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Abstract

The concentration of measure phenomenon serves an essential role in statistics and machine
learning. This paper gives bounded difference-type concentration and moment inequalities
for general functions of independent random variables with heavy tails. A general framework
is presented, which can be used to prove inequalities for general functions once the moment
inequality for sums of independent random variables is established. We illustrate the
power of the framework by showing how it can be used to derive novel concentration and
moment inequalities for bounded, Bernstein’s moment condition, weak-exponential, and
polynomial-moment random variables. Furthermore, we give potential applications of these
inequalities to statistical learning theory.
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1. Introduction

Concentration and moment inequalities are at the heart of empirical science and form
an essential toolkit in the study of natural and artificial learning systems (Boucheron
et al., 2003, 2005, 2013). They have been studied for several decades and used in various
areas, including convex geometry, functional analysis, statistical physics, probability theory,
statistics, information theory, communications and coding theory, learning theory, and
computer science (Ledoux, 2001; Raginsky and Sason, 2015, 2018).

The bounded difference inequality, also referred to as McDiarmid’s inequality (McDiarmid,
1998), is one of the most popular concentration inequalities, which has been widely employed,
as a powerful tool, in machine learning theory, such as algorithmic stability (Bousquet and
Elisseeff, 2002; Bousquet et al., 2020) and empirical processes (Bartlett and Mendelson, 2002;
Bartlett et al., 2005). Compared to the general Hoeffding- and Bernstein-type inequality
(Vershynin, 2018; Wainwright, 2019), the bounded difference inequality works not only for
sums but for general functions of independent random variables, which is more flexible and
capable of estimating nonlinear statistics (Maurer, 2019; Maurer and Pontil, 2018, 2019).
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Specifically, the bounded difference inequality (McDiarmid, 1998) states that

P (f(X)− E[f(X)] > t) ≤ exp

(
−2t2∑
k c

2
k

)
∀t ≥ 0,

where f is a real-valued function of the sequence of independent random variables X =
(X1, ..., Xn), such that |f(x)−f(x′)| ≤ ck whenever x and x′ differ only in the k-th coordinate.

Although it is pretty attractive and useful, the bounded difference inequality, however,
requires the conditional ranges to be uniformly bounded, which imposes inherent limitations
on their applicability to unbounded loss functions. The concentration properties of unbounded
functions become important in many settings, for instance, there has been a lot of work
concerned about establishing generalization bounds in unbounded settings (Cortes et al., 2021;
Kontorovich, 2014; Meir and Zhang, 2003; Cortes et al., 2019; Lou et al., 2022), especially
for the PAC-Bayes learning (Alquier, 2008; Haddouche and Guedj, 2023; Haddouche et al.,
2021; Holland, 2019; Rivasplata et al., 2020; Casado et al., 2024; Chugg et al., 2023).
To meet the growing demand, several concentration inequalities for general functions of
unbounded random variables have been proposed (Kutin, 2002; Combes, 2015; Meir and
Zhang, 2003; Kontorovich, 2014; Maurer and Pontil, 2021). Among these works, Kutin
(2002); Kutin and Niyogi (2002) prove two extensions for strongly and weakly difference-
bounded functions. Combes (2015) proposes a somewhat different extension for functions
with bounded differences on a high probability set and no restriction outside this set.
Although interesting, these approaches entail complex statement, and their conditions are
too restrictive in practice, see a discussion in (Kontorovich, 2014). In the related work,
Warnke (2016) also proposed an interesting variant of the bounded difference inequality by
relaxing the worst-case changes ck to typical changes, which has proven useful in a number of
combinatorial applications (where it’s often possible to distinguish between the typical- and
worst-case changes), often leading to easy concentration proofs beyond the classical bounded
differences inequality. However, the results of Warnke (2016) are still in the realm of bounded
random variables. It may happen that the conditional ranges are infinite, but that the
conditional versions (the random variables obtained by fixing all but one of the arguments of
the function) have certain decay tails (Maurer and Pontil, 2021). In this context, Meir and
Zhang (2003); Kontorovich (2014) give inequalities for sub-Gaussian distributions. Recently,
Maurer and Pontil (2021) provide a more applicable inequality than the ones in (Meir and
Zhang, 2003; Kontorovich, 2014) for the sub-Gaussian case and further study the heavier
sub-exponential distributions, whose results can be seen as unbounded analogues of the
bounded difference inequality under the sub-Gaussian and sub-exponential conditions.

However, both the sub-Gaussian and sub-exponential distributions are relatively light-
tailed. The two distributions are characterized by their tails being upper bounded by
Gaussian, respectively exponential, tails (Vladimirova et al., 2020; Wainwright, 2019).
A distinctive difference between heavy-tailed distributions and sub-Gaussian and sub-
exponential distributions is the moment generating function (MGF). The MGF exists in a
neighborhood around zero for sub-Gaussian and sub-exponential distributions (Vershynin,
2018), while it does not exist for heavy-tailed distributions (Foss et al., 2011; Bakhshizadeh
et al., 2023). Therefore, the technique to find upper bounds for the MGF, used in (Meir
and Zhang, 2003; Kontorovich, 2014; Maurer and Pontil, 2021), fails for heavy-tailed
distributions. However, in many applications, such as probability theory (Wong et al., 2020),
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high-dimensional statistics (Kuchibhotla and Chakrabortty, 2022; Guédon et al., 2014),
stochastic optimization (Gurbuzbalaban et al., 2021) and signal processing (Bakhshizadeh
et al., 2020), the assumption of light-tailed sub-Gaussian and sub-exponential distributions
appears to be inappropriate. Except for the concentration inequalities, recent developments
in random combinatorics, statistics and empirical process theory have prompted the search
to moment inequalities dealing with heavy-tailed random variables (Boucheron et al., 2013).
While for bounded difference-type moment inequalities, the relevant results are very few and
less than the ones of concentration inequalities. Therefore, for the sake of growing demand,
we need concentration and moment inequalities for general functions of independent random
variables with heavy tails.

The goal of this paper is to provide such general-purpose inequalities. Following the
related work, we consider that the centered conditional versions have certain decay tails. We
first provide a general framework, which can be used to establish moment inequalities for
general functions of independent random variables once the moment inequality for sums of
independent variables is obtained. In contrast to existing works (Maurer and Pontil, 2021;
Kontorovich, 2014) that directly focus on concentration inequalities, we explore inequalities
from a moment perspective. It should be noted that the moment perspective has many
advantages, which enhance the flexibility of our framework and ease the derivation of both
concentration and moment inequalities for heavy-tailed distributions, even those with poten-
tially infinite variance. Then, we demonstrate the strength of this framework by applying it
to bounded, Bernstein’s moment condition, weak-exponential, and polynomial-moment ran-
dom variables, where both the concentration and moment inequalities are presented. In the
last, we examine the application of our derived concentration inequalities to some standard
problems in statistical learning theory, including vector valued concentration, Rademacher
complexity and generalization, and algorithmic stability and generalization. Together with
the bounded difference inequality, Rademacher complexity and algorithmic stability are two
fundamental tools to derive generalization bounds for various learning algorithms, but this
approach typically requires the assumption of boundedness. Our inequalities significantly
broaden the applicability of these results to heavy-tailed distributions.

In conclusion, this paper’s contributions are threefold: presenting a general framework,
deriving concentration and moment inequalities for a range of random variables, and applying
these inequalities to statistical learning theory. The paper is organized as follows: Section
2 introduces the general framework. Section 3 explores the application of this framework
to specific random variables, while Section 4 demonstrates the application of the derived
concentration inequalities to statistical learning theory. The paper concludes with Section 5,
and proofs are provided in the Appendix.

2. A General Framework

We first introduce some necessary notations, and then outline the framework.

2.1 Notations

We use uppercase letters to present random variables and vector of random variables, and use
lowercase letters to present scalars and vector of scalars. Let X = (X1, ..., Xn) be a vector
of independent random variables with values in a space X , and the vector X ′ = (X ′1, ..., X

′
n)
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is independent and identically distributed (i.i.d.) to X. Let f be a function f : X n 7→ R.
We will also need the following definition to characterize the fluctuations of f in the k-th
variable Xk, when the other variables (xi : i 6= k) are given.

Definition 1 If f : X n 7→ R, x = (x1, ..., xn) ∈ X n and X = (X1, ..., Xn) is a random
vector with independent components in X n, then the k-th centered conditional version of f
is the random variable

fk(X)(x) = f (x1, ..., xk−1, Xk, xk+1, ..., xn)− E
[
f
(
x1, ..., xk−1, X

′
k, xk+1, ..., xn

)]
.

fk(X) can be seen as a random-variable-valued-function fk(X) : x ∈ X n → fk(X)(x).
Therefore,

fk(X)(X) = f(X)− E[f(X)|X1, ..., Xk−1, Xk+1, ..., Xn].

It is clear that fk(X) does not depend on the k-th coordinate of x. For instance, consider
the sum f(x) =

∑n
i=1 xi, then fk(X)(x) = Xk − E[Xk] is independent of x. The Lp norm of

a real random variable Z is ‖Z‖p = (E[|Z|p])
1
p .

2.2 Main Results

A general framework is given, which is a moment inequality for general functions of n
independent random variables. To proceed, we state two technical lemmas.

Lemma 2 Let h : R → R be a convex function, ε1, ...., εn a sequence of independent
Rademacher variables (i.e., with P(εi = −1) = P(εi = 1) = 1/2) and a1, ..., an, b1, ..., bn two
sequences of real numbers, such that for every i |ai| ≤ |bi|. Then

Eh

(
n∑
i=1

|ai|εi

)
≤ Eh

(
n∑
i=1

|bi|εi

)
.

Proof It is enough to prove the monotonicity of function f(t) = Eh(a+ |t|ε1), for every
choice of the parameter a. By the convexity assumption we have for |s| < |t|

h(a+ |t|)− h(a+ |s|)
|t| − |s|

≥ h(a− |s|)− h(a− |t|)
|t| − |s|

.

Equivalently,

f(|s|) =
1

2
(h(a+ |s|) + h(a− |s|)) ≤ 1

2
(h(a+ |t|) + h(a− |t|)) = f(|t|).

The proof is complete.

Lemma 3 Let h : R → R be a convex function and S = f(X1, ..., Xi−1, Xi, Xi+1, ..., Xn),
where X1, ...., Xn are independent random variables with values in a measurable space X and

4



Concentration and Moment Inequalities

f : X n → R is a measurable function. Denote as usual Si = f(X1, ..., Xi−1, X
′
i, Xi+1, ..., Xn),

where (X ′1, ..., X
′
n) is an independent copy of (X1, ...., Xn). Assume moreover that

|S − Si| ≤ Fi(x1, ..., xi−1, Xi, X
′
i, xi+1, ..., xn)

for some functions Fi : X n+1 → R that does not depend on the i-th coordinate of x,
i = 1, ..., n, and some fixed x ∈ X n. Then,

Eh(S − ES) ≤ Eh

(
n∑
i=1

εiFi(x1, ..., xi−1, Xi, X
′
i, xi+1, ..., xn)

)
,

where ε1, ..., εn is a sequence of independent Rademacher variables, independent of (Xi)
n
i=1

and (X ′i)
n
i=1.

Proof We will use induction with respect to n. For n = 0 the statement is obvious,
since Eh(S −ES) = Eh (

∑n
i=1 εiFi(x1, ..., xi−1, Xi, X

′
i, xi+1, ..., xn)) = h(0). Let us therefore

assume that the Theorem is true for n− 1. Then

Eh(S − ES) = Eh(S − EX′
n
Sn + EXnS − ES)

≤ Eh(S − Sn + EXnS − ES)

= Eh(Sn − S + EXnS − ES)

= Eh(εn|S − Sn|+ EXnS − ES)

≤ Eh(εnFn(x1, ..., xn−1, Xn, X
′
n) + EXnS − ES),

where the equalities follow from the symmetry, the first inequality follows from Jensen’s
inequality and the convexity of h, and the last inequality follows from Lemma 2. Now,
denoting Z = EXnS, Zi = EXnSi, we have for i = 1, ..., n− 1

|Z − Zi| = |EXnS − EXnSi| ≤ EXn |S − Si| ≤ Fi(x1, ..., xi−1, Xi, X
′
i, xi+1, ..., xn),

and thus for fixed Xn, X ′n and εn, we can apply the induction assumption to the function
t→ h(εnFn(x1, ..., xn−1, Xn, X

′
n) + t) instead of h and EXnS instead of S, to obtain

Eh(S − ES) ≤ Eh

(
n∑
i=1

εiFi(x1, ..., xi−1, Xi, X
′
i, xi+1, ..., xn)

)
.

The proof is complete.

We now demonstrate the framework.

Theorem 4 For all p ≥ 1,

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ 2

∥∥∥∥∥
n∑
i=1

sup
x∈Xn

fi(X)(x)

∥∥∥∥∥
p

.

Proof We choose Fi(x1, ..., xi−1, Xi, X
′
i, xi+1, ..., xn) = supx∈Xn |fi(X)(x) − fi(X

′)(x)|,
which equals to supx∈Xn |f (x1, ..., xi−1, Xi, xi+1, ..., xn)−E [f (x1, ..., xi−1, X

′
i, xi+1, ..., xn)]−
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f (x1, ..., xi−1, X
′
i, xi+1, ..., xn)+E [f (x1, ..., xi−1, Xi, xi+1, ..., xn)] |. It is clear that |S−Si| ≤

Fi(x1, ..., xi−1, Xi, X
′
i, xi+1, ..., xn). Then, for all p ≥ 1,

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤

∥∥∥∥∥
n∑
i=1

εiFi(x1, ..., xi−1, Xi, X
′
i, xi+1, ..., xn)

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

sup
x∈Xn

εi|fi(X)(x)− fi(X ′)(x)|

∥∥∥∥∥
p

=

∥∥∥∥∥
n∑
i=1

sup
x∈Xn

fi(X)(x)− fi(X ′)(x)

∥∥∥∥∥
p

≤2

∥∥∥∥∥
n∑
i=1

sup
x∈Xn

fi(X)(x)

∥∥∥∥∥
p

,

where the first inequality follows from Lemma 3 with h(t) = |t|p and the last one from the
triangle inequality, and the equality follows from the symmetry. The proof is complete.

It should be noted that the function Fi(x1, ..., xi−1, Xi, X
′
i, xi+1, ..., xn) can be substituted

with other alternative functions. For instance, in Lemma 3, if we instead assume moreover
that

|S − Si| ≤ Fi(Xi, X
′
i) (1)

for some functions Fi : X 2 → R, i = 1, ..., n, then, following the proof of Lemma 3, the
conclusion in Lemma 3 is

E[h(S − ES)] ≤ E

[
h

(
n∑
i=1

εiFi(Xi, X
′
i)

)]
.

Then, the general framework in Theorem 4 changes correspondingly.

Theorem 5 Under the condition (1), for all p ≥ 1,

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤

∥∥∥∥∥
n∑
i=1

εiFi(Xi, X
′
i)

∥∥∥∥∥
p

.

Remark 6 Theorem 4 provides a probabilistic toolbox, which can be used to establish
moment inequalities for general functions of independent variables, once the moment in-
equality for sums of independent variables is derived. In Theorem 4, the supremum in
the sum is a major weakness of the proposed approach. Firstly, the supremum means
that some sort of boundedness remains necessary. Secondly, whenever this sum of random
variables satisfies a central limit theorem a corresponding variance proxy will appear in
the inequalities, however, this does not imply that f(X1, ..., Xn) satisfies a central limit
theorem. Besides, most of the inequalities given in Section 3 based on Theorem 4 require
uniform boundedness of the conditional variances due to the presence of supremum in the
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sum. Fortunately, under an additional condition (1), we can bypass this issue because
at this point, the general framework no longer depends on the supremum, as shown in
Theorem 5. The assumption |S − Si| ≤ Fi(Xi, X

′
i) can be seen as a Lipschitz condition

when Fi(Xi, X
′
i) is a distance function, which is a commonly used condition coupled with

the bounded difference-type inequality, see Theorem 1 in (Kontorovich, 2014) and Corollary
2.21 in (Wainwright, 2019). For example, if f is L-Lipschitz with respect to the metric ρ
on X n defined by ρ(x, y) =

∑
i di(xi, yi) for some distance functions di : X 2 → R, we can

substitute Fi(Xi, X
′
i) with Ldi(Xi, X

′
i), i = 1, ..., n. Thus, in the case of Lipschitz function

classes, our general framework becomes

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ L

∥∥∥∥∥
n∑
i=1

εidi(Xi, X
′
i)

∥∥∥∥∥
p

.

Remark 7 This remark discusses the technical novelty of the framework. Deriving con-
centration inequalities for a general function f of independent random variables is more
challenging than for their sum, as it typically involves some form of decomposition of the
general function. In related studies, McDiarmid (1998); Kontorovich (2014) employed the
martingale approach to decompose f − Ef , whereas Maurer and Pontil (2021) used the sub-
additivity of entropy to decompose f − Ef . Subsequently, McDiarmid (1998); Kontorovich
(2014); Maurer and Pontil (2021) focused on establishing upper bounds for the MGF, EeλεiZi ,
of a bounded or sub-Gaussian random variable Zi. Further, Maurer and Pontil (2021) focused
on a variant of the MGF, EZ2

i e
λZi , of a sub-exponential variable Zi. Through demonstrating

the upper bounds of the MGF, these works derived bounded difference-type inequalities for
bounded, sub-Gaussian and sub-exponential distributions. However, these distributions are
light-tailed, making their MGFs bounded, while the MGF of heavy-tailed random variables
(heavier than sub-exponential distributions) remains unbounded, challenging the effectiveness
of standard bounding techniques. Due to the inability to directly study MGF, alternative
methodologies are warranted. We need to introduce a different decomposition for the function
f − Ef . To counter this difficulty, we address it through a moment inequality perspective,
introducing Lemma 3. The proof of Lemma 3 is done via an induction approach, and a
pivotal step is constructing the function t → h(εnFn(x1, ..., xn−1, Xn, X

′
n) + t), achieved

through a conditioning strategy leveraging Jensen’s inequality. With Lemma 3, we first
decompose the concentration of the general function f into the sum of independent variables.
Then, instead of bounding the MGF, we focus on bounding the p-th moment of the sum of
variables. By comparison, our proof techniques are relatively simple and easy to follow, and
the framework obtained is pretty flexible to the application of heavy-tailed distributions.

3. Applications to Concrete Random Variables

This section applies the general framework in Theorem 4 to a range of random variables,
encompassing bounded, Bernstein’s moment condition, weak-exponential, and polynomial-
moment variables, each subsequent category exhibiting heavier tails than its predecessor. In
summary, the inequalities of these variables will be obtained in two steps: (1) Given the p-th
moment bound of the sum of variables, that is ‖

∑
i supx∈Xn fi(X)(x)‖p, Theorem 4 yields

a moment inequality ‖f − Ef‖p; (2) Given the moment inequality ‖f − Ef‖p, Markov’s
inequality transfers it to a tail inequality P(|f − Ef | ≥ t).
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3.1 Bounded Random Variables

Before presenting the results, we first introduce a Bernstein-type moment inequality for
sums of bounded random variables since this forms an integral part of our proofs.

Lemma 8 (Proposition D.1 in (Kuchibhotla and Chakrabortty, 2022)) Suppose that
X1, X2, ..., Xn are independent random variables with mean zero and uniformly bounded by
b in absolute value. Then for p ≥ 1,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤
√

6p

(
n∑
i=1

E[X2
i ]

)1/2

+ 10pb.

By a combination of Theorem 4 and Lemma 8, we have the following moment inequality.

Corollary 9 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, |fi(X)(x)| ≤ b and E[(fi(X)(x))2] ≤ σ2i , then for all p ≥ 1,

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ 2

√6p

(
n∑
i=1

σ2i

)1/2

+ 10pb

 .

Remark 10 The concentration property of bounded random variables has been widely
studied in the literature. Although flourishing, we notice that a sharper moment bound for
general functions of bounded random variables seems to be missed. In related work, Theorem
15.4 in (Boucheron et al., 2013) provides a moment version of the bounded differences
inequality. Suppose, that f satisfies the bounded differences property, namely, for any i =
1, ..., n and any x1, ..., xn, x

′
i ∈ X it holds that |f(x1, ..., xn)−f(x1, ..., xi−1, x

′
i, xi+1, ..., xn)| ≤

b. Then, for any p ≥ 2,

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ 2
√
npb.

Consider the case f =
∑n

i=1Xi and |Xi| ≤ b a.s. and EXi = 0, this inequality becomes∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≤ 4
√
npb,

which is the moment version of Hoeffding’s inequality. As a comparison, our Corollary 9
provides a Bernstein’s version of Theorem 15.4 of (Boucheron et al., 2013). Although the
bounded random variable is not heavy-tailed, our framework gives a novel result in this case.

By Markov’s inequality, we can transfer the moment inequality to a tail inequality.

Corollary 11 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, |fi(X)(x)| ≤ b and E[(fi(X)(x))2] ≤ σ2i , then for all t > 0

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
−min

{
t2

96e2
∑n

i=1 σ
2
i

,
t

40eb

})
.
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Remark 12 The bound is a Bernstein-type inequality, however, it merits noting that
Corollary 11 exhibits certain limitations compared to Theorem 3.8 in (McDiarmid, 1998).
Specifically, the constants in Corollary 11 are larger, a consequence of transitioning from
moment-based to tail-based bounds. Additionally, Corollary 11 requires the uniform bound-
edness of all conditional variances, whereas (McDiarmid, 1998) requires only uniform
boundedness of the sum of conditional variances. Nevertheless, the application of Theorem 5
can address the issue of requiring uniform boundedness of all conditional variances, referring
to Remark 6.

3.2 Bernstein’s moment condition

Bernstein’s moment condition is satisfied by various unbounded variables, a property that
lends it much broader applicability than the bounded random variable. The definition is
shown below.

Definition 13 For the centered independent random variables X1, ..., Xn, we say Bernstein’s
moment condition with parameter b holds if

n∑
i=1

E |Xi|p ≤
∑n

i=1 EX2
i

2
p!bp−2, for all p = 2, 3, 4, ....

Lemma 14 Suppose that X1, X2, ..., Xn are independent random variables with mean zero
and satisfy Bernstein’s moment condition. Then for p ≥ 2,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤ 4

(
n∑
i=1

E[X2
i ]

)1/2
√
p+ 8bp.

By a combination of Theorem 4 and Lemma 14, we get the following result.

Corollary 15 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, the fi(X)(x) satisfy Bernstein’s moment condition and E[(fi(X)(x))2] ≤ σ2i ,
then for all p ≥ 2,

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ 2

4
√
p

(
n∑
i=1

σ2i

)1/2

+ 8pb

 .

Corollary 16 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, the fi(X)(x) satisfy Bernstein’s moment condition and E[(fi(X)(x))2] ≤ σ2i ,
then for all t > 0,

P(|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
−min

{
t2

256e2
∑n

i=1 σ
2
i

,
t

32eb

})
.

Remark 17 The bound is a Bernstein-type inequality, exhibiting a mixture of two tails,
a sub-Gaussian tail governed by the variance-proxy

∑n
i=1 σ

2
i for small deviations, and a

sub-exponential tail governed by the scale-proxy b for large deviations. For the bounded
difference-type inequality of Bernstein’s moment variables, we have not found related results
in the literature.
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3.3 Weak-Exponential Random Variables

We introduce the definition of such a class of random variables.

Definition 18 For α > 0, define the function ψα : R+ → R+ with the formula ψα(x) =
exp(xα)− 1. For a random variable X, define also the Orlicz norm

‖X‖ψα = inf{λ > 0 : Eψα(|X|/λ) ≤ 1}.

Then, by Chebyshev’s inequality, we say the random variable X is weak-exponential if for
t ≥ 0,

P(|X| ≥ t) ≤ 2 exp

(
−
(

t

‖X‖ψα

)α)
.

Remark 19 For α < 1 the above definition does not give a norm but only a quasi-norm.
It can be fixed by changing the function ψα near zero, to make it convex (which would
give an equivalent norm) (Adamczak, 2007). It is however widely accepted in literature
to use the word norm also for the quasi-norm given by our definition. In Definition 18,
this class of variables is also referred to as sub-Weibull variables (Vladimirova et al., 2020;
Kuchibhotla and Chakrabortty, 2022), which is a popular sub-class of unbounded random
variables. It is parameterized by a positive tail index α, and a higher tail parameter α
indicates a lighter tail. The weak-exponential distributions are reduced to sub-Gaussian
distributions for α = 2, to sub-exponential distributions for α = 1, and to bounded variables
for α =∞. The sub-Gaussian distributions subsume the Gaussian random variables, as well
as all the bounded ones (such as Bernoulli, uniform, and multinomial). Sub-exponential
random variables have heavier tails than sub-Gaussian variables and include the exponential,
chi-squared, and Poisson distributions (Vershynin, 2018). Therefore, the weak-exponential
distributions fall under a broad class of unbounded and heavy-tailed distributions, see
(Vladimirova et al., 2020; Kuchibhotla and Chakrabortty, 2022).

Before showing the main results, we need to provide moment inequalities for the sum of
weak-exponential random variables from (Kuchibhotla and Chakrabortty, 2022). There will
be a transition for the moment bounds at α = 1 due to the fact that weak-exponential
random variables are log-convex for α ≤ 1 and log-concave for α ≥ 1.

Lemma 20 (Weak-exponential Variables with 0 < α ≤ 1) Suppose X1, X2, ..., Xn are
mean zero and independent weak-exponential random variables such that 0 < α ≤ 1. Then
for p ≥ 1,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤
√

6p

(
n∑
i=1

E[X2
i ]

)1/2

+ CαKα max
1≤i≤n

‖Xi‖ψα(log(n+ 1))1/αp1/α,

where Cα and Kα are constants depending only on α.

Lemma 21 (Weak-exponential Variables with α ≥ 1) Suppose X1, X2, ..., Xn are mean
zero and independent weak-exponential random variables such that α ≥ 1. Then for p ≥ 1,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤
√

6p

(
n∑
i=1

E[X2
i ]

)1/2

+ Cα max
1≤i≤n

‖Xi‖ψα(log(n+ 1))1/αp,

where Cα is a constant depending only on α.

10
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Remark 22 Note that for the weak-exponential distribution, when 0 < α < 1, such a class
of distribution is heavy-tailed. In this case, its MGFs do not exist, and the technique to find
upper bounds for the MGF fails.

By a combination of Theorem 4 and Lemma 20 and Lemma 21, we get the following result.

Corollary 23 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, ‖fi(X)(x)‖ψα ≤ b and E[(fi(X)(x))2] ≤ σ2i , then for all p ≥ 1, if 0 < α ≤ 1

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ 2

√6p

(
n∑
i=1

σ2i

)1/2

+ CαKαb(log(n+ 1))1/αp1/α

 ,

if α ≥ 1

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ 2

√6p

(
n∑
i=1

σ2i

)1/2

+ Cαb(log(n+ 1))1/αp

 .

Corollary 24 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, ‖fi(X)(x)‖ψα ≤ b and E[(fi(X)(x))2] ≤ σ2i , then for all t > 0, if 0 < α ≤ 1

P
(
|f(X)− Ef(X ′)| ≥ t

)
≤ exp

(
−min

{
t2

96e2
∑n

i=1 σ
2
i

,
tα

(4eCαKα)α log(n+ 1)bα

})
,

if α ≥ 1

P
(
|f(X)− Ef(X ′)| ≥ t

)
≤ exp

(
−min

{
t2

96e2
∑n

i=1 σ
2
i

,
t

4eCα(log(n+ 1))1/αb

})
.

Remark 25 When 0 < α ≤ 1, the bound exhibits a mixture of two tails. One is the

sub-Gaussian tail exp
(
− t2∑n

i=1 σ
2
i

)
for small deviations, which is induced from the central

limit theorem, and the other is the weak-exponential tail exp
(
− tα

bα

)
for large deviations,

which is expected from the weak-exponential distributions. When α ≥ 1, the bound also has

two tails, a sub-Gaussian tail exp
(
− t2∑n

i=1 σ
2
i

)
governed by the variance-proxy

∑n
i=1 σ

2
i for

small deviations, and a sub-exponential tail exp
(
− t
b

)
governed by the scale-proxy b for large

deviations. For the bounded difference-type inequality of weak-exponential random variables,
we have not found results comparable in the literature. The concentration inequality for the
weak-exponential random variables is mainly devoted to the sum of independent variables
(Kuchibhotla and Chakrabortty, 2022; Zhang and Wei, 2022; Bong and Kuchibhotla, 2023).
If f is a sum of independent random variables, we recover the inequalities in the related
works (Kuchibhotla and Chakrabortty, 2022; Zhang and Wei, 2022; Bong and Kuchibhotla,
2023) up to constants, i.e., if for all i, ‖Xi − E[Xi]‖ψα ≤ b and E[(Xi − E[Xi])

2] ≤ σ2i , then
for all t > 0, if 0 < α ≤ 1

P

(∣∣∣∣∣
n∑
i=1

Xi − E
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ exp

(
−min

{
t2

96e2
∑n

i=1 σ
2
i

,
tα

(4eCαKα)α log(n+ 1)bα

})
,

(2)

11
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if α ≥ 1

P

(∣∣∣∣∣
n∑
i=1

Xi − E
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ exp

(
−min

{
t2

96e2
∑n

i=1 σ
2
i

,
t

4eCα(log(n+ 1))1/αb

})
. (3)

Remark 26 We compare Corollary 24 with the work (Maurer and Pontil, 2021). Theorem
4 of (Maurer and Pontil, 2021) shows that for all t > 0,

P
(
f(X)− Ef(X ′) ≥ t

)
≤ exp

(
−t2

4e2 supx∈Xn
∑n

i=1 ‖fi(X)(x)‖2ψ1
+ 2emaxi supx∈Xn ‖fi(X)(x)‖ψ1t

)
,

where ‖ · ‖ψ1 is the sub-exponential norm defined by ‖Z‖ψ1 = supp≥1
‖Z‖p
p for a real random

variable Z. In the case of α = 1, our definition of the sub-exponential norm is equivalent
to this one, differing from each other by at most an absolute constant factor, referring to
Proposition 2.7.1 in (Vershynin, 2018). In the above inequality, both the variance-proxy and
the scale proxy depend on the sub-exponential norm. However, a well known two-tailed
bound for sums of bounded variables, Bernstein’s inequality (Vershynin, 2018), has the
variance proxy depending on ‖ · ‖2 and the scale-proxy on ‖ · ‖∞. When ‖ · ‖2 � ‖ · ‖∞, this
leads to tighter bounds, whenever the inequality is operating in the sub-Gaussian regime,
which often happens for large sample-sizes. In this spirit, Theorem 5 in (Maurer and Pontil,
2021) further shows that let p, q ∈ (1,∞) satisfy p−1 + q−1 = 1, then for all t > 0,

P
(
f(X)− Ef(X ′) ≥ t

)
≤ exp

(
−t2

2 supx∈Xn
∑n

i=1 ‖fi(X)(x)‖22p + 2eqmaxi supx∈Xn ‖fi(X)(x)‖ψ1t

)
.

Although this inequality gives substantial improvements over their Theorem 4, we cannot let
p→ 1 to recover the behavior of Bernstein’s inequality in the sub-Gaussian regime, because
this would drive the scale-proxy to infinity. As a comparison, in the sub-Gaussian regime of
our Corollary 24, the variance proxy

∑n
i=1 σ

2
i successfully depends on ‖ · ‖2. However, in

the weak-exponential regime, our inequality entails a logarithmic term log(n + 1), which
is a disadvantage compared to (Maurer and Pontil, 2021). Moreover, the approach of
(Maurer and Pontil, 2021) places the supremum over x outside the sum in the variance
proxy, which is beneficial compared to Corollary 24. Nevertheless, we note that applying
Theorem 5 addresses the issue of having the supremum over x inside the variance proxy,
thereby eliminating the supremum. In such cases, our inequality recovers the behavior of
Bernstein’s inequality in the sub-Gaussian regime.

3.4 Polynomial-Moment Random Variables

The final class of distributions that we consider are those that satisfy a polynomial-moment
bound, as specified by the following condition: there exists some p ≥ 2 such that

E[|X|p] ≤ b <∞.

12
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Distributions satisfying the above condition fall under a broad class of heavy-tailed distribu-
tions, including those with infinite variance (Nair, 2012; Nagaev, 1979).

Next, we introduce a moment inequality for the sum of variables satisfying the polynomial-
moment condition, which involves the variance, known as Rosenthal-type inequality.

Lemma 27 (Theorem 15.11 in (Boucheron et al., 2005)) Suppose that X1, X2, ..., Xn

are independent centered random variables. Then for any integer p ≥ 2∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≤
√

2κ(2 + θ)p

(
n∑
i=1

E|Xi|2
) 1

2

+ pκ

√
1 +

1

θ

(
n∑
i=1

E|Xi|p
) 1

p

,

where θ ∈ (0, 1) and κ =
√
e

2(
√
e−1) < 1.271.

By a combination of Theorem 4 and Lemma 27, we get the following result.

Corollary 28 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, E[|fi(X)(x)|p] ≤ bi for some p ≥ 2 and E[(fi(X)(x))2] ≤ σ2i , then

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ 2
√

2κ(2 + θ)p

(
n∑
i=1

σ2

) 1
2

+ 2pκ

√
1 +

1

θ

(
n∑
i=1

bi

) 1
p

.

Corollary 29 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, E[|fi(X)(x)|p] ≤ bi for some p ≥ 2 and E[(fi(X)(x))2] ≤ σ2i , then for all t > 0,

P
(
|f(X)− Ef(X ′)| ≥ t

)
≤ exp

(
− t2

16e2(2κ(2 + θ))
∑n

i=1 σ
2
i

)
+

(4pκ
√

1 + 1
θ )p
∑n

i=1 bi

tp
.

Remark 30 The bound exhibits a mixture of two tails, a sub-Gaussian tail exp
(
− t2∑n

i=1 σ
2
i

)
for small deviations, which is induced from the central limit theorem, and a power-type tail∑n

i=1 bi
tp for large deviations, which is expected from the polynomial-moment condition. For

the bounded difference-type inequality of polynomial-moment random variables, we have
not found results comparable to Corollary 29 in the literature.

Remark 31 The classical Nagaev’s inequality states that if for all i, E[|Xi − E[Xi]|p] ≤ bi
for some for some p > 2 and E[(Xi − E[Xi])

2] ≤ σ2i , then for all t > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi − E
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−2e−p(p+ 2)−2t2∑n

i=1 σ
2
i

)
+

(1 + 2
p)p
∑n

i=1 bi

tp
,

referring to Corollary 1.8 in (Nagaev, 1979). Nagaev’s inequality has raised interesting
applications in machine learning, such as stochastic optimization (Lou et al., 2022). As a
comparison, if f is a sum of independent random variables, we recover Nagaev’s inequality
up to constants.
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Then, we consider a different moment inequality for the polynomial-moment condi-
tion, which does not require the bounded variance, providing concentration and moment
inequalities for distributions with infinite variance.

Lemma 32 (Marcinkiewicz-Zygmund’s inequality (Ren and Liang, 2001)) Suppose
X1, X2, ..., Xn are independent centered random variables with a finite p-th moment for p ≥ 2.
Then ∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤ 3
√

2np

(
1

n

n∑
i=1

‖Xi‖pp

)1/p

.

By a combination of Theorem 4 and Lemma 32, we get the following result.

Corollary 33 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, E[|fi(X)(x)|p] ≤ b for some p ≥ 2, then

‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖p ≤ 6
√

2npb1/p.

Corollary 34 With f , (Xi)
n
i=1 and fi(X)(x) as in Theorem 4. Suppose that for all i and

any x ∈ X n, E[|fi(X)(x)|p] ≤ b for some p ≥ 2, then for all t > 0,

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ (6
√

2npb1/p)p

tp
.

4. Applications to Statistical Learning Theory

In this section, we explore the application of these inequalities to statistical learning theory,
showcasing their use in vector-valued concentration and different approaches to prove
generalization bounds. We primarily focus on weak-exponential random variables for
conciseness. The inequalities of other types random variables in this paper can also be
applied to these applications by the reader following the same pattern. The results in this
section provide a substantial extension of the existing ones, the classical bounded results
and the sub-Gaussian/sub-exponential results in (Maurer and Pontil, 2021; Kontorovich,
2014), to heavy-tailed distributions. Since the improvement is clear, we will not list the
relevant results in (Maurer and Pontil, 2021; Kontorovich, 2014) for comparison.

4.1 Vector Valued Concentration

We study the concentration of vectors in a normed space (X , ‖ · ‖) and demonstrate results
of the weak-exponential variables.

Theorem 35 Suppose the Xi are independent random variables with values in a normed
space (X , ‖ · ‖) such that ‖‖Xi‖‖ψα ≤ ∞.
(i) Then for all t > 0, if 0 < α ≤ 1

P

(∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
∣∣∣∣∣ ≥ t

)

≤ exp

(
−min

{
t2

96e24
∑n

i=1 ‖‖Xi‖‖22
,

tα

(4eCαKα)α log(n+ 1)(2 maxk ‖‖Xk‖‖ψα)α

})
,
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if α ≥ 1

P

(∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
∣∣∣∣∣ ≥ t

)

≤ exp

(
−min

{
t2

96e24
∑n

i=1 ‖‖Xi‖‖22
,

t

4eCα(log(n+ 1))1/α2 maxk ‖‖Xk‖‖ψα

})
.

(ii) If X is a Hilbert space, the Xi are i.i.d., then for all t > 0, if 0 < α ≤ 1

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ ≥ t+
√
n‖‖X1‖‖2

)

≤ exp

(
−min

{
t2

96e24n‖‖X1‖‖22
,

tα

(4eCαKα)α log(n+ 1)(2‖‖X1‖‖ψα)α

})
,

if α ≥ 1

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ ≥ t+
√
n‖‖X1‖‖2

)

≤ exp

(
−min

{
t2

96e24n‖‖X1‖‖22
,

t

4eCα(log(n+ 1))1/α2‖‖X1‖‖ψα

})
.

Remark 36 The vector valued inequality has wide applications in learning theory, such as
the generalization error analysis in Hilbert Space, see (Smale and Zhou, 2007).

As an illustration, we apply the derived vector valued concentration inequality above to
study the principal subspace selection, often called PCA (principal component analysis),
with weak-exponential data. In PCA we seek a projection onto a d-dimensional subspace that
most faithfully represents the data. Let H be a Hilbert-space, Xi i.i.d. with values in H and
Pd the set of d-dimensional orthogonal projection operators in H. For x ∈ H and P ∈ Pd the
reconstruction error is `(P, x) := ‖Px− x‖2H . We provide a bound, uniformly for projections
in Pd, on the estimation error between the expected and the empirical reconstruction error.

Corollary 37 With X = (X1, ..., Xn) i.i.d., then for all t > 0, if 0 < α ≤ 1

P

(
sup
P∈Pd

1

n

∑
i

E[`(P,X1)]− `(P,Xi) ≥ t+

√
d√
n
‖‖X1‖2‖2

)

≤2 exp

(
−min

{
nt2

96e24d‖‖X1‖2‖22
,

(nt)α

(4eCαKα)α log(n+ 1)(2
√
d‖‖X1‖2‖ψα)α

})
,

if α ≥ 1

P

(
sup
P∈Pd

1

n

∑
i

E[`(P,X1)]− `(P,Xi) ≥ t+

√
d√
n
‖‖X1‖2‖2

)

≤2 exp

(
−min

{
nt2

96e24d‖‖X1‖2‖22
,

nt

4eCα(log(n+ 1))1/α2
√
d‖‖X1‖2‖ψα

})
.
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4.2 Rademacher Complexity and Generalization

Rademacher complexity is a popular notion of complexity that is distribution dependent.
Suppose that G is a class of function g : X → R. The Rademacher complexity of G is defined
as

R(G) = E

[
1

n
E

[
sup
g∈G

∑
i

εig(Xi)|X

]]
,

where ε1, ..., εn are independent random variables uniformly chosen from {−1, 1}. Together
with the symmetrization argument, it leads to an expected bound, uniformly for functions
in G

E

[
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)]

]
≤ 2R(G).

The classical method in statistical learning uses the bounded difference inequality to show that
supg∈G

1
n

∑
i g(Xi)−E[g(X ′i)] is sharply concentrated about its mean E[supg∈G

1
n

∑
i g(Xi)−

E[g(X ′i)]], resulting in the following generalization bound: if g : X → [0, 1], for any t ≥ 0

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] > 2R(G) + t

)
≤ exp

(
−2nt2

)
.

Although this approach is very fundamental, it relies on the g(Xi) being bounded, a
condition dictated by the bounded difference inequality. However, providing bounds on
the Rademacher complexity does not necessarily require the boundedness, and Lipschitz
properties are often more prevalent. We now demonstrate that the boundedness can be
relaxed by heavy-tailed distributions for uniformly Lipschitz function classes and present
results of the weak-exponential variables.

Theorem 38 Let X = (X1, ..., Xn) be a vector of i.i.d. weak-exponential random variables
with values in a Banach space (X , ‖ · ‖) and let G be a class of function g : X → R such that
g(x)− g(y) ≤ L‖x− y‖ for all g ∈ G and that x, y ∈ X . Then, for all t > 0, if 0 < α ≤ 1

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] ≥ t+ 2R(G)

)

≤ exp

(
−min

{
t2

96e2 16L
2

n ‖‖X1‖‖22
,

tα

(4eCαKα)α log(n+ 1)(4Ln ‖‖X1‖‖ψα)α

})
,

if α ≥ 1

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] ≥ t+ 2R(G)

)

≤ exp

(
−min

{
t2

96e2 16L
2

n ‖‖X1‖‖22
,

t

4eCα(log(n+ 1))1/α 4L
n ‖‖X1‖‖ψα

})
.
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Remark 39 In the application of Theorem 38 to give generalization bounds for a learning
problem, the key step is to prove the upper bound for the Rademacher complexity R(G).
Typically, R(G) is of the order O(1/

√
n), see Corollary 40.

As an illustration, we apply the derived inequalities on Rademacher complexity above to
provide generalization bounds for linear regression in the context of potentially unbounded
data. Let X = (H,R), where H is a Hilbert-space with inner product 〈·, ·〉 and norm ‖ · ‖H ,
and let X1 and Z1 be each weak-exponential random variables in H and R respectively. The
pair (X1, Z1) represents the joint occurrence of input-vectors X1 and real outputs Z1. Within
X we consider the class G of functions G = {(x, z)→ g(x, z) = `(〈w, x〉 − z) : ‖w‖H ≤ L},
where ` is a 1-Lipschitz loss function, such as the absolute error or the Huber loss. The
generalization bound is shown below.

Corollary 40 Let X and G be as above and (X,Z) = ((X1, Z1), ..., (Xn, Zn)) be an i.i.d.
sample of random variables in X . Then, for all t > 0, if 0 < α ≤ 1

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] ≥ t+
4√
n
δ(X1,Z1)

)

≤ exp

(
−min

{
t2

96e2 16n (δ(X1,Z1))
2
,

tα

(4eCαKα
4
n)α log(n+ 1)(L‖‖X1‖‖ψα + ‖‖Z1‖‖ψα)α

})
,

if α ≥ 1

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] ≥ t+
4√
n
δ(X1,Z1)

)

≤ exp

(
−min

{
t2

96e2 16n (δ(X1,Z1))
2
,

t

4eCα(log(n+ 1))1/α 4
n(L‖‖X1‖‖ψα + ‖‖Z1‖‖ψα)

})
,

where δ(X1,Z1) = L‖‖X1‖‖2 + ‖‖Z1‖‖2.

4.3 Algorithmic Stability and Generalization

Algorithmic stability is receiving increasing attention in the generalization analysis of
machine learning algorithms. The classical statistical learning method uses the bounded
difference inequality to show that f(X)− E[f(X ′)] is sharply concentrated about its mean.
Together with certain measures of algorithmic stability, this method gives stability bounds
for the mean, which in turn lead to stability-based generalization bounds (Bousquet and
Elisseeff, 2002). However, it requires boundedness. We now review two pivotal works that
broaden the scope of classical stability theory to accommodate unbounded scenarios. If
(X , d, µ) is a metric probability space and X,X ′ ∼ µ are i.i.d. random variables with values
in X . Kontorovich (2014) studies the sub-Gaussian tail of d(X,X ′). Maurer and Pontil
(2021) extend the method of (Kontorovich, 2014) from sub-Gaussian to sub-exponential
distributions. They work with sub-Gaussian and sub-exponential norms defined respectively
as ‖d(X,X ′)‖ψ2 and ‖d(X,X ′)‖ψ1 for independent X ′, X ∼ µ. Our results can extend the
method of (Maurer and Pontil, 2021; Kontorovich, 2014) to heavy-tailed distributions.
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Theorem 41 For 1 ≤ i ≤ n, let Xi be independent weak-exponential random variables
distributed as µi in X , X = (X1, ..., Xn), X ′ i.i.d. to X, and let f : X n → R have Lipschitz
constant L with respect to the metric ρ on X n defined by ρ(x, y) =

∑
i d(xi, yi). Then for all

t > 0, if 0 < α ≤ 1

P
(
|f(X)− Ef(X ′)| ≥ t

)
≤ exp

(
−min

{
t2

96e2
∑n

i=1 L
2‖d(Xi, X ′i)‖22

,
tα

(4eCαKα)α log(n+ 1)Lα maxk ‖d(Xk, X
′
k)‖αψα

})
,

if α ≥ 1

P
(
|f(X)− Ef(X ′)| ≥ t

)
≤ exp

(
−min

{
t2

96e2
∑n

i=1 L
2‖d(Xi, X ′i)‖22

,
t

4eCαLmaxk ‖d(Xk, X
′
k)‖ψα(log(n+ 1))1/α

})
.

As an illustration, we can apply the derived inequalities on algorithmic stability above
to establish generalization bounds using the notion of total Lipschitz stability (Maurer and
Pontil, 2021; Kontorovich, 2014) for weak-exponential distributions. Readers may refer to
the proof steps in Section 5 of (Kontorovich, 2014). To keep the paper within a reasonable
length, we omit the results of this part.

Also note that in Section 4, the norm ‖·‖2 can be replaced with ‖·‖ψα for weak-exponential
random variables, which can be obtained from the following steps

E[Y 2] =

∫ ∞
0

P(|Y |2 > t)dt =

∫ ∞
0

P
(
|Y | > t1/2

)
dt ≤

∫ ∞
0

2 exp
(
−(t1/2/‖Y ‖ψα)α

)
dt

=

∫ ∞
0

4

α
e−uu

2
α
−1‖Y ‖2ψαdt =

4

α
‖Y ‖2ψαΓ

(
2

α

)
= 2‖Y ‖2ψαΓ

(
2

α
+ 1

)
,

where Y is a weak-exponential random variable, and where the function Γ is defined by the
integral formula Γ(x) =

∫∞
0 tx−1e−tdt, x > 0.

5. Conclusion

This paper presented bounded difference-type concentration and moment inequalities for
general functions of heavy-tailed independent variables. We provided a probabilistic toolbox
that is general and flexible to derive bounded difference-type concentration and moment
inequalities for heavy-tailed distributions. We illustrated this framework to bounded,
Bernstein’s moment condition, weak-exponential, and polynomial-moment variables. We then
illustrated these inequalities with applications to some standard problems in learning theory.
We hope that future work will reveal more interesting applications of these inequalities.
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Appendix A. Proofs of Section 3

A.1 Proof of Corollary 11

Proof For any t > 0, by Markov’s inequality

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t)

≤‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖pp
tp

≤
2p
(√

6p
(∑n

i=1 σ
2
i

)1/2
+ 10pb

)p
tp

.

Setting t such that

exp(−p) = 2p

√6p

(
n∑
i=1

σ2i

)1/2

+ 10pb

p

/tp.

By the inequality a+b ≤ 2 max{a, b} for a, b > 0, it is clear that if
√

6p
(∑n

i=1 σ
2
i

)1/2 ≥ 10pb,
we have

P

|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ 4e
√

6p

(
n∑
i=1

σ2i

)1/2
 ≤ exp(−p).

Put t = 4e
√

6p
(∑n

i=1 σ
2
i

)1/2
, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
− t2

96e2
∑n

i=1 σ
2
i

)
.

While if
√

6p
(∑n

i=1 σ
2
i

)1/2 ≤ 10pb, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ 40ebp) ≤ exp(−p).

Put t = 40ebp, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
− t

40eb

)
.

Combining the two cases, the proof is complete.

A.2 Proof of Lemma 14

Proof From Theorem 2.10 of (Boucheron et al., 2013), for all t ≥ 0 there holds

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2(
∑n

i=1 E[X2
i ] + bt)

)
.
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Set t0 =
∑n

i=1 E[X2
i ]/b. Now observe that for p ≥ 2,

E

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p]

=

∫ ∞
0

ptp−1P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
dt

≤2

∫ ∞
0

ptp−1 exp

(
− t2

2(
∑n

i=1 E[X2
i ] + bt)

)
dt

=2

∫ t0

0
ptp−1 exp

(
− t2

4
∑n

i=1 E[X2
i ]

)
dt+ 2

∫ ∞
t0

ptp−1 exp

(
− t2

4bt

)
dt

≤2

∫ ∞
0

ptp−1 exp

(
− t2

4
∑n

i=1 E[X2
i ]

)
dt+ 2

∫ ∞
0

ptp−1 exp

(
− t

4b

)
dt

:=A+B.

Considering the first term A, by a change of variable, we have

A =2

∫ ∞
0

ptp−1 exp

(
− t2

4
∑n

i=1 E[X2
i ]

)
dt

=2

√√√√4

n∑
i=1

E[X2
i ]

p ∫ ∞
0

pzp−1 exp
(
−z2

)
dz

=

√√√√4

n∑
i=1

E[X2
i ]

p

Γ
(p

2
+ 1
)

≤

√√√√4
n∑
i=1

E[X2
i ]

p√
2π
p

2

(p
2

) p
2

exp
− p

2
+ 1

12
p
2 ,

where the last inequality follows from the Stirling formula: n! =
√

2πnnne−n+θn , |θn| ≤ 1
12n ,

n > 1. Simplifying the above bound for p ≥ 2, we get

A1/p ≤

√√√√4

n∑
i=1

E[X2
i ](πp)

1
2p

√
p

2
exp
− 1

2
+ 1

6p2

≤

√√√√4
n∑
i=1

E[X2
i ](π)

1
4 (p)

1
2p

√
p

2
exp−

1
2
+ 1

24 ≤ 4

√√√√ n∑
i=1

E[X2
i ]
√
p,

where the last inequality uses the fact that p1/p ≤ e1/e. To bound B, note that by change of
variable

B =2

∫ ∞
0

ptp−1 exp

(
− t

4b

)
dt

=2(4b)p
∫ ∞
0

pzp−1 exp (−z) dz

=2(4b)pΓ(p+ 1)

≤2(4b)p
√

2πppp exp
−p+ 1

12p .
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Similarly, simplifying the above bound for p ≥ 2, we get

B1/p ≤ 4b(2)1/p(2πp)
1
p p exp

−1+ 1
12p2 ≤ 2b(4π)

1
2 (p)

1
p p exp−1+

1
48 ≤ 8bp.

Therefore, for p ≥ 2, (
E

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p])1/p

≤ 4

√√√√ n∑
i=1

E[X2
i ]
√
p+ 8bp.

The proof is complete.

A.3 Proof of Corollary 16

Proof For any t > 0, by Markov’s inequality

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t)

≤‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖pp
tp

≤
2p
(

4
√
p
(∑n

i=1 σ
2
i

)1/2
+ 8pb

)p
tp

.

Setting t such that

exp(−p) = 2p

4
√
p

(
n∑
i=1

σ2i

)1/2

+ 8pb

p

/tp.

By the inequality a+ b ≤ 2 max{a, b} for a, b > 0, it is clear that if 4
√
p
(∑n

i=1 σ
2
i

)1/2 ≥ 8pb,
we have

P

|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ 4e4
√
p

(
n∑
i=1

σ2i

)1/2
 ≤ exp(−p).

Put t = 4e4
√
p
(∑n

i=1 σ
2
i

)1/2
, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
− t2

256e2
∑n

i=1 σ
2
i

)
.

While if 4
√
p
(∑n

i=1 σ
2
i

)1/2 ≤ 8pb, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ 32ebp) ≤ exp(−p).

Put t = 32ebp, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
− t

32eb

)
.

Combining the two cases, the proof is complete.
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A.4 Proof of Lemma 20

Proof The proof method is a combination of truncation and Hoffmann-Jorgensen’s inequality,
referring to (Kuchibhotla and Chakrabortty, 2022). Define

Z = max
1≤i≤n

|Xi|, ρ = 8E[Z], Xi,1 = XiI{|Xi| ≤ ρ} − E[XiI{|Xi| ≤ ρ}], and Xi,2 = X −Xi,1.

It is clear that Xi = Xi,1 +Xx,2 and |Xi,1| ≤ 2ρ for 1 ≤ i ≤ n. Also by by triangle inequality,
for p ≥ 1, ∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

Xi,1

∥∥∥∥∥
p

+

∥∥∥∥∥
n∑
i=1

Xi,2

∥∥∥∥∥
p

.

Now for 1 ≤ i ≤ n,

E[X2
i,1] = V ar(Xi,1) = V ar(XiI{|Xi| ≤ ρ}) ≤ E[X2

i ].

Thus, applying Bernstein’s inequality of Lemma 8, for p ≥ 1,∥∥∥∥∥
n∑
i=1

Xi,1

∥∥∥∥∥
p

≤
√

6p

(
n∑
i=1

E[X2
i ]

)1/2

+ 20pρ.

By Hoffmann-Jorgensen’s inequality, Proposition 6.8 of (Ledoux and Talagrand, 1991), and
by the choice of ρ, ∥∥∥∥∥

n∑
i=1

Xi,2

∥∥∥∥∥
1

≤ 2

∥∥∥∥∥
n∑
i=1

|Xi|I{|Xi| ≥ ρ}

∥∥∥∥∥
1

≤ 16‖Z‖1,

since

P

(
max
1≤k≤n

k∑
i=1

|Xi|I{|Xi| ≥ ρ} > 0

)
≤ P (Z ≥ ρ) ≤ 1

8
.

Therefore, by Theorem 6.21 of (Ledoux and Talagrand, 1991),∥∥∥∥∥
n∑
i=1

Xi,2

∥∥∥∥∥
ψα

≤ 17Kα‖Z‖ψα ,

where the constant Kα is given in Theorem 6.21 of (Ledoux and Talagrand, 1991). Hence,
for p ≥ 1, ∥∥∥∥∥

n∑
i=1

Xi,2

∥∥∥∥∥
p

≤ CαKα max
1≤i≤n

‖Xi‖ψα(log(n+ 1))1/αp1/α,

for some constant Cα > 0 depending on α. Therefore, for p ≥ 1,∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≤
√

6p

(
n∑
i=1

E[X2
i ]

)1/2

+ CαKα max
1≤i≤n

‖Xi‖ψα(log(n+ 1))1/αp1/α,

for some constant Cα > 0 (which may be different from the previous term). The proof is
complete.
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A.5 Proof of Lemma 21

Proof The proof follows the same technique as that of Lemma 20, which is also a combi-
nation of truncation and Hoffmann-Jorgensen’s inequality, referring to (Kuchibhotla and
Chakrabortty, 2022). Define

Z = max
1≤i≤n

|Xi|, ρ = 8E[Z], Xi,1 = XiI{|Xi| ≤ ρ} − E[XiI{|Xi| ≤ ρ}], and Xi,2 = X −Xi,1.

Also by triangle inequality, for p ≥ 1,∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

Xi,1

∥∥∥∥∥
p

+

∥∥∥∥∥
n∑
i=1

Xi,2

∥∥∥∥∥
p

.

Following the same argument as in the proof of Lemma 20, for p ≥ 1,∥∥∥∥∥
n∑
i=1

Xi,1

∥∥∥∥∥
p

≤
√

6p

(
n∑
i=1

E[X2
i ]

)1/2

+ 20pρ. (4)

By Hoffmann-Jorgensen’s inequality, Proposition 6.8 of (Ledoux and Talagrand, 1991), and
by the choice of ρ, ∥∥∥∥∥

n∑
i=1

Xi,2

∥∥∥∥∥
1

≤ 2

∥∥∥∥∥
n∑
i=1

|Xi|I{|Xi| ≥ ρ}

∥∥∥∥∥
1

≤ 16‖Z‖1,

since

P

(
max
1≤k≤n

k∑
i=1

|Xi|I{|Xi| ≥ ρ} > 0

)
≤ P (Z ≥ ρ) ≤ 1

8
.

Therefore, by Theorem 6.21 of (Ledoux and Talagrand, 1991), with α = 1,∥∥∥∥∥
n∑
i=1

Xi,2

∥∥∥∥∥
ψ1

≤ K1[16‖Z‖ψ1 + ‖Z‖ψ1 ] ≤ 17K1‖Z‖ψ1 .

By Problem 5 of Chapter 2.2 of (Van Der Vaart and Wellner, 1996), for α ≥ 1,

‖Z‖ψ1 ≤ ‖Z‖ψα(log 2)1/α−1

and so, ∥∥∥∥∥
n∑
i=1

Xi,2

∥∥∥∥∥
ψ1

≤ 17K1‖Z‖ψα(log 2)1/α−1 ≤ Cα(log(n+ 1))1/α max
1≤i≤n

‖Xi‖ψα , (5)

for some constant Cα > 0 depending only on α. Therefore, combining inequalities (4) and
(5) with ρ ≤ 8Cα(log(n+ 1))1/α for p ≥ 1∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤
√

6p

(
n∑
i=1

E[X2
i ]

)1/2

+ Cαp(log(n+ 1))1/α max
1≤i≤n

‖Xi‖ψα ,

for some constant Cα > 0 depending only on α (which may be different from the previous
term). The proof is complete.
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A.6 Proof of Corollary 24

Proof We first consider the case 0 < α ≤ 1. For any t > 0, by Markov’s inequality

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ ‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖pp
tp

≤
2p
(√

6p
(∑n

i=1 σ
2
i

)1/2
+ CαKαb(log(n+ 1))1/αp1/α

)p
tp

.

Setting t such that

exp(−p) = 2p

√6p

(
n∑
i=1

σ2i

)1/2

+ CαKαb(log(n+ 1))1/αp1/α

p

/tp.

By the inequality a + b ≤ 2 max{a, b} for a, b > 0, it is clear that if
√

6p
(∑n

i=1 σ
2
i

)1/2 ≥
CαKαb(log(n+ 1))1/αp1/α, we have

P

|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ 4e
√

6p

(
n∑
i=1

σ2i

)1/2
 ≤ exp(−p).

Put 4e
√

6p
(∑n

i=1 σ
2
i

)1/2
= t, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
− t2

96e2
∑n

i=1 σ
2
i

)
.

While if
√

6p
(∑n

i=1 σ
2
i

)1/2 ≤ CαKαb(log(n+ 1))1/αp1/α

P
(
|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ 4eCαKαb(log(n+ 1))1/αp1/α

)
≤ exp(−p).

Put 4eCαKαb(log(n+ 1))1/αp1/α = t, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
− tα

(4eCαKα)α log(n+ 1)bα

)
.

Combining the two cases, the proof of the case 0 < α ≤ 1 is complete.

We then consider the case α ≥ 1. Following a similar pattern, if
√

6p
(∑n

i=1 σ
2
i

)1/2 ≥
Cαpb(log(n+ 1))1/α, we have

P

|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ 4e
√

6p

(
n∑
i=1

σ2i

)1/2
 ≤ exp(−p).

Put 4e
√

6p
(∑n

i=1 σ
2
i

)1/2
= t, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
− t2

96e2
∑n

i=1 σ
2
i

)
.
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While if
√

6p
(∑n

i=1 σ
2
i

)1/2 ≤ Cαpb(log(n+ 1))1/α

P
(
|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ 4eCαpb(log(n+ 1))1/α

)
≤ exp(−p).

Put 4eCαpb(log(n+ 1))1/α = t, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
− t

4eCαb(log(n+ 1))1/α

)
.

Combining the two cases, the proof of the case α ≥ 1 is complete.

A.7 Proof of Corollary 29

Proof For any t > 0, by Markov’s inequality

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ ‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖pp
tp

≤

(
2
√

2κ(2 + θ)p
(∑n

i=1 σ
2
) 1

2 + 2pκ
√

1 + 1
θ (
∑n

i=1 bi)
1
p

)p
tp

.

If 2pκ
√

1 + 1
θ (
∑n

i=1 bi)
1
p ≥ 2

√
2κ(2 + θ)p

(∑n
i=1 σ

2
) 1

2 , we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤
(4pκ

√
1 + 1

θ )p
∑n

i=1 bi

tp
.

While if 2pκ
√

1 + 1
θ (
∑n

i=1 bi)
1
p ≤ 2

√
2κ(2 + θ)p

(∑n
i=1 σ

2
) 1

2 , we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤
(4
√

2κ(2 + θ)p)p
(∑n

i=1 σ
2
) p

2

tp
.

By setting t such that

exp(−p) = (4
√

2κ(2 + θ)p)p

(
n∑
i=1

σ2

) p
2

/tp,

we have

P

|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ e4
√

2κ(2 + θ)p

(
n∑
i=1

σ2

) 1
2

 ≤ exp(−p).

Put e4
√

2κ(2 + θ)p
(∑n

i=1 σ
2
) 1

2 = t, we have

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ exp

(
− t2

16e2(2κ(2 + θ))
∑n

i=1 σ
2
i

)
.

Combining the two cases, the proof is complete.
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A.8 Proof of Corollary 34

Proof For any t > 0, by Markov’s inequality

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t)

≤‖f(X1, ..., Xn)− Ef(X1, ..., Xn)‖pp
tp

≤ (6
√

2npb1/p)p

tp
.

The proof is complete.

Appendix B. Proofs of Section 4

To proceed, we introduce a lemma.

Lemma 42 (Lemma 6 in Maurer and Pontil (2021)) Let X, X ′ be i.i.d. with values
in X , φ : X × X → R is measurable. Then∥∥E[φ(X,X ′)|X]

∥∥
p
≤ ‖φ(X,X ′)‖p.

B.1 Proof of Theorem 35

Proof (i) We look at the function f(x) = ‖
∑n

i=1 xi‖. Then

|fk(X)(x)| =

∣∣∣∣∣∣
∥∥∥∥∥∥
∑
i 6=k

xi +Xk

∥∥∥∥∥∥− E

∥∥∥∥∥∥
∑
i 6=k

xi +X ′k

∥∥∥∥∥∥
∣∣∣∣∣∣ ≤ E

[∥∥Xk −X ′k
∥∥ |Xk

]
.

Observe that the upper bound on fk(X)(x) is independent of x. By Lemma 42, we get
‖E[‖Xk −X ′k‖|X]‖p ≤ 2‖‖Xk‖‖p and thus ‖fk(X)(x)‖p ≤ 2‖‖Xk‖‖p. By Theorem 2.1 in
(Vladimirova et al., 2020), we also have ‖fk(X)(x)‖ψα ≤ 2‖‖Xk‖‖ψα .

Plugging these bounds into Corollary 24, if 0 < α ≤ 1

P

(∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
∣∣∣∣∣ ≥ t

)

≤ exp

(
−min

{
t2

96e24
∑n

i=1 ‖‖Xi‖‖22
,

tα

(4eCαKα)α log(n+ 1)(2 maxk ‖‖Xk‖‖ψα)α

})
,

if α ≥ 1

P

(∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥− E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
∣∣∣∣∣ ≥ t

)

≤ exp

(
−min

{
t2

96e24
∑n

i=1 ‖‖Xi‖‖22
,

t

4eCα(log(n+ 1))1/α2 maxk ‖‖Xk‖‖ψα

})
.

(ii) We look at the function f(x) = ‖
∑n

i=1(xi −EX ′1)‖. By the i.i.d. property of the Xi and
Jensen’s inequality, we have

E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥ ≤ (nE [∥∥X1 − EX ′1
∥∥2])1/2 ≤ √n‖‖X1‖‖2.
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Then we have

|fk(X)(x)| =

∣∣∣∣∣∣
∥∥∥∥∥∥
∑
i 6=k

xi +Xk − nEX ′1

∥∥∥∥∥∥− E

∥∥∥∥∥∥
∑
i 6=k

xi +X ′k − nEX ′1

∥∥∥∥∥∥
∣∣∣∣∣∣ ≤ E

[∥∥Xk −X ′k
∥∥ |Xk

]
.

Similarly, by Lemma 42, we have ‖fk(X)(x)‖p ≤ 2‖‖Xk‖‖p and ‖fk(X)(x)‖ψα ≤ 2‖‖Xk‖‖ψα .

Plugging these bounds into Corollary 24, if 0 < α ≤ 1

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)
≤ P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+ E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥
)

≤ exp

(
−min

{
t2

96e24
∑n

i=1 ‖‖Xi‖‖22
,

tα

(4eCαKα)α log(n+ 1)(2 maxk ‖‖Xk‖‖ψα)α

})
= exp

(
−min

{
t2

96e24n‖‖X1‖‖22
,

tα

(4eCαKα)α log(n+ 1)(2‖‖X1‖‖ψα)α

})
,

if α ≥ 1

P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+
√
n‖‖X1‖‖2

)
≤ P

(∥∥∥∥∥
n∑
i=1

(Xi − EX ′1)

∥∥∥∥∥ > t+ E

∥∥∥∥∥
n∑
i=1

(Xi − EX ′i)

∥∥∥∥∥
)

≤ exp

(
−min

{
t2

96e24
∑n

i=1 ‖‖Xi‖‖22
,

t

4eCα(log(n+ 1))1/α2 maxk ‖‖Xk‖‖ψα

})
= exp

(
−min

{
t2

96e24n‖‖X1‖‖22
,

t

4eCα(log(n+ 1))1/α2‖‖X1‖‖ψα

})
.

The proof is complete.

B.2 Proof of Corollary 37

Proof If H is a Hilbert space, then the Hilbert space of Hilbert-Schmidt operators HS(H)

is the set of bounded operators T on H satisfying ‖T‖HS =
√∑

i,j〈Tei, ej〉2H < ∞ with

inner product 〈T, S〉HS =
∑

i,j〈Tei, ej〉H〈Sei, ej〉H , where (ei) is an orthonormal basis. For
x ∈ H the operator Qx ∈ HS(H) is defined by Qxy = 〈y, x〉x, and it can be shown that
‖Qx‖HS = ‖x‖2H .

Working within the space of Hilbert-Schmidt operators, HS(H), allows us to express
`(P, x) = ‖Qx‖HS − 〈P,Qx〉HS . Then

sup
P∈Pd

1

n

∑
i

E[`(P,X1)]− `(P,Xi)

= sup
P∈Pd

〈
P,

1

n

∑
i

(QXi − E[QXi ])

〉
HS

+

(
E‖QXi‖HS −

1

n

∑
i

‖QXi‖HS

)
.
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For the first term, since for P ∈ Pd we have ‖P‖HS =
√
d, we can use Cauchy-Schwarz and

use Theorem 35.(ii) for the random variable
√
d
n QXi to give the following bound: if 0 < α ≤ 1

P

(
√
d

∥∥∥∥∥ 1

n

∑
i

(QXi − E[QXi ])

∥∥∥∥∥
HS

> t+

√
d√
n
‖‖QX1‖HS‖2

)

≤ exp

(
−min

{
nt2

96e24d‖‖QX1‖HS‖22
,

tα

(4eCαKα)α log(n+ 1)(2
√
d‖‖QX1‖HS‖ψα/n)α

})
,

if α ≥ 1

P

(
√
d

∥∥∥∥∥ 1

n

∑
i

(QXi − E[QXi ])

∥∥∥∥∥
HS

> t+

√
d√
n
‖‖QX1‖HS‖2

)

≤ exp

(
−min

{
nt2

96e24d‖‖QX1‖HS‖22
,

nt

4eCα(log(n+ 1))1/α2
√
d‖‖QX1‖HS‖ψα

})
.

Using (2) and (3), the second term can be bounded by applying the same result to the
random vectors ‖QXi‖HS . Note that ‖‖QX1‖HS‖ψα = ‖‖X1‖2‖ψα . Finally, the result follows
from combining both bounds in a union bound.

B.3 Proof of Theorem 38

Proof The vector space

B =

{
p : G → R : sup

g∈G
|p(g)| <∞

}

becomes a normed space with norm ‖p‖B = supg∈G |p(g)|. For each Xi define X̄i ∈ B by

X̄i(g) = 1
n (g(Xi)− E[g(X ′i)]). Then the X̄i are zero mean random variable in B and

sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)] =

∥∥∥∥∥∑
i

X̄i

∥∥∥∥∥
B

.

With Lemma 42 and the i.i.d. assumption, we have

‖‖X̄i‖B‖p =
1

n

∥∥∥∥sup
g

(E[g(Xi)− g(X ′i)]|X)

∥∥∥∥
p

≤L
n

∥∥E[‖Xi −X ′i‖]|X
∥∥
p
≤ 2L

n
‖‖Xi‖‖p =

2L

n
‖‖X1‖‖p ,

where the first inequality uses the Lipschitz condition. By Theorem 2.1 in (Vladimirova
et al., 2020), we also have ‖‖X̄i‖B‖ψα ≤ 2L

n ‖‖X1‖‖ψα . Thus, from Theorem 35.(ii), we have
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if 0 < α ≤ 1

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)]− E

[
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)]

]
> t

)

≤ exp

(
−min

{
t2

96e2 16L
2

n ‖‖X1‖‖22
,

tα

(4eCαKα)α log(n+ 1)(4Ln ‖‖X1‖‖ψα)α

})
,

if α ≥ 1

P

(
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)]− E

[
sup
g∈G

1

n

∑
i

g(Xi)− E[g(X ′i)]

]
> t

)

≤ exp

(
−min

{
t2

96e2 16L
2

n ‖‖X1‖‖22
,

t

4eCα(log(n+ 1))1/α 4L
n ‖‖X1‖‖ψα

})
.

The proof is complete.

B.4 Proof of Corollary 40

Proof In the setting we considered, X becomes a Banach space with the norm ‖(x, z)‖ =
L‖x‖H + |z|. It is clear that ‖‖(X1, Z1)‖‖ψα ≤ L‖‖X1‖‖ψα + ‖|Z1|‖ψα . Then for g ∈ G

g(x, z)− g(x′, z′) =`(〈w, x〉 − z)− `(〈w, x′〉 − z′)
≤L‖x− x′‖H + |z − z′| ≤ ‖(x, z)− (x′, z′)‖,

so G is uniformly Lipschitz with constant 1. Also for an i.i.d. sample (X,Z) ∈ X n, by
employing the Lipschitz property of `, combining the triangle inequality and Jensen’s
inequality, it becomes straightforward to observe that

R(G) ≤ 2

n
E

L√∑
i

‖Xi‖2H +

√∑
i

|Zi|2


≤ 2

n

L√E
∑
i

‖Xi‖2H +

√
E
∑
i

|Zi|2


≤ 2√

n
(L‖‖X1‖‖2 + ‖‖Z1‖‖2) .

Substituting these results into Theorem 38 gives the final inequalities.
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B.5 Proof of Theorem 41

Proof We derive

‖fk(X)(x)‖p = ‖f(x1, ..., Xk, xk+1, ..., xn)− E[f(x1, ..., Xk, xk+1, ..., xn)]‖p
=
∥∥E[f(x1, ..., Xk, xk+1, ..., xn)− f(x1, ..., X

′
k, xk+1, ..., xn)|Xk]

∥∥
p

≤L‖E[d(Xk, X
′
k)|Xk]‖p

≤L‖d(Xk, X
′
k)‖p,

where the first inequality uses the Lipschitz condition and the last inequality uses Lemma 42.
By Theorem 2.1 in (Vladimirova et al., 2020), we also have ‖fk(X)(x)‖ψα ≤ L‖d(Xk, X

′
k)‖ψα .

Plugging these bounds into Corollary 24, we obtain if 0 < α ≤ 1

P
(
|f(X)− Ef(X ′)| ≥ t

)
≤ exp

(
−min

{
t2

96e2
∑n

i=1 L
2‖d(Xi, X ′i)‖22

,
tα

(4eCαKα)α log(n+ 1)Lα maxk ‖d(Xk, X
′
k)‖αψα

})
,

if α ≥ 1

P
(
|f(X)− Ef(X ′)| ≥ t

)
≤ exp

(
−min

{
t2

96e2
∑n

i=1 L
2‖d(Xi, X ′i)‖22

,
t

4eCαLmaxk ‖d(Xk, X
′
k)‖ψα(log(n+ 1))1/α

})
.

The proof is complete.
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analysis beyond the usual bounds. In Advances in Neural Information Processing Systems,
pages 16833–16845, 2020.

Steve Smale and Ding-Xuan Zhou. Learning theory estimates via integral operators and
their approximations. Constructive approximation, 26(2):153–172, 2007.

Aad W Van Der Vaart and Jon A Wellner. Weak convergence and empirical processes.
Springer, 1996.

Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.
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