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Abstract

We investigate an extension of classical empirical risk minimization, where the hypoth-
esis space consists of a random subspace within a given Hilbert space. Specifically, we
examine the Nyström method where the subspaces are defined by a random subset of the
data. This approach recovers Nyström approximations used in kernel methods as a specific
case. Using random subspaces naturally leads to computational advantages, but a key
question is whether it compromises the learning accuracy. Recently, the tradeoffs between
statistics and computation have been explored for the square loss and self-concordant losses,
such as the logistic loss. In this paper, we extend these analyses to general convex Lipschitz
losses, which may lack smoothness, such as the hinge loss used in support vector machines.
Our main results show the existence of various scenarios where computational gains can
be achieved without sacrificing learning performance. When specialized to smooth loss
functions, our analysis recovers most previous results. Moreover, it allows to consider clas-
sification problems and translate the surrogate risk bounds into classification error bounds.
Indeed, this gives the opportunity to compare the effect of Nyström approximations when
combined with different loss functions such as the hinge or the square loss.

Keywords: statistical learning theory, classification, Nyström approximation, kernel
methods

1. Introduction

Despite excellent practical performances, state of the art machine learning (ML) meth-
ods often require huge computational resources, motivating the search for more efficient
solutions. This has led to a number of new results in optimization (Johnson and Zhang,
2013; Schmidt et al., 2017), as well as the development of approaches mixing linear algebra
and randomized algorithms (Mahoney, 2011; Drineas and Mahoney, 2005; Woodruff, 2014;
Calandriello et al., 2017).
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While these techniques are applied to empirical objectives, in the context of learning it is
natural to study how different numerical solutions affect statistical accuracy. Interestingly,
it is now clear that there is a whole set of problems and approaches where computational
savings do not lead to any degradation in terms of learning performance (Rudi et al., 2015;
Bach, 2017; Bottou and Bousquet, 2008; Sun et al., 2018; Li et al., 2019; Rudi and Rosasco,
2017; Calandriello and Rosasco, 2018).

Here, we follow this line of research and study an instance of regularized empirical risk
minimization where, given a fixed high or infinite dimensional hypothesis space, the search
for a solution is restricted to a smaller, possibly random, subspace. This is equivalent to
considering sketching operators (Kpotufe and Sriperumbudur, 2019), or equivalently regu-
larization with random projections (Woodruff, 2014). For infinite dimensional hypothesis
spaces, it includes Nyström methods used for kernel methods (Smola and Schölkopf, 2000)
and Gaussian processes (Williams and Seeger, 2001). Recent works in statistical learning
analyzed this approach for smooth loss functions (Rudi et al., 2015; Bach, 2013; Marteau-
Ferey et al., 2019), whereas here we want to extend these results to convex, Lipschitz but
possibly non smooth losses.

In fact, for the square loss, all relevant quantities (i.e. loss function, excess risk) are
quadratic, while the regularized estimator has an explicit expression, allowing for an explicit
analysis based on linear algebra and matrix concentration (Tropp, 2012). Similarly, for the
logistic loss the analysis can be reduced to the quadratic case through a local quadratic
approximation based on the self-concordance property (Bach, 2010). Instead, convex, Lip-
schitz but non-smooth losses, such as the hinge loss, do not allow for such a quadratic
approximation and we need to combine empirical process theory (Boucheron et al., 2013)
with results for random projections (Rudi et al., 2015). In particular, fast rates require con-
sidering localized complexity measures (Steinwart and Christmann, 2008; Bartlett et al.,
2005; Koltchinskii et al., 2006) and sub-gaussian inputs (Koltchinskii and Lounici, 2014;
Vershynin, 2018). We note that, related ideas have been used to extend results for random
features from the square loss (Rudi and Rosasco, 2017) to general loss functions (Li et al.,
2019; Sun et al., 2018).

Our main interest is in characterizing the relation between computational efficiency and
statistical accuracy, while giving a unified study of the Nyström method including both
smooth and non-smooth losses. We do so studying the interplay between regularization,
subspace size and the different parameters describing the hardness of the problem. Our
results show that also for convex, Lipschitz losses there are settings in which the best known
statistical bounds can be obtained while substantially reducing computational requirements.
Interestingly, these effects are relevant but also less marked than for smooth losses. In
particular, some form of adaptive sampling seems to be needed to ensure no loss of accuracy
and achieve sharp learning bounds. More than that, differently from quadratic loss, also a
fast eigenvalues decay of the covariance operator is fundamental to have some computational
savings.

As a byproduct of the aforementioned extension, we consider the Nyström method in
the context of binary classification when the relevant error measure is the misclassification
risk. Indeed, in this case convex loss functions are used as surrogate to 0-1 loss function
and the corresponding excess risk bounds can be used to derive bounds on the excess
misclassification risk (Bartlett et al., 2006). Since the latter is a weaker error measure is
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then natural to ask how the Nyström method can affect the classification accuracy and to
compare different loss functions in this context. Indeed, our results show that the hinge
loss can always achieve a better rate than the one derived by smooth loss functions. As
regards computational savings, the comparison of the two upper bounds for hinge and
quadratic losses suggests that hinge loss is cheaper only for certain classes of hard problems,
characterized by a high complexity.

We note that a shorter version of the current paper has appeared in (Della Vecchia et al.,
2021). Here we further develop this analysis, in particular extending our results to square
and logistic losses, deriving classification risk bounds under margin assumption and finally
compare the obtained results.

The rest of the paper is organized as follow. In Section 2, we introduce the setting and
the main notation. In Section 3, we review the ERM approach and in Section 4 we introduce
ERM on random subspaces and our setting. In Section 5, we present and discuss the main
results and defer the proofs to the appendix. In Section 6, we extend our previous results
to smooth losses. In Section 7 we analyse the classification risk with 0− 1 loss and discuss
the comparison between the derived classification bounds from hinge and square losses. In
Section 8, we collect some simple numerical results.

Main contributions In Section 3.2, Theorem 1 provides a finite sample bound of the
excess risk for the regularized ERM in the misspecified case. This result was already es-
tablished for bounded random variables, but had never been proved in the sub-gaussian
case. Our proof in Appendix A also holds for the bounded case. In Section 4.2, Theorem 7
presents the first bound on the excess risk for generic convex loss functions when using the
Nyström method. Under certain eigenvalue decay conditions of the covariance operator,
this result leads to significant computational benefits while preserving the optimal rates
achieved by standard ERM. However, the bound is suboptimal in terms of the required
number of Nyström points compared to known bounds for smooth losses. Our refined anal-
ysis in Sections 5 and 6 overcomes this issue. Theorem 10, the most novel aspect of our
work, provides the first optimal excess risk bound for the Nyström method for generic con-
vex, possibly non-smooth, losses in the sub-gaussian case. We demonstrate that ERM with
the Nyström algorithm can achieve fast rates under suitable eigenvalue decay conditions.
Our result matches those obtained using random features but experiences a milder satu-
ration effect, allowing for further improvements in the convergence rate with an increased
number of sampled points. When adapting this result to smooth losses, Theorem 12 finally
matches the known optimal results in (Rudi et al., 2015), while extending that analysis
also to fast rates. In Section 7 we present a first comparison between the obtained results
for hinge and square surrogates when considering classification error and under certain low
noise condition.

2. Setting and notations

We start by introducing the learning setting and the assumptions we consider. Let H be a
real separable Hilbert space with scalar product 〈·, ·〉 and Y a Polish space, i.e a separable
complete metrizable topological space. Let (X,Y ) be a pair of random variables taking
value in H and Y, respectively, and denote by P their joint distribution defined on the
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Borel σ-algebra of H× Y. Let ` : Y × R→ [0,∞] be a loss function and

L : H → [0,∞) L(w) =

∫
H×Y

`(y, 〈w, x〉)dP (x, y) = E[`(Y, 〈w,X〉)]

the corresponding expected risk. Given w ∈ H, `(y, 〈w, x〉) can be viewed as the error
made in predicting y with the linear function 〈w, x〉, while L(w) can be interpreted as the
expected loss on future data.

In this setting, we are interested in solving the problem

inf
w∈H

L(w), (1)

when the distribution P is only known through a training set (X1, Y1), . . . , (Xn, Yn) com-
posed by n copies of (X,Y ). Since the data are finite, we cannot expect to solve the
problem exactly. Given an empirical approximate solution ŵ, a natural error measure is
the the excess risk

L(ŵ)− inf
w∈H

L(w),

which is a random variable through its dependence on ŵ, and hence on the data (Xi, Yi)
n
i=1.

We make the following assumptions on the data distributions and the loss.

Assumption 1 There exists C > 0 such that X is a C-sub-gaussian centered random
vector.

We recall that a random vector X taking value in a Hilbert space H is called C-sub-gaussian
if

‖〈X,u〉‖p 6 C
√
p‖〈X,u〉‖2 ∀u ∈ H, p > 2, (2)

where ‖〈X,u〉‖pp = E [|〈X,u〉|p] (Koltchinskii and Lounici, 2014). Note that (2) implies
that for any vector u ∈ H, the projection 〈X,u〉 is a real sub-gaussian random variable
(Vershynin, 2018), but this latter condition is not sufficient since the sub-gaussian norm

‖ 〈X,u〉 ‖ψ2 = sup
p>2

‖〈X,u〉‖p√
p

(3)

should be bounded from above by the L2-norm ‖〈X,u〉‖2. In particular, we note that, in
general, bounded random vectors in H are not sub-gaussian.

Under the above conditions, E[‖X‖2] is finite, so that the (non-centered) covariance
operator

Σ : H → H Σ = E[X ⊗X]

is a trace-class positive operator. We define the effective rank of Σ as

rΣ =
TrΣ

‖Σ‖
(4)

where Tr Σ = E[‖X‖2] is the trace of Σ.
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We define the so-called effective dimension (Zhang, 2005; Caponnetto and De Vito,
2007), for α > 0, as

dα = Tr((Σ + αI)−1Σ) =
∑
j

σj
σj + α

(5)

where (σj)j are the strictly positive eigenvalues of Σ, with eigenvalues counted with respect
to their multiplicity and ordered in a non-increasing way, and (uj) is the corresponding
family of eigenvectors. Note that dα is always finite since Σ is trace class.

The next assumption is on the loss function.

Assumption 2 (Lipschitz loss) The loss function ` : Y × R → [0,∞) is convex and
Lipschitz in its second argument, namely there exists G > 0 such that

|`(y, a)− `(y, a′)| ≤ G|a− a′| ∀y ∈ Y and a, a′ ∈ R. (6)

We also assume `0 = supy∈Y `(y, 0) for all y ∈ Y.

Under the above condition, the expected risk L(w) is finite, convex and Lipschitz.
We next provide some relevant examples. The classical linear regression problem corre-

sponds to the choice H = Rd and Y = R. Another example is provided by kernel methods
(Steinwart and Christmann, 2008).

Example 1 The input variable X takes value in an abstract measurable set X . We fix a
reproducing kernel Hilbert space on X with (measurable) reproducing kernel K : X ×X → R.
By mapping the inputs from X to H through the feature map

H 3 x 7→ K(·, x) = Kx ∈ H,

we can always identify X with KX , which is a random variable taking value in H.

We now provide some examples of loss functions.

Example 2 The main examples are

(a) hinge loss:
`(y, a) = |1− ya|+ = max{0, 1− ya} Y = {−1, 1} (7)

which is convex, but non-differentiable with G = 1 and `0 = 1;

(b) logistic loss
`(y, a) = log(1 + e−ya) Y = {−1, 1} (8)

which is convex and differentiable with G = 1 and `0 = log 2;

(c) square loss
`(y, a) = (y − a)2 Y ⊆ [−M,M ], (9)

which is convex and differentiable with Gloc = 2M (locally Lipschitz with a ∈ [−M,M ])
and `0 = M2.

For classification, where Y = {−1, 1}, a natural loss function is given by the 0− 1 loss

`0−1(y, a) := 1(−∞,0](y sign a),

which is not convex.
In the next subsection we introduce the main notation.
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2.1 Notation

For the reader’s convenience we collect the main notation we introduced in the paper. We
denote with the “hat”, e.g. ·̂, random quantities depending on the data. Given a linear
operator A we denote by A> its adjoint (transpose for matrices). For any n ∈ N, we
denote by 〈·, ·〉n , ‖·‖n the inner product and Euclidean norm in Rn. Given two quantities
a, b (depending on some parameters), the notation a . b, or a = O(b) means that there
exists a constant C such that a 6 Cb. We denote by PX the marginal distribution of X and
by P (·|x) is the conditional distribution of Y given X = x. The conditional probability is
well-defined since H is separable and Y is a Polish space (Steinwart and Christmann, 2008).

Table 1: Definition of the main quantities used in the paper

Definition

L(w)
∫
H×Y `(y, 〈w, x〉)dP (x, y)

Lλ(w) L(w) + λ‖w‖2

L̂(w) n−1
∑n

i=1 `(yi, 〈w, xi〉)
L̂λ(w) L̂(w) + λ‖w‖2
w∗ arg minw∈H L(w)
wλ arg minw∈H Lλ(w)

ŵλ arg minw∈H L̂λ(w)
f∗(x) arg mina∈R

∫
Y `(y, a)dP (y|x)

Bm span{x̃1, . . . , x̃m}
βλ,m arg minβ∈Bm Lλ(β)

β̂λ,m arg minβ∈Bm L̂λ(β)

Pm projection operator onto Bm

3. Empirical risk minimization

A classical approach to derive empirical solutions is based on replacing the expected risk
with the empirical risk L̂ : H → [0,∞) defined for all w ∈ H as

L̂(w) =
1

n

n∑
i=1

`(yi, 〈w, xi〉).

We consider the (regularized) empirical risk minimization (ERM) based on the solution of
the problem,

min
w∈H

L̂λ(w), L̂λ(w) = L̂(w) + λ ‖w‖2 , (10)

where λ > 0 is a positive regularization parameter. Since L̂λ : H → R is continuous
and strongly convex, there exists a unique minimizer ŵλ and, by the representer theorem
(Wahba, 1990; Schölkopf et al., 2001), there exists c ∈ Rn such that

ŵλ = X̂>c ∈ span{x1, . . . , xn}, (11)
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where X̂ : H → Rn denotes the input data matrix

(X̂w)i = 〈w, xi〉 i = 1, . . . , n, w ∈ H.

The explicit form of the coefficient vector c depends on the considered loss function. In
Section 3.1 we briefly recall some possible approaches to compute c, whereas in Section 3.2
we analyze the statistical properties of the above estimator.

Example 3 (Representer theorem for kernel machines) In the context of kernel meth-
ods, see Example 1, the above discussion, and in particular (11), can be easily adapted.
Indeed, the parameter w corresponds to a function f ∈ H in the RKHS, while the norm
‖ · ‖ is the RKHS norm ‖ · ‖H. Eq. (11) simply states that there exists constants ci such
that the solution of the regularized ERM can be written as f̂λ(x) =

∑n
i=1K(x, xi)ci ∈

span{Kx1 , . . . ,Kxn}.

3.1 Computational aspects

Problem (10) can be solved in many ways and we provide below some basic considerations.
If H is finite dimensional, gradient methods can be used. For example, the subgradient
method (Boyd and Vandenberghe, 2004) applied to (10) gives, for some suitable w0 and
step-size sequence (ηt)t,

wt+1 = wt − ηt

(
1

n

n∑
i=1

yixigi(wt) + 2λwt

)
, (12)

where for all i = 1, . . . , n, gi(w) ∈ ∂`(yi, 〈w, xi〉) is the subgradient of the map a 7→ `(yi, a)
evaluated at a = 〈w, xi〉, see (Rockafellar, 1970). The corresponding per iteration cost
is O(nd) in time and memory. A more refined accelerated version of this algorithm can
be found in (Tanji et al., 2023). When H is infinite dimensional a different approach is
possible, provided 〈x, x′〉 can be computed for all x, x′ ∈ H. For example, it is easy to prove
by induction that the iteration in (12) satisfies wt = X̂>ct+1, with

ct+1 = ct − ηt

(
1

n

n∑
i=1

yieigi(X̂
>ct) + 2λct

)
, (13)

and where e1, . . . , en is the canonical basis in Rn. The cost of the above iteration is O(n2CK)

for computing gi(w) ∈ ∂`
(
yi,
〈
X̂>ct, xi

〉)
= ∂`

(
yi,
∑n

j=1 〈xj , xi〉 (ct)i
)

, where CK is the

cost of evaluating the inner product. Also in this case, a number of approaches can be
considered, see e.g. (Steinwart and Christmann, 2008, Chap.11) and references therein. We
illustrate the above ideas for the hinge loss.

Example 4 (Hinge loss & SVM) Problem (10) with the hinge loss corresponds to sup-
port vector machines for classification. With this choice, ∂`(yi, 〈w, xi〉) = 0 if yi 〈w, xi〉 > 1,
∂`(yi, 〈w, xi〉) = [−1, 0] if yi 〈w, xi〉 = 1 and ∂`(yi, 〈w, xi〉) = −1 if yi 〈w, xi〉 < 1. In partic-
ular, in (13) we can take gi(w) = −1[yi〈w,xi〉≤1].
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3.2 Statistical analysis

In this section, we summarize the main statistical properties of the regularized ERM under
the sub-gaussian hypothesis in Assumption 1. In the following theorem we provide a finite
sample bound on the excess risk of ŵλ without assuming the existence of w∗ (which will
instead be assumed in Theorem 2 via Assumption 3). Towards this end, we introduce the
approximation error,

A(λ) = inf
w∈H

[L(w) + λ‖w‖2]− inf
w∈H

L(w) . (14)

Note that, if w∗ exists, then A(λ) 6 λ ‖w∗‖2. More generally, the approximation error
decreases with λ and learning rates can be derived assuming a suitable decay.

Theorem 1 Under Assumptions 1 and 2, fix λ > 0 and 0 < δ < 1. Then, with probability
at least 1− δ,

L(ŵλ)− inf
w∈H

L(w) <2A(λ) +
D2G2C2‖Σ‖((√rΣ +K)2 + (

√
rΣ +

√
log(1/δ))2)

4λn
+

+
DGC(

√
rΣ +K)‖Σ‖

1
2 +D`0(K +

√
log(1/δ))√

n
. (15)

where C and G are the constants defined respectively in (2) and (6), D is a numerical
constant and

K = Kλ,δ =
√

log(1 + log2(3 + `0/λ)) + log(1/δ) = O(
√

log log(3 + `0/λ) + log(1/δ)).

The theorem can be easily extended to non-centered sub-gaussian variables. Notice that
the same result is well known for bounded random variables; see, for example (Steinwart
and Christmann, 2008; Shalev-Shwartz et al., 2010). We are not aware of a reference for
the sub-gaussian case. In Appendix A we provide a simple self-contained proof, which also
holds true for the bounded case (Della Vecchia et al., 2021). It is based on the fact that
the excess risk bound for regularized ERM arises from a trade-off between an estimation
and an approximation error. Similar bounds in high-probability for ERM constrained to
the ball of radius R > ‖w∗‖ can be obtained through a uniform convergence argument over
such balls, see (Bartlett and Mendelson, 2002; Meir and Zhang, 2003; Kakade et al., 2009).
To apply this line of reasoning to regularized ERM, one could in principle use the fact
that by Assumption 2, ‖ŵλ‖ 6

√
`0/λ (see Appendix) (Steinwart and Christmann, 2008),

but this would yield a suboptimal dependence in λ. Finally, a similar rate, though only
in expectation, can be derived through a stability argument (Bousquet and Elisseeff, 2002;
Shalev-Shwartz et al., 2010).

The bound (55) shows that the learning rate depends on some a-priori assumption on the
distribution that allows control of the approximation error A(λ). The simplest assumption
is that the best in the model exists.

Assumption 3 There exists w∗ ∈ H such that L(w∗) = min
w∈H

L(w).

Under the above condition, we have the following result.

8



The Nyström method for convex loss functions

Theorem 2 Under Assumption 1, 2, and 3, take λ > 0 and 0 < δ < 1, then with probability
at least 1− δ:

L(ŵλ)− L(w∗) <λ‖w∗‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+

+
DGC(

√
rΣ +K)‖Σ‖

1
2 +D`0(K +

√
log(8/δ))√

n
+

+
DGC‖Σ‖

1
2 ‖w∗‖

(√
rΣ +

√
log(8/δ)

)
√
n

. (16)

Hence, let λ = λn � (DGC ‖Σ‖1/2 /‖w∗‖)
√

log(1/δ)/n with high probability:

L(ŵλn)− L(w∗) = O(‖w∗‖
√

log(1/δ)/n), (17)

up to a log log n terms.

As above, the proof is given in Appendix A. In a nutshell, what Theorem. 2 shows is that,
with high probability,

L(ŵλ)− inf
w∈H

L(w) .
1

λn
+ λ ‖w∗‖2 ,

provided that the best in model w∗ ∈ H exists. With the choice λ �
√

1/n it holds that

L(ŵλ)− inf
w∈H

L(w) = O(
√

1/n), (18)

which provides a benchmark for the results in the next sections.

Remark 3 Note that for all w ∈ H with ‖w‖ 6 R,

A(λ) 6 L(w) + λ‖w‖2 − inf
H
L 6 L(w)− inf

H
L+ λR2

hence A(λ) 6 inf‖w‖6R L(w)− infH L+ λR2 and

L(ŵλ)− inf
w∈H

L(w) <2
(

inf
‖w‖6R

L(w)− inf
H
L
)

+ 2λR2+

+
D2G2C2‖Σ‖((√rΣ +K)2 + (

√
rΣ +

√
log(8/δ))2)

4λn
+

+
DGC(

√
rΣ +K)‖Σ‖

1
2 +DK`0 +D`0

√
log(8/δ)√

n
.

Letting λ � 1/(R
√
n), this gives L(ŵλ) − infw∈H L(w) 6 2(inf‖w‖6R L(w) − infH L) +

O(R/
√
n) with high probability.
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4. ERM on random subspaces

As explained in the introduction, though the ERM estimator ŵλ achieves sharp rates, from
a computational point of view, it can be very expensive for large datasets. To overcome
this issue, we study a variant of ERM based on considering a subspace B ⊂ H and the
corresponding regularized ERM problem,

min
β∈B

L̂λ(β), (19)

with β̂λ as the unique minimizer. As clear from (11), choosing B = Hn = span{x1, . . . , xn}
is not a restriction and yields the same solution as considering (10). From this observation,
a natural choice is to consider for m ≤ n,

Bm = span{x̃1, . . . , x̃m} (20)

with {x̃1, . . . , x̃m} ⊂ {x1, . . . , xn} being a subset of the input points, called the Nyström
points. We denote by Pm = PBm the corresponding projection and by β̂λ,m the unique

minimizer of L̂λ on Bm, i.e.

β̂λ,m = argmin
β∈Bm

L̂λ(β). (21)

In the rest of the paper, all the results are valid when the Nyström points are selected
using approximate leverage scores (ALS) sampling. Recall that leverage scores are defined
as (Drineas et al., 2012):

li(α) =
〈
xi, (X̂X̂

>x+ αIn)−1xi

〉
i = 1, . . . , n (22)

where α > 0. Since in practice the leverage scores li(α) are expensive to compute, ap-
proximations have been considered (Drineas et al., 2012; Cohen et al., 2015; Alaoui and
Mahoney, 2015; Rudi et al., 2018). In particular, we consider approximations of the form
described in the following definition.

Definition 4 (Approximate leverage scores sampling (ALS)) Let (li(α))ni=1 be the
leverage scores (22). Given α0 > 0 and T > 1, we say that a family (l̂i(α))ni=1 is (T, α0)-
approximate leverage scores with confidence δ ∈ (0, 1) if

1

T
li(α) 6 l̂i(α) 6 T li(α), ∀i ∈ {1, . . . , n}, α > α0, (23)

with probability at least 1− δ. Under this condition, the approximate leverage scores (ALS)
sampling selects the Nyström points {x̃1, . . . , x̃m} from the training set {x1, . . . , xn} inde-
pendently with replacement and with probability Qα(i) = l̂i(α)/

∑
j l̂j(α).

We now focus on the computational benefits of considering ERM on random subspaces
and we analyze the corresponding statistical properties in Section 4.2.
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4.1 Computational aspects

The choice of Bm as in eq. (20) allows for improved computations with respect to eq. (11).
Indeed, β ∈ Bm if and only if ∃b ∈ Rm such that. β = X̃>b, with X̃ : H → Rm being the
matrix with rows the chosen Nyström points. Then, we can replace the problem in (19)
with

min
b∈Rm

1

n

n∑
i=1

`
(
yi,
〈
X̃>b, xi

〉)
+ λ

〈
b, X̃X̃>b

〉
m
, (24)

where 〈·, ·〉m is the scalar product in Rm. Further, since X̃X̃> ∈ Rm×m is symmetric and
positive semi-definite, we can derive a formulation close to that in (10), considering the
reparameterization a = (X̃X̃>)1/2b which leads to,

min
a∈Rm

1

n

n∑
i=1

` (yi, 〈a, xi〉m) + λ ‖a‖2m , (25)

where for all i = 1, . . . , n, we defined the embedding xi 7→ xi = ((X̃X̃>)1/2)†X̃xi and with
‖ · ‖m we denote the Euclidean norm in Rm. Note that the computation of the embedding
xi → xi only involves the inner product in H and can be computed in O(m3 + nm2CK)
time. The subgradient method for (25) has a cost of O(nm) per iteration. In summary,
we obtained that the cost for ERM on subspaces is O(nm2CK + nm ·#iter) and should be
compared with the cost of solving (13) which is O(n2CK + n2 ·#iter). The corresponding
costs to predict new points are O(mCK) and O(nCK), while the memory requirements
are O(mn) and O(n2), respectively. Clearly, memory requirements can be reduced by
recomputing things on the fly. As clear from the above discussion, computational savings
can be drastic as long as m < n, and the question arises of how this affects the corresponding
statistical accuracy. The next section is devoted to this question.

Remark 5 Formulations in eq. (24) and eq. (25) of the reduced problem can be equivalently
written as problem (10) using the projector operator Pm, i.e. minw∈H L̂(Pmw) + λ‖w‖2.
Note that when transitioning to the approximated problem, the Lipschitz constant can only
decrease, while the smoothness does not change for sufficient large values of λ. Consequently,
solving the approximated problem in (25) through subgradient descent requires a number of
iterations which is smaller than or equal to those needed for solving (10). For simplicity, this
was not considered when discussing the computational benefits of the approximated method,
but it further strengthens our point.

Example 5 (Kernel methods and Nyström approximations) Again, following Ex-
ample 1 and Example 3, our setting can be easily specialized to kernel methods, where β ∈
Bm = span{x̃1, . . . , x̃m} is replaced by f̃(x) =

∑m
i=1K(x, x̃i)c̃i ∈ span{Kx̃1 , . . . ,Kx̃m}, while

the embedding xi 7→ xi = ((X̃X̃>)1/2)†X̃xi becomes xi 7→ xi = (K̃1/2)†(K(x̃1, xi), . . . ,K(x̃m, xi))
>,

with K̃i,j = K(x̃i, x̃j).

11
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4.2 Statistical analysis

In this section, we will show, under a suitable polynomial (or exponential) decay condition
on the spectrum of Σ (see (29)), that,

L(β̂λ,m)− L(w∗) .

√
log(1/δ)√

n
,

provided that the best in model w∗ ∈ H exists, see Assumption 3, and, up to log terms,

λ � 1√
n
, m & np,

where the exponent p controls how strong the polynomial decay condition is (see (29)).
Compared to the results for exact ERM in (18), we get the same convergence rate up to a
log factor, but the computational complexity of the algorithm is dramatically reduced. For
example, if p = 1/2 we only need m '

√
n Nyström points. A similar result is obtained for

exponential decay in which case we can take m ' log2 n Nyström points. We observe that
under the above decay conditions on the spectrum of Σ, classical ERM algorithm achieves
fast rates. In Section 5, we will show that also randomized ERM can achieve fast rates, but
this will require a more refined analysis.

We now state the detailed results. We recall that the Nyström points are sampled
according to ALS, see Definition 4.

Theorem 6 Under Assumption 1, 2 and 3, fix α, λ, δ > 0. Then, with probability at least
1− δ:

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2 (26)

up to log(log(1/λ)) terms and provided that n & dα ∨ log(1/δ) and m & dα log(2n
δ ).

The proof of Theorem 6 with explicit constants is given in Appendix B, here we only add
some comments. Note that

dα =

∫ 〈
w, (Σ + αI)−1w

〉
dPX(w) 6

∫
‖w‖2

∥∥(Σ + αI)−1
∥∥ dPX(w) 6 α−1E[‖X‖2] . α−1,

(27)

using the fact that the second moment of a sub-gaussian variable is finite. Using the above
bound, we get that, up to log terms, with high probability

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2,

provided that m & α−1. With the choice

λ � 1

‖w∗‖
√
n
, α � 1/n

12
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we get that with high probability

L(β̂λn,m)− L(w∗) .
‖w∗‖

√
log(1/δ)√
n

(28)

up to log factors in n and with m & n.
Despite of the fact that the rate is optimal (up to the logarithmic term), the required

number of subsampled points is m & n, so that the procedure is not effective. However,
the following proposition shows that under a decay conditions on the spectrum of the
covariance operator Σ, the ALS method becomes computationally efficient. We assume one
of the following two conditions:

a) polynomial decay: there exists p ∈ (0, 1) such that

σj . j
− 1
p (29)

b) exponential decay: there exists β > 0 such that

σj . e−βj . (30)

Under the above conditions, we following result holds.

Theorem 7 Under the assumptions of Theorem 6, fix δ > 0, with probability at least 1− δ:

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2 (31)

and, with the choice

(a) for the polynomial decay (29)

λ �
‖w∗‖

√
log(1/δ)√
n

, α � log(1/δ)

n
, m & np,

(b) for the exponential decay (30)

λ �
‖w∗‖

√
log(1/δ)√
n

, α � log(1/δ)

n
, m & log2 n,

then, it holds that

L(β̂λn,m)− L(w∗) .
‖w∗‖

√
log(1/δ)√
n

. (32)

The proof of the above result is given in Appendix B. Theorem 7 is already known for
square loss (Rudi et al., 2015) and for smooth loss functions (Marteau-Ferey et al., 2019)
under the assumption that the input X is bounded. However, note that our bound on the
number of Nyström points is, in the case of square loss, worse than the bound in (Rudi
et al., 2015). In Section 6, by specializing the analysis for smooth losses and exploiting

13
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the special structure of the quadratic loss, we obtain the right estimate of Nyström points
matching the result in (Rudi et al., 2015).

Theorem 7 shows that for an arbitrary convex, possibly non-smooth, loss function,
leverage scores sampling can lead to better results depending on the spectral properties of
the covariance operator. Indeed, if there is a fast eigendecay, then using leverage scores
and a subspace of dimension m < n, one can achieve the same rates as exact ERM. For
fast eigendecay (p small), the subspace dimension can decrease dramatically. For example,
considering p = 1/2, then the choice m '

√
n is enough. These observations are consistent

with recent results for random features (Bach, 2017; Li et al., 2019; Sun et al., 2018), while
they seem new for ERM on random subspaces. Compared to random features, the proof
techniques present similarities but also differences due to the fact that in general random
features do not define subspaces. Finding a unifying analysis would be interesting, but it
is left for future work. Also, we note that uniform sampling can have the same properties
as leverage scores sampling, if dα � dα,∞, where dα,∞ := supw∈supp(PX)

〈
w, (Σ + αI)−1w

〉
,

see (Rudi et al., 2015). This happens under strong assumptions on the eigenvectors of the
covariance operator, but can also happen in kernel methods with kernels corresponding to
Sobolev spaces (Steinwart et al., 2009). With these comments in mind, next, we focus on
random subspaces defined by leverage scores sampling and show that the assumption on
the eigendecay not only allows for smaller subspace dimensions, but can also lead to faster
learning rates.

Remark 8 Following (Rudi et al., 2015), other choices of B ⊆ H are possible. Indeed,
for any q ∈ N and z1, . . . , zq ∈ H we could consider B = span{z1, . . . , zq} and derive a

formulation as in (25) replacing X̃ with the matrix Z with rows z1, . . . , zq. We leave this
discussion for future work. We simply state the following result where

µB =
∥∥∥Σ1/2(I − P)

∥∥∥ , (33)

and P is the projection onto B.

Theorem 9 Choose B ⊆ H. Under Assumptions 1, 2, 3, fix λ > 0 and 0 < δ < 1, with
probability at least 1− δ:

L(β̂λ)− L(w∗) .
log(1/δ)

λn
+ λ ‖w∗‖2 +

√
µB ‖w∗‖ .

Compared to Theorem 2, the above result shows that there is an extra approximation error
term due to considering a subspace. The coefficient µB appears in the analysis also for other
loss functions, see e.g. (Rudi et al., 2015; Marteau-Ferey et al., 2019). Roughly speaking,
it captures how well the subspace B is adapted to the problem.

5. Fast rates

In this section, we prove that Nyström algorithm achieves fast rates under a Bernstein
condition on the loss function, see Assumption 7, which is quite standard in order to have
fast rates for regularized ERM (Steinwart and Christmann, 2008; Bartlett et al., 2005). To
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state the results, we recall some definitions and basic facts, see (Steinwart and Christmann,
2008, Chapter 6).

Given a threshold parameter M > 0, for any a ∈ R, acl denotes the clipped value of a
at ±M

acl = −M if a 6 −M, acl = a if a ∈ [−M ,M ], acl = M if a >M.

We say that the loss function ` can be clipped at M > 0 if for all y ∈ Y, a ∈ R,

`(y, acl) 6 `(y, a), (34)

For convex loss functions, as considered in this paper, the above definition is equivalent to
the fact that for all y ∈ Y, there exists ay ∈ [−M,M ] such that

`(y, ay) = min
a∈R

`(y, a),

see (Steinwart and Christmann, 2008, Lemma 2.23). Furthermore, Aumann’s measurable
selection principle (Steinwart and Christmann, 2008, Lemma A.3.18) implies that there
exists a measurable map ϕ : Y → R such that

`(y, ϕ(y)) = min
a∈R

`(y, a), |ϕ(y)| 6M

and we can set

f∗(x) =

∫
Y
`(y, ϕ(x))dP (y|x), (35)

for PX -almost all x ∈ H. The function f∗ is the target function since

L(f∗) = inf
f
L(f),

where the infimum is taken over all the measurable functions f : H → R. It easy to check
that hinge loss and square loss with bounded outputs can be clipped. Even if the logistic
loss can not be clipped, we will show in Section 6.2 how we can easily bypass this issue with
an ad hoc fix. We also introduce the following notation, for all w ∈ H, we set

wcl : H → R wcl(x) = 〈w, x〉cl .

In the following we assume the conditions below.

Assumption 4 (Clippability) There exists M > 0 such that the loss function can be
clipped at M .

Assumption 5 (Universality) One has

inf
w∈H

L(w) = L(f∗). (36)
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Recalling that the target function f∗ is the minimizer of the expected error over all pos-
sible functions f , condition (36) means that f∗ can be arbitrarily well approximated by a
linear function 〈w, x〉 for some w ∈ H. When considering the square loss, this condition
is equivalent to the fact that H is dense in L2(H, PX) and, in the context of kernel meth-
ods, see Example 1 it is satisfied by universal kernels (Steinwart and Christmann, 2008).
Condition (36) may be relaxed at the cost of an additional approximation term, but the
analysis is just lengthier and it won’t be discussed in here. A sufficient stronger condition
is provided by assuming the target function to be linear (well-specified model).

Assumption 6 (Well specified model) There exists w∗ ∈ H such that

f∗(x) = 〈w∗, x〉

for PX-almost x ∈ H.

We further assume the following condition.

Assumption 7 (Bernstein condition) There exist constants B > 0, θ ∈ [0, 1] and V >
B2−θ, such that for all w ∈ H, the following inequalities hold almost surely:

`(Y, 〈w,X〉cl) 6 B, (37)

E
[{
`(Y, 〈w,X〉cl)− `(Y, f∗(X))

}2]
6 V (E[`(Y, 〈w,X〉cl)− `(Y, f∗(X))])θ (38)

E
[{
`(Y, 〈w,X〉)− `(Y, f∗(X))

}2]
6 V (E[`(Y, 〈w,X〉)− `(Y, f∗(X))])θ (39)

Condition (37) is called supremum bound (Steinwart and Christmann, 2008) and, thanks
to the clipping, it is satisfied by Lipschitz loss functions. Condition (38) is called variance
bound (Steinwart and Christmann, 2008) and the optimal exponent corresponds to the
choice θ = 1. For the square loss with bounded output, the variance bound always holds
true with θ = 1, see (Steinwart and Christmann, 2008, Example 7.3) . For other loss
functions the above condition is hard to verify for all distributions. For classification, the
variance bound is implied by so called margin conditions (see Section 7 and Theorem 8.24
in (Steinwart and Christmann, 2008)), and the parameter θ characterizes how easy or hard
the classification problem is (Steinwart and Christmann, 2008). With respect to (Steinwart
and Christmann, 2008), condition (39) is a technical one that we need in the proof.

To state our result, we will make use again of the approximation error A(λ) defined
in (14). The following theorem provides fast rates for Nyström algorithm, where we recall
the Nyström points are sampled according to ALS, see Definition 4.

Theorem 10 Under Assumptions 1, 2, 4, 7, let fix 0 < δ < 1, then, with probability at
least 1− 2δ:

(a) for the polynomial decay condition (29)

L(β̂clλ,m)− L(f∗) .
( 1

λpn

) 1
2−p−θ+θp

+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ)

(40)

provided that

α & n−1/p, n & dα ∨ log(1/δ), m & dα log(
2n

δ
),
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(b) for the exponential decay condition (30)

L(β̂clλ,m)− L(f∗) .
log2(1/λ)

n
+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ)

provided that

α & e−n, n & dα ∨ log(1/δ), m & dα log(
2n

δ
).

The proof of Theorem 10 is given in Appendix C. Notice that a faster decay condition on the
spectrum of Σ leads to improvements in both the excess risk bound and the parameters’
choices. As regards the learning rate, under exponential decay in (b), first term of (40)
improves to 1/n up to logarithmic factors. At the same time, the range of admissible α
gets larger while the control on the effective dimension gets tighter. Let us comment these
results more precisely in the following.

5.1 Polynomial decay of Σ

In this section we assume the polynomial decay (29) condition on the spectrum of Σ. By
omitting numerical constants, logarithmic and higher order terms, Theorem 10 implies that
with high probability

L(β̂clλ,m)− L(f∗) .

(
1

λpn

) 1
2−p−θ+θp

+

√
αA(λ)

λ
+

log(3/δ)

n

√
A(λ)

λ
+A(λ).

To have an explicit rate, we further assume that there exists r ∈ (0, 1] such that

A(λ) . λr.

Under this condition, with the choice

λn � n−min{ 2
r+1

, 1
r(2−p−θ+θp)+p}

αn � n−min{2, r+1
r(2−p−θ+θp)+p}

m & n
min{2p, p(r+1)

r(2−p−θ+θp)+p} log n

then with high probability

L(β̂clλn,m)− L(f∗) . n
−min{ 2r

r+1
, r
r(2−p−θ+θp)+p}. (41)

The above bound further simplifies when the variance bound (38) holds true with the
optimal paratemer θ = 1 and the model is well-specified as in (6) since we can set r = 1.
Under these conditions, we get that

L(β̂clλn,m)− L(w∗) . n
− 1

1+p . (42)

with the choice
λn � n−

1
1+p , αn � n−

2
1+p , m & n

2p
1+p log n. (43)
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By comparing bound (42) with (32), the assumption on the spectrum also leads to an
improved estimation error bound and hence improved learning rates. In this sense, these
are the correct error estimates since the decay of the eigenvalues is used both for the
subspace approximation error and the estimation error. As it is clear from (42), for fast
eigendecay, the obtained rate goes from O(1/

√
n) to O(1/n). Taking again, p = 1/2 leads

to a rate O(1/n2/3) which is better than the one in (32). In this case, the subspace defined
by leverage scores needs to be chosen of dimension at least O(n2/3).

For arbitrary θ and r, bound (41) is harder to parse. For r → 0 the bound become
vacuous and there are not enough assumptions to derive a bound (Devroye et al., 2013).
Note that large values of λ are prevented, indicating a saturation effect (see (De Vito
et al., 2005; Mücke et al., 2019)). As discussed before, the bound improves when there is
a fast eigendecay. Smaller values of θ and r leads to worse bounds than (42), which is the
best rate in this context. Since, given any acceptable choice of p, r and θ, the quantity
min{2p, p(r+1)

r(2−p−θ+θp)+p} takes values in (0, 1), the best rate, that differently from before can

also be slower than
√

1/n, can always be achieved choosing m < n (up to logarithmic
terms).

5.2 Exponential decay of Σ

We can further improve the bounds above assuming an exponential decay (29) condition on
the spectrum of Σ. By omitting numerical constants, logarithmic and higher order terms,
Theorem 10 implies that with high probability

L(β̂clλ,m)− L(f∗) .
log2(1/λ)

n
+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ).

Under an exponential decay condition, it is reasonable to modify the source condition
controlling the behaviour of the approximation error A(λ) from polynomial to logarithmic.
We therefore assume that

A(λ) . log−1(1/λ)

and, with the choice

λn � log n/n2, αn � 1/n2, m & log2 n, (44)

with high probability,

L(β̂clλn,m)− L(f∗) . 1/ log n.

If the model is well-specified as in (6) and θ = 1, we get

L(β̂clλ,m)− L(w∗) .
log2(1/λ)

n
+ λ ‖w∗‖2 +

√
α ‖w∗‖

provided that n and m are large enough, and α & e−n. With the choice

λn � 1/n, αn � 1/n2, m & log2 n,

with high probability

L(β̂clλn,m)− L(w∗) . 1/n.
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Remark 11 Whereas the results of Section 4.2 also hold true for bounded inputs X, to
have fast rates we are forced to assume the sub-gaussianity of X. Under this latter con-
dition in fact, Lemma 22 requires only that α & n−1/p for polynomial decay and α & e−n

for exponential decay. These ranges are compatible with the choices (43) and (44), which
provide the optimal convergence rates. Under the assumption that X is bounded, Lemma 22
is replaced by Lemma 7 in (Rudi et al., 2015), which requires instead that α & n−1 both for
polynomial and exponential decay, which is not compatible with (43) and (44).

5.3 Comparison with Random Features

We begin by comparing our results with those obtained using random features, as presented
in (Sun et al., 2018). Random features is a well-known technique for efficiently approximat-
ing the kernel matrix without computing it in full. Introduced in (Rahimi and Recht, 2008),
this method maps the data into a finite-dimensional feature space, providing a random ap-
proximation of the RBF kernel feature space. By employing explicit finite-dimensional
feature vectors, the original kernel support vector machine (KSVM) is converted into a lin-
ear support vector machine (LSVM). This conversion facilitates faster training algorithms,
as shown in (Shalev-Shwartz et al., 2011) and (Hsieh et al., 2014), and allows for constant-
time testing relative to the number of training samples.
Specifically, their Theorem 1 is based on similar assumptions as our result in eq. (42),
i.e. the surrogate loss is the hinge loss (Lipschitz, convex, non-differentiable, see our As-
sumption 2), the Bayes predictor belongs to the RKHS (realizable case, see Assumption
6), Massart’s low-noise condition is assumed (which implies our variance condition in As-
sumption 7 with θ = 1, see Section 7), and the spectrum of the covariance operator decays
polynomially: σi � i−1/p, 0 < p < 1 (see eq. 29). Under these assumptions they obtain
a rate of n−1/(2p+1) using n2p/(2p+1) random features. We can obtain the same rate with
the same number of Nyström points, but our analysis also provides an improved rate of
n−1/(p+1) using n2p/(p+1) Nyström points; this improvement is due to our refined analysis,
allowing to consider smaller values of α in (43). We do not know whether this improvement
comes from a better adaptivity of Nyström sampling, or it is a byproduct of our analysis.
Regarding (Li et al., 2019), comparison with their fast rates is more difficult, as they assume
that the Bayes predictor belongs to the random space spanned by random features. We
do not make this strong assumption, and indeed controlling the approximation error of the
random subspace is one of the key challenges in our work.

The following table provides a comparison (up to logarithmic factors) among the various
rates for the hinge loss discussed above.

6. Differentiable loss functions

In this section we specify the above results to differentiable losses and, in particular, to
quadratic and logistic losses. In both cases, we will provide for this setting equivalent
bounds of the ones presented in Theorem 10.

∗θ = 1
†Here m is number of random features
‡X bounded
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Table 2: Comparison among the different regimes using hinge loss.

Assumptions Eigen-decay Rate m

Theorem 2 1,2,3 / n−1/2 /

Eq. (32) 1,2,3 σj . j
− 1
p n−1/2 np

Eq. (32) 1,2,3 σj . e−βj n−1/2 log2 n

Eq: (42) 1,2,6,7∗ σj . j
− 1
p n

− 1
1+p n

2p
1+p

Eq: (41) 1,2,7 σj . j
− 1
p n

−min{ 2r
r+1

, r
r(2−p−θ+θp)+p} n

min{2p, p(r+1)
r(2−p−θ+θp)+p}

RF† (Sun et al., 2018) ·‡,2,6,7∗ σj . j
− 1
p n

− 1
2p+1 n

2p
2p+1

6.1 Square loss

Next, we specialized the analysis to square loss defined by (9) under the assumption that
Y ⊂ [−1, 1]. The interval [−1, 1] can be replaced by [−M,M ], but we take M = 1 since, in
the following section, we will consider binary classification. It is easy to see that

`(y, t) 6 4, y, t ∈ [−1, 1],

and ` can be clipped at 1. A well known variance bound for least squares loss gives that(
`(y, f cl(x))− ` (y, f∗(x))

)2
=
((
f cl(x) + f∗(x)− 2y

)(
f cl(x)− f∗(x)

))2

6 16
(
f cl(x)− f∗(x)

)2
,

so that variance bound (38) holds for V = 16 and θ = 1.
Finally, the least squares loss restricted to [−1, 1] is Lipschitz continuous, that is∣∣L(y, t)− L

(
y, t′

)∣∣ 6 4
∣∣t− t′∣∣

for all y ∈ [−1, 1] and t, t′ ∈ [−1, 1].
The following theorem specializes to the square loss the previous states, see Appendix D.1

for the proof. As usual the Nyström points are sampled according to ALS, see Definition 4.

Theorem 12 Under Assumption 1 and the polynomial decay condition (29), fix λ > 0,
α & n−1/p and 0 < δ < 1. then with probability at least 1− 2δ:

L(β̂clλ,m)− L(f∗) .
1

λpn
+
αA(λ)

λ
+

log(3/δ)

n

√
A(λ)

λ
+A(λ).

Furthermore, if there exists r ∈ (0, 1] such that A(λ) . λr, then

λn � n−min{ 2
r+1

, 1
r+p
}
, αn � n−min{ 2

r+1
, 1
r+p
}
, m & n

min{ 2p
r+1

, p
r+p
}

log n

with high probability

L(β̂clλn,m)− L(f∗) . n
−min{ 2r

r+1
, r
r+p
}
.
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Comparing the above bound and the one in (41) with θ = 1, we get the same con-

vergence rates, but the number m of Nyström points reduces from n
min{2p, p(r+1)

r+p
}

log n to

n
min{ 2p

r+1
, p
r+p
}

log n, matching the bound in (Rudi et al., 2015).
As already observed in Remark 11 we are able to prove the above results only under the

assumption that X sub-gaussian. However, it is possible to show that in the well specified
case, see Assumption 6, corresponding to the choice r = 1, the above result holds true also
for bounded inputs X. This is due to the additional square we get in the projection term
thanks to the quadratic properties of the loss, namely

L(Pmw∗)− L(w∗) =
∥∥∥Σ1/2(I − Pm)w∗

∥∥∥2

so that condition α & n−1 in Lemma 7 in (Rudi et al., 2015) can still be fulfilled for our
choice of the parameter α. We state the result without reporting the proof, which is a
variant of the proof of Theorem 12 taking into account the above remark.

Corollary 13 Assume that X is bounded almost surely, under Assumption 6 and polyno-
mial decay of the spectrum (29), fix λ > 0, α & 1/n, and 0 < δ < 1. Then, with probability
at least 1− 2δ:

L(β̂clλ,m)− L(w∗) .
1

λpn
+ λ ‖w∗‖2 + α ‖w∗‖2

provided that n and m are large enough. Further, for ALS sampling with the choice

λ � n−
1

1+p , α � n−
1

1+p , m & n
p

1+p log n, (45)

with high probability,

L(β̂clλ,m)− L(w∗) . n
− 1

1+p . (46)

Table 3: Comparison among the different regimes with square loss

Assumptions Eigen-decay Rate m

Corollary 13 1,6 σj . j
− 1
p n

− 1
1+p n

p
1+p

(Rudi et al., 2015) X bounded, 6 σj . j
− 1
p n

− 1
1+p n

p
1+p

Theorem 12 1 σj . j
− 1
p n

−min{ 2r
r+1

, r
r+p
}

n
min{ 2p

r+1
, p
r+p
}

Remark 14 (Comparison with (Rudi et al., 2015)) The comparison makes sense only
when choosing s = 0 in the source condition ‖Σ−sw∗‖H < R in (Rudi et al., 2015). The
reason is that while in (Rudi et al., 2015) they study the problem in the well-specified case
–improving the result when w∗ belongs to subspaces of H that are the images of the fractional
compact operators Σs– here instead we go in the opposite direction studying the case where
w∗ does not exists and the approximation error must be introduced. The only intersection
is for s = 0 where it is reasonable to compare their bound with our Theorem 13. As detailed
in Table 3 the two works return exactly the same rate and the same requirement for m.
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Our analysis can easily be adapted to sketching techniques other than Nyström sampling
as shown in Remark 8. For example, in the so-called Gaussian sketching the random
subspace Bm is defined as

Bm = span{
n∑
j=1

Gijxj : 1 6 i 6 m},

where G ∈ Rm×n is a random matrix with i.i.d. entries drawn from a Gaussian distribution.
To extend our results to Gaussian sketching, it is sufficient to bound the projection error
term (33) by using Lemma 13 and the proof of Corollary 4 in (Lin and Cevher, 2018),
instead of Lemma 7 in (Rudi et al., 2015). However, we note that, when the inputs X
are bounded, the results in (Lin and Cevher, 2018) require the condition α & n−1 on
the projection parameter α, which prevents the application of their analysis to extend our
bounds in Section 5 to Gaussian sketching. We leave it to future work to explore whether
this condition can be relaxed by assuming sub-Gaussian inputs, as we did in Lemma 22 for
Nyström sampling.

Here, as done for Nyström sampling, we overcome the problem for bounded inputs
by considering the square loss and the well-specified setting, namely Assumption 6 with
r = 1 (compare with the discussion preceding Corollary 13). Under these assumptions, it
is possible to prove the following corollary for Gaussian sketching, which can be compared
with the results in (Lin and Cevher, 2018), where their parameter ζ in their source condition
with the square loss is related to our parameter r by means of 2ζ = r (with 0 6 ζ 6 1/2).

Corollary 15 Let X be bounded almost surely. Suppose that Assumption 6 and the polyno-
mial decay condition (29) on of the spectrum hold true. Fix λ > 0, α & 1/n, and 0 < δ < 1.
Let Bm = span{

∑n
j=1Gijxj : 1 6 i 6 m}, where G ∈ Rm×n is a randomized matrix with

i.i.d. Gaussian entries. Then, with probability at least 1− 2δ:

L(β̂clλ,m)− L(w∗) .
1

λpn
+ λ ‖w∗‖2 + α ‖w∗‖2

provided that n and m are large enough. Further, if

λ � n−
1

1+p , α � n−
1

1+p , m & n
p

1+p log n, (47)

with high probability,

L(β̂clλ,m)− L(w∗) . n
− 1

1+p . (48)

The above result provides the same rate as in Corollary 4 in (Lin and Cevher, 2018)
and our Corollary 13 for the Nyström setting. However, we note that Gaussian sketching
involves multiplying the full n× n Gram matrix by a random Gaussian matrix, which can
be impractical when dealing with large datasets. In contrast, Nyström sampling avoids
constructing the full Gram matrix, requiring only a random subsampling of its columns.
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6.2 Logistic loss

As already mentioned, logistic loss defined by (8) cannot be clipped according to (34)
(Steinwart and Christmann, 2008). Nevertheless, we can still clip our loss `(y, a) at M =
log n so that for all y ∈ Y, a ∈ R it is easy to verify that

`(y, acl) 6 `(y, a) +
1

n
, (49)

where acl denotes the clipped value of a at ± log(n), that is

acl = − log(n) if a 6 − log(n),

acl = y if a ∈ [− log(n), log(n)],

acl = log(n) if a > log(n).

The key point here is that, even though the loss is not always reduced by clipping, i.e. ∃
y ∈ Y, a ∈ R s.t. `(y, acl) � `(y, a), it can only increase at most of 1/n. This is important
since it does not affect the resulting bounds on the excess risk. In particular, we recover the
same excess risk bounds of the square loss in Theorem 12 and Corollary 13 for the logistic
loss. The simple adaptation of proofs is given in Appendix D.2.

7. From surrogates to classification loss

In this section, we consider a classification task, so that Y = {±1} and the natural way
of measuring performances is by using the 0-1 loss, i.e. `0−1(y, a) := 1(−∞,0](y sign(a)).
Through out this section, we study how the previous bounds for surrogate losses relate to
the 0-1 classification risk. In the following, we will indicate with L0−1, Lhinge, Lsquare and
Llogistic the risks associated respectively with 0-1, hinge, square and logistic losses. Simi-
larly, we define L∗0−1 := inff L0−1(f), L∗hinge := inff Lhinge(f), L∗square := inff Lsquare(f),
L∗logistic := inff Llogistic(f), where the infimum is taken over all the measurable functions
f : H → R.

A key role will be played by the well-known low noise condition (Mammen and Tsy-
bakov, 1999; Tsybakov, 2004; Massart et al., 2006). The following definition is taken from
(Tsybakov, 2004):

Definition 16 Distribution P has noise exponent 0 6 γ < 1 if it satisfies one of the
following conditions:

• Nγ: for some c > 0 and all measurable f : H → {±1},

Pr[f(X)(2η(X)− 1) < 0] 6 c
(
L0−1(f)− L∗0−1

)γ
; (50)

• M γ
1−γ

: for some c > 0 and all ε > 0,

Pr [0 < |2η(X)− 1| 6 ε] 6 cε
γ

1−γ ; (51)

where η(X) = Pr(Y = 1|X) and for γ = 1 we have that M∞ is equivalent to N1.
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We will assume the following low-noise condition:

Assumption 8 (Low-noise condition) The distribution P has noise exponent γ ∈ [0, 1].

Using Lemma 38 in Appendix F, when dealing with the square loss, there is a standard
way of transforming its excess risk bound into the following bound on the classification risk:

Lemma 17 (Square loss) Under Assumption 8, there is a c > 0 such that for any mea-
surable f : X → R we have:

L0−1(f)− L∗0−1 .
(
Lsquare(f)− L∗square

) 1
2−γ . (52)

It is not hard to see that an analogous bound can be obtained for logistic loss.

For the hinge loss, the bound given by Lemma 37 in Appendix F cannot be improved even
under low noise in Assumption 8. In fact, the low-noise assumption is directly connected
with the variance bound (38) through Theorem 8.24 in (Steinwart and Christmann, 2008)
(see Lemma 39 in Appendix F). In particular, if we assume a low noise condition with
parameter γ, then the variance bound in Assumption 8 is always satisfied for the hinge loss
with θ = γ.

7.1 From square and logistic losses to classification loss

Starting from Theorem 12, we can now derive an upper bound for the classification risk
using the results obtained for the surrogate square loss. We assume low-noise condition and
exploit Lemma 17 to obtain the following theorem, where Asquare(λ) is the approximation
error, see (14), with respect the square loss and the Nyström points are sampled, as always,
accordingly to ALS, see Definition 4.

Theorem 18 Under Assumptions 1 and 8 and the polynomial decay condition (29), fix
λ > 0, α & n−1/p and 0 < δ < 1, then with probability at least 1− 2δ:

L0−1(β̂clλ,m)− L∗0−1 .

(
1

λpn
+
αAsquare(λ)

λ
+

log(3/δ)

n

√
Asquare(λ)

λ
+Asquare(λ)

) 1
2−γ

.

Furthermore, if there exists r ∈ (0, 1] such that Asquare(λ) . λr and choosing

λ � n−min{ 2
r+1

, 1
r+p
}
, α � n−min{ 2

r+1
, 1
r+p
}
, m & n

min{ 2p
r+1

, p
r+p
}

log n,

then, with high probability

L0−1(β̂clλ,m)− L∗0−1 . n
−min{ 2r

(2−γ)(r+1)
, r
(2−γ)(r+p)}.

Once again analogous bounds hold for logistic loss, up to constant or negligible terms.
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7.2 From hinge loss to classification loss

Starting from Theorem 10, we can derive another upper bound for the classification risk but
using as surrogate the hinge loss. Under the low noise assumption and exploiting Lemma
39 we obtain the following theorem, where Ahinge(λ) is the approximation error, see (14),
with respect the hinge loss.

Theorem 19 Under Assumptions 1, 8 and under polynomial decay condition (29), fix λ >
0, α & n−1/p and 0 < δ < 1, then with probability at least 1− 2δ:

L0−1(β̂clλ,m)− L∗0−1 .

(
1

λpn

) 1
2−p−γ+γp

+

√
αAhinge(λ)

λ
+

log(3/δ)

n

√
Ahinge(λ)

λ
+Ahinge(λ).

Furthermore, if there exists r ∈ (0, 1] such that Ahinge(λ) . λr and choosing

λ � n−min{ 2
r+1

, 1
r(2−p−γ+γp)+p}, α � n−min{2, r+1

r(2−p−γ+γp)+p}, m & n
min{2p, p(r+1)

r(2−p−γ+γp)+p} log n,

then, with high probability

L0−1(β̂clλ,m)− L∗0−1 . n
−min{ 2r

r+1
, r
r(2−p−γ+γp)+p}.

Table 4: Comparison between the 0− 1 classification risk derived from square, logistic and
hinge loss under low noise condition

Assump Eigen-decay Rate m

Square: Theorem 18 1,8 σj . j
− 1
p n

−min{ 2r
(2−γ)(r+1)

, r
(2−γ)(r+p)} n

min{ 2p
r+1

, p
r+p
}

Logistic 1,8 σj . j
− 1
p n

−min{ 2r
(2−γ)(r+1)

, r
(2−γ)(r+p)} n

min{ 2p
r+1

, p
r+p
}

Hinge: Theorem 19 1,8 σj . j
− 1
p n

−min{ 2r
r+1

, r
r(2−p−γ+γp)+p} n

min{2p, p(r+1)
r(2−p−γ+γp)+p}

Next, we will discuss the results obtained in Table 4.

7.3 Discussion of the results

We compare now the two upper bounds we obtained in Theorem 18 and Theorem 19. Since

min
{ 2r

(2− γ)(r + 1)
,

r

(2− γ)(r + p)

}
6 min

{ 2r

r + 1
,

r

r(2− p− γ + γp) + p

}
for all the choices of p, γ and r the bound for the classification error derived using the
hinge loss can always achieve a better rate than the one derived from the square loss. On
the other hand, since min{ 2p

r+1 ,
p
r+p} 6 min{2p, p(r+1)

r(2−p−γ+γp)+p}, the choice of the hinge loss

results, according to our upper bounds, to be more expensive in term of m (while achieving
a better rate). Therefore, we can try to compare the two rates while fixing the number
of number of Nyström points selected, or, viceversa, we can fix the rate and compare the
number of Nyström points needed to achieve it. The results here are less obvious and we
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do not have a clear winner. What appears from the analysis is that the discriminant is
the choice of the low noise condition parameter γ and the r parameter, which controls the
approximation error decay.

Let us fix an achievable convergence rate O
(
n−R

)
for the classification risk. To achieve

this rate we need at least ms = nR(2−γ)p/r for square loss and mh = nR(1+r)p/r for hinge
loss. Since when γ + r < 1 then mh 6 ms, we have that using hinge is, according to our
upper bounds, computationally cheaper than using the square loss (see Figure 1). This
means that when the problem is hard, hinge loss seems to be also less expensive than the
square loss (and viceversa) in terms of number of required Nyström points.

Similarly, imagine now to have some budget constraint on m so that we are not allowed
to choose its optimal value: which loss will show a faster rate? Again the condition on
γ + r is the key, with the upper bound for hinge loss achieving a faster rate than the one
for square loss, when γ + r < 1.

In summary, when studying the misclassification error using surrogates, the comparison
between our two upper bounds obtained from hinge and square loss does not suggest an
univocal better choice between the two losses for all regimes. When the problem is hard,
i.e. slow decay of the approximation error (λ� 1) and/or strong noise (γ � 1), the upper
bound for hinge loss behaves better than the one square loss; the opposite when the problem
is easy.
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Figure 1: Comparison between the number of Nyström points needed by square and hinge
loss to get a fixed common rate: the plots above show µsquare − µhinge, where
0 6 µ 6 1 is the exponent controlling m, i.e. m � nµ. Light colours represent
then the regimes where hinge loss is cheaper than square loss.
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8. Experiments
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Figure 2: The graphs above are obtained from SUSY dataset: on the top left we show how
c-err measure changes for different choices of λ parameter; top right figure focuses
on the stability of the algorithm varying λ; on the bottom the combined behavior
is presented with a heatmap.

As mentioned in the introduction, a main of motivation for our study is showing that
the computational savings can be achieved without incurring in any loss of accuracy. In this
section, we complement our theoretical results investigating numerically the statistical and
computational trade-offs in a relevant setting. More precisely, we report simple experiments
in the context of kernel methods, considering Nyström techniques. In particular, we choose
the hinge loss, hence SVM for classification. Keeping in mind Theorem 10 we expect
we can match the performances of kernel-SVM using a Nyström approximation with only
m � n centers. The exact number depends on assumptions, such as the eigen-decay of
the covariance operator, that might be hard to know in practice, so here we explore this
empirically.

Nyström-Pegasos. Classic SVM implementations with hinge loss are based on consider-
ing a dual formulation and a quadratic programming problem (Joachims, 1998). This is the
case for example, for the LibSVM library (Chang and Lin, 2011) available on Scikit-learn
(Pedregosa et al., 2011). We use this implementation for comparison, but find it convenient
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to combine the Nyström method to a primal solver akin to (12) (see (Li et al., 2016; Hsieh
et al., 2014) for the dual formulation). More precisely, we use Pegasos (Shalev-Shwartz
et al., 2011) which is based on a simple and easy to use stochastic subgradient iteration§.
We consider a procedure in two steps. First, we compute the embedding discussed in Sec-
tion 4. With kernels it takes the form xi = (K†m)1/2(K(xi, x̃1), . . . ,K(xi, x̃m))T , where
Km ∈ Rm×m with (Km)ij = K(x̃i, x̃j). Second, we use Pegasos on the embedded data. As
discussed in Section 4, the total cost is O(nm2CK +nm ·#iter) in time (here iter = epoch,
i.e. one epoch equals n steps of stochastic subgradient) and O(m2) in memory (needed to
compute the pseudo-inverse and embedding the data in batches of size m).

Table 5: Architecture: single machine with AMD EPYC 7301 16-Core Processor and 256GB
of RAM. For Nyström-Pegaos, ALS sampling has been used (see (Rudi et al.,
2018)) and the results are presented as mean and standard deviation deriving from
5 independent runs of the algorithm. The columns of the table report classification
error, training time and prediction time (in seconds).

LinSVM KSVM Nyström-Pegasos (ALS)

Datasets c-err c-err t train t pred c-err t train t pred m

SUSY 28.1% - - - 20.0%± 0.1% 608± 2 134± 4 2500
Mnist 12.4% 2.2% 1601 87 2.2%± 0.1% 1342± 5 491± 32 15000
Usps 16.5% 3.1% 4.4 1.0 3.0%± 0.1% 19.8± 0.1 7.3± 0.3 2500
Webspam 8.8% 1.1% 6044 473 1.3%± 0.1% 2440± 5 376± 18 11500
a9a 16.5% 15.0% 114 31 15.1%± 0.1% 29.3± 0.2 1.5± 0.1 800
CIFAR 31.5% 19.1% 6339 213 19.2%± 0.1% 2408± 14 820± 47 20500

Datasets & setup (see Appendix G). We consider five datasets¶ of size 104 − 106,
challenging for standard SVMs. We use a Gaussian kernel, tuning width and regularization
parameter as explained in appendix. We report classification error and for data sets with
no fixed test set, we set apart 20% of the data.

Procedure. Given the accuracy achieved by K-SVM algorithm, which is our target, we
increase the number of sampled Nyström points m < n as long as also Nyström-Pegasos
matches that result.

Results. We compare with linear (used only as baseline) and K-SVM see Table 5. For all
the datasets, the Nyström-Pegasos approach achieves comparable performances of K-SVM
with much better time requirements (except for the small-size Usps). Moreover, note that
K-SVM cannot be run on millions of points (SUSY), whereas Nyström-Pegasos is still fast
and provides much better results than linear SVM. Further comparisons with state-of-art
algorithms for SVM are left for a future work. Finally, in Figure 2 we illustrate the interplay

§Python implementation from https://github.com/ejlb/pegasos
¶Datasets available from LIBSVM website http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/ and

from (Jose et al., 2013) http://manikvarma.org/code/LDKL/download.html#Jose13
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between λ and m for the Nyström-Pegasos considering SUSY dataset. In Appendix G we
compare also with results obtained using the simpler uniform sampling of the points.

Table 6: Comparison between Nyström-Pegasos (hinge loss) and Nyström-KRR (square
loss) when using ALS sampling. We report the respective classification errors
fixing the number of Nyström centers.

Nyström-Pegasos (ALS) Nyström-KRR (ALS)

Datasets c-err m c-err m

SUSY 20.0%± 0.1% 2500 19.9%± 0.1% 2500
Mnist 2.2%± 0.1% 15000 2.4%± 0.1% 15000
Usps 3.0%± 0.1% 2500 2.9%± 0.1% 2500
Webspam 1.3%± 0.1% 11500 1.3%± 0.1% 11500
a9a 15.1%± 0.1% 800 14.9%± 0.1% 800
CIFAR 19.2%± 0.1% 20000 19.0%± 0.1% 20000

Comparison between Nyström-Pegasos and Nyström KRR We finally want to test
the theoretical results discussed in Section 7.3 with real data. We compare the Nyström-
Pegasos algorithm (Nyström SVM), i.e. ERM with Nyström projection when using the
hinge loss as surrogate, against Nyström KRR, i.e. ERM with Nyström projection when
using the square loss as surrogate. Extensive experimental analysis for Nyström KRR in
regression problems can be found in Rudi et al. (2015, 2017); Meanti et al. (2020). Following
the discussion in Section 7.3, here we are instead interested in comparing the two methods in
classification problems. We follow the scenario described in the second part of Section 7.3,
where the budget of Nyström centers m is fixed, and we compare the respective classification
errors. As theory suggests there is not a clear winner between the two methods for all data
distributions, as shown in Table 6. Results are always similar, with Nyström-Pegasos slightly
outperforming Nyström-KRR on Mnist, while the outcome is reversed on a9a and CIFAR.
Analogous results can be found in Table 7 in Appendix G.
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per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto
Nazionale di Alta Matematica (INdAM). This work represents only the view of the authors.
The European Commission and the other organizations are not responsible for any use that
may be made of the information it contains. J.M. is supported by a grant of the French
National Research Agency (ANR), “Investissements d’Avenir” (LabEx Ecodec/ANR-11-
LABX-0047).

References

Radoslaw Adamczak. A tail inequality for suprema of unbounded empirical processes with
applications to markov chains. Electronic Journal of Probability, 13:1000–1034, 2008.

Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with
statistical guarantees. In Advances in Neural Information Processing Systems, pages
775–783, 2015.

Pierre Alquier, Vincent Cottet, and Guillaume Lecué. Estimation bounds and sharp or-
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Appendix A. Proof of Section 3

This section is devoted to the proof of Theorems 1 and 2. With slight abuse of notation we
set

`(w, z) = `(y, 〈w, x〉), z = (x, y) ∈ H × Y, w ∈ H.

With this notation L(w) =
∫
H×Y `(w, z)dP (z).

The following result is known, (Alquier et al., 2019, Lemma 8.1). We provide an alter-
native proof tailored to the Hilbert setting.

Lemma 20 Under Assumptions 1 and 2, fix R > 0 and τ > 0, with probability at least
1− δ,

sup
‖w‖6R

∣∣L̂(w)− L(w)
∣∣ < D√

n

(
GRC‖Σ‖

1
2
(√
rΣ +

√
log(4/δ)

)
+ `0

√
log(4/δ)

)
, (53)

where D > 0 is an absolute numerical constant and rΣ = TrΣ/‖Σ‖ is the effective rank
of Σ. Furthermore, for each w ∈ H, L̂(w) − L(w) is a sub-gaussian centered real random
variable and

‖L̂(w)− L(w)‖ψ2 6
2√
n

(`0 + CG‖ 〈X,w〉 ‖2). (54)

Proof In the proof D denotes an absolute numerical constant, whose value can change
from line to line. Fix w ∈ H and define the centered real random variable

Zw = `(Y, 〈X,w〉)− E[`(Y, 〈X,w〉)].

We claim that, for any pair w,w′ ∈ H

‖Zw − Zw′‖ψ2 6 2CG‖
〈
X,w − w′

〉
‖2, (55)

where ‖Zw −Zw′‖ψ2 is defined by (29). Indeed, for all p > 1, recalling that ‖ξ‖p = E[|ξ|p]
1
p ,

then triangular inequality and continuity of expectation give

‖Zw − Zw′‖p 6 ‖`(Y, 〈X,w〉)− `(Y,
〈
X,w′

〉
)‖p + ‖`(Y, 〈X,w〉)− `(Y,

〈
X,w′

〉
)‖1

6 2‖`(Y, 〈X,w〉)− `(Y,
〈
X,w′

〉
)‖p

6 2G‖
〈
X,w − w′

〉
)‖p 6 2GC

√
p‖
〈
X,w − w′

〉
)‖2

where the last two inequalities are consequence of (6) and (2), respectively. Hence

sup
p>2

‖Zw − Zw′‖p√
p

6 2GC‖〈X,w − w′〉‖2,

so that (55) is clear. Furthermore, since

(
L̂(w)− L(w))− (L̂(w′)− L(w′)

)
=

1

n

n∑
i=1

((`(Yi, 〈Xi, w〉)− E[`(Yi, 〈Xi, w〉)])

− (`(Yi,
〈
Xi, w

′〉)− E[`(Yi,
〈
Xi, w

′〉)]))
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is a sum of independent sub-gaussian random variables distributed as (Zw − Z ′w)/n, then
by rotational invariance theorem (Vershynin, 2018, Proposition 2.6.1)

‖(L̂(w)−L(w))− (L̂(w′)−L(w′))‖ψ2 6
D√
n
‖Zw−Zw′‖ψ2 6

D√
n
CG‖

〈
X,w − w′

〉
)‖2, (56)

where the last inequality is a consequence of (55) and D is an absolute constant. Consider
H as a metric space with respect to the metric

d(w,w′) = ‖
〈
X,w − w′

〉
‖2

where without loss of generality we assume that Σ is injective, then (56) states that the
centered random process

(
L̂(w) − L(w)

)
w∈H has sub-gaussian increments and the generic

chaining tail bound (Vershynin, 2018, Theorem 8.5.5) implies that, with probability at least
1− 2e−τ ,

sup
w,w′∈BR

∣∣(L̂(w)− L(w))− (L̂(w′)− L(w′))
∣∣ 6 D√

n
CG
(√
τ diam(BR) + γ2(BR)

)
, (57)

where BR = {w ∈ H : ‖w‖ 6 R}, diam(BR) and γ2(BR) are the diamater with respect to
the metric d and the Talagrand’s γ2 functional of BR, (Vershynin, 2018, Definition 8.5.1).

Let G be the Gaussian random vector in H with covariance Σ, which always exists since
Σ is a trace class operator. Talagrand’s majorizing measure theorem (Vershynin, 2018,
Theorem 8.6.1) implies that

γ2(BR) 6 DE[ sup
w∈BR

〈G,w〉] = E[ sup
w∈BR

| 〈G,w〉 |] = RE[‖G‖] 6 RE[‖G‖2]
1
2 = RTr(Σ)

1
2 ,

where the first equality is due to the fact that BR is symmetric, the second inequality is a
consequence of Jansen inequality and the last equality by definition of G. Furthermore, the
definition of d gives that

diam(BR) 6 2R‖Σ‖
1
2 .

Plugin these last two bounds in (57), it holds that

sup
w,w′∈BR

∣∣(L̂(w)− L(w))− (L̂(w′)− L(w′))
∣∣ 6 D√

n
CGR

(√
τ‖Σ‖

1
2 + Tr(Σ)

1
2
)
. (58)

with high probability. Finally, observe that

|`(Y, 0)− E[`(Y, 0)])| 6 2 sup
y∈Y

`(y, 0) = 2`0,

by (6), and

L̂(0)− L(0) =
1

n

∑
i=1

(`(Yi, 0)− E[`(Yi, 0)])

so that Hoeffding’s inequality (Boucheron et al., 2013) implies that, with probability 1 −
2e−τ ,

|L̂(0)− L(0)| 6 2`0

√
2τ

n
. (59)
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Finally, since

sup
w∈BR

|L̂(w)− L(w)| 6 sup
w∈BR

|L̂(w)− L(w)− (L̂(0)− L(0))|+ |L̂(0)− L(0)|

bounds (58) and (59) give (53) with 4 exp(−τ) = δ. Bound (56) with w′ = 0 implies (54).

This result cannot be readily applied to ŵλ, since its norm ‖ŵλ‖ is itself random. Observe
that, by definition and by Assumption 2,

λ‖ŵλ‖2 6 L̂λ(ŵλ) 6 L̂λ(0) = L̂(0) 6 sup
y∈Y

`(y, 0) = `0,

so that ‖ŵλ‖ 6
√
`0/λ. One could in principle apply this bound on ŵλ, but this would

yield a suboptimal dependence on λ and thus a suboptimal rate.
The next step in the proof is to make the bound of Lemma 20 valid for all norms R, so

that it can be applied to the random quantity R = ‖ŵλ‖. This is done in Lemma 21 below
though a union bound.

Lemma 21 Under Assumptions 1 and 2, ∀w ∈ H, with probability 1− δ:

L(w)− L̂(w) 6
DGC‖Σ‖

1
2 (1 + ‖w‖)√rΣ√
n

+

D√
n

(
GC‖Σ‖

1
2 (1 + ‖w‖) + `0

)√
log(2 + log2(1 + ‖w‖)) + log(1/δ).

Proof Fix δ ∈ (0, 1). For p > 1, let Rp := 2p and δp = δ/(p(p + 1)). By Lemma 20, one
has for every p > 1,

P

(
sup
‖w‖6Rp

[
L(w)− L̂(w)

]
>

D√
n

(
GRpC‖Σ‖

1
2
(√
rΣ +

√
log(1/δp)

)
+ `0

√
log(1/δp)

))
6 δp.

Collecting the terms containing δp and taking a union bound over p > 1 while using that∑
p>1 δp = δ and δp > δ2/(p+ 1)2, we get:

P

(
∃p > 1, sup

‖w‖6Rp

[
L(w)−L̂(w)

]
>

D√
n

(
GRpC‖Σ‖

1
2
(√
rΣ+

√
log

p+ 1

δ

)
+`0

√
log

p+ 1

δ

))
6 δ.

Now, for w ∈ H, let p = dlog2(1 + ‖w‖)e; then, 1 + ‖w‖ 6 Rp = 2p 6 2(1 + ‖w‖), so
‖w‖ 6 Rp. Hence, ∀w ∈ H, with probability 1− δ:

L(w)− L̂(w) 6
DGC‖Σ‖

1
2 (1 + ‖w‖)√rΣ√
n

+
D√
n

√
log

p+ 1

δ

(
GC‖Σ‖

1
2 (1 + ‖w‖) + `0

)
6
DGC‖Σ‖

1
2 (1 + ‖w‖)√rΣ√
n

+

+
D√
n

(
GC‖Σ‖

1
2 (1 + ‖w‖) + `0

)√
log(2 + log2(1 + ‖w‖)) + log(1/δ)

6 δ.
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This is precisely the desired bound.

We are now able to prove the two theorems.

Proof [Proof of Theorem 1] Since the bound of Lemma 21 holds simultaneously for all
w ∈ H, one can apply it to ŵλ; using the inequality ‖ŵλ‖ 6

√
`0/λ 6 (1+`0/λ)/2 to bound

the log log term, this gives with probability 1− δ,

L(ŵλ)− L̂(ŵλ) 6
DGC‖Σ‖

1
2 (1 + ‖ŵλ‖)

√
rΣ√

n
+

D√
n

(
GC‖Σ‖

1
2 (1 + ‖ŵλ‖) + `0

)√
log(1 + log2(3 + `0/λ)) + log(1/δ).

(60)

Now, let K = Kλ,δ =
√

log(1 + log2(3 + `0/λ)) + log(1/δ). Eq (60) writes

L(ŵλ)− L̂(ŵλ) 6
DGC‖Σ‖

1
2 (1 + ‖ŵλ‖)

√
rΣ√

n
+
DK√
n

(
GC‖Σ‖

1
2 (1 + ‖ŵλ‖) + `0

)
(61)

Using that ab 6 λa2 + b2/(4λ) for a, b > 0, one can then write

L(ŵλ) 6 L̂(ŵλ) +
√
rΣ
DGC‖Σ‖

1
2 (1 + ‖ŵλ‖)√
n

+K
DGC‖Σ‖

1
2 (1 + ‖ŵλ‖)√
n

+
DK`0√

n

6 L̂(ŵλ) + (
√
rΣ +K)

DGC‖Σ‖
1
2 ‖ŵλ‖√
n

+ (
√
rΣ +K)

DGC‖Σ‖
1
2

√
n

+
DK`0√

n

6 L̂(ŵλ) + λ‖ŵλ‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+ (
√
rΣ +K)

DGC‖Σ‖
1
2

√
n

+
DK`0√

n

6 L̂(wλ) + λ‖wλ‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+ (
√
rΣ +K)

DGC‖Σ‖
1
2

√
n

+
DK`0√

n
(62)

where (62) holds by definition of ŵλ. Now, using again Lemma 20 for ‖wλ‖ we have that,
with probability 1− δ:

L̂(wλ)− L(wλ) <
D√
n

(
GC‖Σ‖

1
2 ‖wλ‖

(√
rΣ +

√
log(4/δ)

)
+ `0

√
log(4/δ)

)
.

Combining this inequality with (62) with a union bound, with probability 1− 2δ:

L(ŵλ) <L(wλ) + λ‖wλ‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+ (
√
rΣ +K)

DGC‖Σ‖
1
2

√
n

+
DK`0√

n
+

+
DGC‖Σ‖

1
2 ‖wλ‖

(√
rΣ +

√
log(4/δ)

)
√
n

+
D`0

√
log(4/δ)√
n

. (63)
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Since again ab 6 λa2 + b2/(4λ), then

DGC‖Σ‖
1
2 ‖wλ‖

(√
rΣ +

√
log(1/δ)

)
√
n

6 λ‖wλ‖2 +
D2G2C2‖Σ‖

(√
rΣ +

√
log(4/δ)

)2
4λn

6 A(λ) +
D2G2C2‖Σ‖

(√
rΣ +

√
log(4/δ)

)2
4λn

so that (63) implies, with probability 1− 2δ:

L(ŵλ)− inf
w∈H

L(w) <2A(λ) +
D2G2C2‖Σ‖((√rΣ +K)2 + (

√
rΣ +

√
log(4/δ))2)

4λn
+

+
DGC(

√
rΣ +K)‖Σ‖

1
2 +√

n
+D`0(K +

√
log(4/δ))

After replacing δ by δ/2, we get bound (15).

Proof [Proof of Theorem 2] Assume that w∗ = arg minw∈H L(w) exists. Then, by definition
of wλ,

L(wλ) + λ‖wλ‖2 6 L(w∗) + λ‖w∗‖2.

In addition, ‖wλ‖ 6 ‖w∗‖, since otherwise having ‖w∗‖ < ‖wλ‖ and L(w∗) 6 L(wλ) would
imply L(w∗)+λ‖w∗‖2 < L(wλ)+λ‖wλ‖2, contradicting the above inequality. Since L(w∗) =
infH L, it follows from (63) that, with probability 1− 2δ,

L(ŵλ) <L(w∗) + λ‖w∗‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+
DGC(

√
rΣ +K)‖Σ‖

1
2 +DK`0√

n
+

+
DGC‖Σ‖

1
2 ‖w∗‖

(√
rΣ +

√
log(4/δ)

)
√
n

+
D`0

√
log(4/δ)√
n

(64)

The bound (64) precisely corresponds to the desired bound (16) after replacing δ by δ/2.

In particular, tuning λ � (DGCK ‖Σ‖1/2 /‖w∗‖)
√

log(1/δ)/n yields

L(ŵλ)− L(w∗) .
{DGC ‖Σ‖1/2 ‖w∗‖}{log log n+

√
log(1/δ)}√

n
.

Omitting the log log n term, this bound essentially scales as Õ(DGC ‖Σ‖1/2 ‖w∗‖
√

log(1/δ)/n).

Appendix B. Proof of Section 4

In order to prove Theorem 6, we need to previously extend Lemma 7 in (Rudi et al., 2015)
to sub-gaussian random variables.

39



Della Vecchia, De Vito, Mourtada, Rosasco

Lemma 22 Fix δ > 0 and a (T, α0)-approximate leverage scores (l̂i(α))ni=1 with confidence
δ > 0. Given α > α0, let {x̃1, . . . , x̃m} be the Nyström points selected according to Defini-
tion 4 and set Bm = span{x̃1, . . . , x̃m}. Under Assumption 1, with probability at least 1− δ:∥∥∥(I − PBm)Σ1/2

∥∥∥2
6
∥∥∥(I − PBm)(Σ + α I)1/2

∥∥∥2
6 3α, (65)

provided that

n & dα ∨ log(5/δ) (66)

m & dα log(
10n

δ
). (67)

Furthermore, if the spectrum of Σ satisfies the decay conditions (29) (polynomial decay) or
(30) (exponential decay), it is enough to assume that

n & log(5/δ) α & n−1/p m & α−p log(
10n

δ
) polynomial decay (68)

n & log(5/δ) α & e−n m & log(1/α) log(
10n

δ
) exponential decay (69)

Proof Exploiting sub-gaussianity, the various terms are bounded differently. In particular,
to bound β1 we refer to Theorem 9 in (Koltchinskii and Lounici, 2014), obtaining with
probability at least 1− δ

β1(α) . max

{√
dα
n
,

√
log(1/δ)

n

}
. (70)

As regards β3 term we apply Proposition 23 below to get with probability greater than
1− 3δ

β3(α) 6
2 log 2n

δ

3m
+

√
32T 2dα log 2n

δ

m

for n > 2C2 log(1/δ).
Finally, taking a union bound we have with probability at least 1− 5δ

β(α) .max


√
dα
n
,

√
log(1

δ )

n

+

+

1 + max


√
dα
n
,

√
log(1

δ )

n


2 log 2n

δ

3m
+

√
32T 2dα log 2n

δ

m

 . 1

when n & dα ∨ log(1/δ) and m & dα log 2n
δ . See (Rudi et al., 2015) to conclude the proof

of the first claim. Assume now (29) or (30) . The second claim is consequence of Proposi-
tion 34 or Proposition 35.

We can proceed now with the proof of Theorem 6:
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Proof [Proof of Theorem 6] We recall the notation.

Bm = span{x̃1, . . . , x̃m}, β̂λ = arg min
w∈Bm

L̂(w), w∗ = arg min
w∈H

L(w)

and Pm = PBm the orthogonal projector operator onto Bm.

In order to bound the excess risk of β̂λ, we decompose the error as follows:

L(β̂λ)− L(w∗) 6
∣∣∣L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2H

∣∣∣+
∣∣∣L̂(β̂λ) + λ‖β̂λ‖2H − L̂(Pmw∗)− λ‖Pmw∗‖2H

∣∣∣+
+
∣∣∣L̂(Pmw∗)− L(Pmw∗)

∣∣∣+ |L(Pmw∗)− L(w∗)|+ λ‖Pmw∗‖2H (71)

To bound the first term
∣∣∣L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2H

∣∣∣ we apply Lemma 21 for β̂λ and we get

L(β̂λ)− L̂(β̂λ) 6
DGC(

√
rΣ +K)‖Σ‖

1
2 (1 + ‖β̂λ‖)√

n
+
DK`0√

n

with K = Kλ,δ =
√

log(1 + log2(3 + `0/λ)) + log(1/δ) as in (61).

Now since xy 6 λx2 + y2/(4λ), we can write

DGC(
√
rΣ +K)‖β̂λ‖‖Σ‖

1
2

√
n

6 λ‖β̂λ‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖
λn

(72)

hence,

∣∣∣L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2
∣∣∣ 6 D2G2C2(

√
rΣ +K)2‖Σ‖
λn

+
DGC(

√
rΣ +K)‖Σ‖

1
2

√
n

+
DK`0√

n
,

(73)

Term
∣∣∣L̂(β̂λ) + λ‖β̂λ‖2H − L̂(Pmw∗)− λ‖Pmw∗‖2H

∣∣∣ is less or equal than 0.

As regards term
∣∣∣L̂(Pmw∗)− L(Pmw∗)

∣∣∣, since Pm is a projection ‖Pmw∗‖ 6 ‖w∗‖, so

that with probability at least 1− δ:

∣∣∣L̂(Pmw∗)− L(Pmw∗)
∣∣∣ 6 sup

‖w‖6‖w∗‖

(∣∣∣L̂(w)− L(w)
∣∣∣)

<
D√
n

(
GC‖w∗‖‖Σ‖

1
2
(√
rΣ +

√
log(4/δ)

)
+ `0

√
log(4/δ)

)
. (74)

where in the sup in the left hand side is taken over all possible Nyström points and the
second inequality is the content of Lemma 20 where the role of L and L̂ is interchanged.
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Finally, term |L(Pmw∗)− L(w∗)| can be rewritten as

|L(Pmw∗)− L(w∗)| 6 G

∫
| 〈w,Pmw∗〉 − 〈w,w∗〉 |dPX(w)

6 G

(∫
| 〈w, (I − Pm)w∗〉 |2dPX(w)

) 1
2

= G 〈Σ(I − Pm)w∗, (I − Pm)w∗〉
1
2 (75)

= G‖Σ1/2(I − Pm)w∗‖H
6 G‖Σ1/2(I − Pm)‖‖w∗‖H
= G‖(I − Pm)Σ1/2‖‖w∗‖H 6 G

√
3α‖w∗‖, (76)

where the last bound is a consequence of Lemma 22 and it holds true with probability at
least 1− δ.

Putting the pieces together we finally get the result in Theorem 6 by replacing δ with
δ/3.

Proof [Proof of Theorem. 7] Under polynomial decay assumption (29), the claim is a
consequence of Theorem 6 with Proposition 34 with β = 1/p so that

m & dα log n, dα . α−p, m � np(log n)1−p (77)

Under exponential decay assumption (30), the claim is a consequence of Theorem 6 with
Proposition 35 so that

m & dα log n, dα . log(1/α), m � log2 n (78)

Proof [Proof of Theorem 9] The proof is given by decomposing the excess risk as in (71)
where Pm is replaced by PB, (73) bounds term A, (74) bounds term B and (75) and 33
bound term C.

Appendix C. Proofs of Section 5

The following proposition provides a bound on the empirical effective dimension dα(Σ̂) =
Tr(Σ̂−1

α Σ̂) in terms of the correspondent population quantity dα = Tr((Σα + α I)−1Σ).

Proposition 23 Let X,X1, . . . , Xn be iid C-sub-gaussian random variables in H. For any
δ > 0 and n > 2C2 log(1/δ), then the following hold with probability 1− δ

dα(Σ̂) 6 16dα (79)

Proof Let Vα be the space spanned by eigenvectors of Σ with corresponding eigenvalues
αj > α, and call Dα its dimension. Notice that Dα 6 2dα since dα = Tr((Σα + α I)−1Σ) =∑ αi

αi+α
, where in the sum we have Dα terms greater or equal than 1/2.
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Let X = X1 +X2, where X1 is the orthogonal projection of X on the space Vα, we have

Σ̂ = Σ̂1 + Σ̂2 +
1

n

n∑
i=1

(X1,iX
>
2,i +X2,iX

>
1,i) 4 2(Σ̂1 + Σ̂2) (80)

Now, since the function g : t 7→ t
t+α is sub-additive (meaning that g(t+ t′) 6 g(t) + g(t′)),

denoting dα(Σ) = Tr g(Σ) = Tr((Σα + α I)−1Σ),

dα(Σ̂) 6 2(dα(Σ̂1) + dα(Σ̂2)) (81)

and, since (Σ̂1 + α)−1Σ̂1 4 IVα ,

Tr((Σ̂α + α I)−1Σ̂) 6 2Dα +
2Tr(Σ̂2)

α
= 4dα +

2Tr(Σ̂2)

α
(82)

Now,

Tr(Σ̂2) =
1

n

n∑
i=1

‖X2,i‖2

It thus suffices establish concentration for averages of the random variable ‖X2‖2.
Since X is sub-gaussian then ‖X2‖2 is sub-exponential. In fact, since X is C-sub-

gaussian then
‖〈v,X〉‖ψ2 6 C‖〈v,X〉‖L2 ∀v ∈ H (83)

and given that 〈v,PX〉 = 〈Pv,X〉 with P an orthogonal projection, then also X2 is C-
sub-gaussian. Now take ei the orthonormal basis of V composed by the eigenvectors of
Σ2 = E[X2X

T
2 ], then∥∥‖X2‖2

∥∥
ψ1

=
∥∥∥∑

i

〈X2, ei〉2
∥∥∥
ψ1

6
∑
i

∥∥〈X2, ei〉2
∥∥
ψ1

(84)

=
∑
i

‖〈X2, ei〉‖2ψ2
6 C2 ‖〈X2, ei〉‖2L2

(85)

= C2
∑
i

αi = C2Tr [Σ2] = C2E
[
‖X2‖2

]
(86)

so ‖X2‖2 is C2E
[
‖X2‖2

]
-sub-exponential. Note that E‖X2‖2 = E[Tr(X2X

>
2 )] = Tr(Σ2) 6

2αdα(Σ), in fact

dα =
∞∑
i=1

αi
αi + α

>
∑
i:αi<α

αi
αi + α

>
∑
i:αi<α

αi
2α

=
Tr(Σ2)

2α
(87)

Hence, we can apply then Bernstein inequality for sub-exponential scalar variables (see
Theorem 2.10 in (Boucheron et al., 2013)), with parameters ν and c given by

nE
[
‖X2‖4

]
6 4nC2α2d2

α(Σ)︸ ︷︷ ︸
ν

(88)

c = Cαdα (89)
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where we used the bound on the moments of a sub-exponential variable (see (Vershynin,
2018)). With high probability (82) becomes

dα(Σ̂) 6 8dα +
4Cdα

√
2 log(1/δ)√
n

+
2Cdα log(1/δ)

n
6 16dα (90)

for n > 2C2 log(1/δ).

From (Adamczak, 2008) Theorem 4 we write a concentration inequality we will use
in the following, corresponding to the simplified Talagrand’s inequality in Theorem 7.5 of
(Steinwart and Christmann, 2008) but for sub-exponential random variables:

Theorem 24 (Theorem 4 in (Adamczak, 2008)) Let X,X1, . . . , Xn be i.i.d. random
variables with values in a measurable space (S,B) and let F be a countable class of mea-
surable functions f : S → R. Assume that Ef (X) = 0 and

∥∥supf |f (X)|
∥∥
ψ1
<∞ for every

f ∈ F . Let

Z = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)

∣∣∣∣∣
and define

σ2 = sup
f∈F

Ef (X)2 .

Then, for all τ > 0 and η > 0, we have

P

(
Z > (1 + η)EZ +

K1

∥∥supf∈F |f (X)|
∥∥
ψ1

(2 + τ)

n
+

√
3(1 + τ)σ2

n

)
6 e−τ (91)

where K1 = K1(δ, η).

Similarly to (Steinwart and Christmann, 2008), we define the quantity

gw,r :=
hw − Ehw

λ ‖w‖2 + Ehw + r
, w ∈ H, r > 0 (92)

(Note that in (Steinwart and Christmann, 2008) they define −gw,r). Our plan is to apply
Theorem 24 to gŵ0,r, with ŵ0 ∈ Bm ⊆ H and ‖ŵ0‖ 6 ‖w∗‖.

Corollary 25 Under the hypothesis of Theorem 24, for all τ > 0 we have

sup
w∈H,‖w‖6‖w∗‖

Êhw − Ehw
λ ‖w‖2 + Ehw + r

<2ED∼Pn sup
w∈H,‖w‖6‖w∗‖

Êhw − Ehw
λ ‖w‖2 + Ehw + r

+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr
(93)

Proof In Theorem 24, we take

Z = sup
w∈H,‖w‖6R

∣∣∣∣∣ 1n
n∑
i=1

gw,r (Xi)

∣∣∣∣∣ . (94)
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We have also that, using the second inequality of Lemma 7.1 in (Steinwart and Christmann,
2008) and taking θ > 0, q := 2

2−θ , q′ := 2
θ , a := r, and b := Ehw 6= 0:

Eg2
w,r 6

Eh2
w(

λ ‖w‖2 + Ehw + r
)2 6

(2− θ)2−θθθEh2
w

4r2−θ (Ehw)θ
6 V rθ−2 = σ2

Moreover,∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|gw,r (X)|

∥∥∥∥∥
ψ1

=

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

∣∣∣∣ hw (X)− Ehw
λ ‖w‖2 + Ehw + r

∣∣∣∣
∥∥∥∥∥
ψ1

6
1

r

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|hw − Ehw (X)|

∥∥∥∥∥
ψ1

=
1

r

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )− E[`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )]|

∥∥∥∥∥
ψ1

6
1

r

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )|+ sup
w∈H,‖w‖6‖w∗‖

|E[`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )]|

∥∥∥∥∥
ψ1

6
1

r

∥∥∥∥∥G sup
w∈H,‖w‖6‖w∗‖

|〈w − w∗, X〉|+G sup
w∈H,‖w‖6‖w∗‖

E |〈w − w∗, X〉|

∥∥∥∥∥
ψ1

6
1

r

∥∥∥2G ‖w∗‖ ‖X‖+ 2G ‖w∗‖E ‖X‖
∥∥∥
ψ1

=
2G ‖w∗‖

r

∥∥∥ ‖X‖+ E ‖X‖
∥∥∥
ψ1

6
2G ‖w∗‖

r

∥∥∥ ‖X‖+ E ‖X‖
∥∥∥
ψ2

6
2G ‖w∗‖ (C

√
2TrΣ + E ‖X‖)
r

where last inequality derives from the fact that ‖X‖ is sub-gaussian since, given an or-
thonormal basis ei,∥∥ ‖X‖ ∥∥2

ψ2
6
∥∥ ‖X‖2 ∥∥

ψ1
=
∥∥∥∑

i

〈X, ei〉2
∥∥∥
ψ1

6
∑
i

∥∥∥〈X, ei〉2∥∥∥
ψ1

6 2
∑
i

‖〈X, ei〉‖2ψ2
6 2C2 ‖〈X, ei〉‖2L2

= 2C2 Tr [Σ]

Applying Theorem 24 with η = 1 we get the result.

We now adapt Theorem 7.23 in (Steinwart and Christmann, 2008) to our setting:

Theorem 26 Under assumptions 1, 2, 4 and 3, the covariance matrix satisfies the polyno-
mial decay condition (29), and the Bernstein conditions (37)–(38) hold true. Fix a closed
subspace F̂ of H and set

wF̂ ,λ = argmin
w∈F̂

(
L̂(w) + λ‖w‖2

)
λ > 0. (95)
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Choose ŵ0 ∈ F̂ , fix δ > 0, then with probability at least 1− δ

λ‖ŵF ,λ‖2+L(ŵclF ,λ)− L(f∗) 6 7
(
λ ‖ŵ0‖2 + L(ŵ0)− L(f∗)

)
+K3

(
a2p

λpn

) 1
2−p−ϑ+ϑp

+

+ 2

(
72V log(3/δ)

n

) 1
2−ϑ

+ 16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
(96)

where the constant a only depends on (29) and K3 > 1 only depends on p,M,B, ϑ, and V .

Proof The proof mimics the one of Theorem 7.23 (Steinwart and Christmann, 2008), with
some major differences.

We start recalling that Theorem 15 in (Steinwart et al., 2009) shows that that the decay
condition (29) is equivalent to condition (7.48) of Theorem 7.23, which is given in terms of
entropy numbers ej , see Lemma 36. Note that the constant a is defined by the bound (7.48).
Using this remark, the above assumptions let us upper bound the empirical Rademacher
complexity of Hr in term of a function ϕn(r) defined as in (Steinwart and Christmann,
2008) (see pag. 267). Thus, the result comes from the application of Steinwart’s Theorem
7.20, with the key difference that our X is not bounded but sub-gaussian and that ŵ0 here
is not deterministic but depends on the data.

As a consequence, in order to control the quantity Êhŵ0
−Ehŵ0

we cannot simply apply
a Bernstein’s inequality for sub-gaussian but we need to use the more refined Corollary
25. In particular, we mimic the reasoning to derive (Steinwart and Christmann, 2008, eq.
(7.44)), but where Talagrand’s inequality for bounded random variables is replaced by our
Theorem 24 for sub-exponential ones and in the specific case of Corollary 25.

We split the error as in (Steinwart and Christmann, 2008, eq. (7.39)),

λ ‖ŵλ‖2 + Ehŵclλ 6 (λ ‖ŵ0‖2 + Ehŵ0
) + (Êhŵ0

− Ehŵ0
) + (Ehŵclλ − Êhŵclλ ) (97)

and we start with controlling the term Êhŵ0
− Ehŵ0

.

Exploiting the definition of gw,r in (92), we know that for all the w ∈ H with ‖w‖ 6 ‖w∗‖
and r > 0 we can apply Corollary 25. In particular, since ŵ0 ∈ Bm ⊆ H, the bound in the
Corollary is valid also for ŵ0, i.e

Êhŵ0
− Ehŵ0

λ ‖ŵ0‖2 + Ehŵ0
+ r

<2ED∼Pn
Êhŵ0

− Ehŵ0

λ ‖ŵ0‖2 + Ehŵ0
+ r

+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr
. (98)

Using symmetrization (see Prop. 7.10 in (Steinwart and Christmann, 2008)) we have

ED∼Pn sup
w∈Bm,r,‖w‖6‖w∗‖

∣∣∣Êhw − Ehw
∣∣∣ 6 ED∼Pn sup

w∈Hr,‖w‖6‖w∗‖

∣∣∣Êhw − Ehw
∣∣∣

6 2ED∼PnR̂ad(Hr, n) 6 2ϕn(r). (99)
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Peeling by Steinwart’s Theorem 7.7 together with Hr = {w ∈ H : λ ‖w‖2 + Ehw 6 r} hence
gives

ED∼Pn sup
w∈Bm,‖w‖6‖w∗‖

∣∣∣Êgw,r∣∣∣ 6 ED∼Pn sup
w∈H,‖w‖6‖w∗‖

∣∣∣Êgw,r∣∣∣ 6 8ϕn(r)

r
(100)

Putting all together we get w.h.p.

Êhŵ0
− Ehŵ0

< (λ ‖ŵ0‖2 + Ehŵ0
)

(
10ϕn(r)

r
+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr

)

+ 10ϕn(r) +

√
3V (1 + τ)rθ

n
+ 2GK1 ‖w∗‖

(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
(101)

As regards the term Ehwclλ − Êhwclλ we proceed as in (Steinwart and Christmann, 2008). We

finally obtain, for ŵ0 ∈ Bm with ‖ŵ0‖ 6 ‖w∗‖ and with r > r∗Bm > r∗H, w.h.p.

λ ‖ŵλ‖2 + Ehŵclλ <
(
λ ‖ŵ0‖2 + Ehŵ0

)
+

+ (λ ‖ŵ0‖2 + Ehŵ0
)

(
10ϕn(r)

r
+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr

)
+

+ 10ϕn(r) +

√
3V (1 + τ)rθ

n
+ 2GK1 ‖w∗‖

(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
+

+
(
λ ‖ŵλ‖2 + Ehŵclλ

)(10ϕn(r)

r
+

√
2V τ

nr2−θ +
28Bτ

3nr

)

+ 10ϕn(r) +

√
2V τrθ

n
+

28Bτ

3n
(102)

which replaces (7.44) in (Steinwart and Christmann, 2008).

Observe now that r > 30ϕn(r) implies 10ϕn(r)r−1 6 1/3 and 10ϕn(r) 6 r/3. Moreover,

r >
(

72V (1+τ)
n

)1/(2−θ)
yields

(
2V τ

nr2−θ

)1/2

6
1

6
and

(
2V τrθ

n

)1/2

6
r

6

and (
3V (1 + τ)

nr2−θ

)1/2

6
1

4
and

(
2V (1 + τ)rθ

n

)1/2

6
r

4

In addition n > 72(1 + τ), V > B2−θ, and r >
(

72V (1+τ)
n

)1/(2−θ)
imply

28Bτ

3nr
=

7

54
· 72τ

n
· B
r

6
7

54
·
(

72τ

n

) 1
2−θ
· V

1
2−θ

r
6

7

54
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and 28Bτ
3n 6 7r

54 . Finally r > 8GK1 ‖w∗‖ (C
√

2TrΣ+E‖X‖)(2+τ)
n gives

2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr
6

1

4

and

2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
6
r

4
We finally obtain

λ ‖ŵλ‖2 + Ehŵclλ <
11

6

(
λ ‖ŵ0‖2 + Ehŵ0

)
+

79

54
r + ε+

17

27

(
λ ‖ŵλ‖2 + Ehŵclλ

)
6 5

(
λ ‖ŵ0‖2 + Ehŵ0

)
+ 2r (103)

with

r > max

{
30ϕn(r),

(
72V τ

n

) 1
2−ϑ

, 8GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
, r∗H

}

Remark 27 Notice that the same reasoning can be applied in Section 5 in the more general
framework where w∗ does not exist. In that case w∗ will be replaced by wλ := arg minw∈H L(w)+

λ‖w‖2, with ‖wλ‖ 6
√
A(λ)
λ .

We are now ready to prove our main result:
Proof [Proof of Theorem 10, polynomial decay] Applying Theorem 26 in the general case
of Remark 27, with the choice F̂ = Bm and ŵ0 = PBmwλ, we rewrite (96) as:

λ‖β̂λ,m‖2+L(β̂clλ,m)− L(f∗) 6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+

+ 2
(72V log(3/δ)

n

) 1
2−θ

+ 16GK1 ‖wλ‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(wλ) + L(wλ)− L(f∗)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+

+ 2
(72V log(3/δ)

n

) 1
2−θ

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

6 7(L(PBmwλ)− L(wλ) + λ‖wλ‖2 + L(wλ)− L(f∗)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+

+ 2
(72V log(3/δ)

n

) 1
2−θ

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

= 7A(λ) + 7(L(PBmwλ)− L(wλ)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+ 2
(72V log(3/δ)

n

) 1
2−θ

+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(104)
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where we used the fact that ‖wλ‖ 6
√
A(λ)/λ.

We can deal with the term L(PBmwλ) − L(wλ) as in (75) (but where we use Lemma 22
instead of Lemma 7 in (Rudi et al., 2015) to exploit sub-gaussianity), so that for α & n−1/p

with probability greater than 1− δ

L(PBmwλ)− L(wλ) 6 K2G
√
α ‖wλ‖ 6 K2G

√
α

√
A(λ)

λ
(105)

for some universal constant K2 > 0. We finally obtain with probability greater than 1− 2δ:

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(f∗) 6 7A(λ) + 7K2G

√
αA(λ)

λ
+K3

( a2p

λpn

) 1
2−p−θ+θp

+

+ 2
(72V log(3/δ)

n

) 1
2−θ

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(106)

which proves the first claim.

The following corollary provides the optimal rates.

Corollary 28 Fix δ > 0. Under the Theorem 10 and the source condition

A(λ) 6 A0λ
r

for some r ∈ (0, 1], set

λ � n−min{ 2
r+1

, 1
r(2−p−θ+θp)+p} (107)

α � n−min{2, r+1
r(2−p−θ+θp)+p} (108)

m & n
min{2p, p(r+1)

r(2−p−θ+θp)+p} (109)

with probability at least 1− 2δ:

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(f∗) . n
−min{ 2r

r+1
, r
r(2−p−θ+θp)+p} (110)

Proof Lemma 22 with Proposition 34 gives

m & dα log(n/δ), dα . α−p α � log1/p(n/δ)

m1/p
(111)

Lemma A.1.7 in (Steinwart and Christmann, 2008) with r = 2, 1/γ = (2 − p − θ + θp),
α = p, β = r shows that the choice of λ, α and m given by (107)–(109) provides the optimal
rate.

Notice that α � n
−min{2, r+1

r(2−p−θ+θp)+p} is compatible with condition α & dα � n−1/p in
Lemma 22.

When we are in the well-specified case, i.e. w∗ exists, we have the following results (see
Section 5.1).
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Corollary 29 Fix λ > 0, α & n−1/p and 0 < δ < 1. Under Assumptions 1, 2, 6, 7 (with
θ = 1) and polynomial decay condition (29), then, with probability at least 1− 2δ:

L(β̂clλ,m)− L(w∗) .
1

λpn
+ λ ‖w∗‖2 +

√
α ‖w∗‖ (112)

provided that n and m are large enough.
Proof The proof mimics the proof of Theorem 10 (a) where in (96) we choose ŵ0 = PBmw∗
Hence (96) with θ = 1 reads

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(w∗) 6 7(λ‖PBmw∗‖2 + L(PBmw∗)− L(w∗)) +K3
a2p

λpn
+

+ 144V
log(3/δ)

n
+ 16GK1 ‖w∗‖

(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

6 7λ‖w∗‖2 + 7(L(PBmw∗)− L(w∗)) +K3
a2p

λpn
+ 144V

log(3/δ)

n
+

+ 16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
(113)

We can deal wit h the term L(PBmw∗) − L(w∗) as in (75), so that for α & n−1/p with
probability greater than 1− δ

L(PBmw∗)− L(w∗) 6 K2G
√
α ‖w∗‖

for some K2 > 0. Hence, with probability at least 1− 2δ:

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(w∗) 6 7λ‖w∗‖2 + 7K2G
√
α‖w∗‖+K3

a2p

λpn
+ 144V

log(3/δ)

n
+

16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
(114)

which proves the claim.

And, similarly to Corollary 28, we obtain the optimal rate presented in Eq. 42.

Corollary 30 Fix δ > 0. Under the assumptions of Theorem 10 (a), when the variance
bound (38) holds true with the optimal paratemer θ = 1 and the model is well-specified, i.e.
r = 1, set

λ � n−
1

1+p (115)

α � n−
2

1+p (116)

m & n
2p
1+p log n (117)

then, for ALS sampling, with probability at least 1− 2δ:

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(w∗) . ‖w∗‖
( 1

n

) 1
1+p

. (118)

Notice that α � n−
2

1+p is compatible with condition α & dα � n−1/p in Lemma 22.
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C.1 Excess risk under exponential decay

As regards exponential decay, given the discussion in Appendix E, we have a different
bound on the empirical Rademacher complexity of Hr. In particular, we obtain ϕn(r) :=

C1

√
V
n log2

(
1
λ

)√
r+C2

log2
2(1/λ)
n and we modify Theorem 26 in the case of exponential decay

using the following Lemma:

Lemma 31 When

r = C3
log2

2(1/λ)

n
+

(
72V τ

n

) 1
2−ϑ

+ 8GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n

we have

r > max

{
30ϕn(r),

(
72V τ

n

) 1
2−ϑ

, 8GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n

}
We can finally prove the second part of Theorem 10 under exponential decay:

Proof [Proof of Theorem 10, exponential decay] We follow exactly the proof of Theorem
26 for polynomial decay presented above in the previous subsection, but using the estimate
in Lemma 31 for r:

L(β̂clλ,m)− L(f∗) .
log2(1/λ)

n
+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ).

Appendix D. Proofs of Section 6

D.1 Square loss

We report in this section the proofs of Theorem 12. As mentioned above, in the case where
w∗ does not exists, the assumption of sub-gaussianity is necessary to get fast rates:
Proof [Proof of Theorem 12] The proof follows the one of Theorem 10 in Appendix C with
some differences coming from the fact that we are working now with the square loss. Since
Theorem 26 works also with locally Lipschitz loss functions we have:

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K3
a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1 ‖wλ‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

= 7(Lλ(PBmwλ)− Lλ(wλ) + Lλ(wλ)− L(f∗)) +K3
a2p

λpn
+

+ 2
72V log(3/δ)

n
+ 16GK1

(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

= 7A(λ) + 7(Lλ(PBmwλ)− Lλ(wλ)) +K3
a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(119)

51



Della Vecchia, De Vito, Mourtada, Rosasco

Using the fact that Lλ is quadratic and expanding around the the minimum wλ we have

Lλ(Pmwλ)− Lλ(wλ) = ‖(Σ + α)1/2(I − Pm)wλ‖2 (120)

Using Lemma 22 we get the result

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 7A(λ) + 7‖(Σ + α)1/2(I − Pm)wλ‖2 +K3
a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

. 7A(λ) + 7α
A(λ)

λ
+K3

a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(121)

Furthermore, if there exists r ∈ (0, 1] such that A(λ) . λr, then with the choice for ALS
sampling

λ � n−min{ 2
r+1

, 1
r+p
}

α � n−min{ 2
r+1

, 1
r+p
}

m & n
min{ 2p

r+1
, p
r+p
}

log n

with high probability

L(β̂clλ,m)− L(f∗) . n
−min{ 2r

r+1
, r
r+p
}
.

D.2 Logistic Loss

Since logistic loss is not clippable, we prove how the modification of the definition of the
clipping in (49) and the similar treatment of the projection term, up to constants, between
square and logistic losses asymptotically lead to the same excess risk bounds. We start
adjusting the proof of Theorem 26.

As explained in subsection 6.2, one has hf (X) − hclf (X) + 1
n > 0. Therefore we can

simply rewrite the splitting of the error (97) as

λ ‖ŵλ‖2 + Ehŵclλ 6 (λ ‖ŵ0‖2 + Ehŵ0
) + (Êhŵ0

− Ehŵ0
) + (Ehŵclλ − Êhŵclλ ) +

1

n
. (122)

Clearly last term 1/n does not spoil the rate and we can proceed as for square loss:
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λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K3
a2p

λpn
+

144V log(3/δ)

n
+

+ 16GK1 ‖wλ‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
+

1

n

= 7(Lλ(PBmwλ)− Lλ(wλ) + Lλ(wλ)− L(f∗)) +K3
a2p

λpn
+

144V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
+

1

n

= 7A(λ) + 7(Lλ(PBmwλ)− Lλ(wλ)) +K3
a2p

λpn
+

144V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
+

1

n
(123)

To deal with the projection term Lλ(PBmwλ)− Lλ(wλ) we do a Taylor expansion

Lλ(PBmwλ)− Lλ(wλ) =
1

2
〈(HL)(w′)(PBmwλ − wλ), (PBmwλ − wλ)〉 (124)

where w′ = wλ + t(PBmwλ − wλ) with t ∈ [0, 1] and using the fact that ∇Lλ(wλ) = 0. We
can find the expression of the Hessian H of L in w ∈ H exploiting its definition

〈(HL)(w)v, v〉 =
d2

dt2
L(w + tv)|t=0 =

d

dt
E
[
`′(〈w + tv,X〉, Y )〈v,X〉

]
|t=0

= E
[
`′′(〈w + tv,X〉, Y )(〈v,X〉)2

]
|t=0 6ME

[
〈v,X〉2

]
(125)

where M = supτ∈R,y∈Y `
′′(τ, y) and v ∈ H. For the logistic loss we have

`′′(τ, y) = σ(yτ)(1− σ(yτ)) 6
1

4
, ∀τ ∈ R, y ∈ Y

where σ(·) is the sigmoid which is upper bounded by 1. So combining this result with (125)
and considering Lλ(·) = L(·) + λ ‖·‖2 we get

(HLλ)(w) 6 Σλ.

Finally we can rewrite (124) as

Lλ(PBmwλ)− Lλ(wλ) 6
1

2

∥∥∥Σ
1/2
λ (PBmwλ − wλ)

∥∥∥2
(126)

and proceed exactly as in the case of the square loss (see appendix D.1).

Appendix E. Entropy Numbers and Exponential Decay

We analyze here the main steps needed to obtain the results for exponential decay in
Theorem 6 and Theorem 10.
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E.1 Entropy numbers in Hilbert spaces

Let H and K be real Hilbert spaces. For all n ∈ N, n > 1

sup
16k<∞

(
n−1/k

(
Πk
`=1a`(T )

)1/k
)

6 εn(T ) 6 14 sup
16k<∞

(
n−1/k

(
Πk
`=1a`(T )

)1/k
)

(127)

where εn(T ) are the entropy numbers, see (3.4.15) of (Carl and Stephani, 1990).
Let X be a random variable on a probability space (Ω,F ,P) taking value in a real

Hilbert space H such that E
[
|〈X, v〉|2

]
is finite for all v ∈ H. Define

T : H → L2(Ω,P) T (v)(ω) = 〈X(ω), v〉

so that Σ = T ∗T is (non-centered) covariance matrix. We assume that Σ is a trace-class
operator and the corresponding eigenvalues have an exponential decay

Σ =

+∞∑
n=1

λn(Σ)vn ⊗ vn λn(Σ) ' 2−2an

where (vn)n is a base of H. Since Σ is trace-class, S is compact, so that by (127)

en(T ) ' sup
16k<∞

2−(n−1)/k
(

Πk
`=1an(T )

)1/k

with en(T ) = ε2n−1(T ) the (dyadic) entropy numbers and where by (Carl and Stephani,
1990)

an(T ) = an(|T |) = λn(|T |) = λn(Σ)1/2 ' 2−an.

We have

2−(n−1)/k
(

Πk
`=12−a`

)1/k
= 2

−
(
n−1
k

+
a(k+1)

2

)
.

Observe that the minimum on (0,+∞) of the function

f(x) =

(
n− 1

x
+
ax

2

)
is f(

√
2(n− 1)/a) =

√
2a(n− 1), then

en(T ) ' 2−
√
an.

E.2 Entropy numbers of Fr
Given the above calculation we want to upper bound the entropy number of Fr, we recall
here some definitions:

Hr :=
{
f ∈ H : Υ(f) + L(f cl)− L(f∗) 6 r

}
r > r∗

Fr :=
{
` ◦ f cl − ` ◦ f∗ : f ∈ Hr

}
r > r∗

Using the above discussion we obtain

ei(Fr) 6 Gei(Hr) 6 G

√
r

λ
ei(BH) = G

√
r

λ
2−c
√
i
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E.3 Bound the Rademacher Complexity of Fr
Now we are ready to upper bound the empirical Rademacher Complexity R̂ of Fr:

Lemma 32

R̂ (Fr) 6
√

log 16

n
log

(
1

λ

)
(3ρ+ 2c3

√
r) (128)

where ρ = supf∈Fr ‖f‖L2(D) and ‖f‖L2(D) :=
(

1
m

∑
i f

2 (xi)
)1/2

.
Proof Using Theorem 7.13 in (Steinwart and Christmann, 2008), we have

R̂ (Fr) 6
√

log 16

n

( ∞∑
i=1

2i/2e2i
(
Fr ∪ {0}, ‖ · ‖L2(D)

)
+ sup
f∈Fr

‖f‖L2(D)

)

It is easy to see that ei (Fr ∪ {0}) 6 ei−1 (Fr) and e0 (Fr) 6 supf∈Fr ‖f‖L2(D). Since ei (Fr)
is a decreasing sequence with respect to i, together with the lemma above, we know that

ei (Fr) 6 min

{
sup
f∈Fr

‖f‖L2(D),

√
2r

λ
2−c
√
i

}

Even though the second one decays exponentially, it may be much greater than the first term
when 2r/λ is huge for small i s. To achieve the balance between these two bounds, we use
the first one for first T terms in the sum and the second one for the tail. So

R̂ (Fr) 6
√

log 16

n

(
sup
f∈Fr

‖f‖L2(D)

T−1∑
i=0

2i/2 +

√
2r

λ

∞∑
i=T

2i/22−c
√

2i−1

)

The first sum is
√

2
T−1√
2−1

. When T is large enough, the second sum is upper bounded by the

integral ∫ ∞
T

2x/22−c
√

2i−1 dx 6
∫ ∞
T

2x/22−c2
√

2i dx 6
2−c2

√
2T+1

c2 log2(2)
(129)

6 c32−c2
√

2T (130)

To make the form simpler, we bound
√

2
T−1√
2−1

by 3 · 2T/2, and denote suph∈Fr ‖h‖L2(D) by ρ.

Taking T to be

log2

(
c2

4 log2
2

(
1

λ

))
,

with c4 such that c2c4 > 1/2, we get the upper bound of the form

R̂ (Fr) 6
√

log 16

n

(
3ρ log

(
1

λ

)
+ c3

√
2r

λ
λc2c4

)
6

√
log 16

n
log

(
1

λ

)
(3ρ+ 2c3

√
r)

55



Della Vecchia, De Vito, Mourtada, Rosasco

Now we can directly compute the upper bound for the population Rademacher Complexity
R (Fr) by taking expectation over D ∼ Pm:

Lemma 33

R (Fr) 6 C1

√
V

n
log2

(
1

λ

)√
r + C2

log2
2(1/λ)

n
(131)

where C1 and C2 are two absolute constants.

Proof

R (Fr) = E[R̂ (Fr)] 6
√

(log 16)

n
log2

(
1

λ

)(
3E sup

f∈Fr
‖f‖L2(D) + 2c3

√
r

)
(132)

By Jensen’s inequality and Corollary A.8.5 in (Steinwart and Christmann, 2008), we have

E sup
f∈Fr

‖f‖L2(D) 6

(
E sup
f∈Fr

‖f‖2L2(D)

)1/2

6

(
E sup
f∈Fr

1

m

m∑
i=1

f2 (xi, yi)

)1/2

6
(
σ2 + 8R (Fr)

)1/2
where σ2 := Ef2. When σ2 > R (Fr) , we have

R (Fr) 6
√

log 16

n
log2

(
1

λ

)
(9σ + 2c3

√
r) (133)

6

√
log 16

n
log2

(
1

λ

)
(9
√
V rθ + 2c3

√
r) (134)

6 c5

√
V

n
log2

(
1

λ

)√
r (135)

The second inequality is because Ef2 6 V (Ef)θ and Ef 6 r for f ∈ Fr. When σ2 6 R (Fr) ,
we have

R (Fr) 6
√

log 16

n
log2

(
1

λ

)(
9
√
R (Fr) + 2c3

√
r
)

6 (9 + 2c3)c3

√
log 16

n
log2

(
1

λ

)√
r + (9 + 2c3)2 (log 16) log2

2(1/λ)

n

The last inequality can be obtained by dividing the formula into two cases, either R (Fr) < r
or R (Fr) > r and then take the sum of the upper bounds of two cases. Combining all these
inequalities, we finally obtain an upper bound

R (Fr) 6 C1

√
V

n
log2

(
1

λ

)√
r + C2

log2
2(1/λ)

n

where C1 and C2 are two absolute constants.
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Appendix F. Known results

For sake of completeness we recall the following known results, we freely use in the paper.
The following two results provide a tight bound on the effecticbe dimension under the

assumption of a polynomial decay or an exponential decay of the eigenvalues σj of Σ from
(Caponnetto and De Vito, 2007). We report the proofs for sake of completeness.

Proposition 34 (Proposition 3 in (Caponnetto and De Vito, 2007)) If for some γ ∈
R+ and 1 < β < +∞

σi 6 γi−β

then

dα 6 γ
β

β − 1
α−1/β (136)

Proof Since the function σ/(σ + α) is increasing in σ and using the spectral theorem
Σ = UDU∗ combined with the fact that Tr(UDU∗) = Tr(U(U∗D)) = TrD

dα = Tr(Σ(Σ + αI)−1) =
∞∑
i=1

σi
σi + α

6
∞∑
i=1

γ

γ + iβα
(137)

The function γ/(γ + xβα) is positive and decreasing, so

dα 6
∫ ∞

0

γ

γ + xβα
dx

= α−1/β

∫ ∞
0

γ

γ + τβ
dτ

6 γ
β

β − 1
α−1/β (138)

since
∫∞

0 (γ + τβ)−1 6 β/(β − 1).

Proposition 35 (Exponential eigenvalues decay) If for some γ, β ∈ R+σi 6 γe−βi

then

dα 6
log(1 + γ/α)

β
(139)

Proof

dα =

∞∑
i=1

σi
σi + α

=

∞∑
i=1

1

1 + α/σi
6
∞∑
i=1

1

1 + α′eβi
6
∫ +∞

0

1

1 + α′eβx
dx (140)

where α′ = α/γ. Using the change of variables t = eβx we get

(140) =
1

β

∫ +∞

1

1

1 + α′t

1

t
dt =

1

β

∫ +∞

1

[1

t
− α′

1 + α′t

]
dt =

1

β

[
log t− log(1 + α′t)

]+∞

1

=
1

β

[
log
( t

1 + α′t

)]+∞

1
=

1

β

[
log(1/α′) + log(1 + α′)

]
(141)
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So we finally obtain

dα 6
1

β

[
log(γ/α) + log(1 + α/γ)

]
=

log(1 + γ/α)

β
(142)

The following result provides a bound on the entropy number and it is the content of
Theorem 15 in (Steinwart et al., 2009). We recall that, given a bounded operator A between
two Hilbert spaces H1 and H2, we denote by ej(A) the (dyadic) entropy numbers of A

and by P̂H = 1
n

∑n
i=1 δxi the empirical (marginal) measure associated with the input data

xi, . . . , xn. Regard the data matrix X̂ as the inclusion operator id : H → L2(P̂ )

(idw)(xi) = 〈w, xi〉 i = 1, . . . , n

Lemma 36 Let p ∈ (0, 1). Then

E
P̂

[ej(id : H → L2(P̂ ))] ∼ j−
1
2p (143)

if and only if

σj ∼ j−
1
p (144)

As regard results in Section 7, from (Bartlett et al., 2006) we report the following lemma:

Lemma 37 For any nonnegative loss function φ, any measurable f : H → R, and any
probability distribution on H× {±1}

ψ
(
L0−1(f)− L∗0−1

)
6 Lφ(f)− L∗φ.

In particular, for square, hinge and logistic losses we can write

• square loss: L0−1(f)− L∗0−1 6
√
Lsquare(f)− L∗square,

• hinge loss: L0−1(f)− L∗0−1 6 Lhinge(f)− L∗hinge,

• logistic loss: L0−1(f)− L∗0−1 6 2
√
Llogistic(f)− L∗logistic.

Under the assumption of low noise we can improve the above bounds in Lemma 37:

Lemma 38 (Theorem 3 in (Bartlett et al., 2006)) Suppose that P has noise expo-
nent 0 6 γ 6 1, and that φ is classification-calibrated (which is the case for square, hinge
and logistic losses). Then there is a c > 0 such that for any f : X → R

c
(
L0−1(f)− L∗0−1

)γ
ψ

((
L0−1(f)− L∗0−1

)1−γ
2c

)
6 Lφ(f)− L∗φ

where ψ(x) = x2 when φ is the square loss, ψ(x) = x when φ is the hinge loss and ψ(x) > x
2

when φ is the logistic loss.
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We copy also this results from (Steinwart and Christmann, 2008), linking the variance
bound in Assumption 7 with low noise condition in Assumption 8 for hinge loss:

Lemma 39 [Theorem 8.24 (Steinwart and Christmann, 2008)] (Variance bound for the
hinge loss). Let P be a distribution on X × Y that has noise exponent γ ∈ [0, 1]. Moreover,
let f∗ : X → [−1, 1] be a fixed Bayes decision function for the hinge loss `. Then, for all
measurable f : X → R, we have

E
(
` ◦ f cl − ` ◦ f∗

)2
6 6c

(
E
(
` ◦ f cl − ` ◦ f∗

))γ
where c is the constant appearing in (50).

Appendix G. Experiments: datasets and tuning

Here we report further information on the used datasets and the set up used for parameter
tuning, plus some additional tables of results.

Table 7: Comparison between ALS and uniform sampling. To achieve similar accuracy,
uniform sampling usually requires larger m than ALS sampling. Therefore, even
if it does not need leverage scores computations, Nyström-Pegasos with uniform
sampling can be more expensive both in terms of memory and time (in seconds).

Nyström-Pegasos (ALS) Nyström-Pegasos (Uniform)

Datasets c-err t train t pred c-err t train t pred

SUSY 20.0%± 0.2% 608± 2 134± 4 20.1%± 0.2% 592± 2 129± 1
Mnist bin 2.2%± 0.1% 1342± 5 491± 32 2.3%± 0.1% 1814± 8 954± 21
Usps 3.0%± 0.1% 19.8± 0.1 7.3± 0.3 3.0%± 0.2% 66.1± 0.1 48± 8
Webspam 1.3%± 0.1% 2440± 5 376± 18 1.3%± 0.1% 4198± 40 1455± 180
a9a 15.1%± 0.2% 29.3± 0.2 1.5± 0.1 15.1%± 0.2% 30.9± 0.2 3.2± 0.1
CIFAR 19.2%± 0.1% 2408± 14 820± 47 19.0%± 0.1% 2168± 19 709± 13

For Nyström SVM with Pegaos we tuned the kernel parameter σ and λ regularizer with
a simple grid search (σ ∈ [0.1, 20], λ ∈ [10−8, 10−1], initially with a coarse grid and then
more refined around the best candidates). An analogous procedure has been used for K-
SVM with its parameters C and γ. The details of the considered data sets and the chosen
parameters for our algorithm in Table 5 and 7 are the following:
SUSY (Table 5 and 7, n = 5 × 106, d = 18): we used a Gaussian kernel with σ = 4,
λ = 3× 10−6 and mALS = 2500, muniform = 2500.
Mnist binary (Table 5 and 7, n = 7 × 104, d = 784): we used a Gaussian kernel with
σ = 10, λ = 3× 10−6 and mALS = 15000, muniform = 20000.
Usps (Table 5 and 7, n = 9298, d = 256): we used a Gaussian kernel with σ = 10,
λ = 5× 10−6 and mALS = 2500, muniform = 4000.
Webspam (Table 5 and 7, n = 3.5 × 105, d = 254): we used a Gaussian kernel with
σ = 0.25, λ = 8× 10−7 and mALS = 11500, muniform = 20000.
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a9a (Table 5 and 7, n = 48842, d = 123): we used a Gaussian kernel with σ = 10,
λ = 1× 10−5 and mALS = 800, muniform = 1500.
CIFAR (Table 5 and 7, n = 6 × 104, d = 400): we used a Gaussian kernel with σ = 10,
λ = 2× 10−6 and mALS = 20000, muniform = 20000.
In figure 3 we visualize the eigenvalues decay of the empirical covariance matrix for some
of the datasets considered.

Table 8: Comparison between Nyström-Pegasos (hinge loss) and Nyström-KRR (square
loss) when using uniform sampling. We report the respective classification errors
fixing the number of Nyström centers.

Nyström-Pegasos (Uniform) Nyström-KRR (Uniform)

Datasets c-err m c-err m

SUSY 20.1%± 0.2% 2500 19.8%± 0.2% 2500
Mnist bin 2.3%± 0.1% 20000 2.5%± 0.1% 20000
Usps 3.0%± 0.2% 4000 3.1%± 0.1% 4000
Webspam 1.3%± 0.1% 20000 1.4%± 0.1% 20000
a9a 15.1%± 0.2% 1500 14.9%± 0.1% 1500
CIFAR 19.0%± 0.1% 20000 19.2%± 0.1% 20000
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Figure 3: Eigenvalues decay of the empirical covariance matrix for Mnist binary, CIFAR
and SUSY datasets.
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