieser et al. (2024b) and are left
with providing suitable bounds on the uniform metric entropy of the function class FD,0. To
this end, note that the cost functions {cA}A∈D are semi-concave and Lipschitz continuous in
the first component with uniform moduli only depending on r and d, see (27). Thus, FD,0 is
contained in the class of uniformly bounded, Lipschitz continuous and semi-concave functions
on X and Lemma 42 provides the required bound on the uniform metric entropy.

Appendix B. Uniform Metric Entropy

In this section, we give bounds on the uniform metric entropy of certain function classes.
Recall that the uniform metric entropy is given by the logarithm of the covering numbers
with respect to the uniform norm ‖ • ‖∞. For δ > 0, the covering numbers of a function class
F on X w.r.t. ‖ • ‖∞ are in turn defined as

N(δ, F , ‖ • ‖∞) := inf{n ∈ N | ∃f1, . . . , fn : X → R s.t. sup
f∈F

min
1≤i≤n

‖f − fi‖∞ ≤ δ} .

To apply Theorem 6, we are interested in the uniform metric entropy of the class Fc,ε
introduced in Proposition 3. Motivated by the following two lemmata, we consider in Section 3
the setting of X =

⋃I
i=1 gi(Ui).

Lemma 39 (Union bound, Hundrieser et al. 2024b, Lemma 3.1). Let F be a class of functions
on X =

⋃I
i=1Xi for I ∈ N subsets Xi ⊆ X . Furthermore, denote with F

∣∣
Xi

:= {φ
∣∣
Xi

: Xi →
R | φ ∈ F} the collection of functions in F restricted to Xi. Then, it follows for any δ > 0
that

logN(δ, F , ‖ • ‖∞) ≤
I∑
i=1

logN(δ, F
∣∣
Xi
, ‖ • ‖∞) .

Lemma 40 (Composition bound, Hundrieser et al. 2024b, Lemma A.1). Let g : U → X be
a surjective map between the sets U and X , and denote with F a function class on U . Then,
it follows for the composed function class F ◦ g := {φ ◦ g | φ ∈ F} on X for any δ > 0 that

N(δ, F , ‖ • ‖∞) ≤ N(δ, F ◦ g, ‖ • ‖∞) .
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Hence, bounding the uniform metric entropy for the setting X =
⋃I
i=1 gi(Ui) reduces to

controlling Fc,ε ◦ gi for one i (provided that they all are of a similar structure). Furthermore,
denoting c̃i := c ◦ (gi, idY), it holds for ψ(c,ε,ξ) ∈ Fc,ε that ψ(c,ε,ξ) ◦ gi = ψ(c̃i,ε,ξ). In particular,
this implies that Fc,ε ◦ gi = Fc̃i,ε. By the definition of the entropic (c, ε)-transform, it can
thus be seen that certain properties of c̃i are inherited to the function class Fc,ε ◦ gi. In the
following, we give uniform metric entropy bounds for function classes that contain Fc,ε ◦ gi
for suitably chosen gi. These results can then be combined with Theorem 6.

Lemma 41 (Kolmogorov and Tikhomirov 1961, Inequality (238)). Let (X , dX ) be a connected
metric space and k > 0 such that

N(δ, X , dX ) . δ−k for δ > 0 sufficiently small.

Then, it follows for the same values of δ and the class F of 1-Lipschitz continuous functions
on X which are bounded by one that

logN(δ, F , ‖ • ‖∞) . δ−k ,

where the implicit constant only depends on k and X .
Lemma 42. Let X ⊆ Rs be bounded and convex with s ∈ N. Then, it follows for δ > 0
sufficiently small and the class F of 1-Lipschitz continuous and 1-semi-concave functions on
X which are bounded by one that

logN(δ, F , ‖ • ‖∞) . δ−s/2 ,

where the implicit constant only depends on X .
Proof The assertion follows from the proof of Lemma A.3 in Hundrieser et al. (2024b); for
the sake of completeness we spell it out. By rotation and translation we may assume that X
is contained in the linear subspace V = Rs̃×{0}s−s̃ for s̃ ≤ s and admits non-empty relative
interior. By definition of F , every function f̃ : X → R, x 7→ f(x)−‖x‖2 for f ∈ F is concave,
L-Lipschitz with L := 1 + 2 diam(X ) on X and bounded in absolute value by 1 + diam(X )2.
Hence, by Dragomirescu and Ivan (1992, Theorem 1 and Remark 2(ii)) there exists a concave
L-Lipschitz extension f of f̃ onto a compact cube D ⊆ V with non-empty relative interior
such that X ⊆ D. In particular, f is absolutely bounded by B := 1 + diam(X )2 +Ldiam(D),
and thus f is contained in the class CB,L(D) of concave functions that are bounded by B
and L-Lipschitz. We thus conclude for δ > 0 sufficiently small that

logN(δ,F , ‖ · ‖∞,X ) = logN(δ,F − ‖ · ‖2, ‖ · ‖∞,X ) ≤ logN(δ, CB,L(D), ‖ · ‖∞,X )

≤ logN(δ, CB,L(D), ‖ · ‖∞,D) . δ−s̃/2 . δ−s/2,

where the second to last inequality follows by uniform metric entropy bounds on the class
CB,L(D) detailed in Bronshtein (1976) or Guntuboyina and Sen (2013). In particular, the
suppressed constant depends on D, B and L, which again depends on X .
Lemma 43 (van der Vaart and Wellner 1996, Theorem 2.7.1). Let X ⊂ Rs be bounded and
convex with nonempty interior. Then, it follows for δ > 0 and the class CαM (X ) of α-Hölder
smooth functions with α > 0 and M > 0 that

logN(δ, CαM (X ), ‖ • ‖∞) .M s/αδ−s/α ,

where the implicit constant only depends on s, α and X .
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Appendix C. Rescaling Properties

This appendix summarizes some useful insights on how the entropic optimal transport cost
and corresponding convergence statements change under rescaling.

Remark 44 (Rescaling). Suppose that c is a bounded cost function that does not satisfy
Assumption (C), i.e., it holds that ‖c‖∞ ∈ (1,∞). As for any a > 0, b ∈ R and (µ, ν) ∈
P(X )× P(Y) the EOT cost fulfills the rescaling property

Tac+b,ε(µ, ν) = a · Tc,ε/a(µ, ν) + b,

we obtain for the empirical estimators T̂c,ε,n in (5) with a := ‖c‖∞ that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] = aE[|T̂c/a,ε/a,n − Tc/a,ε/a(µ, ν)|] ,

where the underlying cost function on the right-hand side satisfies Assumption (C).

Remark 45 (Rescaling of squared Euclidean distance). Denote by c the squared Euclidean
distance, consider measurable sets X , Y ⊆ Rd and let r > 0. For probability measures
µ ∈ P(X ), ν ∈ P(Y) denote by µr2 the pushforward of µ w.r.t. to the map x 7→ r−1x and
likewise define νr2 . Then, since c(r−1x, r−1y) = r−2c(x, y), we observe for any ε > 0 that

Tc/r2,ε(µ, ν) = Tc,ε(µ
r2 , νr

2
) , (28)

where µr2 and νr2 are supported on r−1X and r−1Y, respectively. Moreover, by combining
Remark 44 with the rescaling property (28) for r = ε1/2 > 0, it also follows that

Tc,ε(µ, ν) = εTc/ε,1(µ, ν) = εTc,1(µε, νε).

In particular, µε and νε are supported in ε−1/2X and ε−1/2Y, respectively. In addition, if µ
and ν are σ2-sub-Gaussian for some σ2 > 0, then µε and νε are σ2/ε-sub-Gaussian.

Remark 46 (Constants in convergence statements under rescaling). Under Assumption (C)
and Assumption (SC) we have the constraint that the cost function as well as the Lipschitz
and semi-concavity moduli must all be bounded by 1. As mentioned before, if one of these
constraints is violated, then we can rescale appropriately via Remark 44 and still obtain
bounds for the statistical error. We now discuss how this rescaling affects the constants.

1. First, we treat Assumption (Lip) and Assumption (SC) together (for the former,
ignore the semi-concavity). Denote by L the Lipschitz modulus of the cost and by Λ its
semi-concavity modulus. If a := [‖c‖∞ ∨L∨Λ] ≥ 1, then rescaling yields the additional
factor a for the statistical error bounds in Theorem 14 and Theorem 15. This is due to
the fact they do not depend on ε.

2. For Theorem 18, the effect of rescaling is more complicated. Indeed, it affects the
Hölder constants C(i,α) as well as the entropic regularization parameter ε. W.l.o.g.
consider the case that I = 1, g1 = idX and drop the index i. Let a := ‖c‖∞ > 1 and
denote the normalized cost c̃ := c/a with its version C̃(α) of C(α). Due to the recursive
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and increasing structure, the relationship of C̃(α) and C(α) is not straightforward. To
simplify this, let

C := max
|j|=1,...,α

‖Djc‖∞ , C̃ := max
|j|=1,...,α

‖Dj c̃‖∞ .

Then, it holds that C = aC̃ and

C̃(α) ≤

{
C̃α C̃ ≥ 1 ,

C̃ C̃ < 1 ,
= a−ηCη with η :=

{
α C ≥ a ,
1 C < a .

Using this in combination with Theorem 18 yields that

E[|T̂c,ε,n − Tc,ε(µ, ν)|] . a1+ s
2

[α−1
α
− η
α

]C
ηs
2α (ε ∧ a)−

s
2
α−1
α


n−1/2 s/α < 2 ,

n−1/2 log(n+ 1) s/α = 2 ,

n−α/s s/α > 2 ,

Hence, we observe that the rescaling affects the statistical error bound polynomially.
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