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Abstract

Model averaging has received much attention in the past two decades, which integrates
available information by averaging over potential models. Although various model aver-
aging methods have been developed, there is little literature on the theoretical properties
of model averaging from the perspective of stability, and the majority of these methods
constrain model weights to a simplex. The aim of this paper is to introduce stability from
statistical learning theory into model averaging. Thus, we define the stability, asymptotic
empirical risk minimization, generalization and consistency of model averaging, and study
the relationship among them. Similar to the existing results in literature, we find that sta-
bility can ensure that the model averaging estimator has good generalization performance
and consistency under reasonable conditions, where consistency means that the model av-
eraging estimator can asymptotically minimize the mean squared prediction error. We
also propose an L2-penalty model averaging method without limiting model weights, and
prove that it has stability and consistency. In order to overcome selection uncertainty of
the L2-penalty parameter, we use cross-validation to select a candidate set of L2-penalty
parameters, and then perform a weighted average of the estimators of model weights based
on cross-validation errors. We demonstrate the usefulness of the proposed method with a
Monte Carlo simulation and application to a prediction task on the wage1 dataset.

Keywords: Model averaging, Stability, Mean squared prediction error, L2-penalty

1. Introduction

In practical applications, data analysts usually determine multiple models based on ex-
ploratory analysis for data and empirical knowledge to describe the relationship between
variables of interest and related variables. However, how to use these models to produce
good results is a more important problem. It is very common to select one model using
some data-driven criteria, such as AIC (Akaike, 1973), BIC (Schwarz, 1978), Cp (Mallows,
1973) and FIC (Hjort and Claeskens, 2003). An alternative to model selection is to make
a compromise across a set of competing models. Statisticians find that they can usually
obtain better and more stable results by combining information from different models. This
process of combining multiple model results is known as model averaging. The problem of
Bayesian and frequentist model averaging (BMA and FMA) has been well studied. Fragoso
et al. (2018) reviewed the relevant literature on BMA. In this paper, we focus on FMA. In
the past decades, the model averaging method has been applied in various fields. Wan and
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Zhang (2009) examined the applications of model averaging in tourism research. Zhang and
Zou (2011) applied the model averaging method to grain production forecasting in China.
Moral-Benito (2015) reviewed the literature on model averaging with special emphasis on its
applications in economics. The key to FMA lies in how to select model weights. The com-
mon weight selection methods include: 1) methods based on information criteria, such as
smoothed AIC and smoothed BIC in Buckland et al. (1997), and smoothed FIC (Hjort and
Claeskens, 2003); 2) Mallows model averaging (MMA), proposed by Hansen (2007) (see also
Wan et al., 2010), modified by Liu and Okui (2013) to make it applicable to heteroscedas-
ticity, and improved by Liao and Zou (2020) in small sample sizes; 3) adaptive methods
(Yang, 2001; Yuan and Yang, 2005); 4) OPT method (Liang et al., 2011); 5) cross validation
methods, such as jackknife model averaging (JMA; Hansen and Racine, 2012; Zhang et al.,
2013) and leave-subject-out cross validation model averaging (Gao et al., 2016; Liao et al.,
2019).

In computational learning theory, stability is used to measure an algorithm’s sensitivity
to perturbation in the training set and is an important tool for analyzing generalization and
learnability. Bousquet and Elisseeff (2002) introduced four notions of stability (hypothesis
stability, pointwise hypothesis stability, error stability and uniform stability), and showed
how to use them to derive generalization error bounds based on the empirical error and
the leave-one-out error. Kutin and Niyogi (2002) introduced several weaker variants of
stability and showed how they are sufficient to obtain generalization bounds for algorithms.
Rakhlin et al. (2005) and Mukherjee et al. (2006) discussed the necessity of stability for
learnability under the assumption that uniform convergence is equivalent to learnability. As
commented by Shalev-Shwartz et al. (2010), it was recognized that a fundamental and long-
standing answer about how to characterize learnability, at least for the cases of supervised
classification and regression, was that learnability is equivalent to uniform convergence of
the empirical risk to the population risk, and that if a problem is learnable, it is learnable via
empirical risk minimization. However, Shalev-Shwartz et al. (2010) found that in the general
learning setting which includes most statistical learning problems as special cases, there are
non-trivial learning problems where uniform convergence does not hold, and so empirical risk
minimization fails, yet these problems are learnable using alternative mechanisms. Further,
instead of uniform convergence, Shalev-Shwartz et al. (2010) identified stability as the key
necessary and sufficient condition for learnability.

Although various model averaging methods have been proposed, there is little literature
on their theoretical properties from the perspective of stability and the majority of these
methods are concerned only with whether the resultant estimator obtains a good approx-
imation to the minimum of a given target when the model weights are constrained to a
simplex. Thus, our aim in this paper is to study stability in model averaging and to answer
whether the resultant estimator can get a good approximation for the minimum of target
function when the model weights are unrestricted.

Our first contribution is to introduce the concept of stability from statistical learning the-
ory into model averaging. Stability discusses how much the algorithm’s output varies when
the sample changes a little. Shalev-Shwartz et al. (2010) discussed the relationship among
asymptotic empirical risk minimization (AERM), stability, generalization and consistency.
However, the relevant conclusions cannot be directly applied to model averaging. Therefore,
we explore the relevant definitions and conclusions of Shalev-Shwartz et al. (2010) under
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the model averaging framework. Similar to the existing results from Bousquet and Elisseeff
(2002) and Shalev-Shwartz et al. (2010), we find that stability can ensure that model av-
eraging has good generalization performance and consistency under reasonable conditions,
where consistency means that the model averaging estimator can asymptotically minimize
the mean squared prediction error (MSPE).

Further, we find that for MMA and JMA, extreme weights tend to appear due to the
influence of correlation between candidate models when the model weights are unrestricted.
This results in poor performance of the model averaging estimator. Therefore, we should not
simply remove the weight constraint and directly use the existing model averaging methods.
Similar to ridge regression in Hoerl and Kennard (1970), we introduce an L2-penalty for the
weight vector in MMA and JMA. We call them Ridge-Mallows model averaging (RMMA)
and Ridge-jackknife model averaging (RJMA), respectively. This is our second contribution.
Like Theorem 4.3 in Hoerl and Kennard (1970), we discuss the reasonability of introducing
L2-penalty. In this regard, there are some related works in literature. Skolkova (2023)
proposed the ridge model averaging estimator (RMA). In order to reduce the instability
of regression estimators of candidate models caused by high correlation among covariates,
RMA uses ridge regression to replace ordinary least squares. Liu (2023) proposed penalized
Mallows model averaging (pMMA) to avoid over-selection of candidate models in forming
a combined estimator. Unlike RMA and pMMA, we introduce an L2-penalty for the model
weights in order to reduce the instability of the model weight estimator caused by high
correlation among candidate models when the model weights are unrestricted. We also
prove the stability and consistency of RMMA and RJMA.

In the context of shrinkage estimation, Schomaker (2012) discussed the impact of tuning
parameter selection and pointed out that the weighted average of shrinkage estimators with
different tuning parameters can improve overall stability, predictive performance and stan-
dard errors of shrinkage estimators. Hence, like Schomaker (2012), we use cross-validation
to select a candidate set of L2-penalty parameters, and then perform a weighted average
of the estimators of model weights based on cross-validation errors. Moreover, we provide
empirical support for the usefulness of the proposed method with a Monte Carlo simu-
lation and application to a prediction task on the wage1 dataset in which our approach
outperforms MMA and JMA, as well as some commonly used model selection methods.

The remainder of this paper is organized as follows. In Section 2, we give the definitions
of consistency and stability, and discuss their relationship. In Section 3, we propose RMMA
and RJMA methods and prove that they are stable and consistent. Section 4 conducts the
Monte Carlo simulation experiment. Section 5 applies the proposed method to a real data
set. Section 6 concludes. The proofs of theorems are provided in the Appendix B.

2. Consistency and Stability for Model Averaging

We assume that S = {zi = (yi, x
′
i)
′ ∈ Z, i = 1, 2, · · · , n} is a simple random sample from

distribution D, where yi is the i-th observation of the response variable and xi is the i-th
observation of covariates. Let z∗ = (y∗, x∗

′
)
′

be an observation that is from distribution D
and independent of S.
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2.1 Model Averaging

In model averaging, M candidate models are selected first in order to describe the relation-
ship between response variable and covariates. We assume that the hypothesis spaces of M
candidate models are

Hm =
{
hm(x∗m), hm ∈ Fm

}
,m = 1, 2, · · · ,M,

where x∗m consists of some elements of x∗ and Fm is a given function set. For example, in
MMA, we take

Hm =
{
x∗
′
mθm, θm ∈ Rdim(x∗m)

}
,m = 1, 2, · · · ,M

in order to estimate E(y∗|x∗), where dim(·) represents the dimension of vector. For the m-
th candidate model, a proper estimation method Am is selected, and then ĥm, the estimator
of hm, is obtained based on S and Am. Then, the hypothesis space of model averaging is
defined as follows:

H =
{
ĥ(x∗, w) = H[w, ĥ1(x∗1), ĥ2(x∗2), · · · , ĥM (x∗M )], w ∈W

}
,

where W is a given weight space and H(·) is a given function of weight vector and estimators
of M candidate models. In MMA, we take

H[w, ĥ1(x∗1), ĥ2(x∗2), · · · , ĥM (x∗M )] =

M∑
m=1

wmĥm(x∗m)

as the model averaging estimator of E(y∗|x∗). An important problem for model averaging
is the choice of model weights. Here, the estimator ŵ of the weight vector is obtained based
on S and a proper weight selection criterion A(w) that makes ŵ be optimal in a certain
sense.

The selection of {Am,m = 1, 2, · · · ,M} and A(w) is closely related to the definition of
the loss function. Let L[ĥ(x∗, w), y∗] be a real value loss function which is defined in H×Y,
where Y is the value space of y∗. Then, the risk function is defined as follows:

F (w, S) = Ez∗
{
L[ĥ(x∗, w), y∗]

}
,

which is MSPE given the sample S and weight vector w.

2.2 Related Concepts

In this paper, we mainly discuss whether F (ŵ, S) can approximate the smallest possible
risk infw∈WF (w, S). If A(w) has such a property, we say that A(w) is consistent. For fixed
m, related concepts from Shalev-Shwartz et al. (2010) can be used to discuss the stability
and consistency of Am. Obviously, for model averaging, we need to pay more attention
to the stability and consistency of weight selection criterion. We note that the relevant
conclusions of Shalev-Shwartz et al. (2010) cannot be directly applied to model averaging
because H depends on S. Therefore, we extend the relevant definitions and conclusions to
model averaging. The following is the definition of consistency:
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Definition 1 (Consistency) If there is a sequence of constants {εn, n ∈ N+} such that
εn = o(1) and ŵ satisfies

ES
[
F (ŵ, S)− infw∈WF (w, S)

]
= O(εn),

then A(w) is said to be consistent with rate εn.

In statistical learning theory, stability concerns how much the algorithm’s output varies
when S changes a little. “Leave-one-out (Loo)” and “Replace-one (Ro)” are two common
tools used to evaluate stability. Loo considers the change in the algorithm’s output after
removing an observation from S and Ro considers such a change after replacing an observa-
tion in S with an observation that is independent of S. Accordingly, the stability is called
Loo stability and Ro stability, respectively. Here, we will give the formal definitions of Loo
stability and Ro stability. To this end, we first give the definition of algorithm symmetry:

Definition 2 (Symmetry) If the algorithm’s output is not affected by the order of the
observations in S, then the algorithm is symmetric.

Now let S−i be the sample after removing the i-th observation from S, ĥ−im be the estimator
of hm based on S−i and Am, ŵ−i be the estimator of weight vector based on S−i and A(w)
and F (w, S−i) = Ez∗

{
L[ĥ−i(x∗, w), y∗]

}
, where

ĥ−i(x∗, w) = H[w, ĥ−i1 (x∗1), ĥ−i2 (x∗2), · · · , ĥ−iM (x∗M )].

We define Loo stability as follows:

Definition 3 (PLoo Stability) If there is a sequence of constants {εn, n ∈ N+} such that
εn = o(1) and A(w) satisfies

1

n

n∑
i=1

ES
[
F (ŵ, S)− F (ŵ−i, S−i)

]
= O(εn),

then A(w) is Predicted-Loo (PLoo) stable with rate εn; If {Am,m = 1, 2, · · · ,M} and A(w)
are symmetric, then a PLoo stable A(w) needs only to satisfy

ES
[
F (ŵ, S)− F (ŵ−n, S−n)

]
= O(εn).

Definition 4 (FLoo Stability) If there is a sequence of constants {εn, n ∈ N+} such that
εn = o(1) and A(w) satisfies

1

n

n∑
i=1

ES
{
L[ĥ(xi, ŵ), yi]− L[ĥ−i(xi, ŵ

−i), yi]
}

= O(εn),

then A(w) is Fitted-Loo (FLoo) stable with rate εn; If {Am,m = 1, 2, · · · ,M} and A(w) are
symmetric, then a FLoo stable A(w) needs only to satisfy

ES
{
L[ĥ(xn, ŵ), yn]− L[ĥ−n(xn, ŵ

−n), yn]
}

= O(εn).
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Let Si be the sample S with the i-th observation replaced by z∗i = (y∗i , x
∗′
i )
′
, ĥim be the

estimator of hm based on Si and Am, and ŵi be the estimator of the weight vector based
on Si and A(w), where z∗i is from distribution D and independent of S. Let F (w, Si) =
Ez∗
{
L[ĥi(x∗, w), y∗]

}
, where ĥi(x∗, w) = H[w, ĥi1(x∗1), ĥi2(x∗2), · · · , ĥiM (x∗M )]. Note that

1

n

n∑
i=1

ES,z∗i
[
F (ŵ, S)− F (ŵi, Si)

]
= 0.

Therefore, we define Ro stability as follows:

Definition 5 (Ro Stability) If there is a sequence of constants {εn, n ∈ N+} such that
εn = o(1) and A(w) satisfies

1

n

n∑
i=1

ES,z∗i
{
L[ĥ(xi, ŵ), yi]− L[ĥi(xi, ŵ

i), yi]
}

= O(εn),

then A(w) is Ro stable with rate εn; If {Am,m = 1, 2, · · · ,M} and A(w) are symmetric,
then an Ro stable A(w) needs only to satisfy

ES,z∗n
{
L[ĥ(xn, ŵ), yn]− L[ĥn(xn, ŵ

n), yn]
}

= O(εn).

Before discussing the relationship between stability and consistency, we give the defini-
tions of AERM and generalization. The empirical risk function is defined as follows:

F̂ (w, S) =
1

n

n∑
i=1

L[ĥ(xi, w), yi].

Definition 6 (AERM) If there is a sequence of constants {εn, n ∈ N+} such that εn =
o(1) and A(w) satisfies

ES
[
F̂ (ŵ, S)− infw∈W F̂ (w, S)

]
= O(εn),

then A(w) is an AERM with rate εn.

Vapnik (1998) proved some theoretical properties of the empirical risk minimization princi-
ple. However, when the sample size is small, the empirical risk minimizer tends to produce
over-fitting phenomenon. Therefore, the structural risk minimization principle is proposed
in Vapnik (1998). Shalev-Shwartz et al. (2010) also discussed the deficiency of the empirical
risk minimization principle and the importance of AERM.

Definition 7 (Generalization) If there is a sequence of constants {εn, n ∈ N+} such that
εn = o(1) and A(w) satisfies

ES
[
F̂ (ŵ, S)− F (ŵ, S)

]
= O(εn),

then A(w) generalizes with rate εn.

In statistical learning theory, generalization refers to the performance of the concept learned
by models on unknown sample. It can be seen from Definition 7 that the generalization
of A(w) describes the difference between using ŵ to fit the training set S and predict the
unknown sample.
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2.3 Relationship between Different Concepts

In this subsection, we study the relationship between different concepts based on the findings
from Bousquet and Elisseeff (2002) and Shalev-Shwartz et al. (2010). Bousquet and Elisseeff
(2002) uses triangle inequality to illustrate that Loo stability implies Ro stability. However,
we note that for any i ∈ {1, 2, · · · , n},

ES,z∗i

{
L[ĥ(xi, ŵ), yi]− L[ĥi(xi, ŵ

i), yi]
}

= ES,z∗i

{
L[ĥ(xi, ŵ), yi]− L[ĥ−i(xi, ŵ

−i), yi] + L[ĥ−i(xi, ŵ
−i), yi]− L[ĥi(xi, ŵ

i), yi]
}

= ES

{
L[ĥ(xi, ŵ), yi]− L[ĥ−i(xi, ŵ

−i), yi]
}

+ ES [F (ŵ−i, S−i)− F (ŵ, S)].

From this, we give the following theorem to illustrate the relationship between Loo stability
and Ro stability:

Theorem 8 If A(w) has two of FLoo stability, PLoo stability and Ro stability with rate εn,
then it has all three stabilities with rate εn.

Shalev-Shwartz et al. (2010) emphasized that Ro stability and Loo stability are in general
incomparable notions, but Theorem 8 shows that they are closely related. By definitions of
generalization and Ro stability, we have

ES [F̂ (ŵ, S)− F (ŵ, S)]

= ES,z∗1 ,z∗2 ,··· ,z∗n

{ 1

n

n∑
i=1

L[ĥ(xi, ŵ), yi]−
1

n

n∑
i=1

L[ĥ(x∗i , ŵ), y∗i ]
}

=
1

n

n∑
i=1

ES,z∗i

{
L[ĥ(xi, ŵ), yi]− L[ĥi(xi, ŵ

i), yi]
}
.

From this, we can give the following theorem to illustrate the equivalence of Ro stability
and generalization:

Theorem 9 A(w) has Ro stability with rate εn if and only if A(w) generalizes with rate
εn.

For the symmetric algorithm, this result has been given by Lemma 7 of Bousquet and
Elisseeff (2002), and extending Lemma 7 of Bousquet and Elisseeff (2002) to the asymmetric
case is straightforward. For the theoretical completeness of this section, we still present this
result here as a theorem. Theorem 9 shows that stability is an important property of weight
selection criteria, which can ensure that the corresponding estimator has good generalization
performance. Let ŵ∗ ∈W satisfy F (ŵ∗, S) = infw∈WF (w, S). Note that

ES [F (ŵ, S)− F (ŵ∗, S)]

= ES [F (ŵ, S)− F̂ (ŵ, S) + F̂ (ŵ, S)− F̂ (ŵ∗, S) + F̂ (ŵ∗, S)− F (ŵ∗, S)]

≤ ES [F (ŵ, S)− F̂ (ŵ, S) + F̂ (ŵ, S)− infw∈W F̂ (w, S) + F̂ (ŵ∗, S)− F (ŵ∗, S)].

We give the following theorem to illustrate the relationship between stability and consis-
tency:
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Theorem 10 If A(w) is an AERM and has Ro stability with rate εn, and ŵ∗ satisfies

ES
[
F̂ (ŵ∗, S)− F (ŵ∗, S)

]
= O(εn),

then A(w) is consistent with rate εn.

Remark 11 For general learning algorithms, Bousquet and Elisseeff (2002) studied how to
use stability to derive generalization error bounds based on the empirical error and the leave-
one-out error, while we study the relationships among AERM, stability, generalization and
consistency in model averaging. Although the relationships among Loo stability, Ro stability
and generalization that are demonstrated by Bousquet and Elisseeff (2002) are applicable
to model averaging, no relationship between stability and consistency is explored. From
Theorem 10, we can see the close relationship between stability and consistency in model
averaging.

Remark 12 If for any v > 0, there exists a wv independent of S such that F (wv, S) ≤
F (ŵ∗, S) + v, then Lemma 15 of Shalev-Shwartz et al. (2010) can be applied to model
averaging. However, since ŵ∗ and H depend on S, it is difficult to guarantee that such a wv
always exists, and so we could not immediately obtain Theorem 10 from the proof of Lemma
15 in Shalev-Shwartz et al. (2010). Further, on the basis of Lemma 15 of Shalev-Shwartz
et al. (2010), we find that this requirement for the existence of {wv : v > 0} can be replaced
by “F (w, S) generalizes with rate εn”.

In the next section, we will propose an L2-penalty model averaging method and prove
that it has stability and consistency under certain reasonable conditions.

3. L2-penalty Model Averaging

In most existing literature on model averaging, the theoretical properties are explored un-
der the weight set W 0 = {w ∈ [0, 1]M :

∑M
m=1wm = 1}. From Definition 1, it is seen that

even if the corresponding weight selection criterion is consistent, such consistency holds
only under the subspace of RM . Therefore, a natural question is whether it is possible to
make the weight space unrestricted. What will happen when we do so? The unrestricted
Granger-Ramanathan method obtains the estimator of the weight vector under RM by
minimizing the sum of squared forecast errors from the combination forecast. However, its
poor performance is observed when it is compared with some other methods (Hansen, 2008).
One possible reason for this is that it merely removes weight constraints without addressing
the resulting weight instability. In Section 3.2, we will provide relevant explanations for
the causes of this instability. On the other hand, in the prediction task, we are more con-
cerned about whether the resulting estimator can predict better. Intuitively, the estimator
that minimizes MSPE in the full space would most likely outperform the estimator that
minimizes MSPE in the subspace. To demonstrate this point, some new ideas are needed.
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3.1 Model Framework and Estimators

We assume that the response variable yi and covariates x1i, x2i, · · · satisfy the following
data generating process:

yi = µi + ei =
∞∑
k=1

xkiθk + ei,

and M candidate models are given by

yi =

km∑
k=1

xm(k)iθm,(k) + ei,m = 1, 2, · · · ,M.

We assume that the M -th candidate model contains all of the considered covariates and
define that bmi = µi −

∑km
k=1 xm(k)iθm,(k) is the approximating error of the m-th candidate

model. Let xi = (x(1)i, x(2)i, · · · , x(kM )i) and S = {zi = (yi, x
′
i)
′
, i = 1, 2, · · · , n} be a simple

random sample from distribution D throughout the rest of this article, where x(k)i = xM(k)i.

Let y = (y1, y2, · · · , yn)
′
, µ = (µ1, µ2, · · · , µn)

′
, e = (e1, e2, · · · , en)

′
and bm = (bm1, bm2,

· · · , bmn)
′
. Then, the corresponding matrix form of the true model is y = Xmθm + bm + e,

where θm = (θm,(1), θm,(2), · · · , θm,(km))
′

and Xm is the design matrix of the m-th candidate
model. When there is an candidate model such that bm = 0, the true model is included in
the m-th candidate model, i.e. the model is correctly specified. Unlike Hansen (2007) , Wan
et al. (2010) and Hansen and Racine (2012), we do not require that infw∈W 0 Rn(w) (this
is defined in Section 3.2) tends to infinity. Therefore, we allow that the model is correctly
specified.

Let πm ∈ RK×km be the variable selection matrix satisfying XMπm = Xm and π
′
mπm =

Ikm , m = 1, 2, · · · ,M . Then, the hypothesis spaces of M candidate models are

Hm =
{
x∗
′
πmθm, θm ∈ Rkm

}
,m = 1, 2, · · · ,M.

The least squares estimator of θm is θ̂m = (X
′
mXm)−1X

′
my, m = 1, 2, · · · ,M .

3.2 Weight Selection Criterion

Let Pm = Xm(X
′
mXm)−1X

′
m, P (w) =

∑M
m=1wmPm, Ln(w) = ‖µ− P (w)y‖22 and Rn(w) =

Ee[Ln(w)]. When σ2
i ≡ σ2, Hansen (2007) and Wan et al. (2010) used Mallows criterion

Cn(w) = ‖y−Ω̂w‖22+2σ2w
′
κ to select a model weight vector fromW 0 and proved that the es-

timator of the weight vector asymptotically minimizes Ln(w), where Ω̂ = (P1y, P2y, · · · , PMy)
and κ = (k1, k2, · · · , kM )

′
. Hansen and Racine (2012) used Jackknife criterion Jn(w) =

‖y − Ω̄w‖22 to select a model weight vector from W 0 and proved that the estimator of
the weight vector asymptotically minimizes Ln(w) and Rn(w), where Ω̄ =

[
y − D1(I −

P1)y, y − D2(I − P2)y, · · · , y − DM (I − PM )y
]

with Dm = diag[(1 − hmii )
−1] and hmii =

x
′
iπm(X

′
mXm)−1π

′
mxi, i = 1, 2, · · · , n.

Different from Hansen (2007), Wan et al. (2010) and Hansen and Racine (2012), we
focus on whether the model averaging estimator can asymptotically minimize MSPE when
the model weights are not restricted. Let γ̂ = (x∗

′
π1θ̂1, x

∗′π2θ̂2, · · · , x∗
′
πM θ̂M ). Then, the

risk function and the empirical risk function are defined as:

F (w, S) = Ez∗ [y
∗ − x∗′ θ̂(w)]2 = Ez∗ [(y

∗ − γ̂w)2]
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and

F̂ (w, S) =
1

n

n∑
i=1

[yi − x
′
iθ̂(w)]2 =

1

n
‖y − Ω̂w‖22,

respectively, where θ̂(w) =
∑M

m=1wmπmθ̂m. Since Hansen (2007), Wan et al. (2010) and
Hansen and Racine (2012) restricted w ∈ W 0, the corresponding estimators of the weight
vector do not necessarily asymptotically minimize F (w, S) on RM . An intuitive way that
makes the estimator of the weight vector asymptotically minimize F (w, S) on RM is to
remove the restriction w ∈W 0 directly.

Let P̂ and P̄ be the orthogonal matrices satisfying P̂
′
Ω̂
′
Ω̂P̂ = diag(ζ̂1, ζ̂2, · · · , ζ̂M ) and

P̄
′
Ω̄
′
Ω̄P̄ = diag(ζ̄1, ζ̄2, · · · , ζ̄M ), where ζ̂1 ≤ ζ̂2 ≤ · · · ≤ ζ̂M and ζ̄1 ≤ ζ̄2 ≤ · · · ≤ ζ̄M are

the eigenvalues of Ω̂
′
Ω̂ and Ω̄

′
Ω̄, respectively. We assume that Ez∗(γ̂

′
γ̂), Ω̂

′
Ω̂ and Ω̄

′
Ω̄ are

invertible (this is reasonable under Assumption 3), then

ŵ0 = argminw∈RMCn(w) = (Ω̂
′
Ω̂)−1(Ω̂

′
y − σ2κ),

w̄0 = argminw∈RMJn(w) = (Ω̄
′
Ω̄)−1Ω̄

′
y,

w̃ = argminw∈RM F̂ (w, S) = (Ω̂
′
Ω̂)−1Ω̂

′
y

and

ŵ∗ = argminw∈RMF (w, S) = [Ez∗(γ̂
′
γ̂)]−1Ez∗(γ̂

′
y∗).

In order to satisfy the consistency, ŵ0 and w̄0 should be good estimators of ŵ∗. However,
when candidate models are highly correlated, the minimum eigenvalues of Ω̂

′
Ω̂ and Ω̄

′
Ω̄

may be small so that ‖ŵ0‖22 =
∑M

m=1
a2m
ζ̂2m
≥ a21

ζ̂21
and ‖w̄0‖22 =

∑M
m=1

b2m
ζ̄2m
≥ b21

ζ̄21
are too

large, which usually result in extreme weights, where (a1, a2, · · · , aM )
′

= P̂
′
(Ω̂
′
y − σ2κ)

and (b1, b2, · · · , bM )
′

= P̄
′
Ω̄y. Therefore, similar to ridge regression in Hoerl and Kennard

(1970), we make the following correction to Cn(w) and Jn(w):

C(w, S) = Cn(w) + λnw
′
w

and

J(w, S) = Jn(w) + λnw
′
w,

where λn ≥ 0 is a tuning parameter. The above corrections are actually L2-penalty for
weight vector. Let Ẑ = (Ω̂

′
Ω̂ + λnI)−1Ω̂

′
Ω̂ and Z̄ = (Ω̄

′
Ω̄ + λnI)−1Ω̄

′
Ω̄. Then

ŵ = argminw∈RMC(w, S) = (Ω̂
′
Ω̂ + λnI)−1(Ω̂

′
y − σ2κ) = Ẑŵ0

and

w̄ = argminw∈RMJ(w, S) = (Ω̄
′
Ω̄ + λnI)−1Ω̄

′
y = Z̄w̄0.

In the next subsection, we discuss the theoretical properties of C(w, S) and J(w, S).

10
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3.3 Stability and Consistency

Let λmin(·) be the minimum eigenvalue of a square matrix, X−nm be the matrix after remov-

ing the n-th row of Xm, X
−(n−1,n)
m be the matrix after removing the n-th and (n − 1)-th

rows of Xm, y−n be the vector after removing the n-th element of y and χ be the value
space of K covariates, where K = kM . Then, we define

Ω̂−n = (X−n1 θ̂−n1 , X−n2 θ̂−n2 , · · · , X−nM θ̂−nM ),

Ω̄−n =
[
(In−1 −D−nm )y−n +D−nm X−nm θ̂−nm : m = 1, 2 · · · ,M

]
and

γ̂−n = (x∗
′
π1θ̂
−n
1 , x∗

′
π2θ̂
−n
2 , · · · , x∗′πM θ̂−nM ),

where
θ̂−nm = (X−n

′
m X−nm )−1X−n

′
m y−n

and
D−nm = diag[(1− hm,−nii )−1 : i 6= n]

with hm,−nii = x
′
iπm(X−n

′
m X−nm )−1π

′
mxi. In order to discuss the stability and consistency of

the proposed method, we need the following assumptions:

Assumption 1 There is a constant C1 > 0 such that λmin(n−1X
−(n−1,n)′

M X
−(n−1,n)
M ) ≥ C1,

a.s..

Assumption 2 There is a constant C2 > 0 such that n−1y
′
y ≤ C2, a.s.; There is a constant

C3 > 0 such that χ ⊂ B(0K, C3) a.s., where B(0K, C3) is a sphere with the center 0K and
radius C3, and 0K is the K-dimensional vector of zeros.

Assumption 3 There is a constant C4 > 0 such that

min[λmin(n−1Ω̂
′
Ω̂), λmin(n−1Ω̂−n

′
Ω̂−n)] ≥ C4, a.s.,

min[λmin(n−1Ω̄
′
Ω̄), λmin(n−1Ω̄−n

′
Ω̄−n)] ≥ C4, a.s.

and
min{λmin[Ez∗(γ̂

′
γ̂)], λmin[Ez∗(γ̂

−n′ γ̂−n)]} ≥ C4, a.s..

Assumption 4 There is a constant C5 > 0 such that max(‖ŵ∗‖22, ‖ŵ−n∗‖22) ≤ C5, a.s.,
where ŵ−n∗ = argminw∈RMF (w, S−n) and F (w, S−n) = Ez∗{[y∗ − x∗

′
θ̂−n(w)]2}.

Assumption 5 K3M2 = o(n) and λn = O(K2M).

Assumption 1 is weak as n−1X
′
MXM is often positive definite. The similar assumption is

often made in literature. For example, Condition (b) of Zou (2006) and Condition (C.1)
of Zhang and Liu (2019) require n−1X

′
MXM to converge to a positive definite matrix. In

particular, Zhang and Liu (2019) points out that if yi is a stationary and ergodic martingale
difference sequence with finite fourth moments, then their Condition (C.1) is true. Here we

11
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provide an example where Assumption 1 holds. Let x1, · · · , xn be i.i.d. Gaussian random
vectors with zero mean and unit covariance matrix and K/n → B ∈ (0, 1). Then by using
Theorem 2 of Bai and Yin (1993), we see that

limn→∞λmin(n−1X
′
MXM ) = (1−

√
B)2, a.s.

which shows that Assumption 1 is true. Shalev-Shwartz et al. (2010) assumed that the loss
function is bounded, which is usually not satisfied in traditional regression analysis. We
replace this assumption with Assumption 2. Tong and Wu (2017) assumed that χ × Y is
a compact subset of RK+1, under which Assumption 2 is obviously true. Assumption 3
requires that matrices n−1Ω̂

′
Ω̂ and n−1Ω̂−n

′
Ω̂−n are almost always positive definite, which

is similar to condition (C.4) of Liao and Zou (2020). Lemmas 22 and 23 justify the ra-
tionality of the assumptions regarding the eigenvalue of n−1Ω̂

′
Ω̂. Lemma 24 guarantees

the rationality of this assumption about the eigenvalues of Ω̄
′
Ω̄, Ω̄−n

′
Ω̄−n, Ez∗(γ̂

′
γ̂) and

Ez∗(γ̂
−n′ γ̂−n). Assumption 4 requires that the L2-norm of the optimal weight ŵ∗ and ŵ−n∗

is bounded. Lemma 25 shows that Assumption 4 has a certain rationality. Further, Lemma
29 provides a case where Assumption 4 holds. Assumption 5 limits the growth rate of the
numbers of covariates and models, and also makes a mild assumption about λn to avoid
excessive penalty.

Let V̂ (λn) = ‖Ẑŵ0 − Ẑŵ∗‖22, B̂(λn) = ‖Ẑŵ∗ − ŵ∗‖22, V̄ (λn) = ‖Z̄w̄0 − Z̄ŵ∗‖22 and
B̄(λn) = ‖Z̄ŵ∗ − ŵ∗‖22. We define

M̂(λn) = ‖Ẑŵ0 − ŵ∗‖22 = V̂ (λn) + B̂(λn) + 2(Ẑŵ0 − Ẑŵ∗)′(Ẑŵ∗ − ŵ∗)

and
M̄(λn) = ‖Z̄w̄0 − ŵ∗‖22 = V̄ (λn) + B̄(λn) + 2(Z̄w̄0 − Z̄ŵ∗)′(Z̄ŵ∗ − ŵ∗).

In order to make F (Ẑŵ0, S) and F (Z̄w̄0, S) better approximate F (ŵ∗, S), we naturally
hope ES [M̂(λn)] and ES [M̄(λn)] to be as small as possible. In the following discussion, we
refer to ES [M̂(λn)] and ES [M̄(λn)], ES [V̂ (λn)] and ES [V̄ (λn)], ES [B̂(λn)] and ES [B̄(λn)]
as the corresponding mean squared errors, estimation variances and estimation biases of
model weight estimator, respectively. Obviously, when λn = 0, Ẑ = Z̄ = IM which means
that the estimation bias is equal to zero. From Assumption 3 and Lemma 25, we see
that under Assumptions 1-5, B̂(λn) and B̄(λn) are O(n−2λ2

n) a.s.. On the other hand, the
existence of extreme weights may make the performance of ŵ0 and w̄0 extremely unstable.
So the purpose of introducing L2-penalty is to reduce estimation variance by introducing
estimation bias, which results in the stable performance of the model averaging estimator.
Further, we define

M̂1(λn) = V̂ (λn) + B̂(λn)

and
M̄1(λn) = V̄ (λn) + B̄(λn).

Like Theorem 4.3 in Hoerl and Kennard (1970), we give the following theorem to illustrate
the reasonability of introducing L2-penalty:

Theorem 13 Let λ̂n = min{λn : d
dλn

M̂1(λn) = 0} and λ̄n = min{λn : d
dλn

M̄1(λn) = 0}.
Then, 1) when ŵ0 6= ŵ∗, λ̂n > 0 and M̂1(λ̂n) < M̂1(0); 2) when w̄0 6= ŵ∗, λ̄n > 0 and
M̄1(λ̄n) < M̄1(0).

12
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Theorem 13 shows that the use of L2-penalty reduces estimation variance by introducing
estimation bias. However, since ŵ∗ is unknown, λ̂n and λ̄n are also unknown. In Section
3.4, we use cross validation to select the tuning parameter λn. The following theorem shows
that C(w, S) and J(w, S) are AERM.

Theorem 14 Under Assumptions 1-5, both C(w, S) and J(w, S) are AERMs with rate
n−1K2M .

The following theorem shows that C(w, S), J(w, S) and F (w, S) have FLoo stability and
PLoo stability.

Theorem 15 Under Assumptions 1-5, C(w, S), J(w, S) and F (w, S) all have FLoo stabil-
ity and PLoo stability with rate n−1K3M2.

It can be seen from Theorems 8, 9 and 15 that C(w, S), J(w, S) and F (w, S) have Ro
stability and generalization. The following theorem shows that C(w, S) and J(w, S) have
consistency, which is a direct consequence of Theorems 8-10 and 14-15.

Theorem 16 Under Assumptions 1-5, both C(w, S) and J(w, S) have consistency with rate
n−1K3M2.

From Theorem 3 and Proposition 3 of Mourtada (2022), we see that the excess quadratic
risk of the largest candidate model is of order O(K/n) in the linear regression with random-
design. However, Mourtada (2022) required to assume E(‖x∗‖22) < ∞, which is usually
not true when K diverges, e.g. x∗(1), x

∗
(2), · · · , x

∗
(K) are independently identically distributed

with U(−1, 1). Under the assumption that the functions to be aggregated are bounded and
independent of the current data, Theorem 4 of Tsybakov (2003) showed that the excess
quadratic risk of linear aggregation is of order O(M/n). This boundedness assumption is
often not met in regression analysis. For C(w, S), in order to get a faster rate O(KM/n),
we need the following additional assumptions:

Assumption 6 ES{Λ2
max[Ez∗(γ̂

′
γ̂) − Ω̂

′
Ω̂/n]} = O(n−2K4M2), where Λmax(·) represents

the maximum singular value of the corresponding matrix.

Assumption 7 max1≤k≤K var(x
∗
(k)y

∗) ≤ C6.

Theorem 17 Under Assumptions 1-3 and 5-7, C(w, S) has consistency with rate O(n−1KM).

Remark 18 From the proof of Lemma 24 and Gershgorin’s Theorem, we have

Λ2
max{ES [Ez∗(γ̂

′
γ̂)− Ω̂

′
Ω̂/n]} = O(n−2K4M2),

hence Assumption 6 possesses a certain degree of rationality. Assumption 7 is a common
constraint on second-order moment.
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Remark 19 Let θ̂ = (π1θ̂1, π2θ̂2, · · · , πM θ̂M ). When λmin(θ̂θ̂
′
) ≥ C7, a.s. (this requires

that the matrix θ̂θ̂
′

is positive definite. Lemma 22 provides a case where this requirement
holds), from Marcinkiewicz-Zygmund-Burkholder inequality in Lin and Bai (2010), we have

ES{‖θ̂
′
[X
′
My/n− Ez∗(x∗y∗)]‖22}

≥ C7ES{[X
′
My/n− Ez∗(x∗y∗)]

′
[X
′
My/n− Ez∗(x∗y∗)]}

≥ C7

K∑
k=1

ES

{[ 1

n

n∑
i=1

[x(k)iyi − Ez∗(x∗(k)y
∗)]
]2}

≥ 4−1n−2KC7 min
1≤k≤K

ES

{ n∑
i=1

[x(k)iyi − Ez∗(x∗(k)y
∗)]2
}

= 4−1n−1KC7 min
1≤k≤K

ES

{ 1

n

n∑
i=1

[x(k)iyi − Ez∗(x∗(k)y
∗)]2
}

= 4−1n−1KC7 min
1≤k≤K

var(x(k)iyi).

Thus, from the proof of Theorem 17 and

ES [‖Ez∗(γ̂
′
γ̂)(ŵ − ŵ∗)‖22] ≤ ES{λmax[Ez∗(γ̂

′
γ̂)](ŵ − ŵ∗)′Ez∗(γ̂

′
γ̂)(ŵ − ŵ∗)},

we see that when min1≤k≤K var(x
∗
(k)y

∗) has a non-zero lower bound and λmax[Ez∗(γ̂
′
γ̂)] =

O(1), a.s., then the rate of consistency of C(w, S) is not lower than O(n−1K). Thus, when
M is bounded, Theorem 17 indicates that the rate O(n−1K) is optimal. Further, from the
proof of Theorem 17, we see that when λmax(θ̂θ̂

′
) = O(1), a.s., the rate O(n−1K) is also

optimal even if M diverges. For J(w, S), we can obtain a similar conclusion by using (9)
and Lemma 25.

3.4 Optimal Weighting Based on Cross Validation

Although Theorem 13 shows that there are λ̂n and λ̄n such that ŵ and w̄ are better than
ŵ0 and w̄0, λ̂n and λ̄n cannot be obtained. Therefore, like Schomaker (2012), we propose
an algorithm based on cross validation to obtain the estimator of the weight vector, which
is a weighted average of the weight estimators for different tuning parameters. That is, we
first select L segmentation points on [0,M log n] with equal intervals as the candidates of
λn. Then, we calculate the estimation error for each candidate of λn using cross validation.
Based on this, we remove those candidates with large estimation error. Lastly, for the
remaining candidates, the estimation errors are used to perform a weighted average of the
estimators of the weight vector. We summarize our algorithm for RMMA below, and a
similar algorithm can be given for RJMA.

Algorithm 1 Optimal weighting based on cross validation

Require: S, L ≥ 1, B ≥ 2, l ∈ [1,L], b ∈ [1,B − 1];
Ensure: ŵ;
1: ÊL = 0, L = 1, 2, · · · ,L;
2: The sample S is randomly divided into B equal-sized subsets, and the sample index set

belonging to the B-th part is denoted as SB, B = 1, 2, · · · ,B;
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3: for each B ∈ {1, 2, · · · ,B} do
4: if B + b ≤ B then
5: Let Bidx = (B,B + 1, · · · , B + b);
6: else
7: Let Bidx = (B,B + 1, · · · ,B, 1, 2, · · · , B + b− B);

8: Let Strain = {Si, i ∈ Bidx} and Stest = {Si, i /∈ Bidx};
9: θ̂Bm is obtained based on Strain, m = 1, 2, · · · ,M ;

10: for each L ∈ {1, 2, · · · ,L} do

11: ŵBL is obtained based on λn = (L−1)M logn
L−1 and C(w, Strain);

12: Let θ̂B(ŵBL) =
∑M

m=1 ŵBLmπmθ̂
B
m;

13: The estimation error of ŵBL on Stest is obtained as

Ê(ŵBL) =
∑

zi∈Stest

[yi − x
′
iθ̂
B(ŵBL)]2;

14: ÊL = ÊL + Ê(ŵBL);

15: Let Sλ be the index set of the smallest l numbers in {ÊL, L = 1, 2, · · · ,L};
16: ŵL is obtained based on λn = (L−1)M logn

L−1 , S and C(w, S), where L ∈ Sλ;

17: ŵ =
∑

L∈Sλ
exp(−0.5ÊL)∑

L∈Sλ
exp(−0.5ÊL)

ŵL.

4. Simulation Study

In this section, we conduct simulation experiments to demonstrate the finite sample perfor-
mance of the proposed method. Similar to Hansen (2007), we consider the following data
generating process:

yi = µi + ei =
K∑
k=1

xkiθk + ei i = 1, 2, · · · , n,

where θk, k = 1, 2, · · · K are the model parameters, x1i ≡ 1, (x2i, x3i, · · · , xKi) ∼ N(0,Σ)
and (e1, e2, · · · , en) ∼ N [0, diag(σ2

1, σ
2
2, ..., σ

2
n)]. We set n = 100, 300, 500, 700, Σ = (σkl)

and σkl = ρ|k−l| with ρ = 0.3, 0.6, and R2 = 0.1, 0.2, · · · , 0.9, where the population R2 =
var(µi)

var(µi+ei)
. For the homoskedastic simulation, we set σ2

i ≡ 1, while for the heteroskedastic

simulation, we set σ2
i = x2

2i.
We compare the following model selection/averaging methods: 1) model selection with

AIC (AI), model selection with BIC (BI) and model selection with Cp (Cp); 2) model aver-
aging with smoothed AIC (SA) and model averaging with smoothed BIC (SB); 3) Mallows
model averaging (MM), jackknife model averaging (JM) and least squares model averag-
ing based on generalized cross validation (GM; Li et al., 2021); 4) Ridge-Mallows model
averaging (RM) and Ridge-jackknife model averaging (RJ). To evaluate these methods, we
generate a test set {(y∗i , x∗i ), i = 1, 2, · · · , nt} by the above data generating process, and

MSE = n−1
t

nt∑
i=1

[µ∗i − x∗
′
i θ̂(ŵ)]2
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is calculated as a measure of consistency, where µ∗i =
∑K

k=1 x
∗
kiθk. In the simulation, we

set nt = 1000 and repeat 400 times. For each parameterization, we normalize the MSE by
dividing by the infeasible MSE (the mean of the smallest MSEs of M candidate models in
400 simulations).

We consider two candidate model settings. In the first setting, like Hansen (2007), all
candidate models are misspecified and the candidate models are strictly nested. In the
second setting, the true model is one of the candidate models and the candidate models are
non-nested. For Algorithm 1, we set L = 100, B = 10, l = 50 and b = 5.

4.1 Nested Setting and Results

We set K = 400, θk = c
√

2αk−α−
1
2 with α = 0.5, 1.0, 1.5 and K = log2

4 n (i.e. K =
11, 17, 20, 22), where R2 is controlled by the parameter c. For ρ = 0.3, the mean of normal-
ized MSEs in 400 simulations is shown in Figures 1-6. The results with ρ = 0.6 are similar
and so omitted for saving space.

For the homoskedastic case, we can draw the following conclusions from Figures 1-3.
When α = 0.5 (Figure 1): 1) RM and RJ perform better than other methods if R2 ≤ 0.5
and n = 300, 500 and 700, and comparably with the best method in other cases; 2) RM
performs better than RJ in most of cases if n = 100. When α = 1.0 (Figure 2): 1) RM and
RJ perform better than other methods if R2 ≤ 0.8, and comparably with the best method
if R2 = 0.9; 2) RM performs better than RJ in most of cases if n = 100. When α = 1.5
(Figure 3): 1) RM and RJ always perform better than other methods; 2) RM performs
better than RJ in most of cases if n = 100.

For the heteroskedastic case, we can draw the following conclusions from Figures 4-6.
When α = 0.5 (Figure 4): 1) RM and RJ perform better than other methods if R2 ≤ 0.4,
and comparably with the best method in other cases; 2) RM performs better than RJ.
When α = 1.0 (Figure 5): 1) RM and RJ perform better than other methods if R2 ≤ 0.7,
and comparably with the best method in other cases; 2) RM performs better than RJ.
When α = 1.5 (Figure 6): 1) RM and RJ always perform better than other methods; 2)
RM performs better than RJ.

To sum up, the conclusions are as follows: 1) RM and RJ are the best in most cases,
and even when they are not the best, their performance is close to that of the best method;
2) When α is small and R2 is large, GM has the best performance, and RM and RJ are the
best in other cases; 3) RM performs better than RJ.

4.2 Non-nested Setting and Results

We set K = 12, and θk = c
√

2αk−α−
1
2 with α = 0.5, 1.0, 1.5 for 1 ≤ k ≤ 10 and θk = 0 for

k = 11, 12, where R2 is controlled by the parameter c. Each candidate model contains the
first 6 covariates, and the last 6 covariates are combined to obtain 26 candidate models. For
ρ = 0.3, the mean of normalized MSEs in 400 simulations is shown in Figures 7-12. Like
the nested case, the results with ρ = 0.6 are similar and so omitted.

For this setting, we can draw the following conclusions from Figures 7-12. When α = 0.5
(Figures 7 and 10): 1) RM and RJ perform better than other methods if R2 ≤ 0.5, and
have performance close to the best method if R2 > 0.5; 2) RM performs better than RJ in
most of cases. When α = 1.0 (Figures 8 and 11): 1) RM and RJ perform better than other
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methods except for SB if R2 ≤ 0.7, but the performance of SB is very unstable; 2) RM and
RJ have performance close to the best method if R2 > 0.7; 3) RM performs better than RJ
in most of cases. When α = 1.5 (Figures 9 and 12): 1) RM and RJ perform better than
other methods except for BI and SB, but the performance of SB and BI is very unstable;
2) RM performs better than RJ in most of cases.

To sum up, the conclusions are as follows: 1) RM and RJ are the best in most cases
and have stable performance; 2) One of SB, SA, BI and AI may perform the best when R2

is small or large, but their performance is unstable compared to RM and RJ; 3) On the
whole, RM performs better than RJ.

5. Real Data Analysis

In this section, we apply the proposed method to the real ”wage1” dataset in Wooldridge
(2003) from the US Current Population Survey for the year 1976. There are 526 observations
in this dataset. The response variable is the log of average hourly earning, while covariates
include: 1) dummy variables—nonwhite, female, married, numdep, smsa, northcen, south,
west, construc, ndurman, trcommpu, trade, services, profserv, profocc, clerocc and servocc;
2) non-dummy variables—educ, exper and tenure; 3) interaction variables—nonwhite ×
educ, nonwhite × exper, nonwhite × tenure, female × educ, female × exper, female ×
tenure, married × educ, married × exper and married × tenure.

We consider the following two cases: 1) We rank the covariates according to their linear
correlations with the response variable, and then consider the strictly nested model averag-
ing method (the intercept term is considered and ranked first); 2) 100 models are selected by
the function “regsubsets” in “leaps” package of R language, where the parameters “nvmax”
and “nbest” are taken to be 20 and 5, respectively, and other parameters use default values.
For Algorithm 1, we set b = 9 and the rest of the settings are the same as in the simulation
study.

We randomly divide the data into two parts: a training sample S of n observations for
estimating the models and a test sample St of nt = 529− n observations for validating the
results. We consider n = 110, 210, 320, 420, and

MSE = n−1
t

∑
zi∈St

[yi − x
′
iθ̂(ŵ)]2

is calculated as a measure of consistency. We replicate the process 400 times. The box
plots of MSEs in 400 simulations are shown in Figures 13-14. From these figures, we see
that the performance of RM and RJ is good and stable. We also compute the mean and
median of MSEs, as well as the best performance rate (BPR), which is the frequency of
achieving the lowest risk across the replications. The results are shown in Tables 1-2. From
these tables, we can draw the following conclusions: 1) RM and RJ are superior to other
methods in terms of mean and median of MSEs, and BPR; 2) The performance of RM and
RJ is basically the same in terms of mean and median of MSEs; 3) For BPR, on the whole,
RM outperforms RJ.
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6. Concluding Remarks

In this paper, we study the relationship among AERM, stability, generalization and consis-
tency in model averaging. The results indicate that stability is an important property of
model averaging, which can ensure that model averaging estimator has good generalization
performance and consistency under reasonable conditions. When the model weights are
not restricted, similar to ridge regression in Hoerl and Kennard (1970), extreme weights
tend to appear due to the influence of correlation between candidate models. This results
in poor performance of the corresponding model averaging estimator. Thus, we propose
an L2-penalty model averaging method. We prove that it has stability and consistency.
In order to overcome selection uncertainty of tuning parameter, we use cross-validation to
select a candidate set of tuning parameter, and then perform a weighted average of the
estimators of model weights based on cross-validation errors. We show the superiority of
the proposed method with a Monte Carlo simulation and application to a prediction task
on the wage1 dataset.

Many issues deserve further investigation. We apply the methods of Section 2 to the
generalization of MMA and JMA only for linear regression. It is worth investigating whether
it is possible to extend the proposed method to more complex scenarios, such as generalized
linear model, quantile regression and dependent data. Further, it is also interesting to
develop a model averaging framework with stability and consistency under the online setting.
In addition, with RMMA and RJMA, we see that the estimators of the weight vector are
explicitly expressed. So, how to study their asymptotic behavior based on these explicit
expressions is a meaningful but challenging topic.
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Appendix A. Lemmas and Their Proofs

Let θ̂−(n−1,n)(w) be the model averaging estimator based on S−(n−1,n), where S−(n−1,n) is
the set of observations after removing the (n−1)-th and n-th observations from S. We give
the following lemmas in order to prove Theorems 14-17.

The following Lemma 20 shows that the L2-norms of the parameter estimators of M
candidate models are uniformly bounded, which will be repeatedly used in subsequent
proofs.

Lemma 20 Under Assumptions 1 and 2, there exists a constant B1 > 0 such that

max
1≤m≤M

max
{
‖θ̂m‖22, ‖θ̂−nm ‖22, ‖θ̂−(n−1,n)

m ‖22
}
≤ B1, a.s..

Proof It follows from Assumption 1 that

P
[
λmin(X

−(n−1,n)′

M X
−(n−1,n)
M /n) ≥ C1

]
= 1.

Thus, we have

P
[
λmin(X−n

′

M X−nM /n) ≥ C1

]
= P

{
λmin[(X

−(n−1,n)′

M X
−(n−1,n)
M + xn−1x

′
n−1)/n] ≥ C1

}
≥ P

[
λmin(X

−(n−1,n)′

M X
−(n−1,n)
M /n) ≥ C1

]
= 1,

which means that

λmin(X−n
′

M X−nM /n) ≥ C1, a.s.. (1)

Similarly, we have

P
[
λmin(X

′
MXM/n) ≥ C1

]
= P

{
λmin[(X−n

′

M X−nM + xnx
′
n)/n] ≥ C1

}
≥ P

[
λmin(X−n

′

M X−nM /n) ≥ C1

]
= 1,

which means that

λmin(X
′
MXM/n) ≥ C1, a.s.. (2)

From X
′
mXm = π

′
mX

′
MXMπm, the definition of πm and (2), we have

λmin(n−1X
′
mXm) ≥ λmin(n−1X

′
MXM ) ≥ C1, a.s..

Note that

Xm(X
′
mXm)−1(X

′
mXm)−1X

′
m = Xm(X

′
mXm)−1/2(X

′
mXm)−1(X

′
mXm)−1/2X

′
m.
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Hence, we have

λmax[Xm(X
′
mXm)−1(X

′
mXm)−1X

′
m] ≤ 1

λmin(X ′mXm)
≤ 1

C1n
, a.s.. (3)

Thus, it follows from Assumption 2 that

max
1≤m≤M

‖θ̂m‖22 = max
1≤m≤M

‖(X ′mXm)−1X
′
my‖22

= max
1≤m≤M

y
′
Xm(X

′
mXm)−1(X

′
mXm)−1X

′
my

≤ C−1
1 n−1y

′
y

≤ C−1
1 C2, a.s..

Note that from Assumption 2, we have

n−1y−n
′
y−n ≤ n−1y

′
y ≤ C2, a.s. (4)

and

n−1y−(n−1,n)′y−(n−1,n) ≤ n−1y
′
y ≤ C2, a.s..

So in a similar way, we obtain

max
1≤m≤M

‖θ̂−nm ‖22 ≤ C−1
1 C2, a.s.

and

max
1≤m≤M

‖θ̂−(n−1,n)
m ‖22 ≤ C−1

1 C2, a.s..

We complete the proof by taking B1 = C−1
1 C2.

The following lemma characterizes the degree of impact of removing an observation on the
parameter estimators of the candidate models. From the proofs of Lemmas 24-28, we can
see that they are crucial for proving the stability of our method.

Lemma 21 Under Assumptions 1 and 2, we have

ES

(
max

1≤m≤M
‖θ̂m − θ̂−nm ‖22

)
= O(n−2K2)

and

ES

(
max

1≤m≤M
‖θ̂−nm − θ̂−(n−1,n)

m ‖22
)

= O(n−2K2).

Proof By Dufour (1982), we see that for any m ∈ {1, 2, · · · ,M}, we have

θ̂m = θ̂−nm + (X
′
mXm)−1π

′
mxn(yn − x

′
nπmθ̂

−n
m ).

23



Zhu and Zou

It follows from (2) that

ES

[
max

1≤m≤M
‖θ̂m − θ̂−nm ‖22

]
= ES

[
max

1≤m≤M
x
′
nπm(X

′
mXm)−1(X

′
mXm)−1π

′
mxn(yn − x

′
nπmθ̂

−n
m )2

]
≤ ES

[
max

1≤m≤M
λ2
max[(X

′
mXm)−1]‖π′mxn(yn − x

′
nπmθ̂

−n
m )‖22

]
≤ ES

[
C−2

1 n−2 max
1≤m≤M

‖π′mxn(yn − x
′
nπmθ̂

−n
m )‖22

]
. (5)

From Assumption 2, we obtain

E[(y∗)2] = E[n−1y
′
y] ≤ C2

and

ES

[
max

1≤m≤M
‖π′mxn(yn − x

′
nπmθ̂

−n
m )‖22

]
≤ ES

[
max

1≤m≤M

K∑
k=1

x2
(k)n(yn − x

′
nπmθ̂

−n
m )2

]
≤ C2

3KES

[
max

1≤m≤M
(yn − x

′
nπmθ̂

−n
m )2]

≤ C2
3KES

[
max

1≤m≤M
[2y2

n + 2(x
′
nπmθ̂

−n
m )2]

]
≤ C2

3K
{

2C2 + 2ES

[
max

1≤m≤M
(x
′
nπmθ̂

−n
m )2

]}
. (6)

Further, from Assumption 2 and Lemma 20, we have

ES

[
max

1≤m≤M
(x
′
nπmθ̂

−n
m )2

]
≤ ES

(
max

1≤m≤M
‖xn‖22‖θ̂−nm ‖22

)
≤ C2

3KES

(
max

1≤m≤M
‖θ̂−nm ‖22

)
≤ B1C

2
3K. (7)

Combining (5)-(7), it is seen that

ES

(
max

1≤m≤M
‖θ̂m − θ̂−nm ‖22

)
= O(n−2K2).

In a similar way, it can be shown that

ES

(
max

1≤m≤M
‖θ̂−nm − θ̂−(n−1,n)

m ‖22
)

= O(n−2K2)

by using (1).
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The following lemma shows that under certain conditions, n−1Ω̂
′
Ω̂ and θ̂θ̂

′
are positive

definite when the m-th model contains the first m covariates (which is a common nested
model setting in model averaging literature, such as Hansen (2007) and Zhang and Liu
(2019). Let ȳ = n−1

∑n
i=1 yi, ŷm = Pmy and σ̂2

m = n−1‖y − ŷm‖22. Specifically, this lemma
requires the following two conditions: 1) n−1ŷ

′
1ŷ1 > 0, a.s.; 2) σ̂2

1 > σ̂2
2 > · · · > σ̂2

M , a.s..
Assume the first model contains only the constant term, then n−1ŷ

′
1ŷ1 = ȳ2, and therefore

the first condition only needs ȳ 6= 0, a.s.. It follows from

σ̂2
1 = ‖y −XMπ1θ̂1‖22/n = min

θ:θ2=θ3=···=θM=0
‖y −XMθ‖22/n,

σ̂2
2 = ‖y −XMπ2θ̂2‖22/n = min

θ:θ3=θ4=···=θM=0
‖y −XMθ‖22/n,

...

σ̂2
M = ‖y −XMπM θ̂M‖22/n = min

θ
‖y −XMθ‖22/n

that
σ̂2

1 ≥ σ̂2
2 ≥ · · · ≥ σ̂2

M .

On the other hand, if x2, x3, ..., xM are all significant covariates, then the second condition
is reasonable. Additionally, when M = n, we know that σ̂2

M = 0. Therefore, even if
x2, x3, ..., xM contain insignificant covariates, the second condition may still be satisfied due
to the ever-expanding parameter space.

Lemma 22 When the m-th model contains the first m covariates, if n−1ŷ
′
1ŷ1 > 0 and

σ̂2
1 > σ̂2

2 > · · · > σ̂2
M , a.s., then n−1Ω̂

′
Ω̂ and θ̂θ̂

′
are positive definite, a.s..

Proof From the proof of Lemma 2 of Hansen (2007), we have

Ω̂
′
Ω̂

= (y
′
PmPty)M×M

=


y
′
P1y y

′
P1y y

′
P1y · · · y

′
P1y

y
′
P1y y

′
P2y y

′
P2y · · · y

′
P2y

y
′
P1y y

′
P2y y

′
P3y · · · y

′
P3y

...
...

...
. . .

...

y
′
P1y y

′
P2y y

′
P3y · · · y

′
PMy

 .

After a series of elementary row transformations, we see that

Ω̂
′
Ω̂

→


y
′
P1y y

′
P1y y

′
P1y · · · y

′
P1y

0 y
′
(P2 − P1)y y

′
(P2 − P1)y · · · y

′
(P2 − P1)y

0 y
′
(P2 − P1)y y

′
(P3 − P1)y · · · y

′
(P3 − P1)y

...
...

...
. . .

...

0 y
′
(P2 − P1)y y

′
(P3 − P1)y · · · y

′
(PM − P1)y
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→


y
′
P1y y

′
P1y y

′
P1y · · · y

′
P1y

0 y
′
(P2 − P1)y y

′
(P2 − P1)y · · · y

′
(P2 − P1)y

0 0 y
′
(P3 − P2)y · · · y

′
(P3 − P2)y

...
...

...
. . .

...

0 0 y
′
(P3 − P2)y · · · y

′
(PM − P2)y



→


y
′
P1y y

′
P1y y

′
P1y · · · y

′
P1y

0 y
′
(P2 − P1)y y

′
(P2 − P1)y · · · y

′
(P2 − P1)y

0 0 y
′
(P3 − P2)y · · · y

′
(P3 − P2)y

...
...

...
. . .

...

0 0 0 · · · y
′
(PM − PM−1)y



→


ŷ
′
1ŷ1 ŷ

′
1ŷ1 ŷ

′
1ŷ1 · · · ŷ

′
1ŷ1

0 ŷ
′
2ŷ2 − ŷ

′
1ŷ1 ŷ

′
2ŷ2 − ŷ

′
1ŷ1 · · · ŷ

′
2ŷ2 − ŷ

′
1ŷ1

0 0 ŷ
′
3ŷ3 − ŷ

′
2ŷ2 · · · ŷ

′
3ŷ3 − ŷ

′
2ŷ2

...
...

...
. . .

...

0 0 0 · · · ŷ
′
M ŷM − ŷ

′
M−1ŷM−1

 .

It follows from

σ̂2
m/n

= (y
′
y + ŷ

′
mŷm − 2y

′
ŷm)/n

= (y
′
y + ŷ

′
mŷm − 2y

′
Pmy)/n

= (y
′
y − ŷ′mŷm)/n

that σ̂2
m−1 − σ̂2

m > 0 is equivalent to (ŷ
′
mŷm − ŷ

′
m−1ŷm−1)/n > 0. Thus, n−1Ω̂

′
Ω̂ is positive

definite, a.s.. Further, it follows from Ω̂
′
Ω̂ = θ̂

′
X
′
MXM θ̂ and M = K that θ̂θ̂

′
is positive

definite a.s..

In the following, we provide an example to illustrate the rationality of Assumption 3 based
on Lemma 22.

Lemma 23 Consider the nested setting of Lemma 22 with

• Assumption 2 holds, xi1 ≡ 1 and |ȳ| ≥ c0 > 0, a.s.,

• E(ei|xi) = 0 and E(|ei||xi) <∞,

• b′MbM = o(n) and µ
′
µ = O(n),

• 0 < c1 ≤ min1≤k≤K |θM,(k)| ≤ max1≤k≤K |θM,(k)| ≤ c2 <∞;

• the orthogonal design, i.e. n−1X
′
MXM = IK ,
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then, there is a constant c3 > 0 such that |n−1Ω̂
′
Ω̂| ∼ cM3 , a.s., and when M is bounded,

there is a constant c4 > 0 such that λmin(n−1Ω̂
′
Ω̂) ∼ c4, a.s., where an ∼ bn means

an/bn → 1 and bn/an → 1.

Proof Denote Xc
m as a matrix consisting of columns of XM not contained in Xm, and πcm as

a selection matrix such that Xc
m = XMπ

c
m. Let θcm = πc

′
mθM and ξi(w) =

∑
w∈W wmx(m)iei,

where W = {w ∈ [0, 1]M :
∑M

m=1wm = 1}. From

• W is a totally bounded metric space with metric L1-norm,

• for any w ∈W , n−1
∑n

i=1 ξi(w) = o(1), a.s.,

• for any w1, w2 ∈W , |ξi(w1)− ξi(w2)| ≤
(

max1≤m≤M |x(m)iei|
)
‖w1 − w2‖1,

and Theorem 3 of Andrews (1992), we have supw∈W |n−1
∑n

i=1 ξi(w)| = o(1), a.s., and then

n−1e
′
(XmX

′
m −Xm−1X

′
m−1)e

= n−1
n∑
i=1

n∑
j=1

x(m)ix(m)jeiej

= n
(
n−1

n∑
i=1

x(m)iei

)2

= o(n), a.s.

uniformly holds for m ∈ {1, 2, · · · ,M}. So from (Pm − Pm−1)(Pm − Pm−1) = Pm − Pm−1,
we obtain

|Λm,m−1| =|b
′
M (Pm − Pm−1)bM + 2b

′
M (Xc

m−1θ
c
m−1 −Xc

mθ
c
m)

+ e
′
(Pm − Pm−1)e+ 2µ

′
(Pm − Pm−1)e|

= |b′M (Pm − Pm−1)bM + 2b
′
MXM (πcm−1θ

c
m−1 − πcmθcm)

+ e
′
(Pm − Pm−1)e+ 2µ

′
(Pm − Pm−1)e|

≤ b′M (Pm − Pm−1)bM + 2
√
b
′
MbM

√
nθ2

M,(m) + n−1e
′
(XmX

′
m −Xm−1X

′
m−1)e

+ 2
√
µ′µ
√
e′(Pm − Pm−1)e

≤ b′MbM + 2
√
b
′
MbM

√
nc2

2 + n−1e
′
(XmX

′
m −Xm−1X

′
m−1)e

+ 2
√
µ′µ
√
n−1e′(XmX

′
m −Xm−1X

′
m−1)e

= o(n), a.s.

uniformly holds for m ∈ {2, 3, · · · ,M}. On the other hand, it is seen that

nσ̂2
m = (Xmθm +Xc

mθ
c
m + bM )

′
(I − Pm)(Xmθm +Xc

mθ
c
m + bM )

+ e
′
(I − Pm)e+ 2µ

′
(I − Pm)e

= (Xc
mθ

c
m + bM )

′
(I − Pm)(Xc

mθ
c
m + bM ) + e

′
(I − Pm)e+ 2µ

′
(I − Pm)e
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= nθc
′
mθ

c
m + b

′
M (I − Pm)bM + 2b

′
MX

c
mθ

c
m + e

′
(I − Pm)e+ 2µ

′
(I − Pm)e.

Therefore,

n(σ̂2
m−1 − σ̂2

m)

= n(θc
′
m−1θ

c
m−1 − θc

′
mθ

c
m) + Λm,m−1

= nθ2
M,(m) + Λm,m−1

≥ nc2
1 + o(n), a.s..

Thus, for large n, there is a constant c3 > 0 such that

min
[
ȳ2, min

2≤m≤M
(σ̂2
m−1 − σ̂2

m)
]
≥ c3 + o(1), a.s..

From

n−1Ω̂
′
Ω̂ =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1




ȳ2 ȳ2 ȳ2 · · · ȳ2

0 σ̂2
1 − σ̂2

2 σ̂2
1 − σ̂2

2 · · · σ̂2
1 − σ̂2

2

0 0 σ̂2
2 − σ̂2

3 · · · σ̂2
2 − σ̂2

3
...

...
...

. . .
...

0 0 0 · · · σ̂2
M−1 − σ̂2

M

 ,

we obtain |n−1Ω̂
′
Ω̂| ≥ [c3 + o(1)]M ∼ cM3 , a.s., that is, n−1Ω̂

′
Ω̂ is positive definite, a.s..

When M is bounded, there is obviously a constant c3 > 0 such that λmin(n−1Ω̂
′
Ω̂) ∼ c3,

a.s..

The following lemma is used to illustrate the rationality of Assumption 3. Understanding
its proof process is helpful for us to understand the proofs of Lemma 27.

Lemma 24 Under Assumptions 1 and 2, we have

ES,z∗(γ̂
′
γ̂) = n−1ES(Ω̂

′
Ω̂) +O(n−1K2)

and

n−1ES(Ω̄
′
Ω̄) = n−1ES(Ω̂

′
Ω̂) +O[n(C1n− C2

3K)−2K].

Proof Note that

γ̂
′
γ̂ = (x∗

′
πmθ̂mθ̂

′
tπ
′
tx
∗)M×M ,

Ω̄
′
Ω̄ =

{
[y −Dm(y − Pmy)]

′
[y −Dt(y − Pty)]

}
M×M

and

Ω̂
′
Ω̂ = (y

′
P
′
mPty)M×M =

( n∑
i=1

x
′
iπmθ̂mθ̂

′
tπ
′
txi

)
M×M

.
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It follows from Assumption 2, and Lemmas 20 and 21 that

|ES(x
′
nπmθ̂mθ̂

′
tπ
′
txn − x

′
nπmθ̂

−n
m θ̂−n

′

t π
′
txn)|

≤ |ES [x
′
nπm(θ̂m − θ̂−nm )θ̂

′
tπ
′
txn]|+ |ES [x

′
nπmθ̂

−n
m (θ̂t − θ̂−nt )

′
π
′
txn]|

≤
√
ES(‖θ̂m − θ̂−nm ‖22)

√
ES(‖x′nπtθ̂tπ

′
mxn‖22) +

√
ES(‖x′nπmθ̂−nm π

′
txn‖22)

√
ES(‖θ̂t − θ̂−nt ‖22)

≤
√
ES(‖θ̂m − θ̂−nm ‖22)

√
ES(‖xn‖22‖θ̂t‖22‖xn‖22) +

√
ES(‖xn‖22‖θ̂

−n
m ‖22‖xn‖22)

√
ES(‖θ̂t − θ̂−nt ‖22)

= O(n−1K2).

In a similar way, we obtain

|ES,z∗(x∗
′
πmθ̂

−n
m θ̂−n

′

t π
′
tx
∗ − x∗′πmθ̂mθ̂

′
tπ
′
tx
∗)| = O(n−1K2).

Further, it is readily seen that

ES,z∗(
1

n

n∑
i=1

x
′
iπmθ̂mθ̂

′
tπ
′
txi − x∗

′
πmθ̂mθ̂

′
tπ
′
tx
∗)

= ES,z∗(x
′
nπmθ̂mθ̂

′
tπ
′
txn − x∗

′
πmθ̂mθ̂

′
tπ
′
tx
∗)

= ES,z∗(x
′
nπmθ̂mθ̂

′
tπ
′
txn − x∗

′
πmθ̂

−n
m θ̂−n

′

t π
′
tx
∗) + ES,z∗(x

∗′πmθ̂
−n
m θ̂−n

′

t π
′
tx
∗ − x∗′πmθ̂mθ̂

′
tπ
′
tx
∗)

= ES(x
′
nπmθ̂mθ̂

′
tπ
′
txn − x

′
nπmθ̂

−n
m θ̂−n

′

t π
′
txn) + ES,z∗(x

∗′πmθ̂
−n
m θ̂−n

′

t π
′
tx
∗ − x∗′πmθ̂mθ̂

′
tπ
′
tx
∗),

so we have
ES,z∗(γ̂

′
γ̂) = n−1ES [Ω̂

′
Ω̂] +O(n−1K2).

On the other hand, it follows from (2) and Assumption 2 that

max
1≤i≤n

max
1≤m≤M

hmii = max
1≤i≤n

max
1≤m≤M

x
′
iπm(X

′
mXm)−1π

′
mxi ≤

C2
3K

nC1
, a.s.. (8)

Hence, from Assumption 2, we have

|y′P ′mPty − [y −Dm(y − Pmy)]
′
[y −Dt(y − Pty)]|

= |y′P ′mPty − [(In −Dm)y +DmPmy]
′
[(In −Dt)y +DtPty]|

≤ |y′P ′m(DmDt − In)Pty|+ |y
′
(In −Dm)(In −Dt)y|+ |y

′
(In −Dm)DtPty|

+ |y′P ′mDm(In −Dt)y|

≤ max
1≤m≤M

max
1≤i≤n

[(1− hmii )−2 − 1]y
′
P
′
mPmy + max

1≤m≤M
max

1≤i≤n
[1− (1− hmii )−1]2y

′
y

+ 2 max
1≤m≤M

max
1≤i≤n

√
(1− hmii )−2[1− (1− hmii )−1]2y′yy′P ′mPmy

≤ max
1≤m≤M

max
1≤i≤n

{[(1− hmii )−2 − 1] + [(1− hmii )−1 − 1]2

+ 2(1− hmii )−1[(1− hmii )−1 − 1]}y′y

≤ C2n{[(1−
C2

3K

nC1
)−2 − 1] + [(1− C2

3K

nC1
)−1 − 1]2
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+ 2(1− C2
3K

nC1
)−1[(1− C2

3K

nC1
)−1 − 1]}

=
4C1C2C

2
3n

2K

(C1n− C2
3K)2

, a.s.. (9)

Thus, we obtain

n−1ES(Ω̄
′
Ω̄) = n−1ES(Ω̂

′
Ω̂) +O[n(C1n− C2

3K)−2K].

Let w̃−n = argminw∈RM F̂ (w, S−n), where

F̂ (w, S−n) =
1

n

n−1∑
i=1

[yi − x
′
iθ̂
−n(w)]2.

The following lemma shows that L2-norm of the estimator of model weight vector is
bounded, which makes Assumption 4 reasonable. In subsequent proofs, we use this conclu-
sion many times.

Lemma 25 Under Assumptions 2-3, there is a constant B2 > 0 such that

max(‖ŵ‖22, ‖ŵ−n‖22) ≤ B2(1 + n−2K2M), a.s.,

max(‖w̄‖22, ‖w̄−n‖22) ≤ B2, a.s.

and
max(‖w̃‖22, ‖w̃−n‖22) ≤ B2, a.s..

Proof It is straightforward to check that

λmax[Ω̂(Ω̂
′
Ω̂ + λnIn)−1(Ω̂

′
Ω̂ + λnIn)−1Ω̂

′
] ≤ [λmin(Ω̂

′
Ω̂ + λnIn)]−1.

Similarly, we can prove that

λmax[Ω̄(Ω̄
′
Ω̄ + λnIn)−1(Ω̄

′
Ω̄ + λnIn)−1Ω̄

′
] ≤ [λmin(Ω̄

′
Ω̄ + λnIn)]−1.

It follows from Assumptions 2-3 that

‖ŵ‖22 = ‖(Ω̂′Ω̂ + λnIn)−1Ω̂
′
y − σ2(Ω̂

′
Ω̂ + λnIn)−1κ‖22

≤ 2y
′
Ω̂(Ω̂

′
Ω̂ + λnIn)−1(Ω̂

′
Ω̂ + λnIn)−1Ω̂

′
y + 2σ4κ

′
(Ω̂
′
Ω̂ + λnIn)−1(Ω̂

′
Ω̂ + λnIn)−1κ

≤ 2C−1
4 n−1y

′
y + 2σ4C−2

4 n−2κ
′
κ

≤ 2C−1
4 C2 + 2σ4C−2

4 n−2K2M, a.s.,

and

‖w̄‖22 = ‖(Ω̄′Ω̄ + λnIn)−1Ω̄
′
y‖22
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≤ C−1
5 n−1y

′
y

≤ C−1
4 C2, a.s..

In a similar way, we obtain
‖w̃‖22 ≤ C−1

4 C2, a.s..

From Assumption 3 and (4), we complete the proof by taking B2 = max{2C−1
4 C2, 2σ

4C−2
4 }.

The following three lemmas characterize the degree of impact of removing an observation
on ŵ, w̄ and ŵ∗, and are used to prove Theorem 15.

Lemma 26 Under Assumptions 1-5, we have

ES [‖ŵ − ŵ−n‖22] = O(n−2K4M2).

Proof Let θ̂−n = (π1θ̂
−n
1 , π2θ̂

−n
2 , · · · , πM θ̂−nM ). Then we have

ŵ = (Ω̂
′
Ω̂ + λnIM )−1(Ω̂

′
y − σ2κ)

= (θ̂
′
X
′
MXM θ̂ + λnIM )−1(θ̂

′
X
′
My − σ2κ)

and

ŵ−n = (Ω̂−n
′
Ω̂−n + λn−1IM )−1(Ω̂−n

′
y−n − σ2κ)

= (θ̂−n
′
X−n

′

M X−nM θ̂−n + λn−1IM )−1(θ̂−n
′
X−n

′

M y−n − σ2κ).

Thus, under Assumption 3, we obtain

(nC4 + λn)2ES [‖ŵ − ŵ−n‖22]

≤ ES [λ2
min(Ω̂

′
Ω̂ + λnIM )‖ŵ − ŵ−n‖22]

≤ ES [‖(Ω̂′Ω̂ + λnIM )(ŵ − ŵ−n)‖22]

≤ 2ES [‖(Ω̂′Ω̂ + λnIM )ŵ − (θ̂−n
′
X−n

′

M X−nM θ̂−n + λn−1IM )ŵ−n‖22]

+ 2ES [‖(θ̂−n′X−n′M X−nM θ̂−n + λn−1IM )ŵ−n − (Ω̂
′
Ω̂ + λnIM )ŵ−n‖22]

= 2ES [‖θ̂′X ′My − θ̂−n
′
X−n

′

M y−n‖22]

+ 2ES [‖(Ω̂−n′Ω̂−n + λn−1IM − Ω̂
′
Ω̂− λnIM )ŵ−n‖22]

≤ 2ES [‖θ̂′X ′My − θ̂−n
′
X−n

′

M y−n‖22]

+ 4ES [‖(Ω̂−n′Ω̂−n − Ω̂
′
Ω̂)ŵ−n‖22] + 4(λn−1 − λn)2ES(‖ŵ−n‖22). (10)

We now consider the first term on the right-hand side of (10). From (2), Assumption 2,
Lemma 20 and (3), we have

ES [ max
1≤m≤M

|(θ̂m − θ̂−nm )
′
X
′
my|2]
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= ES [ max
1≤m≤M

|x′nπ
′
m(X

′
mXm)−1X

′
my(yn − x

′
nπmθ̂

−n
m )|2]

≤ ES{ max
1≤m≤M

λmax(πmxnx
′
nπ
′
m)λmax[Xm(X

′
mXm)−1(X

′
mXm)−1X

′
m]‖y‖22|yn − x

′
nπmθ̂

−n
m |2}

≤ C−1
1 C2C

2
3KES( max

1≤m≤M
|yn − x

′
nπmθ̂

−n
m |2)

≤ 2C−1
1 C2C

2
3K[ES(|yn|2) + ES( max

1≤m≤M
|x′nπmθ̂−nm |2)]

≤ 2C−1
1 C2C

2
3K[C2 + ES(‖xn‖22 max

1≤m≤M
‖θ̂−nm ‖22)]

≤ 2C−1
1 C2C

2
3K[C2 + C2

3B1K]

= O(K2)

and

ES [ max
1≤m≤M

|θ̂′mπ
′
mX

′
My − θ̂−n

′
m π

′
mX

−n′
M y−n|2]

= ES [ max
1≤m≤M

|θ̂′mπ
′
mX

′
My − θ̂−n

′
m π

′
mX

′
My + θ̂−n

′
m π

′
mX

′
My − θ̂−n

′
m π

′
mX

−n′
M y−n|2]

= ES [ max
1≤m≤M

|(θ̂m − θ̂−nm )
′
X
′
my + θ̂−n

′
m (X

′
my −X−n

′
m y−n)|2]

≤ 2ES [ max
1≤m≤M

|(θ̂m − θ̂−nm )
′
X
′
my|2] + 2ES [ max

1≤m≤M
|θ̂−n′m (X

′
my −X−n

′
m y−n)|2]

≤ 2ES [ max
1≤m≤M

|(θ̂m − θ̂−nm )
′
X
′
my|2] + 2ES( max

1≤m≤M
‖θ̂−nm ‖22 max

1≤m≤M
‖X ′my −X−n

′
m y−n‖22)

≤ 2ES [ max
1≤m≤M

|(θ̂m − θ̂−nm )
′
X
′
my|2] + 2B1

K∑
k=1

ES(|x(k)nyn|2)

≤ 2ES [ max
1≤m≤M

|(θ̂m − θ̂−nm )
′
X
′
my|2] + 2C2C

2
3B1K

= O(K2).

Hence, we obtain

ES [‖θ̂′X ′My − θ̂−n
′
X−n

′

M y−n‖22]

=
M∑
m=1

ES(|θ̂′mπ
′
mX

′
My − θ̂−n

′
m π

′
mX

−n′
M y−n|2)

= O(K2M). (11)

We then consider the second term on the right-hand side of (10). It follows from Assumption
2 and Lemmas 20-21 that

ES( max
1≤m≤M

max
1≤t≤M

|x′n−1πmθ̂mθ̂
′
tπ
′
txn−1 − x

′
n−1πmθ̂

−n
m θ̂−n

′

t π
′
txn−1|2)

≤ 2ES [ max
1≤m≤M

max
1≤t≤M

|x′n−1πm(θ̂m − θ̂−nm )θ̂
′
tπ
′
txn−1|2]

+ 2ES [ max
1≤m≤M

max
1≤t≤M

|x′n−1πmθ̂
−n
m (θ̂t − θ̂−nt )

′
π
′
txn−1|2]

≤ 2ES( max
1≤m≤M

‖θ̂m − θ̂−nm ‖22 max
1≤m≤M

max
1≤t≤M

‖x′n−1πtθ̂tπ
′
mxn−1‖22)
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+ 2ES( max
1≤m≤M

max
1≤t≤M

‖x′n−1πmθ̂
−n
m π

′
txn−1‖22 max

1≤t≤M
‖θ̂t − θ̂−nt ‖22)

≤ 2ES( max
1≤m≤M

‖θ̂m − θ̂−nm ‖22 max
1≤t≤M

‖xn−1‖22‖θ̂t‖22‖xn−1‖22)

+ 2ES( max
1≤m≤M

‖xn−1‖22‖θ̂−nm ‖22‖xn−1‖22 max
1≤t≤M

‖θ̂t − θ̂−nt ‖22)

≤ 4C4
3B1K

2ES( max
1≤m≤M

‖θ̂m − θ̂−nm ‖22)

= O(n−2K4)

and

ES
{

max
1≤m≤M

max
1≤t≤M

∣∣ n−1∑
i=1

(x
′
iπmθ̂

−n
m θ̂−n

′

t π
′
txi − x

′
iπmθ̂mθ̂

′
tπ
′
txi)− x

′
nπmθ̂mθ̂

′
tπ
′
txn
∣∣2}

≤ 2ES
{

max
1≤m≤M

max
1≤t≤M

∣∣ n−1∑
i=1

(x
′
iπmθ̂

−n
m θ̂−n

′

t π
′
txi − x

′
iπmθ̂mθ̂

′
tπ
′
txi)

∣∣2}
+ 2ES

{
max

1≤m≤M
max

1≤t≤M

∣∣x′nπmθ̂mθ̂′tπ′txn∣∣2}
≤ 2(n− 1)

n−1∑
i=1

ES
{

max
1≤m≤M

max
1≤t≤M

∣∣x′iπmθ̂−nm θ̂−n
′

t π
′
txi − x

′
iπmθ̂mθ̂

′
tπ
′
txi
∣∣2}

+ 2ES
{

max
1≤m≤M

max
1≤t≤M

∣∣x′nπmθ̂m|2|θ̂′tπ′txn∣∣2}
≤ 2(n− 1)

n−1∑
i=1

ES
{

max
1≤m≤M

max
1≤t≤M

∣∣x′iπmθ̂−nm θ̂−n
′

t π
′
txi − x

′
iπmθ̂mθ̂

′
tπ
′
txi
∣∣2}

+ 2ES
{

max
1≤m≤M

‖xn‖42‖θ̂m‖42
}

≤ 2(n− 1)
n−1∑
i=1

ES
{

max
1≤m≤M

max
1≤t≤M

∣∣x′iπmθ̂−nm θ̂−n
′

t π
′
txi − x

′
iπmθ̂mθ̂

′
tπ
′
txi
∣∣2}+ 2C4

3B
2
1K

2

= 2(n− 1)2ES
{

max
1≤m≤M

max
1≤t≤M

∣∣x′n−1πmθ̂
−n
m θ̂−n

′

t π
′
txn−1 − x

′
n−1πmθ̂mθ̂

′
tπ
′
txn−1

∣∣2}+ 2C4
3B

2
1K

2

= O(K4).

So from Lemma 25,

Ω̂
′
Ω̂ = (y

′
P
′
mPty)M×M = (θ̂

′
mX

′
mXtθ̂t)M×M =

( n∑
i=1

x
′
iπmθ̂mθ̂

′
tπ
′
txi

)
M×M

and

Ω̂−n
′
Ω̂−n = (θ̂−n

′
m X−n

′
m X−nt θ̂−nt )M×M =

( n−1∑
i=1

x
′
iπmθ̂

−n
m θ̂−n

′

t π
′
txi

)
M×M

,

we have

ES [‖(Ω̂−n′Ω̂−n − Ω̂
′
Ω̂)ŵ−n‖22]
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= ES

[ M∑
m=1

M∑
t=1

ŵ−nm ŵ−nt

M∑
s=1

(
n−1∑
i=1

x
′
iπmθ̂

−n
m θ̂−n

′
s π

′
sxi −

n∑
i=1

x
′
iπmθ̂mθ̂

′
sπ
′
sxi)

(
n−1∑
i=1

x
′
iπsθ̂

−n
s θ̂−n

′

t π
′
txi −

n∑
i=1

x
′
iπsθ̂sθ̂

′
tπ
′
txi)

]
≤ ES

[ M∑
m=1

M∑
t=1

|ŵ−nm ŵ−nt | max
1≤m≤M

max
1≤t≤M

∣∣ M∑
s=1

(

n−1∑
i=1

x
′
iπmθ̂

−n
m θ̂−n

′
s π

′
sxi

−
n∑
i=1

x
′
iπmθ̂mθ̂

′
sπ
′
sxi)(

n−1∑
i=1

x
′
iπsθ̂

−n
s θ̂−n

′

t π
′
txi −

n∑
i=1

x
′
iπsθ̂sθ̂

′
tπ
′
txi)

∣∣∣]
≤M2ES

[ M∑
m=1

|ŵ−nm |2 max
1≤m≤M

max
1≤t≤M

∣∣ n−1∑
i=1

x
′
iπmθ̂

−n
m θ̂−n

′

t π
′
txi −

n∑
i=1

x
′
iπmθ̂mθ̂

′
tπ
′
txi

∣∣∣2]
= O(K4M2). (12)

Finally, combining (10)-(12) and using Assumption 5, we see that Lemma 26 is true.

Lemma 27 Under Assumptions 1-5, we have

ES [‖w̄ − w̄−n‖22] = O(n−2K4M2).

Proof Note that

w̄ = (Ω̄
′
Ω̄ + λnIM )−1Ω̄

′
y

and

w̄−n = (Ω̄−n
′
Ω̄−n + λn−1IM )−1Ω̄−n

′
y−n.

So under Assumption 3, we obtain

(nC4 + λn)2ES [‖w̄ − w̄−n‖22]

≤ ES [λ2
min(Ω̄

′
Ω̄ + λnIM )‖w̄ − w̄−n‖22]

≤ ES [‖(Ω̄′Ω̄ + λnIM )(w̄ − w̄−n)‖22]

≤ 2ES [‖(Ω̄′Ω̄ + λnIM )w̄ − (Ω̄−n
′
Ω̄−n + λn−1IM )w̄−n‖22]

+ 2ES [‖(Ω̄−n′Ω̄−n + λn−1IM )w̄−n − (Ω̄
′
Ω̄ + λnIM )w̄−n‖22]

= 2ES [‖Ω̄′y − Ω̄−n
′
y−n‖22]

+ 2ES [‖(Ω̄−n′Ω̄−n + λn−1IM − Ω̄
′
Ω̄− λnIM )w̄−n‖22]

≤ 2ES [‖Ω̄′y − Ω̄−n
′
y−n‖22]

+ 4ES [‖(Ω̄−n′Ω̄−n − Ω̄
′
Ω̄)w̄−n‖22] + 4(λn−1 − λn)2ES(‖w̄−n‖22). (13)
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We now consider the first term on the right-hand side of (13). From Assumption 2, (8) and
the definition of Dm, we have

‖Ω̄′y − Ω̂
′
y‖22

=
M∑
m=1

{[y −Dm(I − Pm)y]
′
y − y′Pmy}2

=
M∑
m=1

{y′(In −Dm)y + y
′
Pm(Dm − In)y}2

≤ 2M max
1≤m≤M

[
|y′(Dm − In)y|2 + |y′Pm(Dm − In)y|2

]
≤ 2M max

1≤m≤M
{| max

1≤i≤n
[(1− hmii )−1 − 1]y

′
y|2 + y

′
(Dm − In)Pmyy

′
Pm(Dm − In)y}

≤ 4M max
1≤m≤M

max
1≤i≤n

[(1− hmii )−1 − 1]2(y
′
y)2

≤ 4C2
2n

2M [(1− C2
3K

nC1
)−1 − 1]2

= 4C2
2C

4
3n

2MK2(nC1 − C2
3K)−2, a.s..

Similarly, it follows from (1) and (4) that

‖Ω̂−n′y−n − Ω̄−n
′
y−n‖22 ≤ 4C2

2C
4
3n

2MK2(nC1 − C2
3K)−2, a.s..

Hence, from Assumption 5 and (11), we obtain

ES [‖Ω̄′y − Ω̄−n
′
y−n‖22]

= ES [‖Ω̄′y − Ω̂
′
y + Ω̂

′
y − Ω̂−n

′
y−n + Ω̂−n

′
y−n − Ω̄−n

′
y−n‖22]

≤ 3ES [‖Ω̄′y − Ω̂
′
y‖22] + 3ES [‖Ω̂′y − Ω̂−n

′
y−n‖22] + ES [‖Ω̂−n′y−n − Ω̄−n

′
y−n‖22]

= O(K2M). (14)

We then consider the second term on the right-hand side of (13). From Assumption 5,
Lemma 25, (1), (4), (9) and (12), we have

ES [‖(Ω̄−n′Ω̄−n − Ω̄
′
Ω̄)w̄−n‖22]

= ES [‖(Ω̄−n′Ω̄−n − Ω̂−n
′
Ω̂−n + Ω̂−n

′
Ω̂−n − Ω̂

′
Ω̂ + Ω̂

′
Ω̂− Ω̄

′
Ω̄)w̄−n‖22]

≤ 3ES [‖(Ω̄−n′Ω̄−n − Ω̂−n
′
Ω̂−n)w̄−n‖22] + 3ES [‖(Ω̂−n′Ω̂−n − Ω̂

′
Ω̂)w̄−n‖22]

+ 3ES [‖(Ω̂′Ω̂− Ω̄
′
Ω̄)w̄−n‖22]

= O(K4M2). (15)

Thus, under Assumption 5, this proof can be completed by combining (13)-(15).

Lemma 28 Under Assumptions 1-5, we have

ES [‖ŵ∗ − ŵ−n∗‖22] = O(n−2K4M2).
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Proof Note that

ŵ∗ = [Ez∗(γ̂
′
γ̂)]−1Ez∗(γ̂

′
y∗)

= [θ̂
′
Ez∗(x

∗x∗
′
)θ̂]−1θ̂

′
Ez∗(x

∗y∗)

and

ŵ−n∗ = [θ̂−n
′
Ez∗(x

∗x∗
′
)θ̂−n]−1θ̂−n

′
Ez∗(x

∗y∗).

So under Assumption 3, we obtain

C2
4ES(‖ŵ∗ − ŵ−n∗‖22)

≤ ES{λ2
min[θ̂

′
Ez∗(x

∗x∗
′
)θ̂]‖ŵ∗ − ŵ−n∗‖22}

≤ ES [‖θ̂′Ez∗(x∗x∗
′
)θ̂(ŵ∗ − ŵ−n∗)‖22]

≤ 2ES [‖θ̂′Ez∗(x∗x∗
′
)θ̂ŵ∗ − θ̂−n′Ez∗(x∗x∗

′
)θ̂−nŵ−n∗‖22]

+ 2ES [‖θ̂−n′Ez∗(x∗x∗
′
)θ̂−nŵ−n∗ − θ̂′Ez∗(x∗x∗

′
)θ̂ŵ−n∗‖22]

= 2ES [‖θ̂′Ez∗(x∗y∗)− θ̂−n
′
Ez∗(x

∗y∗)‖22]

+ 2ES [‖θ̂−n′Ez∗(x∗x∗
′
)θ̂−nŵ−n∗ − θ̂′Ez∗(x∗x∗

′
)θ̂ŵ−n∗‖22]. (16)

We now consider the first term on the right-hand side of (16). From (2), Assumption 2 and
Lemma 20, we have

ES [‖θ̂′Ez∗(x∗y∗)− θ̂−n
′
Ez∗(x

∗y∗)‖22]

=
M∑
m=1

ES [|(θ̂m − θ̂−nm )
′
π
′
mEz∗(x

∗y∗)|2]

=
M∑
m=1

ES [|x′nπm(X
′
mXm)−1π

′
mEz∗(x

∗y∗)(yn − x
′
nπmθ̂

−n
m )|2]

≤ C−2
1 C2

3n
−2K

M∑
m=1

ES [‖π′mEz∗(x∗y∗)(yn − x
′
nπmθ̂

−n
m )‖2]

≤ C−2
1 C2

3n
−2K

M∑
m=1

ES [(yn − x
′
nπmθ̂

−n
m )2]

K∑
k=1

[Ez∗(x
∗
(k)y

∗)]2

≤ C−2
1 C2C

4
3n
−2K2

M∑
m=1

ES [(yn − x
′
nπmθ̂

−n
m )2]

≤ 2C−2
1 C2C

4
3n
−2K2

M∑
m=1

[ES(|yn|2) + ES(|x′nπmθ̂−nm |2)]

= O(n−2K3M). (17)

It follows from Assumption 2 and Lemmas 20-21 that

ES [ max
1≤m≤M

max
1≤t≤M

Ez∗(|x∗
′
πmθ̂mθ̂

′
tπ
′
tx
∗ − x∗′πmθ̂−nm θ̂−n

′

t π
′
tx
∗|2)]
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≤ 2ES{ max
1≤m≤M

max
1≤t≤M

Ez∗ [|x∗
′
πm(θ̂m − θ̂−nm )θ̂

′
tπ
′
tx
∗|2]}

+ 2ES{ max
1≤m≤M

max
1≤t≤M

Ez∗ [|x∗
′
πmθ̂

−n
m (θ̂t − θ̂−nt )

′
π
′
tx
∗|2]}

≤ 2ES [ max
1≤m≤M

‖θ̂m − θ̂−nm ‖22 max
1≤m≤M

max
1≤t≤M

Ez∗(‖x∗
′
πtθ̂tπ

′
mx
∗‖22)]

+ 2ES [ max
1≤m≤M

max
1≤t≤M

Ez∗(‖x∗
′
πmθ̂

−n
m π

′
tx
∗‖22) max

1≤t≤M
‖θ̂t − θ̂−nt ‖22]

≤ 2ES [ max
1≤m≤M

‖θ̂m − θ̂−nm ‖22 max
1≤t≤M

Ez∗(‖x∗‖22‖θ̂t‖22‖x∗‖22)]

+ 2ES [ max
1≤m≤M

Ez∗(‖x∗‖22‖θ̂−nm ‖22‖x∗‖22) max
1≤t≤M

‖θ̂t − θ̂−nt ‖22]

≤ 4C4
3B1K

2ES( max
1≤m≤M

‖θ̂m − θ̂−nm ‖22)

= O(n−2K4).

We then consider the second term on the right-hand side of (16). From Assumption 4,

γ̂
′
γ̂ = (x∗

′
πmθ̂mθ̂

′
tπ
′
tx
∗)M×M

and

γ̂−n
′
γ̂−n = (x∗

′
πmθ̂

−n
m θ̂−n

′

t π
′
tx
∗)M×M ,

we have

ES [‖θ̂−n′Ez∗(x∗x∗
′
)θ̂−nŵ−n∗ − θ̂′Ez∗(x∗x∗

′
)θ̂ŵ−n∗‖22]

= ES

[ M∑
m=1

M∑
t=1

ŵ−n∗m ŵ−n∗t

M∑
s=1

Ez∗(x
∗′πmθ̂mθ̂

′
sπ
′
sx
∗ − x∗′πmθ̂−nm θ̂−n

′
s π

′
sx
∗)

Ez∗(x
∗′πsθ̂sθ̂

′
tπ
′
tx
∗ − x∗′πsθ̂−ns θ̂−n

′

t π
′
tx
∗)
]

≤M2ES

[ M∑
m=1

|ŵ−n∗m |2 max
1≤m≤M

max
1≤t≤M

Ez∗(|x∗
′
πmθ̂mθ̂

′
tπ
′
tx
∗ − x∗′πmθ̂−nm θ̂−n

′

t π
′
tx
∗|2)
]

= O(n−2K4M2). (18)

Thus, under Assumption 5, this proof can be completed by combining (16)-(18).

The following lemma gives a case where Assumption 4 holds.

Lemma 29 Assume y∗ =
∑K

k=1 x
∗
(k)θ

∗
k + e∗ with x∗ = (x∗(1), x

∗
(2), · · · , x

∗
(K))

′ ∼ N(0, IK)

and E(e∗|x∗) = 0. If there is a constant C10 > 0 such that
∑K

k=1 θ
∗2
k ≤ C10, then under

Assumption 3, Assumption 4 holds.

Proof Similar to the proof of (3), it follows from Assumption 3, γ̂ = x∗
′
θ̂ and Ez∗(x

∗x∗
′
) =

IK that

λmax[θ̂(θ̂
′
θ̂)−2θ̂

′
] ≤ C−1

4 , a.s..
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And then, from the definition of ŵ∗, we have

‖ŵ∗‖22 = ‖[Ez∗(γ̂
′
γ̂)]−1Ez∗(γ̂

′
y∗)‖22

= ‖[θ̂′Ez∗(x∗x∗
′
)θ̂]−1θ̂

′
Ez∗(x

∗y∗)‖22
= Ez∗(x

∗′y∗)θ̂[θ̂
′
Ez∗(x

∗x∗
′
)θ̂]−2θ̂

′
Ez∗(x

∗y∗)

≤ C−1
4

K∑
k=1

[
Ez∗(x

∗
(k)y

∗)
]2

= C−1
4

K∑
k=1

{
Ez∗
[
x∗(k)(

K∑
j=1

x∗(j)θ
∗
j + e∗)

]}2

= C−1
4

K∑
k=1

[ K∑
j=1

θ∗jEz∗(x
∗
(k)x

∗
(j)) + Ez∗(x

∗
(k)e
∗)
]2

= C−1
4

K∑
k=1

θ∗2k

≤ C−1
4 C10, a.s..

Similarly, we have ‖ŵ−n∗‖22 ≤ C
−1
4 C10 a.s..

Appendix B. Proofs of Theorems

Proof of Theorem 13: We first prove 1). Let (ĉ1, ĉ2, ..., ĉM )
′

= P̂
′
ŵ0 and (d̂1, d̂2, ..., d̂M )

′
=

P̂
′
ŵ∗. Then, we have

M̂1(λn) = ‖Ẑŵ0 − Ẑŵ∗‖22 + ‖Ẑŵ∗ − ŵ∗‖22

=
M∑
m=1

(ĉm − d̂m)2ζ̂2
m

(λn + ζ̂m)2
+

M∑
m=1

d̂2
m(

ζ̂m

λn + ζ̂m
− 1)2

=
M∑
m=1

(ĉm − d̂m)2ζ̂2
m

(λn + ζ̂m)2
+

M∑
m=1

d̂2
mλ

2
n

(λn + ζ̂m)2

and

d

dλn
M̂1(λn) =

M∑
m=1

−2(ĉm − d̂m)2ζ̂2
m

(λn + ζ̂m)3
+

M∑
m=1

2d̂2
mλnζ̂m

(λn + ζ̂m)3
.

From

M∑
m=1

(ĉm − d̂m)2ζ̂2
m

(λn + ζ̂m)3

≥ 1

λn + ζ̂M

M∑
m=1

(ĉm − d̂m)2ζ̂2
m

(λn + ζ̂m)2
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=
1

λn + ζ̂M
‖Ẑ(ŵ0 − ŵ∗)‖22,

we see that when ŵ0 6= ŵ∗,
∑M

m=1
(ĉm−d̂m)2ζ̂2m

ζ̂3m
> 0. So we have λ̂n > 0 and M̂1(λ̂n) < M̂1(0)

when ŵ0 6= ŵ∗.

Below we prove 2). Let (c̄1, c̄2, ..., c̄M )
′

= P̄
′
w̄0 and (d̄1, d̄2, ..., d̄M )

′
= P̄

′
ŵ∗. Then, we

have

M̄1(λn) = ‖Z̄w̄0 − Z̄ŵ∗‖22 + ‖Z̄ŵ∗ − ŵ∗‖22

=
M∑
m=1

(c̄m − d̄m)2ζ̄2
m

(λn + ζ̄m)2
+

M∑
m=1

d̄2
m(

ζ̄m
λn + ζ̄m

− 1)2

=
M∑
m=1

(c̄m − d̄m)2ζ̄2
m

(λn + ζ̄m)2
+

M∑
m=1

d̄2
mλ

2
n

(λn + ζ̄m)2

and

d

dλn
M̄1(λn) =

M∑
m=1

−2(c̄m − d̄m)2ζ̄2
m

(λn + ζ̄m)3
+

M∑
m=1

2d̄2
mλnζ̄m

(λn + ζ̄m)3
.

Similarly, from

M∑
m=1

(c̄m − d̄m)2ζ̄2
m

(λn + ζ̄m)3

≥ 1

λn + ζ̄M

M∑
m=1

(c̄m − d̄m)2ζ̄2
m

(λn + ζ̄m)2

=
1

λn + ζ̄M
‖Z̄(w̄0 − ŵ∗)‖22,

we see that when w̄0 6= ŵ∗,
∑M

m=1
(c̄m−d̄m)2ζ̄2m

ζ̄3m
> 0. So we have λ̄n > 0 and M̄1(λ̄n) < M̄1(0)

when w̄0 6= ŵ∗. �
Proof of Theorem 14: We first prove that C(w, S) is an AMER. It follows from Assump-
tion 5 and Lemma 25 that

ES [F̂ (ŵ, S)− F̂ (w̃, S)]

= ES [F̂ (ŵ, S)− 1

n
C(ŵ, S) +

1

n
C(ŵ, S)− F̂ (w̃, S)]

≤ ES [F̂ (ŵ, S)− 1

n
C(ŵ, S) +

1

n
C(w̃, S)− F̂ (w̃, S)]

= ES

(2σ2w̃
′
κ

n
+
λnw̃

′
w̃

n
− 2σ2ŵ

′
κ

n
− λnŵ

′
ŵ

n

)
≤ 4σ2B

1
2
2 KM

1
2 (1 + n−2K2M)

1
2

n
+

2B2λn(1 + n−2K2M)

n
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= O[n−1 max(λn,KM
1
2 )].

So C(w, S) is an AMER with rate n−1 max(λn,KM
1
2 ). Next, we prove that J(w, S) is an

AMER. It follows from Lemmas 20, 21 and 25 that

‖θ̂(w̄)‖22 =

M∑
m=1

M∑
t=1

w̄mw̄tθ̂
′
mπ
′
mπtθ̂t

≤
M∑
m=1

M∑
t=1

|w̄mw̄t||θ̂
′
mπ
′
mπtθ̂t|

≤ max
1≤m≤M

max
1≤t≤M

|θ̂′mπ
′
mπtθ̂t|

M∑
m=1

M∑
t=1

|w̄mw̄t|

≤ max
1≤m≤M

max
1≤t≤M

‖θ̂m‖2‖θ̂t‖2
( M∑
m=1

|w̄m|
)2

= M max
1≤m≤M

‖θ̂m‖22
M∑
m=1

w̄2
m

≤ B1B2M,a.s. (19)

and

ES [‖θ̂(w̄)− θ̂−n(w̄)‖22]

= ES

[ M∑
m=1

M∑
t=1

w̄mw̄t(θ̂m − θ̂−nm )
′
π
′
mπt(θ̂t − θ̂−nt )

]
≤ ES

( M∑
m=1

M∑
t=1

|w̄mw̄t||(θ̂m − θ̂−nm )
′
π
′
mπt(θ̂t − θ̂−nt )|

)
≤ ES

( M∑
m=1

M∑
t=1

|w̄mw̄t|‖θ̂m − θ̂−nm ‖2‖θ̂t − θ̂−nt ‖2
)

≤MES

(
max

1≤m≤M
max

1≤t≤M
‖θ̂m − θ̂−nm ‖2‖θ̂t − θ̂−nt ‖2

M∑
m=1

w̄2
m

)
≤ B2MES

(
max

1≤m≤M
‖θ̂m − θ̂−nm ‖22

)
= O(n−2K2M). (20)

In a similar way to (19), we obtain

‖θ̂−n(w̄)‖22 ≤ B1B2M,a.s..

Further, from Assumption 2, we have

ES

{
‖xn[2yn − x

′
nθ̂(w̄)− x′nθ̂−n(w̄)]‖22

}
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=
K∑
k=1

ES

{
x2

(k)n[2yn − x
′
nθ̂(w̄)− x′nθ̂−n(w̄)]2

}
≤ C2

3KES

{
[2yn − x

′
nθ̂(w̄)− x′nθ̂−n(w̄)]2

}
≤ C2

3KES

{
12y2

n + 3[x
′
nθ̂(w̄)]2 + 3[x

′
nθ̂
−n(w̄)]2

}
≤ C2

3KES [12y2
n + 3‖xn‖22‖θ̂(w̄)‖22 + 3‖xn‖22‖θ̂−n(w̄)‖22]

≤ 12C2C
2
3K + 6C4

3B1B2K
2M.

Therefore, we obtain

|ES [F̂ (w̄, S)− 1

n
J(w̄, S)]|

=
∣∣∣ES{ 1

n

n∑
i=1

[
[yi − x

′
iθ̂(w̄)]2 − [yi − x

′
iθ̂
−i(w̄)]2

]
− λnw̄

′
w̄

n

}∣∣∣
=
∣∣∣ES{[yn − x

′
nθ̂(w̄)]2 − [yn − x

′
nθ̂
−n(w̄)]2

}
− ES(

λnw̄
′
w̄

n
)
∣∣∣

=
∣∣∣ES{[2yn − x

′
nθ̂(w̄)− x′nθ̂(−n)(w̄)][x

′
nθ̂
−n(w̄)− x′nθ̂(w̄)]

}
− ES(

λnw̄
′
w̄

n
)
∣∣∣

≤
√
ES [‖xn(2yn − x′nθ̂(w̄)− x′nθ̂−n(w̄)‖22]

√
ES [‖θ̂(w̄)− θ̂−n(w̄)‖22] +B2n

−1λn

= O[n−1 max(λn,K
2M)]. (21)

In a similar way, it is seen that

|ES [
1

n
JS(w̃)− F̂ (w̃, S)]| = O[n−1 max(λn,K

2M)].

Thus, we have

ES [F̂ (w̄, S)− F̂ (w̃, S)]

= ES [F̂ (w̄, S)− 1

n
J(w̄, S) +

1

n
J(w̄, S)− F̂ (w̃, S)]

≤ ES [F̂ (w̄, S)− 1

n
J(w̄, S) +

1

n
J(w̃, S)− F̂ (w̃, S)]

= O[n−1 max(λn,K
2M)].

So J(w, S) is an AMER with rate n−1 max(λn,K
2M). �

Proof of Theorem 15: We first prove that C(w, S) has PLoo and FLoo stability. From
Lemma 26, we have

ES [‖θ̂(ŵ)− θ̂(ŵ−n)‖22]

= ES

[ M∑
m=1

M∑
t=1

(ŵm − ŵ−nm )(ŵt − ŵ−nt )θ̂
′
mπ
′
mπtθ̂t

]
≤ ES

[ M∑
m=1

M∑
t=1

|(ŵm − ŵ−nm )(ŵt − ŵ−nt )||θ̂′mπ
′
mπtθ̂t|

]
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≤ ES
[ M∑
m=1

M∑
t=1

|(ŵm − ŵ−nm )(ŵt − ŵ−nt )|‖θ̂m‖2‖θ̂t‖2
]

≤MES

[
max

1≤m≤M
max

1≤t≤M
‖θ̂m‖2‖θ̂t‖2

M∑
m=1

(ŵm − ŵ−nm )2
]

≤ B1MES

[ M∑
m=1

(ŵm − ŵ−nm )2
]

= O(n−2K4M3). (22)

Similar to (21), we see that∣∣∣ES{[2yn − x
′
nθ̂
−n(ŵ−n)− x′nθ̂(ŵ)][x

′
nθ̂
−n(ŵ−n)− x′nθ̂(ŵ−n)]

}∣∣∣ = O(n−1K2M)

and ∣∣∣ES{[2yn − x
′
nθ̂
−n(ŵ−n)− x′nθ̂(ŵ)][x

′
nθ̂(ŵ

−n)− x′nθ̂(ŵ)]
}∣∣∣ = O(n−1K3M2).

Noting that

|ES
{

[yn − x
′
nθ̂
−n(ŵ−n)]2 − [yn − x

′
nθ̂(ŵ)]2

}
|

= |ES
{

[2yn − x
′
nθ̂
−n(ŵ−n)− x′nθ̂(ŵ)][x

′
nθ̂(ŵ)− x′nθ̂−n(ŵ−n)]

}
|

≤ |ES
{

[2yn − x
′
nθ̂
−n(ŵ−n)− x′nθ̂(ŵ)][x

′
nθ̂
−n(ŵ−n)− x′nθ̂(ŵ−n)]

}
|

+ |ES
{

[2yn − x
′
nθ̂
−n(ŵ−n)− x′nθ̂(ŵ)][x

′
nθ̂(ŵ

−n)− x′nθ̂(ŵ)]
}
|,

we have
ES

{
[yn − x

′
nθ̂
−n(ŵ−n)]2 − [yn − x

′
nθ̂(ŵ)]2

}
= O(n−1K3M2).

In a similar way, we obtain

ES,z∗
{

[y∗ − x∗′ θ̂−n(ŵ−n)]2 − [y∗ − x∗′ θ̂(ŵ)]2
}

= O(n−1K3M2).

Therefore, from Definitions 3-4, C(w, S) has PLoo and FLoo stability with rate n−1K3M2.
Next, we prove that J(w, S) has PLoo and FLoo stability. From Lemma 27, we have

|ES
{

[2yn − x
′
nθ̂
−n(w̄−n)− x′nθ̂(w̄)][x

′
nθ̂
−n(w̄−n)− x′nθ̂(w̄−n)]

}
| = O(n−1K2M)

and

|ES
{

[2yn − x
′
nθ̂
−n(w̄−n)− x′nθ̂(w̄)][x

′
nθ̂(w̄

−n)− x′nθ̂(w̄)]
}
| = O(n−1K3M2).

Further, since

|ES
{

[yn − x
′
nθ̂
−n(w̄−n)]2 − [yn − x

′
nθ̂(w̄)]2

}
|
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= |ES
{

[2yn − x
′
nθ̂
−n(w̄−n)− x′nθ̂(w̄)][x

′
nθ̂(w̄)− x′nθ̂−n(w̄−n)]

}
|

≤ |ES
{

[2yn − x
′
nθ̂
−n(w̄−n)− x′nθ̂(w̄)][x

′
nθ̂
−n(w̄−n)− x′nθ̂(w̄−n)]

}
|

+ |ES
{

[2yn − x
′
nθ̂
−n(w̄−n)− x′nθ̂(w̄)][x

′
nθ̂(w̄

−n)− x′nθ̂(w̄)]
}
|,

it is seen that

ES

{
[yn − x

′
nθ̂
−n(w̄−n)]2 − [yn − x

′
nθ̂(w̄)]2

}
= O(n−1K3M2).

In a similar way, we obtain

ES,z∗
{

[y∗ − x∗′ θ̂−n(w̄−n)]2 − [y∗ − x∗′ θ̂(w̄)]2
}

= O(n−1K3M2).

Thus, from Definitions 3-4, J(w, S) has PLoo and FLoo stability with rate n−1K3M2.
Finally, we prove that F (w, S) has PLoo and FLoo stability. Similarly, it follows from

Lemma 28 that

|ES
{

[2yn − x
′
nθ̂
−n(ŵ−n∗)− x′nθ̂(ŵ∗)][x

′
nθ̂
−n(ŵ−n∗)− x′nθ̂(ŵ−n∗)]

}
| = O(n−1K2M)

and

|ES
{

[2yn − x
′
nθ̂
−n(ŵ−n∗)− x′nθ̂(ŵ∗)][x

′
nθ̂(ŵ

−n∗)− x′nθ̂(ŵ∗)]
}
| = O(n−1K3M2).

Since

|ES
{

[yn − x
′
nθ̂
−n(ŵ−n∗)]2 − [yn − x

′
nθ̂(ŵ

∗)]2
}
|

= |ES
{

[2yn − x
′
nθ̂
−n(ŵ−n∗)− x′nθ̂(ŵ∗)][x

′
nθ̂(ŵ

∗)− x′nθ̂−n(ŵ−n∗)]
}
|

≤ |ES
{

(2yn − x
′
nθ̂
−n(ŵ−n∗)− x′nθ̂(ŵ∗)][x

′
nθ̂
−n(ŵ−n∗)− x′nθ̂(ŵ−n∗)]

}
|

+ |ES
{

[2yn − x
′
nθ̂
−n(ŵ−n∗)− x′nθ̂(ŵ∗)][x

′
nθ̂(ŵ

−n∗)− x′nθ̂(ŵ∗)]
}
|,

we see that

ES

{
[yn − x

′
nθ̂
−n(ŵ−n∗)]2 − [yn − x

′
nθ̂(ŵ

∗)]2
}

= O(n−1K3M2).

In a similar way, we obtain

ES,z∗
{

[y∗ − x∗′ θ̂−n(ŵ−n∗)]2 − [y∗ − x∗′ θ̂(ŵ∗)]2
}

= O(n−1K3M2).

So from Definitions 3-4, F (w, S) has PLoo and FLoo stability with rate n−1K3M2.
�

Proof of Theorem 17: From Assumption 5, Assumption 6 and Lemma 25, we know that

ES{Λ2
max[Ez∗(γ̂

′
γ̂)− Ω̂

′
Ω̂/n]‖ŵ‖22} = o(n−1K),

(λn/n)2ES(‖ŵ‖22) = o(n−1K)
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and
ES(‖σ2κ/n‖22) = o(n−1K).

Then, from

ES [F (ŵ, S)− F (ŵ∗, S)] = ES [(ŵ − ŵ∗)′Ez∗(γ̂
′
γ̂)(ŵ − ŵ∗)]

and

C4ES [(ŵ − ŵ∗)′Ez∗(γ̂
′
γ̂)(ŵ − ŵ∗)]

≤ ES{λmin[Ez∗(γ̂
′
γ̂)](ŵ − ŵ∗)′Ez∗(γ̂

′
γ̂)(ŵ − ŵ∗)}

≤ ES [‖Ez∗(γ̂
′
γ̂)(ŵ − ŵ∗)‖22]

= ES [‖Ez∗(γ̂
′
γ̂)ŵ − (Ω̂

′
Ω̂ + λnIM )ŵ/n+ (Ω̂

′
Ω̂ + λnIM )ŵ/n− Ez∗(γ̂

′
γ̂)ŵ∗‖22]

= ES{‖[Ez∗(γ̂
′
γ̂)− (Ω̂

′
Ω̂/n+ λn/nIM )]ŵ + (θ̂

′
X
′
My − σ2κ)/n− θ̂′Ez∗(x∗y∗)‖22}

= ES{‖[Ez∗(γ̂
′
γ̂)− (Ω̂

′
Ω̂/n+ λn/nIM )]ŵ + θ̂

′
[X
′
My/n− Ez∗(x∗y∗)]− σ2κ/n‖22}

≤ 4ES{‖[Ez∗(γ̂
′
γ̂)− Ω̂

′
Ω̂/n]ŵ‖22}+ 4(λn/n)2ES(‖ŵ‖22)

+ 4ES{‖θ̂
′
[X
′
My/n− Ez∗(x∗y∗)]‖22}+ 4ES(‖σ2κ/n‖22)

≤ 4ES{Λ2
max[Ez∗(γ̂

′
γ̂)− Ω̂

′
Ω̂/n]‖ŵ‖22}+ 4(λn/n)2ES(‖ŵ‖22)

+ 4ES{‖θ̂
′
[X
′
My/n− Ez∗(x∗y∗)]‖22}+ 4ES(‖σ2κ/n‖22),

we see that proving ES{‖θ̂
′
[X
′
My/n − Ez∗(x∗y∗)]‖22} = O(n−1KM) is sufficient to demon-

strate that C(w, S) is consistent with rate O(n−1KM). It follows from Lemma 20 and
Marcinkiewicz-Zygmund-Burkholder inequality in Lin and Bai (2010) that

ES{‖θ̂
′
[X
′
My/n− Ez∗(x∗y∗)]‖22}

≤ ES [λmax(θ̂θ̂
′
)‖X ′My/n− Ez∗(x∗y∗)‖22]

≤ B1MES [‖X ′My/n− Ez∗(x∗y∗)‖22]

= B1M

K∑
k=1

ES

{[ 1

n

n∑
i=1

[x(k)iyi − Ez∗(x∗(k)y
∗)]
]2}

≤ 4B1n
−2KM max

1≤k≤K
ES

{ n∑
i=1

[x(k)iyi − Ez∗(x∗(k)y
∗)]2
}

= 4B1n
−1KM max

1≤k≤K
var(x(k)iyi)

≤ 4B1C6n
−1KM.

Thus, we have completed the proof of Theorem 17. �
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Appendix C. Figures and Tables
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Figure 1: The mean of MSEs under homoskedastic errors with α = 0.5 for nested setting
of simulation study
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Figure 2: The mean of MSEs under homoskedastic errors with α = 1.0 for nested setting
of simulation study
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Figure 3: The mean of MSEs under homoskedastic errors with α = 1.5 for nested setting
of simulation study
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Figure 4: The mean of MSEs under heteroskedastic errors with α = 0.5 for nested setting
of simulation study
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Figure 5: The mean of MSEs under heteroskedastic errors with α = 1.0 for nested setting
of simulation study
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Figure 6: The mean of MSEs under heteroskedastic errors with α = 1.5 for nested setting
of simulation study
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Figure 7: The mean of MSEs under homoskedastic errors with α = 0.5 for non-nested
setting of simulation study

51



Zhu and Zou

n = 500 n = 700

n = 100 n = 300

0.25 0.50 0.75 0.25 0.50 0.75

1.25

1.50

1.75

1.25

1.50

1.75

1.2

1.4

1.6

1.8

1.25

1.50

1.75

The square of R

MS
E

Method
AI
Cp

BI
SA

SB
MM

RM
GM

JM
RJ

Figure 8: The mean of MSEs under homoskedastic errors with α = 1.0 for non-nested
setting of simulation study
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Figure 9: The mean of MSEs under homoskedastic errors with α = 1.5 for non-nested
setting of simulation study
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Figure 10: The mean of MSEs under heteroskedastic errors with α = 0.5 for non-nested
setting of simulation study
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n = 500 n = 700

n = 100 n = 300

0.25 0.50 0.75 0.25 0.50 0.75

1.2

1.4

1.6

1.2

1.4

1.6

1.8

1.2

1.3

1.4

1.5

1.6

1.2

1.4

1.6

The square of R

MS
E

Method
AI
Cp

BI
SA

SB
MM

RM
GM

JM
RJ

Figure 11: The mean of MSEs under heteroskedastic errors with α = 1.0 for non-nested
setting of simulation study
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Figure 12: The mean of MSEs under heteroskedastic errors with α = 1.5 for non-nested
setting of simulation study
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Figure 13: The box plot of MSEs in Case 1 of real data analysis
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Figure 14: The box plot of MSEs in Case 2 of real data analysis
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Table 1: The mean, median and BPR of MSEs in Case 1 of real data analysis

n AI Cp BI SA SB MM RM GM JM RJ

110

Mean 0.190 0.183 0.184 0.181 0.178 0.170 0.163 0.179 0.169 0.163
Median 0.182 0.177 0.182 0.175 0.177 0.168 0.162 0.174 0.167 0.162

BPR 0.009 0.012 0.016 0.037 0.043 0.040 0.345 0.034 0.053 0.410

210

Mean 0.161 0.160 0.170 0.158 0.166 0.155 0.152 0.156 0.155 0.152
Median 0.161 0.160 0.169 0.158 0.165 0.155 0.152 0.156 0.155 0.152

BPR 0.008 0.008 0.000 0.118 0.020 0.033 0.383 0.078 0.035 0.320

320

Mean 0.152 0.152 0.157 0.150 0.155 0.149 0.147 0.149 0.149 0.147
Median 0.152 0.152 0.156 0.151 0.155 0.149 0.147 0.149 0.149 0.148

BPR 0.033 0.005 0.045 0.143 0.033 0.030 0.328 0.083 0.015 0.288

420

Mean 0.151 0.151 0.150 0.149 0.151 0.148 0.147 0.148 0.148 0.147
Median 0.149 0.149 0.149 0.147 0.150 0.146 0.145 0.146 0.146 0.145

BPR 0.018 0.008 0.130 0.188 0.050 0.013 0.223 0.068 0.045 0.260

Table 2: The mean, median and BPR of MSE in Case 2 of real data analysis

n AI Cp BI SA SB MM RM GM JM RJ

110

Mean 0.169 0.168 0.172 0.163 0.164 0.159 0.153 0.161 0.159 0.153
Median 0.165 0.164 0.170 0.160 0.163 0.158 0.152 0.159 0.158 0.152

BPR 0.019 0.000 0.000 0.082 0.036 0.011 0.477 0.014 0.027 0.334

210

Mean 0.151 0.151 0.157 0.148 0.152 0.148 0.145 0.148 0.148 0.145
Median 0.152 0.151 0.157 0.149 0.152 0.149 0.144 0.149 0.148 0.144

BPR 0.010 0.000 0.003 0.145 0.018 0.003 0.568 0.003 0.010 0.243

320

Mean 0.147 0.147 0.152 0.144 0.148 0.145 0.142 0.145 0.145 0.142
Median 0.147 0.147 0.152 0.145 0.147 0.145 0.143 0.145 0.145 0.143

BPR 0.013 0.000 0.000 0.283 0.025 0.000 0.428 0.003 0.013 0.238

420

Mean 0.144 0.144 0.149 0.141 0.145 0.142 0.140 0.142 0.142 0.140
Median 0.143 0.143 0.148 0.141 0.143 0.142 0.140 0.143 0.142 0.140

BPR 0.015 0.000 0.003 0.338 0.040 0.000 0.310 0.000 0.015 0.280
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