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Abstract

Global feature effect methods, such as partial dependence plots, provide an intelligible
visualization of the expected marginal feature effect. However, such global feature effect
methods can be misleading, as they do not represent local feature effects of single observa-
tions well when feature interactions are present. We formally introduce generalized additive
decomposition of global effects (GADGET), which is a new framework based on recursive
partitioning to find interpretable regions in the feature space such that the interaction-
related heterogeneity of local feature effects is minimized. We provide a mathematical
foundation of the framework and show that it is applicable to the most popular methods
to visualize marginal feature effects, namely partial dependence, accumulated local effects,
and Shapley additive explanations (SHAP) dependence. Furthermore, we introduce and
validate a new permutation-based interaction detection procedure that is applicable to any
feature effect method that fits into our proposed framework. We empirically evaluate the
theoretical characteristics of the proposed methods based on various feature effect meth-
ods in different experimental settings. Moreover, we apply our introduced methodology to
three real-world examples to showcase their usefulness.

Keywords: interpretable machine learning, feature interactions, partial dependence,
accumulated local effect, SHAP dependence

1. Introduction

Machine learning (ML) models are increasingly used in various application fields such as
medicine (Shipp et al., 2002) or social sciences (Stachl et al., 2020). Their exceptional
predictive performance stems from their ability to capture complex non-linear relationships
and feature interactions in the data. However, this ability also complicates explaining the
inner workings of an ML model. A lack of explainability might hurt trust or might even be
a deal-breaker for high-stakes decisions (Lipton, 2018). Hence, ongoing research on model-
agnostic interpretation methods to explain any ML model has grown quickly in recent years.
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One promising type of explanation is produced by feature effect methods, which explain
how features influence the model predictions similar to interpreting the coefficients of a linear
model or visualizing the non-linear effects of a generalized additive model (GAM) through
splines. We distinguish between local and global feature effect methods. Local feature effect
methods—such as individual conditional expectation (ICE) curves (Goldstein et al., 2015)
or Shapley values / Shapley additive explanations (SHAP) (Štrumbelj and Kononenko,
2014; Lundberg and Lee, 2017)—explain how each feature influences the prediction of a
single observation. In contrast, global feature effect methods explain the general model
behavior. Since global feature effects of ML models are often non-linear, they are usually
represented as marginal curves instead of single effect numbers; the most popular variants
are partial dependence (PD) plots (Friedman, 2001), accumulated local effects (ALE) plots
(Apley and Zhu, 2020), or SHAP dependence (SD) plots (Lundberg et al., 2020). These
global curves are expressible via an aggregation of local counterparts (e.g., ICE curves are
aggregated to a PD curve). However, such an aggregation might cause information loss
due to heterogeneity in local feature effects (e.g., see Figure 1). This so-called aggregation
bias is usually caused by feature interactions learned by the ML model, leading to a global
feature effect that does not appropriately represent many individual observations in the data
(Herbinger et al., 2022; Mehrabi et al., 2021). We refer to this heterogeneity as interaction-
related heterogeneity. Consequently, global explanations can be misleading and cannot give
a complete picture when feature interactions are present, e.g., see how the different shapes
of ICE curves are not well represented by the global PD curve in Figure 1. This issue is
particularly relevant when ML models are trained on biased data, as the model may, in
turn, learn these biases (Mehrabi et al., 2021). Although local explanations could reveal
the learned bias, it remains hidden in global explanations due to aggregation (e.g., see the
COMPAS example in Section 8).
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Figure 1: Left: ICE and global PD curves of feature hr (hour of the day) of the bikesharing
data set (James et al., 2022). Right: ICE and regional PD curves of hr depending
on feature workingday. The feature effect of hr on predicted bike rentals is differ-
ent on working days compared to non-working days, which is due to aggregation
not visible in the global feature effect plot (white curve on the left).

To bridge the gap between local and global effect explanations, so-called subgroup or
regional explanations have recently been introduced (e.g., Hu et al., 2020; Molnar et al.,
2023; Scholbeck et al., 2024; Herbinger et al., 2022). However, several pitfalls and difficulties
arise in the realm of regional explanations, e.g., the REPID approach by Herbinger et al.

2



Decomposing Global Feature Effects Based on Feature Interactions

(2022) is limited to only PD plots and only to one feature of interest (see Section 3 for
details). Another common pitfall is the incomprehensibility in high-dimensional settings
(Molnar et al., 2022), as it would require analyzing hundreds of feature effect plots, making
it difficult for the user to understand the underlying relationships effectively.

Contributions. We introduce GADGET, a novel framework, which provides regional ex-
planations based on feature effects by partitioning the feature space into interpretable sub-
spaces. We prove that GADGET minimizes feature interactions for a predefined set of
features using any feature effect method satisfying the local decomposability axiom (Section
4.1 and 4.2). We show that popular feature effect methods (PD, ALE, and SD) satisfy the
local decomposability axiom (Section 4.3-4.5) and illustrate their applicability within GAD-
GET in Section 4.6 with instructions on how to estimate and visualize the corresponding
regional feature effects in Appendix C.4. Moreover, we propose several measures to quantify
feature interactions based on GADGET, which provide more insights into the learned ef-
fects and the remaining heterogeneity related to the interaction (Section 4.7). Furthermore,
we introduce and validate the permutation-based interaction detection (PINT) procedure
to detect feature interactions in a model-agnostic fashion based on the underlying feature
effect method (Section 5). We empirically evaluate the theoretical characteristics of the dif-
ferent methods based on several simulation settings (Sections 6 and 7) and illustrate their
usefulness for two real-world examples in Section 8. We provide a third higher-dimensional
example in Section 9 and also propose a general filtering procedure for such scenarios. All
proposed methods and reproducible scripts for the experiments are available online via
https://github.com/JuliaHerbinger/gadget/.

2. Background

2.1 General Notation

We consider a feature space X ⊆ Rp and a target space Y (e.g., Y = R for regression
tasks). The random variables for the features are denoted by X = (X1, . . . , Xp) and Y
for the target variable. The realizations of X and Y are sampled i.i.d. from an unknown
joint probability distribution PX,Y and are denoted by D = {(x(i), y(i))}ni=1. We denote by

x(i) =
(
x

(i)
1 , . . . , x

(i)
p

)T
the feature values of the i-th observation. Arbitrary observations x

and random variables X we index as xW and XW (with W ⊆ {1, . . . , p}) to refer to the
feature values and random variables of the subset. Respectively, xj and Xj refer to the
j-th feature. Negated sets −W (and indices such as in x−W ) denote the set complement.
We assume that a true function f maps X to Y up to some label noise, e.g., for regression
Y = f(X) + ε. Under (independent) Gaussian noise ε, or equivalently L2-loss minimization
f will be the conditional mean f(x) = E[Y |X = x]. In supervised ML, we strive to
approximate this relationship by a prediction model f̂ learned on D.

2.2 Definition of Interactions and the Functional ANOVA Decomposition

Friedman and Popescu (2008) defined the presence of an interaction between two features
xj and xk by E[∂2f̂(X)/(∂Xj∂Xk)]

2 > 0. This condition implies that when the feature

xj does not interact with any other feature in x−j , the prediction function f̂(x) can be
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decomposed into two distinct functions: hj(xj), which solely depends on xj , and h−j(x−j),

which solely depends on the remaining features x−j , i.e.: f̂(x) = hj(xj) + h−j(x−j).

This definition of feature interactions is closely related to the concept of functional
ANOVA1 decomposition, which has already been studied by Sobol’ (1993); Stone (1994)
to explain black box functions. The functional ANOVA decomposition aims to decompose
a square-integrable prediction function f̂(x) into a sum of lower-order functions:

f̂(x) = g0 +

p∑
j=1

gj(xj)+
∑
j 6=k

gjk(xj ,xk)+ . . .+g12...p(x) = g0 +

p∑
k=1

∑
W⊆{1,...,p},
|W |=k

gW (xW ), (1)

where g0 is a constant, gj(xj) denotes the main effect of the j-th feature, gjk(xj ,xk) is
the pure two-way interaction effect between features xj and xk, and so forth. The last
component g12...p(x) always allows for an exact decomposition.

The standard functional ANOVA decomposition by Hooker (2004) assumes independent
features and ensures that the component functions gW (xW ) can be optimally and uniquely
defined by imposing the so-called vanishing condition2 (Li and Rabitz, 2012; Rahman, 2014).
This decomposition is widely used in sensitivity analysis to further uniquely decompose the
variance of each component from Eq. (1) and derive a feature importance measure (see Sobol
indices in Sobol’, 1993; Owen, 2013). Hooker (2007) introduced the generalized functional
ANOVA decomposition with a relaxed vanishing condition2 that leads to a unique decom-
position in case of dependent features. These conditions guarantee orthogonality between
the components representing different feature subsets and ensure that each component is
distinct without redundancy. In this paper, we do not attempt to compute the exact de-
composition presented in Eq. (1); instead, we rely on the existence of such a decomposition
for our theoretical proofs in Section 4. We refer to Appendix A for more details on the
functional ANOVA decomposition and related research regarding its estimation.

2.3 Feature Effect Methods

Below, we summarize global feature effect methods used in our framework in Section 4.2.

Partial Dependence. The PD plot introduced by Friedman (2001) visualizes the marginal
effect of a set of features W ⊆ {1, . . . , p} for a fitted model f̂ by integrating over the joint
distribution over all other features in −W . The number of features in W is typically one or
two. The theoretical PD function is defined by 3

fPDW (xW ) = EX−W
[f̂(xW , X−W )] =

∫
f̂(xW ,x−W )dPX−W

(x−W ), (2)

1. This should not be confused with the classical ANOVA (Analysis of Variance), which is a statistical
method that tests for significant differences among group means in a population.

2. See Appendix A for more details.
3. The notation here is used consistently with Friedman and Popescu (2008). Please note: While the right-

hand side of the definition always refers to the ML model f̂ , the f in fPD
W does not refer to the true

relationship (see Section 2.1); fPD
W is rather to be read as a new symbol. In the same manner, the “hat”

of f̂PD
W is not introduced to refer to f̂ now – but expresses the fact that we now estimate based on data.
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which is estimated using Monte-Carlo integration: f̂PDW (x̃W ) = 1
n

∑n
i=1 f̂(x̃W ,x

(i)
−W ) at a

specific grid point x̃W . For constructing a PD curve, we typically use m grid points4

denoted by x̃
(1)
W , . . . , x̃

(m)
W and visualize the pairs {(x̃(k)

W , f̂PDW (x̃
(k)
W ))}mk=1. Goldstein et al.

(2015) introduced ICE curves, which, for an observation x, fixes the values x−W to the
observed ones, and varies the values xW yielding the ICE function f̂xW (x̃W ) = f̂(x̃W ,x−W ),
where the superscript x denotes the observation whose values xW are replaced with x̃W .

ICE plots visualize the pairs {(x̃(k)
W , f̂x

(i)

W (x̃W )}mk=1, representing prediction changes of each
observation as the values of features in W vary. Notably, the PD curve is the point-wise
average over all the ICE curves, i.e., f̂PDW (x̃W ) = 1

n

∑n
i=1 f̂

x(i)

W (x̃W ). ICE curves can reveal
heterogeneous effects caused by interactions between features xW and other features, which
remain hidden in the PD curve due to averaging (see Figure 1). However, they do not reveal
which features interact with xW . In addition, if the model contains complex interactions,
it becomes more difficult to identify clear patterns with interacting features (even if we
color-code ICE curves as in Figure 1).

ALE. The PD function uses the marginal distribution and is likely to extrapolate in empty
or sparse regions of the feature space when features are correlated. This means that the
prediction function is evaluated at unrealistic combinations of feature values in Eq. (2),
which can lead to inaccurate PD estimates, especially for models with high flexibility in
capturing complex feature interactions, such as neural networks (Apley and Zhu, 2020).
Hence, ALE uses the conditional distribution to avoid extrapolation. The uncentered ALE
fALEW (x) for |W | = 1 at feature value xW ∼ PXW

and with z0 = min(xW ) is defined by

fALEW (xW ) =

xW∫
z0

E

[
∂f̂(X)

∂XW

∣∣∣∣XW = zW

]
dzW

=

xW∫
z0

∫
∂f̂(zW ,x−W )

∂zW
dPX−W |XW =zW (x−W |zW )dzW .

(3)

ALE first calculates local derivatives weighted by the conditional distribution PX−W |XW =zW

and then accumulates the local effects to generate a global effect curve. For interpretability
reasons, ALE curves are usually centered by the average of the uncentered ALE curve to
obtain fALE,cW (xW ) = fALEW (xW )−

∫
fALEW (xW ) dPXW

(xW ).
Eq. (3) is usually estimated by splitting the value range of xW in intervals and calculating

the partial derivatives for all observations within each interval. The partial derivatives are
estimated by the differences between the predictions of the upper (zk,W ) and lower (zk−1,W )
bounds of the k-th interval for each observation. The accumulated effect up to the feature
value xW is then calculated by summing up the average partial derivatives (weighted by the
number of observations n(k) within each interval) over all intervals until the interval that
includes xW , which is denoted by k(xW ):

f̂ALEW (xW ) =

k(xW )∑
k=1

1

n(k)

∑
i: x

(i)
W ∈ ]zk−1,W ,zk,W ]

[
f̂(zk,W ,x

(i)
−W )− f̂(zk−1,W ,x

(i)
−W )

]
. (4)

4. Instead of using all observed feature values xW , an equidistant grid or a grid based on randomly selected
feature values or quantiles of xW are commonly chosen (Molnar et al., 2022).
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SHAP Dependence. Shapley values (Shapley, 1953) have been adapted from game theory
to ML to quantify feature effects on a local level by fairly distributing the prediction of a
single observation x among all features (Štrumbelj and Kononenko, 2014). The Shapley
value for the j-th feature is calculated by assessing its contribution to every possible feature
combination W ⊆ {1, . . . , p} \ {j} using the formula

φj(x) =
∑

W⊆{1,...,p}\{j}

|W |!(p− |W | − 1)!

p!
(fW∪{j}(xW∪{j})− fW (xW )),

where fW (xW ) = EX−W
[f̂(xW , X−W )] is typically the PD function (Casalicchio et al.,

2019). Since estimating the above equation is computationally expensive, various efficient
approximation algorithms have emerged (Aas et al., 2021; Chen et al., 2023), including
SHAP (Lundberg and Lee, 2017), which conceptualizes Shapley values as a solution to a
quadratic program with equality constraints. To visualize the global feature effect of a
feature on the prediction, Lundberg et al. (2020) proposed the SHAP dependence (SD) plot
as an alternative to PD plots. SD plots visualize the feature values of the j-th feature on
the x-axis and its corresponding SHAP values on the y-axis in a scatter plot, either for all or
for a representative sample of observations (see Figure 4). Feature interactions between the
feature of interest and other features influence the shape of the resulting point cloud. To
highlight patterns in the point cloud that may indicate interactions with another feature,
Lundberg et al. (2020) suggest color-coding the points by other (potentially interacting)
features. However, identifying a clear trend or pattern in the color-coded point cloud
becomes challenging in the presence of complex feature interactions (similar to ICE plots).

Shapley values can be quantified using either a marginal-based (similar to PDs) or
a conditional-based approach. While the former might encounter extrapolation issues in
the presence of feature correlations, the latter presents the challenge of estimating the
conditional distribution. For a more thorough discussion on this topic, see Appendix J.

2.4 Quantification of Interaction Effects

Visualization methods for feature effects are usually limited to a maximum of two features.
To understand which feature effects depend on other features due to interactions, we are
interested in detecting and quantifying the strength of feature interactions. Building on the

mean-centered PD function f̂PD,cj (x̃j) = f̂PDj (x̃j) − 1
m

∑m
k=1 f̂

PD
j (x̃

(k)
j ) at each grid point

x̃j ∈ {x̃(1)
j , . . . , x̃

(m)
j }, Friedman and Popescu (2008) introduced the H-Statistic as a global

interaction measure that quantifies the interaction strength between a feature of interest xj
and all other features x−j by

Ĥ2
j =

∑n
i=1

(
f̂c(x̃(i))−f̂PD,c

j (x̃
(i)
j )−f̂PD,c

−j (x̃
(i)
−j)
)2

∑n
i=1(f̂c(x̃(i)))

2 . (5)

Here, f̂ c(x̃) = f̂(x̃) − 1
n

∑n
i=1 f̂(x̃(i)) is the mean-centered prediction function and thus

the denominator in Eq. (5) corresponds to the prediction function’s variance. Hence, Ĥ2
j

quantifies how much of the prediction function’s variance can be attributed to the inter-

6



Decomposing Global Feature Effects Based on Feature Interactions

action between feature xj and all other features x−j .
5 Thus, the H-Statistic can be used

to rank features according to the global interaction strength. Despite its standardization
between 0 and 1, it is unclear which value is generally considered a high or a low inter-
action. Furthermore, being derived from PD functions, the H-Statistic inherits the same
disadvantages—particularly regarding extrapolation—as the PD plot itself.

3. Related Work

Below, we outline related work and define research gaps concerning our main contributions:
GADGET (Section 4) for regional effects and PINT (Section 5) for testing interactions.

Related Work on Regional Effects. Regional explanations (Molnar et al., 2023; Britton,
2019; Hu et al., 2020; Scholbeck et al., 2024; Herbinger et al., 2022)—sometimes also re-
ferred to cohort explanations (Sokol and Flach, 2020)—explain subspaces of the entire
feature space, thereby bridging the gap between local and global explanations. In general,
we can distinguish between unsupervised and supervised methods to define these subspaces.
Concerning the former, Britton (2019) suggests the use of an unsupervised clustering ap-
proach to group ICE curves based on their partial derivatives and apply a decision tree
post hoc for explanation purposes. A similar approach has been introduced by Zhang et al.
(2021). However, Herbinger et al. (2022) showed that such unsupervised approaches can
produce misleading interpretations. To overcome these downsides, other works such as Mol-
nar et al. (2023); Scholbeck et al. (2024); Herbinger et al. (2022) propose methods that are
based on a supervised decision tree approach to define regions that are interpretable and
distinct. The first two references focus on finding regions with few feature correlations and
few non-linearities, respectively. Instead, the REPID method (Herbinger et al., 2022) min-
imizes feature interactions within each region and decomposes the global PD into regional
PDs, ensuring the homogeneity of ICE curves within each region. However, REPID has its
limitations: First, REPID generates feature-specific regions by minimizing interactions be-
tween a particular feature and all other features. Applying the method to a different feature
of interest typically results in different regions, complicating interpretations when multiple
features are of interest. Second, REPID relies on ICE and PD plots and thus inherits also
their issues, such as extrapolation, potentially providing misleading interpretations if both
feature interactions and correlations are present (Molnar et al., 2022). To overcome these
limitations, we propose a more flexible framework in Section 4 that is capable of produc-
ing regions where interactions between multiple features are minimized and where different
feature effect methods other than ICE and PD plots can be used.

Related Work on Detecting Feature Interactions. ANOVA is one of the most prominent
statistical testing procedures to detect significant (two-way) interaction terms in statistical
models. An algorithm to detect important feature interactions without a formal definition
of a statistical test was introduced along with the standard functional ANOVA decompo-
sition in Hooker (2004). Later, Mentch and Hooker (2017) introduced a statistical test for
tree-based methods to detect additive structures and, thus, feature interactions. Henelius
et al. (2016) introduced a statistical test for classification tasks to detect additive structures

5. If the feature xj does not interact with any other feature in x−j , the mean-centered prediction function
can be decomposed as f̂c(x̃) = f̂PD,c

j (x̃j) + f̂PD,c
−j (x̃−j) (see Section 2.2), leading to Ĥ2

j = 0.
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between different subsets of features based on their earlier work Henelius et al. (2014). In
their approach, feature values of the considered feature subset are permuted jointly within
each class to break possible interactions with other feature subsets while preserving interac-
tions within the subset. However, this approach is limited to classification tasks and breaks
correlations with features outside of the regarded subset. Consequently, learned spurious
interactions are detected by the algorithm as true feature interactions. Furthermore, statis-
tical tests for two-way interaction detection have been introduced by Loh (2002) or Sorokina
et al. (2008). While the former provides a formal statistical test statistic, the latter is based
on a heuristic to detect two-way interactions by comparing the performance of a full and
restricted model. To the best of our knowledge, a model-agnostic procedure designed for
classification and regression tasks to detect interactions between a feature of interest xj and
the remaining features x−j , as presented in Section 5, has not yet been introduced.

4. Generalized Additive Decomposition of Global EffecTs (GADGET)

Our proposed framework, GADGET, additively decomposes global feature effects by min-
imizing feature interactions to produce regional feature effects. One or more features can
be used to derive interpretable subregions where aggregated regional feature effects better
represent individual observations within each region. Below, we will introduce the GAD-
GET methodology, applicable to various feature effect methods, by formally defining the
required axiom and demonstrating its satisfaction by popular methods.

4.1 Measuring Interaction-Related Heterogeneity

Let h(xj ,x
(i)
−j) be a function that quantifies the local effect of the j-th feature on the i-th

observation at a specific value xj ∈ Xj , calculated by a function h : Rp → R. We keep this
function generic for now, but discuss in Sections 4.3 to 4.5 several specific choices, including
the underlying local effect functions of PD, ALE, and SHAP dependence (SD) curves. For
example, in the case of PD, h is defined by the i-th mean-centered ICE curve of the j-th
feature at one specific grid point xj (see Figure 2).

Let E[h(xj , X−j)|Ag] be the expected effect of the j-th feature at a specific value xj
regarding X−j given the event X ∈ Ag where Ag = ιg,1× · · · × ιg,p ⊆ X is a hypercube and
the ιg,j ⊆ R are (potentially unbounded) intervals. Our goal is to find a partition of the
feature space into subsets Ag with little interaction-related heterogeneity. The deviation
between the local feature effect and the expected feature effect at a specific value xj for
subspace Ag is defined by a point-wise loss function, e.g., the squared distance:

Lj (Ag, xj) =
∑

i:x(i)∈Ag

(
h(xj ,x

(i)
−j)− E[h(xj , X−j)|Ag]

)2
. (6)

Eq. (6) measures the heterogeneity of the local feature effects of feature xj at a specific value
xj by calculating the L2 loss as demonstrated in the left and middle plots of Figure 2. Here,
the local feature effects are the mean-centered ICE curves and the respective mean-centered
PD curve represents the expected effect of the feature of interest.

The risk function Rj for the j-th feature and subspace Ag is defined by aggregating the
point-wise losses of Eq. (6) over a given m-dimensional grid of feature values x̃j :

8
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Rj (Ag, x̃j) =
∑

k:k∈{1,...,m}∧x̃(k)
j ∈ιj

Lj
(
Ag, x̃(k)

j

)
. (7)

For instance, x̃j can be m values sampled from the realizations of the j-th feature, an
equidistant grid or quantiles, but we restrict the summation in Eq. (7) to values which
fall inside the considered subspace Ag, so ιg,j . It follows that Eq. (7) summarizes the
heterogeneity of local feature effects of the feature xj for its entire feature range within
the region Ag in one number and therefore quantifies how much the feature’s influence
of individual observations varies from the expected (average) feature’s influence on the
predictions (e.g., right plot of Figure 2 in the case of mean-centered ICE and PD curves).

The loss in Eq. (6) measures the heterogeneity of the local effects, which can be decom-
posed into the main and interaction effects of involved features (see Eq. (1)). Since we are
only interested in measuring the interaction-related heterogeneity of the feature of interest,
disregarding variability caused by any other effects, the local feature effect function h needs
to be defined in such a way that the heterogeneity of local feature effects measured by
Eq. (6) and (7) are solely based on feature interactions between the feature of interest xj
and the remaining feature in the data set. This is possible when Axiom 1 holds.6

Axiom 1 (Local Decomposability) A local feature effect function h : Rp → R satisfies
the local decomposability axiom if and only if ∀i ∈ {1, . . . , n} the decomposition of the i-th

local effect h(xj ,x
(i)
−j) of feature xj at xj solely depends on main and higher-order effects of

feature xj:

h(xj ,x
(i)
−j) = gj(xj) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj ,x
(i)
W ).

In Sections 4.3 to 4.5 we show that this axiom is fulfilled by the most popular feature
effect methods, at least when properly centered. If Axiom 1 is satisfied, then Theorem
2 guarantees that the loss function defined in Eq. (6) quantifies the interaction-related
heterogeneity of local effects (feature interactions) of feature xj at xj within the regarded
subspace Ag. Specifically, Theorem 2 shows that the main effect gj(xj) no longer affects
the loss Lj , rendering Lj a pure measure of interaction-related heterogeneity.

Theorem 2 If the local feature effect function h(xj ,x
(i)
−j) satisfies Axiom 1, then the loss

function Lj (Ag, xj) defined in Eq. (6) only depends on feature interactions between the
feature xj at xj and features in −j:

Lj (Ag, xj) =
∑

i:x(i)∈Ag

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj ,x
(i)
W )− E[gW∪j(xj , XW )|Ag]


2

.

The proof can be found in Appendix B.1.

6. We show in Sections 4.3 to 4.5 that common feature effect methods satisfy this general decomposition
based on the functional ANOVA decomposition in Eq. (1).
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Illustration. To better understand Axiom 1, Theorem 2, Eq. 6 and 7, we provide an
illustrative example. Let X1, X2, X3 ∼ U(−1, 1) be independent, with the true underlying
relationship defined by Y = X1 + X2 + X3 + X1X2 + ε, where ε ∼ N(0, 0.0025). We draw
20 observations and fit a correctly specified linear model to the data. We define the local
feature effect function as the mean-centered ICE curves (Section 4.3) and use x1 as the

feature of interest. The i-th ICE curve value at grid point x̃1 is given by f̂(x̃1,x
(i)
−1) =

x̃1 + x
(i)
2 + x

(i)
3 + x̃1x

(i)
2 , which corresponds to the decomposition in Eq. (1). Since this

decomposition includes effects independent of feature x1 (i.e., g3(x
(i)
3 ) = x

(i)
3 ), Axiom 1

does not hold. Therefore, the ICE curve needs to be centered by its mean: f̂ c(x̃1,x
(i)
−1) =

f̂(x̃1,x
(i)
−1)−E[f̂(X1,x

(i)
−1] = x̃1−E[X1]+(x̃1−E[X1])x

(i)
2 ≈ x̃1+x̃1x

(i)
2 which satisfies Axiom

1 with main effect gj(xj) = x̃1 and the respective higher-order effect gW∪j(xj ,x
(i)
W ) = x̃1x

(i)
2 .

Figure 2 shows the mean-centered ICE curves and the mean-centered PD curve, which is
calculated as the average over all mean-centered ICE curves. The loss function in Eq. (6)
aggregates the squared distance between each mean-centered ICE curve and the PD curve
at a specific grid point as demonstrated in the left and middle plot of Figure 2 for x̃1 = −1.
Since mean-centered ICE curves satisfy Axiom 1, this distance only measures interaction-

related heterogeneity as stated in Theorem 2: h(x1,x
(i)
−1)−E[h(x1, X−1)|X ] = x̃1 + x̃1x

(i)
2 −

x̃1−x̃1E[X2] = x̃1x
(i)
2 −x̃1E[X2] ≈ x̃1x

(i)
2 . Thus, the loss function and therefore also the risk

function in Eq. (7), which aggregates over all valid grid points of the feature xj within the
respective region (e.g., right plot Figure 2), solely depend on the interaction effect between
the feature of interest (x1) and other features in the data set (here: x2).

4.2 The GADGET Algorithm

The goal of the GADGET algorithm is to find regions with little interaction-related het-
erogeneity. A user specifies two sets: S ⊆ {1, . . . , p} containing the features of interest for
which we want to receive representative regional feature effect plots by minimizing their
interaction-related heterogeneity, and Z ⊆ {1, . . . , p} containing features assumed to inter-
act with those in S. Features in Z serve as split features when partitioning the feature
space to minimize interactions with features in S. Features in −S are usually assumed not
to interact with other features and are thus only calculated and visualized on a global level.
Algorithm 1 defines a single partitioning step of GADGET, which is inspired by the CART
algorithm (Breiman et al., 1984) and is recursively repeated until a certain stop criterion is
met (see Appendix D for more details). We greedily search for the best split point within
the feature subset Z such that the interaction-related heterogeneity of feature subset S is
minimized in the two resulting subspaces. The interaction-related heterogeneity is measured
by the variance of the local feature effects of xj within the new subspace (see Eq. 7). Hence,
for each candidate split feature z and candidate split point t, we sum up the risks of the two
resulting subspaces for all features in S (line 6 in Algorithm 1) and then choose the split
(t̂, ẑ) that minimizes the interaction-related heterogeneity of all features j ∈ S (line 9 in
Algorithm 1). Note that Algorithm 1 is exemplarily defined for numeric features, however,
GADGET can also handle categorical features which is described in detail in Appendix C.5.

6. S and Z can be distinct or partially or fully overlap with each other, see also Section 5.
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Figure 2: Mean-centered ICE and PD curves of feature x1 of the described simulation ex-
ample. Left: Illustrates the distance d(1) that is calculated within Eq. (6) between

the local feature effect (here: h(xj ,x
(i)
−j) := f̂ c(xj ,x

(i)
−j), i.e., the mean-centered

ICE curve) and the expected effect within region Ag (here: E[h(xj , X−j)|X ] =

E[f̂ c(xj , X−j)|X ], i.e. the global mean-centered PD) at the first grid point
x̃1 = −1 for the first observation. Middle: The distances d are calculated for
all mean-centered ICE curves at the first grid point and the squared values are
summed up to obtain the loss function value for the first grid point as defined
in Eq. (6). Right: The risk function value is calculated according to Eq. (7) by
aggregating the loss function values over the valid grid points. This measures the
heterogeneity of the mean-centered ICE curves of feature x1, which quantifies the
interaction-related heterogeneity between x1 and x−1 based on Theorem 2.

Algorithm 1: Partitioning algorithm of GADGET

1: input: subspace A ⊆ X , risk Rj , features S, splitting set Z, grids x̃j ∀j ∈ S
2: output: subspaces At̂,ẑl and At̂,ẑr
3: for each feature indexed by z ∈ Z do
4: for every split t on feature xz do
5: At,zl = {x ∈ A|xz ≤ t} ; At,zr = {x ∈ A|xz > t}
6: I(t, z) =

∑
j∈S

(
Rj(At,zl , x̃j) +Rj(At,zr , x̃j)

)
7: end for
8: end for
9: Choose (t̂, ẑ) ∈ arg mint,z I(t, z)

If the set of splitting features Z contains all features interacting with features in S, the
GADGET algorithm eventually finds regions with no interaction-related heterogeneity (see
Theorem 3). This implies that any feature interactions inherent in the feature effects of the
features within S can be minimized, leaving only their main effects within each subspace.
Thus, the joint regional feature effect fS|Ag

of all features in S within each subspace Ag
can be uniquely and additively decomposed into the respective univariate regional feature
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effects fj|Ag
of all features in S:

fS|Ag
(xS) =

∑
j∈S

fj|Ag
(xj). (8)

While the global feature effects are estimated on the entire feature space X , the regional
feature effects are determined by conditioning on the respective subspace, i.e., on X ∈ Ag.

Theorem 3 Suppose the local feature effect function h satisfies Axiom 1. If the feature
subset −Z does not contain any features interacting with any features indexed by j ∈ S,
i.e., ∀j ∈ S and ∀L ⊆ −Z with −Z ⊂ {1, . . . , p}\j and ∀K ⊆ Z := {∅, 1, . . . , p}\{−Z∪j} it
holds: gL∪K∪j(Xj , XL, XK) = 0, then after sufficiently many iterations, GADGET returns
regions with Rj(Ag, x̃j) = 0 for every final region Ag, i.e., the theoretical minimum of the
objective function I in Algorithm 1 is 0. The proof can be found in Appendix B.2.

In practice, one rarely wants to run the algorithm to convergence. The question of how
many partitioning steps should be performed depends on the underlying research question.
If the user is more interested in reducing the interaction-related heterogeneity as much
as possible, they might split rather deeply, depending on the complexity of interactions
learned by the model. However, this might lead to many regions that are more challenging
to interpret. If a small number of regions is of interest, one might prefer a shallow tree,
thus reducing only the heterogeneity of the features that interact the most. More detailed
recommendations on specifying these stop criteria are provided in Appendix D.

4.3 GADGET-PD

The PD plot is based on ICE curves (local feature effects). However, ICE curves do not

satisfy Axiom 1, since the decomposition of the i-th ICE curve (i.e., f̂xj (xj) = f̂(xj ,x
(i)
−j))

also contains main or interaction effects of the i-th observation that are independent of
feature xj (see Appendix B.3). These effects can be canceled out by centering ICE curves
w.r.t. the mean of each curve, yielding the following local effect function in GADGET-PD:

h(xj ,x
(i)
−j) = f̂ c(xj ,x

(i)
−j) = f̂(xj ,x

(i)
−j)− E[f̂(Xj ,x

(i)
−j)|Ag].

Theorem 4 Mean-centered ICE curves satisfy the local decomposability axiom (Axiom 1).
The proof is given in Appendix B.3.

Note that the mean-centering constant depends on the region Ag. In Figure 3, for
example, we use feature x3 as a feature of interest in S and as a split feature in Z. Conse-
quently, the visualized range of feature x3 is partitioned based on the split point identified
by the GADGET algorithm and the mean-centering constant changed within the new sub-

space (i.e., E[f̂(Xj ,x
(i)
−j)|Ag] 6= E[f̂(Xj ,x

(i)
−j)]), necessitating adjustment to avoid additive

(non-interaction) effects in the new subspace.
The loss function used within GADGET-PD to minimize the interaction-related hetero-

geneity is defined by the variability of mean-centered ICE curves:

LPDj (Ag, xj) =
∑

i:x(i)∈Ag

(
f̂ c(xj ,x

(i)
−j)− E[f̂ c(xj , X−j)|Ag]

)2
. (9)
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In Appendix B.4, we show that the REPID method discussed in Section 3 is a special case of
GADGET-PD for the loss function in Eq. (9) with only one feature of interest (i.e., S = j)
and where we consider all other features to be potential split features (i.e., Z = −j).

Illustration. To provide a better understanding of GADGET-PD, we consider a com-
monly used simulation example in a slightly modified form in the context of feature in-
teractions (see e.g., Goldstein et al., 2015; Herbinger et al., 2022): Let X1, X2, X3 ∼
U(−1, 1) be independently distributed and the true underlying relationship be defined by
Y = 3X11X3>0 − 3X11X3≤0 +X3 + ε, with ε ∼ N(0, 0.09). We then draw 500 observations
from these random variables and fit a feed-forward neural network (NN) with a single hid-
den layer of size 10 and weight decay of 0.001.7 The R2 measured on a separately drawn
test set of size 10000 following the same distribution is 0.94.

Figure 3 visualizes the global PD and ICE curves along with the regional ones after
applying GADGET-PD. The global plots for features x1 and x3 show high heterogeneity
in the underlying local effects, indicating that the global PD curve does not represent
the respective ICE curves well. For example, the nearly horizontal global PD curve of
x1 (grey line) indicates no influence on the model’s predictions. Consequently, it is not
representative of the underlying local feature effects (ICE curves), which vary highly due
to the feature interaction with x3. We applied GADGET-PD with S = Z = {1, 2, 3} to
visualize the (regional) feature effect of all available features by considering all features
as possible interaction (split) features. GADGET-PD performed one split with regard to
x3 ≈ 0. Thus, the correct split feature and its corresponding split point are found by
GADGET-PD such that the interaction-related heterogeneity of all features in S is almost
completely reduced and only the main effects within the subspaces remain. Hence, the
joint mean-centered PD function fPD,cS|Ag

within each final subspace Ag can be decomposed

into the respective 1-dimensional mean-centered PD functions as defined in Eq. (8). The
decomposition is explained in more detail in Appendix C.1.

The main issue with local ICE curves and resulting global PD plots is the extrapolation
problem when features are correlated. This problem and how it affects GADGET for
different feature effect methods, will be explained in Section 4.6.

4.4 GADGET-ALE

While ALE curves avoid the issue of extrapolation seen in PD curves, they do not directly
entail a local feature effect visualization that shows the heterogeneity induced by feature in-
teractions, as seen in ICE curves for PD plots. However, ALE plots are based on derivatives
of the prediction function regarding the feature of interest xj (see Eq. 3), which serve as
local feature effects to capture the interaction-related heterogeneity. We use those deriva-
tives within GADGET-ALE to receive more representative ALE curves in the final regions,

yielding the following choice for the local feature effects: h(xj ,x
(i))
−j ) =

∂f̂(xj ,x
(i)
−j)

∂xj
.

Theorem 5 The local feature effects of GADGET-ALE satisfy the local decomposability
axiom (Axiom 1). The proof is given in Appendix B.5.

7. We tuned the size of the hidden layer over (3, 5, 10, 20, 30) and the weight decay value over
(0.5, 0.1, 0.01, 0.001, 0.0001, 0.00001) via 5-fold cross-validation using grid search.
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Figure 3: Visualization of applying GADGET with S = Z = {1, 2, 3} to mean-centered ICE
curves of the uncorrelated simulation example with Y = 3X11X3>0−3X11X3≤0 +
X3 + ε where ε ∼ N(0, 0.09). Plots show mean-centered ICE and PD curves on
the entire feature space (upper) and within regions after partitioning the feature
space w.r.t. x3 = −0.003 (lower).

The derivatives in ALE are typically estimated by defining m intervals for feature xj
and quantifying for each interval the prediction difference between the upper and lower
boundary for observations lying in this interval (see Eq. 4). Hence, the loss function in
Eq. (6) measures the variance of the derivatives of observations where the feature values of
xj lie within the boundaries of the regarded interval and, thus, measures the interaction-
related heterogeneity of local effects of feature xj within this interval. The risk function in
Eq. (7) then aggregates this loss over all relevant intervals.

Equivalently to PD plots, ALE plots can be decomposed additively into main and in-
teraction effects. Furthermore, if all feature interactions of features in S can be completely
minimized (see Theorem 3), the joint mean-centered ALE function fALE,cS|Ag

within each fi-

nal subspace Ag can be decomposed into the 1-dimensional mean-centered ALE functions
of features in S (see Eq. 8). More details on the decomposition including an illustrative
example can be found in Appendix C.2.

4.5 GADGET-SD

While PD and ALE plots visualize the global feature effect for which we define the appro-
priate local feature effect function for the GADGET algorithm, the SD plot (Section 2.3)
is comparable to an ICE plot in the sense that it shows all local feature effects instead of
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an aggregated global feature effect. Here, we provide an estimate for the global effect and
show the applicability of SD within GADGET which we term GADGET-SD.

Herren and Hahn (2022) showed that the Shapley value φ
(i)
j (xj) of observation i for

feature value xj can be decomposed to

φ
(i)
j (xj) = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j,|W |=k

gcW∪j(xj ,x
(i)
W ), (10)

with gcW∪j(xj ,x
(i)
W ) = E[f̂(xj , X−j)|XW = x

(i)
W ]+

|W |−1∑
k=0

∑
V⊂{W∪j},|V |=k

(−1)|W |−kE[f̂(X)|XV =

x
(i)
V ]. These terms correspond to the pure feature interaction effects of feature xj as de-

fined by the standard functional ANOVA decomposition (Hooker, 2004). For more details
regarding the functional ANOVA representation of Shapley values, the interested reader is
referred to Herren and Hahn (2022). This decomposition satisfies Axiom 1 and thus we

choose h = φ
(i)
j for GADGET-SD.

Theorem 6 The Shapley values satisfy the local decomposability axiom (Axiom 1). The
proof can be found in Appendix B.6.

It is important to note that the Shapley value is defined via expected values and thus its
definition differs from those of ICE curves and derivatives for ALE, which are based on local
predictions. Similarly to estimating the mean-centering constants for ICE curves, it follows
that the expected values within the Shapley value estimation must consider the regarded
subspace Ag to acknowledge the full heterogeneity reduction due to interactions within each
subspace. This means that we must recalculate the Shapley values after each partitioning
step for each new subspace to receive regional SD effects in the final subspaces that are
representative of the underlying main effects within each subspace. However, without re-
calculating the conditional expected values, we still minimize the unconditional expected
value (i.e., the feature interactions on the entire feature space). The two different approaches
lead to a different acknowledgment of interaction effects. In general, it can be said that
the faster approach without recalculation will be less likely to detect feature interactions
of higher order compared to the exact approach with recalculation. The differences of the
two approaches are explained in Appendix C.3 and further discussed on a more complex
simulation example in Section 6.2.

Based on Eq. (10), the global feature effect for the SD plot of feature xj at the feature
value xj can be defined by

fSDj (xj) = EXW
[φj(xj)] = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

E[gcW∪j(xj , XW )]. (11)

While there exist estimators for the global effect in PD and ALE plots, a pendant for the
SD plot has not been introduced yet. Hence, a suitable estimator to estimate the expected
value of Shapley values of feature xj in Eq. (11) must be chosen. Here, we use univariate
GAMs with splines to estimate the expected value. Thus, the estimated GAM for feature xj
represents the regional SD feature effect of feature xj within subspace Ag (see Section 4.6).
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The decomposition of Shapley values differs from that of mean-centered ICE curves in
the way that feature interactions in Shapley values are fairly distributed between involved
features, which leads to decreasing weights the higher the order of the interaction effect (see
Eq. 10). In contrast, all interaction terms receive the same weight as the main effects in ICE
curves. Hence, interactions of high order lead to less heterogeneity in SD plots compared
to ICE plots. However, by using the marginal-based approach to calculate Shapley values,
they can be decomposed by weighted PD functions (see Eq. 10 and Herren and Hahn,
2022). Hence, the same decomposition rules as defined for PD plots apply for the SD
feature effect, as defined in Eq. (11). Meaning, the regional joint SD effect of features
in S can be decomposed into 1-dimensional regional SD effect functions, as in Eq. (8) if
all interaction-related heterogeneity is reduced. In this special case and if Shapley values
are estimated by the marginal-based approach, it can be shown that fSD,cj|Ag

= fPD,cj|Ag
(see

Appendix C.3 for more details and an illustration in a simulated example).

4.6 Illustrative Comparison of Feature Effect Methods Within GADGET

We now illustrate the differences between the three discussed feature effect methods and
how their underlying assumptions affect the resulting regional effects when GADGET is
applied. We consider the simulation example from Section 4.3 with the true underlying
relationship: Y = 3X11X3>0 − 3X11X3≤0 + X3 + ε. Here, all three features are jointly
independent. The upper left plot in Figure 4 shows the ICE, global PD, and regional PD
curves for feature x1 similar to Figure 3. The split found at x3 ≈ 0 is optimal according
to the true functional relationship of the data-generating process. The regional PD plots
reflect the contradicting influence of feature x1 on the predictions due to the underlying
feature interaction with x3 compared to the global PD plot. The respective split reduces the
interaction-related heterogeneity almost completely (by 98%). Hence, the resulting regional
marginal effects of x1 can be approximated well by the respective main effects (regional
PD) and are more representative of the individual observations within each region.

One main disadvantage of ICE and PD plots is the extrapolation problem in the presence
of feature interactions and correlations, as described in Section 2.3. To illustrate how this
problem affects GADGET-PD, we consider the same simulation example as before, but
with X1 = X3 + δ and δ ∼ N(0, 0.0625). We again draw 500 observations and train an
NN with the same specification and receive an R2 of 0.92 on a separately drawn test set of
size 10000 following the same distribution. Thus, the high correlation between x1 and x3

barely influences the model performance. However, the upper right plot of Figure 4 clearly
shows that ICE curves are extrapolating in low-density regions. The rug plot on the bottom
indicates the distribution of feature x1 depending on feature x3. Thus, the model was not
trained on observations with small x1 values and simultaneously large x3 values, and vice
versa. However, since we integrate over the marginal distribution, we also predict in these
“out-of-distribution” areas. This leads to the so-called extrapolation problem and, hence,
to uncertain predictions in extrapolated regions that must be interpreted with caution.

The four plots in the middle of Figure 4 illustrate the results for the same uncorrelated
and correlated settings using GADGET-ALE. The upper plots show that the heterogeneity
of the local effects (derivatives) before applying GADGET is very high, spanning across
negative to positive values (grey boxplots) within each interval. With GADGET, we then

16



Decomposing Global Feature Effects Based on Feature Interactions

−4

−2

0

2

4

−1.0 −0.5 0.0 0.5 1.0
x1

f̂ 1
−3

0

3

6

−1 0 1
x1

f̂ 1

GADGET−PD

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0
x1

∂f̂
/∂

x 1

first split x3 <= 0 x3 > 0

−2

−1

0

1

2

−1 0 1
x1

∂f̂
/∂

x 1

first split x3 <= −0.01 x3 > −0.01

−4

−2

0

2

4

−1.0 −0.5 0.0 0.5 1.0
x1

f̂ 1

first split x3 <= 0 x3 > 0

−2

0

2

4

−1 0 1
x1

f̂ 1

first split x3 <= −0.01 x3 > −0.01

GADGET−ALE

∆0
2

∆1
2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0
x1

φ 1

first split x3 <= 0.01 x3 > 0.01

∆0
2

∆1
2

−1

0

1

2

3

−1 0 1
x1

φ 1

first split x3 <= −0.03 x3 > −0.03

GADGET−SD

Figure 4: Local, global (grey), and regional effects for uncorrelated (left) and correlated
(right) simulation settings. Local effects are colored w.r.t. the first split when
GADGET is applied. The split feature is in all cases x3. The blue color represents
the left and orange the right region according to the split point. The thicker lines
represent the respective regional PD curves. The rug plot and the black points in
the upper plots show the distribution of x1 according to the split point and the
underlying observational values, respectively. The two upper ALE plots visualize
the heterogeneity of local feature effects (derivatives) while the two lower plots
show the mean-centered global and regional ALE-curves.

partition the feature space w.r.t. one of the features in Z such that this interaction-related
heterogeneity is minimized. GADGET-ALE finds the correct split feature and approxi-
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mately the correct split point for both the uncorrelated and the correlated cases, and this
split strongly reduces the heterogeneity of the local effects. While the shapes of the centered
ALE curves look very similar to PD plots for the uncorrelated case, the ALE curves for the
correlated case do not extrapolate and, thus, are more representative of the feature effect
with regard to the underlying data distribution.

The lower plots in Figure 4 visualize the SD plots for feature x1. Similarly to the least-
square estimate in linear regression, we search for the GAM that minimizes the squared
distance (see ∆2 in two bottom plots in Figure 4) of the Shapley values of x1. With
GADGET, we now split such that the fitted GAMs within the two new subspaces minimize
the squared distances between them and the Shapley values within the respective subspace.
Since the GAMs are fitted on the Shapley values (local feature effects), in contrast to PDs,
they do not extrapolate regarding x1 in the correlated scenario. However, Shapley values
are based on expected values that must be estimated. If they are calculated using the
marginal-based approach (as we do here), it is still possible that the predictions considered
in the Shapley values extrapolate into sparse regions. Another difference to ICE curves that
becomes visible in Figure 4 is the allocation of feature interactions. While the interaction
effect of size 3 is fully attributed to both involved features for ICE curves, it is fairly
distributed between x1 and x3 for Shapley values and thus the slopes of the regional effects
for feature x1 are halved compared to the regional PD curves. In which way this difference
affects the GADGET algorithm will be analyzed in Section 6.2.

Definitions and descriptions of the mean and interaction-related heterogeneity estimates
and visualization techniques for each feature effect method can be found in Appendix C.4.

4.7 Quantifying Feature Interactions

In addition to visualizing regional effects, the GADGET algorithm quantifies feature inter-
actions, for which we introduce several measures (inspired by Herbinger et al., 2022). We
quantify how much interaction-related heterogeneity has been reduced in a single split of
GADGET for a considered feature j ∈ S,

I(AP , x̃j) =
Rj(AP , x̃j)−Rj(Al, x̃j)−Rj(Ar, x̃j)

Rj(X , x̃j)
,

where P is the parent node and l and r are its left and right children, respectively. We
express risk reduction via the split relative to the risk on the entire feature space (root
node). Instead of considering only a single partitioning step, one might be more interested
in how much interaction-related heterogeneity reduction a specific split feature z ∈ Z is
responsible for w.r.t. all performed partitioning steps of an entire tree. For a given splitting
feature z we now simply sum up the reduction terms for all splits in which z occurs, which
we denote by Bz ⊂ {A1, . . . ,AG}, where G is the number of splitting nodes in the tree:

Iz,j(x̃j) =
∑
AP∈Bz

I(AP , x̃j).

We obtain the overall interaction-related heterogeneity reduction Iz of the z-th split
feature by relating the risk reduction of all its splits over all considered features in S to the
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total risk of the root node:

Iz =

∑
AP∈Bz

∑
j∈S(Rj(AP , x̃j)−Rj(Al, x̃j)−Rj(Ar, x̃j))∑

j∈SRj(X , x̃j)
.

For example, in our previous example in Figure 3, the interaction-related heterogeneity
reduction of the first split (I(X , x̃1)) for feature x1 is 0.986, which means that almost all of
the interaction-related heterogeneity of x1 is reduced after the first split. Furthermore, we
obtain I3,1(x̃1) = I(X , x̃1) = 0.986, since z = 3 was only used once for splitting, while the
interaction-related heterogeneity reduction of all three features is I3 = 0.99 for z = 3.

Goodness of Fit. A further aggregation level would be to sum up Iz,j(x̃j) over all z ∈ Z
and, thus, obtain the interaction-related heterogeneity reduction for feature xj between the
entire feature space and the terminal nodes. This is related to the concept of R2, which is
a well-known measure in statistics to quantify the goodness of fit. We apply this concept
here to quantify how well the terminal regional effect curves (in the terminal subspaces
Bt ⊂ {A1, . . . ,AG}) fit the underlying local effects compared to the global feature effect
curve on the entire feature space. We distinguish between the feature-related R2

j , which
represents the goodness of fit for the feature effects of feature xj :

R2
j =

∑
z∈Z

Iz,j(x̃j) = 1−
∑
At∈Bt Rj(At, x̃j)
Rj(X , x̃j)

,

and the R2
Tot, which quantifies the goodness of fit for the feature effects of all features in S:

R2
Tot =

∑
z∈Z

Iz = 1−
∑
At∈Bt

∑
j∈SRj(At, x̃j)∑

j∈SRj(X , x̃j)
.

The right-hand versions of both formulas follow from the cancellation of parent vs. children
terms (except for root and terminal nodes) when the left-hand version is summed across
the whole tree. Both R2 measures take values between 0 and 1, with values close to 1
signaling that almost all heterogeneity in the final subspaces compared to the entire feature
space has been reduced—either for a specific feature of interest (R2

j ) or for all features

of interest (R2
Tot). In our example, R2

1 for feature x1 is the same as for I3,1(x1), since
GADGET performed only one split. The total interaction-related heterogeneity reduction
over all features in S is R2

Tot = I3 = 0.99. Hence, the interaction-related heterogeneity of
all features in S has been reduced by 99% after the first split.

5. A Procedure to Detect Global Feature Interactions

As shown in Section 4.7, GADGET quantifies feature interactions between the feature sub-
sets S and Z. Choosing the features to include in S and Z depends on the underlying
research question. If the user is interested in how a specific set of features (S) influences the
model’s predictions depending on another user-defined feature set (Z), then S and Z are
chosen based on domain knowledge. However, the user may not know which relationships
the ML model has learned. Thus, choosing S and Z based on domain knowledge does not
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ensure consideration of all interacting features. If our goal is to minimize feature interac-
tions between all features to potentially additively decompose the prediction function into
univariate effects, we can define S = Z = {1, . . . , p}. With that choice, we aim to reduce
the overall interaction-related heterogeneity in all features (S), since we also consider all
features to be possible interacting features (Z). For high-dimensional settings, this has the
disadvantage of being computationally expensive and we might “detect” spurious interac-
tions and therefore produce less stable regional splits. Hence, we must define beforehand
the subset of features that actually interact. Given that features typically interact with each
other and all involved features will usually show heterogeneity in their local effects while
being responsible for the heterogeneity of other involved features, we will choose S = Z.
Thus, we will only use S as the globally interacting feature subset to be defined.

5.1 The PINT Procedure

We introduce a new permutation-based interaction detection (PINT) procedure to define
the interacting feature subset S. PINT is based on the idea of a non-parametric permutation
test (Ernst, 2004). It can be applied to any feature effect method satisfying Axiom 1.

With the risk function defined in Eq. (7) and based on the chosen local feature effect
method, we can quantify the interaction-related heterogeneity of each feature xj within the
feature space X . Due to correlations between features, the estimated heterogeneity might
also include spurious interactions. Thus, we must define a null distribution to determine
which heterogeneity is actually due to feature interactions (i.e., significant w.r.t. the null
distribution) and which heterogeneity is due to other reasons, such as correlations or noise.
Thus, the null distribution needs to retain the underlying properties of the data.

Generally, we do not know the true functional relationship and there are infinitely
many distributions compliant with a null hypothesis of no interaction-related heterogeneity:
Rj(X , x̃j) = 0. We use the prediction model and a permutation-based approach to approxi-
mate the variability of the risk Rj under this null hypothesis. We follow a similar approach
to Altmann et al. (2010) who suggested a permutation-based null distribution to detect
important features. To obtain the null distribution, the target variable y is permuted (line
4 in Algorithm 2), which breaks the association between the target and the features while
keeping the feature distribution intact. Hence, no more interactions are present between xj
and x−j , but the association between the features remains. Thus, when performing a refit
on the data set D̃ with the permuted target variable, potential heterogeneity of local effects
is only due to randomly learned effects of the prediction model depending on the feature
distribution and noise and not caused by true feature interactions. Therefore, calculating
R̃j based on D̃ measures the risk of xj under the null (lines 5-8 in Algorithm 2). To obtain
the null distribution of risk values for xj , this procedure is repeated s times.8

Since we are interested in defining the feature subset S of all interacting features, we
calculate R̃j for all features j ∈ {1, . . . , p}. Since all feature interactions between y and x are

8. An alternative approach would be to randomly permute xj instead of y to break the interaction effects
between xj and x−j . However, this approach is computationally more expensive and does not only
break the respective interaction effects but also the correlations between xj and x−j , and thus spurious
interactions will not be detected. Using conditional samples (Molnar et al., 2023) or knock-offs (Watson
and Wright, 2021) instead of random permutations solves the second problem. However, this approach
is even more computationally expensive and becomes infeasible with a higher number of features.
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Algorithm 2: PINT

1: input: data set D, prediction function f̂ , number of permutations s,
risk function Rj , significance level α

2: output: feature subset S
3: for k ∈ {1, . . . , s} do
4: permute target y of D and obtain permuted ỹk and D̃k
5: refit model on D̃k to obtain the prediction function f̃kD̃k

6: for j ∈ {1, . . . , p} do
7: calculate risk R̃kj = Rkj (X , x̃j , f̃kD̃k) for the j-the feature achieved by f̃kD̃k

8: end for
9: end for

10: for j ∈ {1, . . . , p} do
11: calculate risk Rj(X , x̃j , f̂D) for j-the feature based on D and f̂

12: sort (increasing) all R̃kj , set (1− α)-quantile z1−α
j = R̃d(s+1)(1−α)e

j

13: add j to S, if and only if Rj(X , x̃j , f̂D) > z1−α
j

14: end for

broken by permuting y, the null distribution of risk values can be estimated for all features
by the described s permuting and refitting steps. To determine the interacting feature
subset S, the respective risk value Rj(X , x̃j , f̂D), is calculated based on the unpermuted

data set D and the originally fitted model on this data set. The value of Rj(X , x̃j , f̂D) is
then compared to the (1 − α)-quantile, i.e., z1−α

j , of the non-parametric null distribution.
If the risk value of xj exceeds the respective quantile, then feature interactions between xj
and x−j are considered to be highly relevant (lines 11-13 in Algorithm 2).

5.2 Theoretical Properties

We emphasize that PINT is a detection procedure, not a formal statistical test. This dis-
tinction is necessary because the permutation approach generates data from only one of the
many possible distributions compliant with the null hypothesis. We may nevertheless ask
how the procedure’s type I and type II errors behave. In the following, we give conditions
under which PINT is valid as a statistical test. An empirical validation is given in Section
7 and Appendix F.

A difficulty in formally analyzing the procedure is that it depends on the unspecified
ML algorithm that induces f̂ . We can emphasize this by writing Rj(X , x̃j , f̂Dn) for the risk

for feature value xj achieved by the algorithm f̂ run on a data set9 Dn = {(X(i), Y (i))}ni=1,

generated i.i.d. from PX,Y . Define f(x) = E[Y | X = x] and DΠ
n = {(X(i), Y

(i)
Π(i))}

n
i=1 where

Π is a random permutation of {1, . . . , n} independent of Dn. We can now impose abstract,
but interpretable conditions on the ML algorithm under which the test is valid.

9. With a slight abuse of notation, we use Dn to define the data set as a random variable.
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Theorem 7 Suppose PX,Y is a probability measure where Rj(X , x̃j , f) = 0. The type I
error probability of PINT is upper bounded by α+ ε, where

ε = max
t>0

[
P

(
Rj(X , x̃j , f̂Dn) > t

)
− P

(
Rj(X , x̃j , f̂DΠ

n
) > t

)]
.

The proof can be found in Appendix E.

Intuitively, DΠ
n is a data set with no feature effects. The extra term ε is zero if the algorithm

f̂ is less likely to find a spurious interaction in unpermuted data compared to a case where
no effects are present. Often, this is natural: most learners detect less of the spurious
effect when there are other effects to focus on. In this case, the PINT procedure is a valid
statistical test. In fact, we conjecture that the test is conservative (i.e., type I error is
strictly smaller than α) in most cases, which is in line with our empirical observations (see
Section 7 and Appendix F). However, ε may be strictly positive when features are strongly
dependent, and the spurious effect is easier to learn than the true one. An example of such
a case is given in Appendix F.1.

Theorem 8 Suppose PX,Y is a probability measure where Rj(X , x̃j , f) 6= 0. If the algo-

rithm f̂ is such that for every ε > 0

P

(
sup
x
|f̂DΠ

n
(x)− E[Y ]| > ε

)
→ 0 (12)

and there exists c > 0 such that

P

(
Rj(X , x̃j , f̂Dn) > c

)
→ 1, (13)

the type II error probability tends to 0. The proof can be found in Appendix E.

Recall that DΠ
n is a data set with no feature effects, in which case we would have f(x) = E[Y ]

for all x. Condition (12) essentially requires the inducing algorithm of f̂ to perfectly learn
constant functions. When there are feature effects, the algorithm does not have to be perfect,
though. Condition (13) merely requires it to capture at least some of the interaction effect
between xj and other features.

6. Empirical Validation and Analyses of GADGET

We now investigate different hypotheses to (1) empirically validate that GADGET gener-
ally minimizes feature interactions and (2) show how different characteristics of the un-
derlying data—like feature correlations and true functional relationships—might influence
GADGET, depending on the chosen feature effect method. The structure of the follow-
ing sections and the concrete definition of the hypotheses is based on (2). However, the
simulation examples themselves are designed in such a way that we know the underlying
ground-truth of feature interactions for each example. Thus, we are able to empirically
validate that GADGET generally minimizes feature interactions.
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Definition of Stop Criteria for GADGET. In all our experiments and real-world applica-
tions, we control the number of partitioning steps performed by GADGET based on (1) the
tree depth and the minimum number of observations per leaf node which are hyperparam-
eters typically used by decision trees, and (2) an early stopping mechanism where a further
split is only performed if the relative improvement of the split to be performed is at least
γ ∈ [0, 1] times the total relative interaction-related heterogeneity reduction of the previous

split: γ ×
∑

j∈S(Rj(AP ,x̃j))−I(t̂,ẑ)∑
j∈S(Rj(X ,x̃j)) . The higher we choose γ, the fewer partitioning steps will

be performed. See Appendix D for more details and recommendations.

6.1 Influence of Correlated Features

Hypothesis. With increasing correlation between features, results become less stable due to
extrapolation for methods using the marginal distribution for integration (especially PD, as
shown in Section 4.6, but also SD) compared to methods using the conditional distribution
(such as ALE). In this context, “stability” denotes the ability of the different GADGET
variants to find the correct split feature and split point over various repetitions.

Experimental Setting. We use the (simple) simulation example of Section 4 for four differ-
ent correlation coefficients ρ13 between X1 and X3: 0, 0.4, 0.7, and 0.9. The data is generated
as follows: Let X2, X3 ∼ U(−1, 1) be independently distributed and X1 = c ·X3 +(1−c) ·Z
with Z ∼ U(−1, 1), where c is chosen between 0 and 0.7, to achieve the ρ13 values. The true
underlying relationship is defined as before by Y = 3X11X3>0 − 3X11X3≤0 + X3 + ε with
ε ∼ N(0, 0.09). We draw 1000 observations and fit a GAM with correctly specified main
and interaction effects and an NN with the previously defined specifications. We repeat the
experiment 30 times. We apply GADGET to each setting and model within each repetition
using PD, ALE, and SD as feature effect methods and set S = Z = {1, 2, 3}. As stopping
criteria, we choose a maximum tree depth of 6, a minimum number of observations per leaf
of 40, and set the improvement parameter γ to 0.2.

Results. Figure 5 shows that independent of the model or correlation degree, x2 has (cor-
rectly) never been considered as split feature. For correlation strengths ρ13 between 0 and
0.7, x3 is always chosen as the only split feature, with I3 taking values between 0.75 and
1 and thus reducing most of the interaction-related heterogeneity of all features with one
split. Thus, for low to medium correlations, there are only minor differences between the
various feature effect methods and models. However, the observed behavior changes sub-
stantially for ρ13 = 0.9. For the correctly specified GAM, we still receive fairly consistent
results, apart from one repetition where x1 is chosen as the split feature when PD is used.
In contrast, there is more variation of I3 for the NN. For SD, x1 is chosen once for split-
ting, and for PD, this is also the case for 30% of all repetitions (see Table 1). Using ALE,
GADGET always correctly performs one split with respect to x3. Additionally, GADGET
performs a second split once when PD is used and 7 times when SD is used. Thus, for
high correlations between features, we already observe in this very simple setting that the
extrapolation problem influences the splitting within GADGET for effect methods based on
marginal distributions, while methods based on conditional distributions such as ALE are
less affected. This is particularly relevant for learners that model very locally (e.g. NNs)
and, thus, tend to have wiggly prediction functions and oscillate in extrapolating regions.
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Figure 5: Boxplots showing the interaction-related heterogeneity reduction Iz per split fea-
ture over 30 repetitions when PD, ALE, or SD is used in GADGET. Columns
refer to correlation ρ13, rows refer to fitted ML model.

This is also notable in the split value range, which increases for the NN in the case of high
correlations for PD and SD but not for ALE (see Table 1).

Split feature x3 in % Split value range MSE

Model ρ13 ALE PD SD ALE PD SD mean (sd)

GAM 0 1.00 1.00 1.00 0.10 0.10 0.12 0.329 (0.008)
GAM 0.4 1.00 1.00 1.00 0.13 0.10 0.10 0.201 (0.003)
GAM 0.7 1.00 1.00 1.00 0.09 0.10 0.09 0.137 (0.002)
GAM 0.9 1.00 0.97 1.00 0.11 0.11 0.12 0.107 (0.001)

NN 0 1.00 1.00 1.00 0.10 0.09 0.09 0.152 (0.018)
NN 0.4 1.00 1.00 1.00 0.08 0.08 0.07 0.124 (0.007)
NN 0.7 1.00 1.00 1.00 0.11 0.10 0.10 0.111 (0.005)
NN 0.9 1.00 0.70 0.97 0.10 0.19 0.15 0.104 (0.003)

Table 1: Overview of the frequency of x3 as the first split feature over 30 repetitions, along
with the corresponding split value range. The last column presents the model’s test
performance as the mean (standard deviation) of the mean squared error (MSE).

6.2 Influence of Higher-Order Interaction Effects

Hypothesis. While SD puts less weight on interactions with increasing order, all interac-
tions (regardless of the order) receive the same weight in PD and ALE. Hence, when using
GADGET-SD, we may not be able to detect high order interactions—especially when us-
ing the approximation without recalculation after each split (see Section 4.5 and Appendix
C.3). However, it should be more likely to detect these interactions with PD and ALE.
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Experimental Setting. To investigate this hypothesis, we consider 5 independent features
with X1 ∼ U(0, 1) and X2, X3, X4, X5 ∼ U(−1, 1) and draw 1000 samples. The true
functional relationship of the data-generating process is defined by a series of interactions
between different features: y = f(x)+ε with f(x) = x1 ·1x3≤01x4>0 +4x1 ·1x3≤01x4≤0−x1 ·
1x3>01x5≤01x2>0−3x1 ·1x3>01x5≤01x2≤0−5x1 ·1x3>01x5>0 and ε ∼ N(0, 0.01 ·var(f(x))).
These interactions can be seen as one hierarchical structure between all features, where the
slope of x1 depends on the subspace defined by the interacting features (see Figure 6).

We fit an XGBoost (XGB) model with correctly specified feature interactions and a
random forest (RF) on the data set. Subsequently, we apply GADGET to each model
using PD, ALE, SD with, and SD without recalculation after each split. In 30 repetitions
of the experiment, XGB achieved an MSE of 0.068 (0.009 standard deviation) and the RF
0.121 (0.012 standard deviation) on a separate test set with the same distribution. For
GADGET, we consider one feature of interest S = 1 and all other features as potential
interacting features Z = {2, 3, 4, 5}. As stop criteria, we set the maximum tree depth to 7,
the minimum number of observations to 40, and γ = 0.1. If the underlying model learned the
effects of the true functional relationship of the data-generating process correctly, GADGET
should split as shown in Figure 6 to minimize the interaction-related heterogeneity of x1.

Results. All methods used x3 as the first split feature in all repetitions. Table 2 shows
that a second-level split was performed in only 10% of the repetitions when GADGET-SD
without recalculation is applied on the XGB model, compared to about 90% for all other
methods. A similar pattern appears with the RF model, but with more variation in the
frequencies, possibly due to different learned effects. If a second-level split is performed,
all methods always choose the correct split features x4 and x5, indicating that GADGET
generally minimizes feature interactions (see Figure 6). Table 3 shows similar differences
in the third-level split frequencies between SD without recalculation and other methods.
Table 4 confirms that SD without recalculation shows high variation in final subspaces, with
a median of 2, indicating it stops after the first split (with x3). Other GADGET variants,
like PD and SD with recalculation, typically reach the correct number of subspaces (5),
while ALE tends to split slightly deeper.

To summarize, when SD without recalculation is used, the two-way interaction with x3

is primarily detected, while features of a third-order (x4 and x5) or fourth-order (x2) inter-
action are rarely considered for splitting. In contrast, the other three methods frequently
detect higher-order interactions. This supports our hypothesis regarding higher-order effects
and the theoretical differences among the feature effect methods. Note that recalculating the
Shapley values after each split reduces the order of interactions. For example, recalculating
Shapley values in the subspace {X |x3 ≤ 0} reduces the three-way interaction x1 ·1x3≤01x4>0

to the two-way interaction x1 ·1x4>0 and thus the weight of the interaction increases for the
next split. As a result, the outcomes are similar to those for PD. However, recalculation
can be computationally expensive.

6.3 Influence of Spurious Interactions

Hypothesis. When using PINT to pre-select S = Z ⊆ {1, . . . , p}, we are more likely to
actually split according to feature interactions compared to when choosing all features
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Figure 6: Explanation of the true
functional relationship of
the data-generating pro-
cess. The green squares
represent the 5 final sub-
spaces which contain lin-
ear effects of feature x1.

At,zl At,zr
Model Method z Freq. z Freq.

XGB ALE x4 0.93 x5 0.93
XGB PD x4 0.90 x5 0.90
XGB SD not rc x4 0.10 x5 0.10
XGB SD rc x4 0.87 x5 0.87
RF ALE x4 0.80 x5 0.90
RF PD x4 0.63 x5 0.73
RF SD not rc x4 0.03 x5 0.13
RF SD rc x4 0.73 x5 0.90

Table 2: Frequencies of splits relative to root node
by split feature z over 30 repetitions in the
left At,zl and right At,zr subspaces after the
first split when GADGET with ALE, PD,
SD with recalculation (rc) and without re-
calculation (not rc) is used.

Model Method z Rel. Freq.

XGB ALE x2 0.93
XGB PD x2 0.90
XGB SD not rc x2 0.10
XGB SD rc x2 0.87
RF ALE x2 0.83
RF ALE x4 0.03
RF PD x2 0.67
RF SD not rc x2 0.10
RF SD rc x2 0.83

Table 3: Frequencies of splits relative to
root node by split feature z over
all 30 repetitions in the subspace
{X |x3 > 0 ∩ x5 ≤ 0} on third
tree depth when GADGET is ap-
plied with ALE, PD, SD not rc
and SD rc.

No. of Subspaces

Model Method Min Max Med

XGB ALE 3 15 7
XGB PD 2 7 5
XGB SD not rc 2 7 2
XGB SD rc 2 8 5
RF ALE 3 16 9
RF PD 2 11 5
RF SD not rc 2 11 2
RF SD rc 3 12 5

Table 4: Minimum, maximum and median
number of final subspaces over 30
repetitions after GADGET is ap-
plied with ALE, PD, SD not rc
and SD rc.

(S = Z = {1, . . . , p}) or using the values of the H-Statistic—which was defined in Section
2.4—for pre-selection, especially when potential spurious interactions are present.

Experimental Setting. We reuse the simulation example described in Section 5: Consider
four features with X1, X2, X4 ∼ U(−1, 1) and X3 = X2 + ε with ε ∼ N(0, 0.09). For
30 repetitions, we draw n = {300, 500} observations and create the dependent variable,
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including a potential spurious interaction between x1 and x3 (as x1 and x2 interact, but
x2 and x3 are correlated)10: y = x1 + x2 + x3 − 2x1x2. For each sample size n and each
repetition, we fit an SVM with an RBF kernel, cost parameter C = 1, and choose the
inverse kernel width based on the data. The performance of the model, measured by the
mean (standard deviation) of the MSE on a test set of size 100000 across all repetitions, is
0.028 (0.010) for n = 300 and 0.027 (0.010) for n = 500. We calculate PINT using PD, ALE,
and SD for each repetition and sample size with s = 100 and α = 0.05 by approximating
the null distribution as described in Section 5. We apply GADGET using PD, ALE, and
SD with recalculation, where S = Z is based on the feature subset chosen by PINT for
each method. We compare these results by considering all features as features of interest
and potential split features (i.e. S = Z = {1, . . . , p}). We use a maximum tree depth of 6,
minimum number of observations of 40, and γ = 0.15 as stop criteria.

Results. The two left plots in Figure 7 show that x3 and x4 are always correctly identified
as insignificant (according to the chosen α level), while the interacting features x1 and x2

are always significant and considered in S (apart from a few exceptions for ALE). The
sample size does not seem to have a clear influence on PINT in this setting. The right plots
in Figure 7 show that even the H-Statistic values of the non-influential and uncorrelated
feature x4 are larger than 0 for both sample sizes. The H-Statistic values of x3 could support
its inclusion in S, depending on the chosen threshold. Since this choice is not clear for the
H-Statistic, it is not very suitable as a pre-selection method for GADGET.

Figure 8 illustrates that we correctly only consider x1 and x2 when PINT is applied
upfront, while GADGET also splits w.r.t. x3 for all settings and (in some cases) even
w.r.t. x4 if PINT is not applied upfront. The influence of these two features appears to
be stronger for smaller sample sizes, as indicated by Iz. Among the various effect methods
used in GADGET, PD and SD attribute most of the reduction in heterogeneity to x1 and
a smaller part to x2, while ALE attributes the heterogeneity more equally between the two
split features. This discrepancy might be explained by the correlation between x2 and x3,
which particularly affects the two methods based on marginal distributions (that is, PD
and SD). Furthermore, Table 5 shows that we tend to obtain shallower trees when we use
PINT upfront, while we retain the level of heterogeneity reduction by obtaining similar R2

j

values for the two interacting features x1 and x2.

Thus, PINT reduces the number of features to consider in the interacting feature subset
for GADGET depending on the regarded feature effect method. This leads to better results
in GADGET in the sense that we only split w.r.t. truly interacting features defined by
PINT and receive shallower (and thus more interpretable) trees.

7. Empirical Validation of the PINT Procedure

We now empirically validate PINT to detect interactions.

Hypothesis. It can be shown empirically that the PINT procedure is faithful w.r.t. the
type I error and the power of the test as already validated theoretically in Section 5.

10. While the true functional relationship is here defined without noise to purely measure the effect of the
spurious interaction, we analyze the effect of adding noise in Appendix F.2
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Figure 7: Boxplots showing the distribution of p-values of each feature for different sample
sizes and effect methods over all repetitions when PINT is applied (left) and the
distribution of feature-wise H-Statistic values for both sample sizes (right).
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Figure 8: Boxplots showing the interaction-related heterogeneity reduction Iz per split fea-
ture over 30 repetitions when PD, ALE, or SD is used within GADGET. The
rows show the results for the two different sample sizes, and the columns indicate
if GADGET is used based on all features without using PINT upfront (left) or
GADGET is used based on the feature subset resulting from PINT (right).

Experimental Setting. Let X1, X2, X3, X4 ∼ U(−1, 1) be four independently distributed
features, from which we draw 500 observations. The true functional relationship is given by
y = βx1x2 + ε, ε ∼ N(0, 1) with β ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3}.
Hence, for β = 0, no feature has an influence on y, which is then defined only by the
noise term: y = ε. For each setting, we train an SVM based on an RBF kernel with
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R2
j Number of Subspaces

n Method PINT R2
1 mean(sd) R2

2 mean(sd) Min Max Median

300 ALE no 0.83 (0.05) 0.83 (0.05) 4 10 7.50
300 ALE yes 0.83 (0.07) 0.82 (0.05) 1 10 7.00
300 PD no 0.94 (0.02) 0.84 (0.06) 2 7 4.00
300 PD yes 0.92 (0.03) 0.80 (0.08) 2 5 3.00
300 SD no 0.93 (0.04) 0.90 (0.05) 2 11 5.00
300 SD yes 0.93 (0.04) 0.90 (0.05) 2 11 4.50
500 ALE no 0.83 (0.04) 0.83 (0.06) 4 10 7.00
500 ALE yes 0.86 (0.04) 0.82 (0.05) 1 11 6.50
500 PD no 0.94 (0.03) 0.84 (0.06) 2 7 4.00
500 PD yes 0.93 (0.03) 0.82 (0.08) 2 5 4.00
500 SD no 0.93 (0.04) 0.90 (0.05) 2 11 5.00
500 SD yes 0.93 (0.04) 0.90 (0.05) 2 9 5.00

Table 5: Interaction-related heterogeneity reduction per feature for x1 and x2 by mean
(standard deviation) of R2

j and minimum, maximum and median number of final
subspaces after applying GADGET based on different sample sizes, effect methods
and with and without using PINT upfront.

cost parameter C = 1 and choose the inverse kernel width based on the data. We apply
PINT for all three feature effect methods and with s = 100 and α = 0.05. We perform the
experiments 1000 times to calculate the rejection rate for each feature and setting.

Results. The rejection rate of all four features and all effect methods for β = 0 align closely
with the significance level α = 0.05 (see Figure 9). While the power of the test approaches
1 for increasing effect sizes of the interaction between x1 and x2 for all three methods, the
type I error represented by the rejection rates of x3 and x4 goes to 0. This trend can be
explained as follows: The higher β, the higher the influence of x1 and x2 and thus the more
the model focuses on these two features and ignores the two non-influential features. This
can also be seen on the p-value distributions, which, for non-influential features such as x4,
becomes more skewed towards 1 the higher the interaction effect, as illustrated in Figure 10.
Thus, in the most extreme case, the model disregards the non-influential features entirely,
resulting in their local effects’ heterogeneity being exactly 0. However, when permuting y
and refitting the model, random effects may be learned for x3 and x4. Hence, the calculated
values under the null distribution might be higher than the actual risk value, causing the
observed artifact in Figure 9 where the type I error is 0 instead of showing a false rejection
rate of 5%.

More diverse and complex settings that confirm these observations and empirically val-
idate their correctness are discussed in Appendix F.2.
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Figure 9: Rejection rates of PINT for 1000 repetitions for PD, ALE, and SD and for varying
interaction effect sizes β. For β = 0, rejection rates correspond to type I errors.
For β > 0, rejection rates of x1 and x2 correspond to the power of the test, those
of x3 and x4 to type I errors. The red dashed line represents the significance level
of α = 0.05. Where not visible, the green line (x1) is below the purple line (x2).
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Figure 10: P-value distributions of PINT for 1000 repetitions for x1 and x4 for all three
feature effect methods and for varying interaction effect sizes β. The red dashed
line represents the significance level of α = 0.05.

8. Real-World Applications

We now show the usefulness of our introduced methodology on real-world applications,
revealing insights into the learned regional effects, interactions, and potential biases in the
data or model. We present GADGET’s applicability in higher-dimensional settings and
offer guidelines for handling such scenarios in Section 9.

8.1 COMPAS Data Set

Due to potential subjective judgement and the resulting bias in the decision making process
of the criminal justice system (Blair et al., 2004), ML models have been used to predict
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recidivism of defendants to provide a more objective guidance for judges. However, if the
underlying training data are biased (e.g., different socioeconomic groups have been treated
differently for the same crime in the past), the ML model might learn the underlying data
bias, and due to its black-box nature, explanations for its decision-making process and a
potential recourse are harder to achieve (Fisher et al., 2019).

We want to use GADGET here to obtain more information on how different charac-
teristics of the defendant and their criminal record influence the risk of recidivism within
different subgroups and if “inadmissible” characteristics such as ethnicity or gender cause
a different risk evaluation. For our analysis, we use the COMPAS data set to predict the
risk of violent recidivism collected by ProPublica (Larson et al., 2016). As Fisher et al.
(2019), we choose the three admissible features (1) age of the defendant, (2) number of
prior crimes, and (3) if the crime is considered a felony versus misdemeanor, and the two
“inadmissible” features (1) ethnicity and (2) gender of the defendant. We use the subset of
African-American and Caucasian defendants and apply the data preprocessing steps sug-
gested by ProPublica and applied in Fisher et al. (2019), leaving us with 3373 defendants
of the original pool of 4743 defendants. We consider a binary target variable that indicates
a high (= 1) or low (= 0) recidivism risk, based on a categorization of ProPublica. We
perform our analysis on the entire data set, using a tuned SVM.11

Since the features do not show high correlations, we use ICE and PD for our analysis.12

Figure 11 shows that the average predicted risk visibly decreases with age, while the pre-
dicted risk first increases steeply with the number of previous crimes up to 10 and then
decreases slightly for higher values. The PD values for the type of crime do not differ sub-
stantially. When considering the two “inadmissible” features, there is on average a slightly
higher risk of recidivism for African-American versus Caucasian and female versus male
defendants. For all features, we can observe highly differing local effects. Particularly, the
heterogeneous ICE curves for age and number of prior crimes indicate feature interactions.

We first apply PINT with PD to define our subset S for GADGET. Using s = 200 and
α = 0.05, we approximate the null distribution using the procedure described in Section
5. All five features are significant w.r.t. the chosen significance level, so we choose S =
Z = {age, crime, ethnicity, gender, priors count} for GADGET. We apply GADGET with
a maximum depth of 3 and γ = 0.15. The effect plots for the four resulting regions are
shown in Figure 12. GADGET performed the first split according to age and the splits
on the second depth according to the number of prior crimes. The total reduction in
interaction-related heterogeneity is R2

Tot = 0.86. The highest reduction in heterogeneity
is given by age and the number of prior crimes, which interact the most (see Figure 12).
For defendants around 20 years of age, the predicted risk tends to be high. However, for
defendants with a small number of prior crimes, the predicted risk decreases very quickly
with increasing age, reaching a low risk and remaining so for people older than 32 years. In
contrast, for defendants with more than four prior crimes, the predicted risk decreases only
slowly with increasing age. The regional feature effects of the number of prior crimes show
that the interaction-related heterogeneity is small for the subgroup of younger people, while
some heterogeneity still remains for defendants older than 32 years of age. Furthermore, the

11. We performed proper model comparison as well to ensure that this is a well-fitting model, at least in
comparison to other standard choices.

12. We obtained similar results by using SD instead of PD within GADGET, see Appendix G.
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Figure 11: ICE and PD curves of considered features of the COMPAS application example.

interaction-related heterogeneity of the three binary features (ethnicity, gender, and severity
of crime) was reduced, indicating an interaction between each of them and age as well as
the number of prior crimes. Although the effect on the predicted risk only differs slightly
between the categories of the three binary features for older defendants with a lower number
of prior crimes and for younger defendants with a high number of prior crimes, greater
differences were observed for the other two subgroups. The overall difference in predicted
risk for the two inadmissible features of ethnicity and gender seems to be especially high
for people over 32 years with a higher number of prior crimes, as well as for people younger
than 32 with a lower number of prior crimes. These differences in the predicted risk between
subgroups of defendants might be due to a potentially learned bias regarding the ethnicity
and gender of the defendant and thus potentially resulting in a more severe predicted risk
of recidivism for some defendants than for others.

Note that we applied GADGET to an ML model that is fitted on the COMPAS scores
and not directly on COMPAS. Consequently, we are unable to draw conclusions about
the learned effects of the underlying commercial black-box model. However, GADGET is
model-agnostic and can be applied to any accessible black-box model.

8.2 Bikesharing Data Set

We use the bikesharing data set (James et al., 2022), to predict the hourly counts of rented
bikes from the Capital bikeshare system for the years 2011 and 2012. We fit an RF with
10 seasonal and weather features: the day and hour the bike was rented, if the current day
is a working day, the season, number of casual bikers, normalized temperature, perceived
temperature, wind speed, humidity, and weather situation (categorical, e.g., “clear”).

Again, we first apply PINT with s = 200 and α = 0.05 on all features to define the
interacting feature subset S for GADGET. Since some features—such as season, tempera-
ture, and perceived temperature—are correlated, we use ALE for our analysis. Although
the features “hour” and “working day” are highly significant, the p-values of all other fea-
tures are close to 1, indicating that only the heterogeneity of the local effects for hour and
workingday is caused by interactions. Hence, we set S = Z = {hr, workingday} and apply
GADGET with a maximum depth of 3 and γ = 0.15. GADGET splits once with the binary
feature “workingday”, reducing the interaction-related heterogeneity of the two features by
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Figure 12: Regional PD plots for features of the COMPAS application after applying GAD-
GET. Grey areas of numeric features and error bars of categorical features in-
dicate the 95% interaction-related heterogeneity interval (see Appendix C.4).

R2
Tot = 0.88. The middle plots of Figure 13 show the regional ALE plots after applying

GADGET. During working days and rush hours, prominent peaks are observed, while there
is a decline during the noon and afternoon hours. However, on non-working days, the trend
is the opposite. This interaction is not visible in the global ALE plot of the feature hour
(left plot). The interaction-related heterogeneity of the feature “hour” is reduced compared
to the global plot, although there is still some apparent variation for working days. From
a domain perspective, we might also consider an interaction of the temperature with the
hour and working day (as done in Hiabu et al., 2023). Thus, we include the temperature in
the feature subsets S and Z and apply GADGET again with the same settings as described
above. The feature “workingday” governs the first split. However, for the region of work-
ing days, GADGET splits again according to temperature, as shown in the right plot of
Figure 13. Although the interaction-related heterogeneity of the feature “temperature” was
barely reduced within GADGET (R2

j = 0.03)—which supports the results of PINT—using
temperature in the subset of splitting features Z further reduced the interaction-related het-
erogeneity of hour by 15%. Thus, feature interactions can be asymmetric, and extending Z
based on domain knowledge might be a valid option in some cases.

9. High-Dimensional Real-World Application with Filtering Procedure

We have considered only low-dimensional settings with three to ten features so far. Real-
world data sets are often of a higher dimension, posing a challenge for many interpretation
methods in general either due to high runtime or potentially overwhelming, incomprehen-
sible outputs (Molnar et al., 2022). Here, we illustrate how this problem can be mitigated
for GADGET via a two-step filtering process.

If we can quickly reduce the original feature set to the feature subset which is indeed
used by the model and which is interacting, GADGET’s computational complexity then only
scales with the number of learned interactions, which can be much smaller than considering
all potential interactions of the original feature space. We illustrate this argumentation by
the spam data set which contains 57 numeric features to classify 4601 e-mail samples as
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Figure 13: Global (left) and regional ALE plots after applying GADGET for feature
hour using S = Z = {hr, workingday} (middle) and using S = Z =
{hr, workingday, temp} (right) of the bikesharing data. The upper plots show
the interaction-related heterogeneity as defined in Appendix C.4.

spam or non-spam (Hopkins et al., 1999), based on simple text characteristics. We train an
RF with 500 trees, achieving a misclassification error of 4.8% measured by a 5-fold cross-
validation, indicating good performance (Hopkins et al., 1999). We apply GADGET-PD
since there are only very few correlations present in the feature space.

We suggest a two-step pre-filtering procedure for higher dimensional settings: First,
filtering features based on their overall heterogeneity of local effects via Eq. (7). Second,
filtering of the remaining features after step 1 for interacting features with PINT according
to Algorithm 2. For the first filtering step, we sort the features according to the hetero-
geneity of local effects measured by Eq. (7) with h being the mean-centered ICE values and
Ag being the entire feature space X . If the heterogeneity is very small, the shapes of the
curves are very similar. Hence, the feature does not interact with other features in the data
set and thus does not influence the prediction at all or influences the prediction only via a
main effect. Therefore, we can disregard this feature for GADGET.13

To decide on the cutoff point of the risk values to group features into one of the two
groups: heterogeneous or homogeneous local effects, we visualize the risk values calculated
by Eq. (7) in decreasing order by an elbow graph as illustrated in Figure 14. The cutoff
point is chosen rather conservatively as the last substantial drop in risk before all remaining
values are close to 0.14 Figure 15 visualizes the respective mean-centered ICE curves for
the two features closest to the cutoff point and compares them to the mean-centered ICE
curves of the features with the highest and smallest risk values according to Figure 14. This
first filtering step leaves 30 features in the group of heterogeneous local effects.

We then apply PINT as a second filtering step, with PD, s = 200 permutations, and
α = 0.05 as described in Section 5. 12 out of the 30 features are detected as significant.

13. In the case of asymmetric feature interactions, we might consider such features in Z but not in S,
however, this might require domain knowledge (see the bikesharing example in Section 8).

14. This cutoff point can also be chosen in a data-driven way, e.g., by the percentage of explained variance
similarly to principal component analysis.
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Figure 14: Risk values according to Eq. (7). Red line marks selected cutoff.
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Figure 15: Mean-centered ICE curves for the feature with the highest (left) and lowest
(right) risk values and the two features closest to the cutoff point (middle).

We apply GADGET-PD with a relative improvement of γ = 0.25, a maximum tree depth
of 5 and minimum number of observations per node of 100 as early stopping criteria.15 We
define S = Z as the 12 obtained features. We obtain 5 final regions when GADGET-PD
is applied. With R2

Tot = 0.67, we removed 67% of the interaction-related heterogeneity
within the final regions of all 12 features in S. The visualizations and interpretations of the
regional effect plots are provided in Appendix H.

Hence, by using the two filtering steps described above, we reduced the number of plots
to examine from 57 to 12. This increases comprehensibility and aids the user to focus on
the relevant features and learned relationships.

10. Conclusion and Discussion

We introduced GADGET, a new framework that partitions the feature space into inter-
pretable and distinct regions such that feature interactions of any subset of features are
minimized. GADGET can be used with any feature effect method that satisfies the local
decomposability axiom (Axiom 1). We demonstrated its use with well-known global feature

15. See Appendix D for general recommendations on specifying these hyperparameters.

35



Herbinger, Wright, Nagler, Bischl, and Casalicchio

effect methods—namely PD, ALE, and SD—and provided visualizations and estimates for
regional feature effects and interaction-related heterogeneity. Furthermore, we introduced
different measures to quantify and analyze feature interactions through the reduction of
interaction-related heterogeneity within GADGET. To define the interacting feature sub-
set, we introduced the novel PINT procedure to detect global feature interactions for any
feature effect method used within GADGET.

Our experiments showed that PINT detects the true subset of interacting features and
that preselection leads to more meaningful and interpretable results in GADGET. Addi-
tionally, feature effect methods based on conditional distributions, such as ALE, tend to
produce more stable results compared to those based on marginal distributions, especially
when features are highly correlated. Furthermore, due to a different weighting scheme in the
decomposition of Shapely values compared to the other considered feature effect methods,
higher-order terms are less likely to be detected by GADGET, especially if Shapley values
are not recalculated after each partitioning step. This approach might be computationally
expensive, which can be seen as a possible limitation. However, recent research has focused
on fast approximation techniques of Shapley values (e.g., Lundberg and Lee, 2017; Covert
and Lee, 2021; Jethani et al., 2021; Lundberg et al., 2020; Chau et al., 2022; Kolpaczki
et al., 2024) and may offer solutions to overcome this limitation.

In general, our proposed method works well if learned feature interactions are not overly
local and if observations can be grouped based on feature interactions such that local feature
effects within the groups are homogeneous, while different groups exhibit heterogeneous
feature effects. This approach helps to avoid the aggregation bias of global feature effect
methods, provides deeper insights into learned regional effects, and detects potential biases
within subgroups (as illustrated in Section 8). One of the real-world examples also showed
that the frequently made assumption of symmetric feature interactions (e.g., in Shapley
values) is not always the case (see also Masoomi et al., 2022, for research on asymmetrical
feature interactions). Thus, including domain knowledge to define the interacting feature
subset Z might sometimes be meaningful.

Finally, GADGET is—as all other interpretation methods—affected by the Rashomon
effect due to differently learned feature effects for different fitted models. Thus, the results
of GADGET when applied to different models might not be the same, but might provide
more insights when compared to each other. Analyzing the influence of the Rashomon effect
is out-of-scope in this paper but will be considered in future work. More details and related
work to this topic are provided in Appendix I.
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Appendix A. Further Details on Functional ANOVA Decomposition

As stated in Section 2.2, the functional ANOVA provides a decomposition of the prediction
function into the main and higher-order effect of all involved features (Sobol’, 1993; Stone,
1994; Hooker, 2004, 2007; Li and Rabitz, 2012):

f̂(x) = g0 +

p∑
j=1

gj(xj) +
∑
j 6=k

gjk(xj ,xk) + . . .+ g12...p(x) = g0 +

p∑
k=1

∑
W⊆{1,...,p},
|W |=k

gW (xW ),

where g0 is a constant, gj(xj) denotes the main effect of the j-th feature, gjk(xj ,xk) is the
pure two-way interaction effect between features xj and xk, and so forth. The last compo-
nent g12...p(x) always allows for an exact decomposition. We discuss here the standard and
the generalized functional ANOVA decomposition which provide a unique decomposition of
the above-stated equation based on different assumptions.

Standard Functional ANOVA Decomposition. The standard functional ANOVA decompo-
sition (Sobol’, 1993; Hooker, 2004) provides a unique solution in case of independent features
by imposing the vanishing (or strong annihilating) condition (Li and Rabitz, 2012; Rahman,
2014):

∫
gW (xW )dPXj (Xj) = 0, ∀W 6= ∅ and ∀j ∈ W . The vanishing condition implies a)

that the component functions gW (xW ) “integrate to zero w.r.t. the marginal density of each
random variable” in W ; b) the zero means property, i.e., E[gW (XW )] = 0; c) the orthogo-
nality property, i.e., E[gW (XW )gV (XV )] = 0 with ∅ 6= W ⊆ {1, . . . , p}, ∅ 6= V ⊆ {1, . . . , p}
and W 6= V ; d) that each (lower-dimensional) component function of gW itself is the zero
function. The component functions can be determined recursively by

gW (xW ) =

∫
x−W

(
f̂(x)−

∑
V⊂W

gV (xV )

)
dPX−W

(x−W ).

Generalized Functional ANOVA Decomposition. In the case of dependent features, the
vanishing condition does not work, as it does not imply all a)-d) above. Therefore, Hooker
(2007) introduced the generalized functional ANOVA decomposition with a relaxed vanish-
ing (or weak annihilating) condition:

∫
gW (xW )pX(x)dxjdx−W = 0, ∀j ∈ W 6= ∅ where

pX is the joint density of X. If this condition holds, then the hierarchical orthogonality
condition

∫
gW (xW )hV (xV )dPX(X) = 0, ∀V ⊂W is satisfied. This again leads to a unique

decomposition.
With pX(x) now being a general probability density with its support being grid-closed

and with f̂ being square-integrable, the component functions can then be uniquely deter-
mined by optimizing Eq. (14).

gW (xW ) = argmin
hW∈L2(RW ),W⊆{1,...,p}

∫  ∑
W⊆{1,...,p}

hW (xW )− f̂(x)

2

dPX(x) (14)

The estimation procedure can become computationally expensive with increasing di-
mensionality. However, being able to decompose a prediction function into its components
and hence, being able to interpret main and higher-order effects between features separately
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is often desired. Thus, models that are able to directly model these structures have been
introduced and extended. Generalized additive models (GAMs), for example, additively
decompose the prediction function into the (non-linear) main effects of each feature. Lou
et al. (2013) extended GAMs by adding relevant two-way feature interactions to the main
effect model. Watanabe et al. (2021) further extend this approach by also allowing feature
interactions of a higher order as well as monotonic constraints.

Recent research has focused on computing the decomposition more efficiently, e.g., by de-
veloping models that integrate the respective conditions directly in the optimization process
through constraints (e.g., Sun et al., 2022) or on purifying the resulting decomposition for
specific models within the modeling process (e.g., Lengerich et al., 2020; Hu et al., 2022).
However, most approaches require estimating the underlying data distribution which re-
mains challenging (Lengerich et al., 2020), with initial attempts employing adaptive kernel
methods (Sun et al., 2022). Notably, finding an appropriate decomposition is only complex
in the presence of feature interactions, otherwise, the prediction function can be uniquely
decomposed into the main effects using models like the generalized additive model (GAM).

Appendix B. Theoretical Evidence of GADGET

We provide the proofs for the theorems of Sections 4.1 to 4.5. This includes the theoretical
foundation of GADGET as well as the proofs of the applicability of the feature effect
methods PD, ALE, and SD within the GADGET algorithm by defining respective local
feature effect functions that fulfill Axiom 1. We also show in Appendix B.4 that the REPID
method which was introduced in Section 3 is a special case of the GADGET algorithm.

B.1 Proof of Theorem 2

Proof Sketch If the function f̂(x) can be decomposed as in Eq. (1) and if Axiom 1 holds for
the local feature effect function h, then the main effect of feature xj at xj is cancelled out
within the loss function in Eq. (6). Thus, the loss function measures the interaction-related
heterogeneity of feature xj at xj , since the variability of local effects in the subspace Ag are
only based on feature interactions between the j-th feature and features in −j.

Proof

Lj (Ag, xj) =
∑

i:x(i)∈Ag

(
h(xj ,x

(i)
−j)−E[h(xj , X−j)|Ag]

)2

=
∑

i:x(i)∈Ag

gj(xj) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj ,x
(i)
W )−E

[
gj(xj) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj , XW ) | Ag

]
2

=
∑

i:x(i)∈Ag

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪j(xj ,x
(i)
W )−E[gW∪j(xj , XW )|Ag]


2
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B.2 Proof of Theorem 3

Proof Sketch We show that the theoretical minimum of the objective is I(t∗, z∗) = 0 if
no feature in S interacts with any feature in −Z. We apply the functional decomposition
within the risk function Rj(At,zb , x̃j). Since we assume that no feature in S interacts with
any feature in −Z, the second and third term—which contain interactions between these two
feature subsets—are zero. Hence, the risk function is only defined by feature interactions
between features in S and Z, which are minimized by the objective in Algorithm 1.

Proof If the feature subset Z contains all features interacting with features in S, and
hence no feature in −Z interacts with any feature in S, then the risk function for feature
xj within a subspace At,zb reduces to the variance of feature interactions between feature xj
and features in Z:

Rj(At,z
b , x̃j) =

∑
k:k∈{1,...,m}
∧x(k)

j ∈A
t,z
b

∑
i:x(i)∈At,z

b

p−1∑
l=1

∑
W⊆−j,
|W |=l

gW∪j(xj ,x
(i)
W )− E[gW∪j(xj , XW )|At,z

b ]


2

We can further expand the equation above as follows:

Rj(At,z
b , x̃j) =

∑
k:k∈{1,...,m}
∧x(k)

j ∈A
t,z
b

∑
i:x(i)∈At,z

b


( |Z\j|∑

l=1

∑
Zl⊆Z\j,
|Zl|=l

gZl∪j(xj ,x
(i)
Zl

)− E[gZl∪j(xj , XZl
)|At,z

b ]

)

+

(
p−1∑
l=2

∑
W⊆−j

∧∃Zl⊆Z\j:Zl⊂W
∧∃−Zl⊆−Z\j:−Zl⊂W,

|W |=l

gW∪j(xj ,x
(i)
Zl
,x

(i)
−Zl

)− E[gW∪j(xj , XZl
, X−Zl

)|At,z
b ]︸ ︷︷ ︸

= 0

)

+

( |−Z\j|∑
l=1

∑
−Zl⊆−Z\j,
|−Zl|=l

g−Zl∪j(xj ,x
(i)
−Zl

)− E[g−Zl∪j(xj , X−Zl
)|At,z

b ]︸ ︷︷ ︸
= 0

)
2

=
∑

k:k∈{1,...,m}
∧x(k)

j ∈A
t,z
b

∑
i:x(i)∈At,z

b

|Z\j|∑
l=1

∑
Zl⊆Z\j,
|Zl|=l

gZl∪j(xj ,x
(i)
Zl

)− E[gZl∪j(xj , XZl
)|At,z

b ]


2

Since the objective is defined such that it minimizes these interactions for all j ∈ S
by splitting the feature space w.r.t. features in Z, we can split deep enough to achieve

gZl∪j(xj ,x
(i)
Zl

) = E[gZl∪j(xj , XZl
)|At,zb ] for all terms within the sums of the risk function

and for all j ∈ S. In other words, the individual interaction effect is equal to the expected
interaction effect within a subspace. Thus, the theoretical minimum is I(t∗, z∗) = 0.
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B.3 Proof of Theorem 4

Here, we define h to meet Axiom 1 from Section 4.1 for PD where ICE curves represent
local feature effects. The i-th ICE curve of feature xj can be decomposed as follows:

f̂(xj ,x
(i)
−j) = g0︸︷︷︸

constant term

+ gj(xj)︸ ︷︷ ︸
main effect of xj

+
∑
k∈−j

gk(x
(i)
k )

︸ ︷︷ ︸
main effect of all other

features in −j for observation i

+

p−1∑
k=1

∑
W⊆−j,|W |=k

gW∪{j}(xj ,x
(i)
W )

︸ ︷︷ ︸
(k + 1)-order interaction between

xj and features in −j for observation i

+

p−1∑
k=2

∑
W⊆−j,|W |=k

gW (x
(i)
W )

︸ ︷︷ ︸
k-order interaction between

features in −j for observation i

However, this decomposition of the local feature effect of xj contains not only feature
effects that depend on xj , but also other effects (e.g., i-th main effects of features in −j),
and thus Axiom 1 is not fulfilled by ICE curves.

Proof Sketch By mean-centering ICE curves, constant and feature effects independent of

xj are canceled out, and thus f̂ c(xj ,x
(i)
−j) can be decomposed into the mean-centered main

effect of xj and the i-th mean-centered interaction effect between xj and features in −j.

Proof

f̂c(xj ,x
(i)
−j) = f̂(xj ,x

(i)
−j)−E

[
f̂(Xj ,x

(i)
−j)
]

= g0 + gj(xj) +
∑
k∈−j

gk(x
(i)
k ) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪{j}(xj ,x
(i)
W ) +

p−1∑
k=2

∑
W⊆−j,
|W |=k

gW (x
(i)
W )

− g0 − E [gj(Xj)]−
∑
k∈−j

gk(x
(i)
k )− E

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪{j}(Xj ,x
(i)
W )

− p−1∑
k=2

∑
W⊆−j,
|W |=k

gW (x
(i)
W )

= gj(xj)− E [gj(Xj)] +

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪{j}(xj ,x
(i)
W )− E

p−1∑
k=1

∑
W⊆−j,
|W |=k

gW∪{j}(Xj ,x
(i)
W )


= gcj (xj)︸ ︷︷ ︸

mean-centered
main effect of xj

+

p−1∑
k=1

∑
W⊆−j,
|W |=k

gcW∪{j}(xj ,x
(i)
W )

︸ ︷︷ ︸
mean-centered interaction effect of

xj with x
(i)
−j

Thus, Axiom 1 is satisfied by mean-centered ICE curves and can be used as local feature
effect h within GADGET.
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Following from that, the mean-centered PD for feature xj at xj can be decomposed by:

fPD,cj (xj) = E[f̂ c(xj , X−j)] = gcj(xj) +

p−1∑
k=1

∑
W⊆−j,
|W |=k

E
[
gcW∪{j}(xj , XW )

]
,

which is the mean-centered main effect of feature xj and the expected mean-centered inter-
action effect with feature xj at feature value xj .

B.4 REPID as Special Case of GADGET

The objective function I(t, z) in Algorithm 1 for h = f̂ c(xj ,x
(i)
−j) is defined by the above

loss function LPDj (Ag, xj) as follows:

I(t, z) =
∑
j∈S

∑
g∈{l,r}

∑
k:k∈{1,...,m}∧x(k)

j ∈Ag

LPDj
(
Ag,x(k)

j

)

For the special case where we consider one feature of interest that we want to visualize
(S = j) and all other features as possible split features (Z = −j), the objective function of
GADGET reduces to:

I(t, z) =
∑

g∈{l,r}

m∑
k=1

LPDj
(
Ag,x(k)

j

)
,

which is the same objective used within REPID. Thus, for the special case where we choose
mean-centered ICE curves as local feature effect method and S = j and Z = −j, GADGET
is equivalent to REPID.

B.5 Proof of Theorem 5

Here, we show the fulfillment of Axiom 1 from Section 4.1 for ALE.

Proof Sketch The local feature effect method used in ALE is the partial derivative of the
prediction function at xj = xj . Thus, we define the local feature effect function h by

h(xj ,x
(i)
−j) :=

∂f̂(xj ,x
(i)
−j)

∂xj
. We can decompose h such that it only depends on main and

interaction effects of and with feature xj .

Proof

∂f̂(xj ,x
(i)
−j)

∂xj
=

∂
(
g0 +

∑p
j=1 gj(xj) +

∑
j 6=k gjk(xj ,x

(i)
k ) + . . .+ g12...p(x

(i))
)

∂xj

=
∂gj(xj)

∂xj
+

p−1∑
k=1

∑
W⊆−j,
|W |=k

∂gW∪j(xj ,x
(i)
W )

∂xj
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Taking the conditional expectation over the local feature effects (partial derivatives) at xj
yields the (conditional) expected (i.e., global) feature effect at xj :

E

[
∂f̂(Xj , X−j)

∂xj

∣∣∣∣Xj = xj

]
=
∂gj(xj)

∂xj
+

p−1∑
k=1

∑
W⊆−j,
|W |=k

E

[
∂gW∪j(Xj , XW )

∂xj

∣∣∣∣∣Xj = xj

]

B.6 Proof of Theorem 6

Here, we show the fulfillment of Axiom 1 defined in Section 4.1 for Shapley values, which
are the underlying local feature effect in SD plots.

Proof Sketch The local feature effect function in the SD plot is the Shapley value. We

define h(xj ,x
(i)
−j) := φ

(i)
j (xj) to be the Shapley value for the i-th local feature effect at a

fixed value xj , which is typically the i-th feature value of xj (i.e., xj = x
(i)
j ). In Eq. (19),

we defined φ
(i)
j (xj) according to Herren and Hahn (2022) which only depends on main and

interaction effects of xj .

Proof

φ
(i)
j (xj) =

p−1∑
k=0

1

k + 1

∑
W⊆−j:
|W |=k

E[f̂(xj , X−j)|XW = x
(i)
W ]−

∑
V⊂{W∪j}

E[f̂(X)|XV = x
(i)
V ]



= gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

gcW∪j(xj ,x
(i)
W ),

with gcW∪j(xj ,x
(i)
W ) = E[f̂(xj , X−j)|XW = x

(i)
W ]−

∑
V⊂{W∪j}E[f̂(X)|XV = x

(i)
V ].

Hence, we can decompose h such that it only depends on main effects of and interaction
effects with feature xj .

Taking the expectation over the local feature effects h = φj at xj yields the expected (i.e.,
global) feature effect of Shapley values at xj = xj .

EXW
[φj(xj)] = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

E[gcW∪j(xj , XW )]

Appendix C. Further Characteristics of Feature Effect Methods

In this section, we cover further characteristics of the different feature effect methods used
within GADGET. As illustrated for PD in Section 4.3, we also show here for ALE and SD
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that the joint feature effect (and possibly the prediction function) within the final regions
of GADGET can be approximated by the sum of univariate feature effects. Hence, the joint
feature effect can be additively decomposed into the features’ main effects within the final
regions. Furthermore, we provide an overview on estimates and visualization techniques
for the regional feature effects and interaction-related heterogeneity for the different feature
effect methods. We also explain how categorical features are handled within GADGET,
depending on the underlying feature effect method.

C.1 Decomposability of PD

According to Friedman (2001) the usage of (multivariate) PD functions as additive compo-
nents in a functional decomposition can recover the prediction function up to a constant.
Thus, the prediction function can be decomposed into an intercept g0 and the sum of mean-
centered PD functions similar to the recursive procedure of the standard functional ANOVA
decomposition:

f̂(x) = g0 +

p∑
k=1

∑
W⊆{1,...,p},
|W |=k

(
fPD,cW (xW )−

∑
V⊂W

fPD,cV (xV )

)
, (15)

with fPD,cW (xW ) = fPDW (xW )−
∫
fPDW (xW )dxW . Tan et al. (2023) note that if the prediction

function can be written as a sum of main effects, it can be exactly decomposed by an
intercept plus the sum of all mean-centered 1-dimensional PD functions.

Based on this decomposition and if Z contains all features interacting with features in
S and if GADGET is applied such that the theoretical minimum of the objective function
is reached, then according to Theorem 3, the joint mean-centered PD function fPD,cS|Ag

within

each final subspace Ag can be decomposed into the respective 1-dimensional mean-centered
PD functions:

fPD,cS|Ag
(xS) =

∑
j∈S

fPD,cj|Ag
(xj). (16)

Eq. (16) is justified by the assumption that no more interactions between features in S and
other features are present in the final regions (Friedman and Popescu, 2008).

Furthermore, if the subset−S is the subset of features that do not interact with any other
features (local feature effects are homogeneous), then according to Eq. (16) and Eq. (15),
the prediction function f̂Ag within each final subspace Ag can be decomposed into the
1-dimensional mean-centered PD functions of all p features plus a constant value g0:

f̂Ag(x) = g0 +

p∑
j=1

fPD,cj|Ag
(xj).

Thus, depending on how we choose the subsets S and Z and the extent to which we
are able to minimize the interaction-related heterogeneity of feature effects by recursively
applying Algorithm 1, we might be able to approximate the prediction function by an
additive function of main effects of all features within the final regions.

This can also be shown for the simulation example illustrated in Figure 3, where
f̂PD,c2|Ag

(x2) = 0 (the regional effect of feature x2 after the split is still 0 and a has low
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interaction-related heterogeneity). Instead, the regional effects of x1 and x3 vary compared
to the root node and strongly reduce the interaction-related heterogeneity. Since the re-
gional effects of x1 and x3 are approximately linear, we can estimate the prediction function
within each subspace by

f̂Al
(x) = g0 +

−3.04

1.05
x1 +

0.99

0.94
x3 = g0 − 2.9x1 + 1.05x3

and

f̂Ar(x) = g0 +
3.08

1.05
x1 +

0.89

0.83
x3 = g0 + 2.93x1 + 1.07x3,

which is a close approximation to the true functional relationship of the data-generating
process and thus provides a better understanding of how the features of interest influence
the prediction function compared to only considering the global PD plots.

Note that besides the decomposability property in Eq. (16), each global PD of features
in S is a weighted additive combination of the final regional PDs. Thus, each global PD
can be additively decomposed into regional PD.16

C.2 Decomposability of ALE

Figure 16 shows the effect plots when GADGET-ALE is applied to the uncorrelated simula-
tion example of Section 4.3 with S = Z = {1, 2, 3}. The grey curves before the split illustrate
the global ALE curves which typically do not show the interaction-related heterogeneity of
the underlying local effects. Hence, we added a plot that visualizes this heterogeneity by
providing the standard deviation of the underlying derivatives within each interval as a
(yellow) curve along the range of xj , similar to the idea of Goldstein et al. (2015) for deriva-
tive ICE curves. This shows that the local effects for the feature x2 are very homogeneous
across its entire range, while x1 exhibits consistently heterogeneous local effects, and x3

displays a high heterogeneity specifically around x3 = 0. GADGET chooses x3 = −0.003
as the best split point, significantly reducing the interaction-related heterogeneity among
the three features. Thus, the ALE curves in the subspaces more accurately represent the
underlying individuals.

Similar to PD plots, ALE plots include an additive recovery and can therefore be de-
composed additively into main and interaction effects, as defined in Eq. (17). Apley and
Zhu (2020) defined the W−th order ALE function by the pure W -th order (interaction)
effect similar to the functional ANOVA decomposition from Eq.(1). Furthermore, Apley
and Zhu (2020) show that the ALE decomposition has an orthogonality-like property, which
guarantees (similar to the generalized functional ANOVA) that the following decomposition
is unique (for details on estimating higher-order ALE functions, see Apley and Zhu (2020)):

f̂(x) = g0 +
∑

W⊆{1,...,p},
|W |=k

f̂ALE,cW (xW ). (17)

Furthermore, if Z includes all features interacting with those in S and GADGET achieves
the theoretical minimum of the objective function, then according to Theorem 3, the joint

16. This decomposition is not in general true for mean-centered PD curves, since the mean-centering constant
might be changed in the partitioning process.
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Figure 16: Visualization of applying GADGET with S = Z = {1, 2, 3} to derivatives of ALE
for the uncorrelated simulation example of Section 4.3 with Y = 3X11X3>0 −
3X11X3≤0 + X3 + ε with ε ∼ N(0, 0.09). The upper plots show the standard
deviation of the derivatives (yellow) and the ALE curves (grey) on the entire
feature space, while the lower plots represent the respective standard deviation
of the derivatives and regional ALE curves after partitioning the feature space
w.r.t. x3 = −0.003.

mean-centered ALE function fALE,cS|Ag
within each final subspace Ag can be decomposed into

the 1-dimensional mean-centered ALE functions of features in S. Consequently, with no
further interactions between features in S and other features in the final regions, fALE,cS|Ag

can be uniquely decomposed into the mean-centered main effects of features in S—just as
in PD functions (Apley and Zhu, 2020):

fALE,cS|Ag
(xS) =

∑
j∈S

fALE,cj|Ag
(xj) (18)

Moreover, let −S be the subset of features that do not interact with any other features.
Then, according to Eq. (18) and Eq. (15), the prediction function f̂Ag within the region Ag
can be decomposed into the 1-dimensional mean-centered ALE functions of all p features,
plus some constant value g0:

f̂Ag(x) = g0 +

p∑
j=1

fALE,cj|Ag
(xj).

We can again illustrate this decomposition in Figure 16, where x2 shows an effect of 0 with
low heterogeneity before and after the split. The feature effects of x1 and x3 show high
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heterogeneity before the split, which is almost completely minimized after the split w.r.t.
x3. Hence, the resulting regional (linear) ALE curves are representative estimates for the
underlying local effects. Therefore, we can approximate the prediction function within each
subspace by

f̂Al
(x) = g0 +

−2.85

0.99
x1 +

1.3

1.03
x3 = g0 − 2.89x1 + 1.26x3

and

f̂Ar(x) = g0 +
2.89

0.99
x1 +

0.94

0.96
x3 = g0 + 2.92x1 + 0.98x3.

Particularities of ALE Estimation. As seen for the continuous feature x3 in the simulation
example presented here, abrupt interactions (“jumps”)17 might be difficult to estimate
for models that learn smooth effects, such as NNs (used here) or SVMs—especially when
compared to models such as decision trees. Hence, depending on the model, these type of
feature interactions can lead to very high partial derivatives in a region around the “jump”
point instead of a high partial derivative at exactly the one specific “jump” point (here:
x3 = 0), thus leading to non-reducible heterogeneity (see upper right plot in Figure 16).
The standard deviation of the derivatives of x3 are very high in the region around and not
exactly at x3 = 0. This interaction-related heterogeneity should be (almost) completely
reduced when splitting w.r.t. x3 = 0. However, high values may persist if the model did
not perfectly capture this kind of interaction. To account for this issue in the estimation
and partitioning process within GADGET, we use the following procedure for continuous
features: In the two new subspaces after a split, if the derivatives of feature values close to
the split point vary at least twice as much (measured by the standard deviation) as those of
other observations within each subspace, we replace these derivatives close to the split point
with values drawn from a normally distributed random variable where mean and variance
are estimated by the derivatives of the remaining observation within each subspace.

C.3 Decomposability of SD

Recalculation Versus No Recalculation of Shapley Values. In Section 4.5, we argued that
Shapley values must be recalculated after each partitioning step to ensure that each new
subspace to receive SD effects in the final subspaces that are representative of the underlying
main effects within each subspace. Meanwhile, the unconditional expected value (i.e., the
feature interactions on the entire feature space) are minimized without recalculating the
conditional expected values.

The difference in the final feature effects within the subspaces is illustrated when com-
paring the left lower plot of Figure 4 (split without recalculation) with the respective plots
of feature x1 of Figure 17. Without recalculation, the effect of feature x1 is still regarded as
an interaction effect between x1 and x3, and hence only half of the joint interaction effect
is assigned to x1 (i.e., the respective slope within the regions is 1.5 and −1.5 instead of 3
and −3), and the other half of the joint interaction effect is assigned to x3. When Shapley
values are recalculated after the first partitioning step within each subspace, we can see in

17. With abrupt interaction, we mean interactions that lead to an abrupt change of the influence of one
feature (x1) based on the influence of another feature at a specific (“jump”) point (x3 = 0) like the
feature interaction between x1 and x3 in the here presented simulation example: Y = 3X11X3>0 −
3X11X3≤0 +X3 + ε with ε ∼ N(0, 0.09).
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Figure 17 that no more interactions are present between x1 and x3 within each subspace,
due to the split w.r.t. x3. Hence, the effect of x1 is recognized as the main effect, with
a slope closely matching the true functional relationship. Furthermore, recalculation also
reduces the heterogeneity of feature effects of x3 due to interactions with x1.

Note: If the feature we use for partitioning the feature space (z ∈ Z) coincides with the
features of interest (S), then the Shapley values should be recalculated in Algorithm 1 to
find the best split point (at least, if we choose the approach with recalculation after each
partitioning step). The reason is that if z ∈ S, we also want to reduce the interaction-related
heterogeneity within z that is not accounted for if we do not recalculate the Shapley values
within the new subspace. For example, in Figure 17, we split according to x3, which is also a
feature of interest (here: {3} ∈ S). If we do not recalculate the Shapley values for x3 within
the splitting process, then the sum of the risk of any two subspaces for x3 will always be
approximately the same as the risk of the parent node, and thus the heterogeneity reduction
for x3 (see regional plots in Figure 17) is not considered in the objective of Algorithm 1.
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Figure 17: Visualization of applying GADGET with S = Z = {1, 2, 3} to Shapley values
of the uncorrelated simulation example of Section 4.3 with Y = 3X11X3>0 −
3X11X3≤0 + X3 + ε with ε ∼ N(0, 0.09). The upper plots show the Shapley
values and the global estimated SD curve on the entire feature space, while the
lower plots represent the respective Shapley values and regional SD curves after
partitioning the feature space w.r.t. x3 = 0.007.

Decomposition. Herren and Hahn (2022) showed that the Shapley value of feature xj at
feature value xj can be decomposed according to the functional ANOVA decomposition into
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main and interaction effects18:

φ
(i)
j (xj) =

p−1∑
k=0

1

k + 1

∑
W⊆−j:
|W |=k

E[f̂(xj , X−j)|XW = x
(i)
W ]−

∑
V⊂{W∪j}

E[f̂(X)|XV = x
(i)
V ]



= gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

gcW∪j(xj ,x
(i)
W ). (19)

Thus, in the case of interventional (i.e., marginal-based) Shapley values, Eq. 19 are given
by weighted PD functions. Hence, if the global SD feature effect as defined in Eq. (11) is
considered, the same decomposition rules as defined for PD plots apply. In other words, if
Z contains all features that interact with features in S and if GADGET is applied such that
the theoretical minimum of the objective function is reached, then according to Theorem
3, the following decomposition in 1-dimensional global SD effect functions of features in S
holds:

fSDS|Ag
(xS) =

∑
j∈S

fSDj|Ag
(xj). (20)

If all features containing heterogeneous effects (feature interactions) are included in the
subset S, and the subset Z consists of all features that interact with features in S, then
according to Eq. (20) and Eq. (15), the prediction function f̂Ag within the region Ag can
be uniquely decomposed into the 1-dimensional global SD effect functions of all p features,
plus some constant value g0:

f̂Ag(x) = g0 +

p∑
j=1

fSDj|Ag
(xj).

Again, we can derive this decomposition from Figure 16 in the same way we did for PD
and ALE plots. Hence, we can approximate the prediction function within each subspace
by f̂Al

(x) = g0 − 3.02x1 + 1.12x3 and f̂Ar(x) = g0 + 2.98x1 + 1.03x3.

Equivalence of SD and Mean-Centered PD. According to Herren and Hahn (2022), the

Shapley value φ
(i)
j (xj) of the i-th observation at xj = xj can be decomposed as in Eq. (19):

φ
(i)
j (xj) =

p−1∑
k=0

1

k + 1

∑
W⊆−j:
|W |=k

E[f̂(xj , X−j)|XW = x
(i)
W ]−

∑
V⊂{W∪j}

E[f̂(X)|XV = x
(i)
V ]



= gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

gcW∪j(xj ,x
(i)
W ),

with gcW∪j(xj ,x
(i)
W ) = E[f̂(xj , X−j)|XW = x

(i)
W ] −

∑
V⊂{W∪j}E[f̂(X)|XV = x

(i)
V ]. As in

Eq. (11), the global feature effect (SD) of feature xj at xj is then defined by

fSDj (xj) = EXW
[φj ] = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

E[gcW∪j(xj , XW )]

18. Similar decompositions have been introduced in Hiabu et al. (2023) and Bordt and von Luxburg (2023).
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Hence, if Theorem 3 is satisfied, if the joint global SD effect of features in S can be
decomposed into the univariate SD effects as in Eq. (20), and if the interventional approach
for Shapley calculation is used, then all feature interactions are zero, and the global SD
effect of feature xj at xj is given by

fShapj (xj) = gcj(xj) +

p−1∑
k=1

1

k + 1

∑
W⊆−j:|W |=k

E[gcW∪j(xj , XW )]

T. 3
= gcj(xj)

= E[f̂(xj , X−j)]− E[f̂(X)],

which is equivalent to the mean-centered PD of feature xj at xj .

C.4 Overview on Estimates and Visualizations

We provide here an overview on the estimates and visualization techniques for PD, ALE,
and SD within GADGET that we introduced in Sections 4.3-4.5.

Local Effect. The local effect h for a feature xj at feature value xj used within GADGET
is estimated by

• PD: mean-centerd ICE ĥ(i) = f̂ c(xj ,x
(i)
−j)

• ALE: partial derivatives estimated by prediction differences within k-th interval ĥ(i) =

f̂(zk−1,j ,x
(i)
−j)− f̂(zk−1,j ,x

(i)
−j) where xj ∈]zk−1,j , zk,j ]

• SD: Shapley value ĥ(i) = φ̂
(i)
j

Regional Effect. The feature effect for a feature xj at feature value xj within a sub-
space/region Ag of GADGET is estimated by

• PD: mean-centered regional PD f̂PD,cj|Ag
(xj) = 1

|Ng |
∑

i∈Ng
f̂ c(xj ,x

(i)
−j) with Ng being

the index set of all i : x(i) ∈ Ag.

• ALE: regional ALE f̂ALEj|Ag
(xj) =

∑kj(xj)
k=1

1
|Ng(k)|

∑
i∈Ng(k)

[
f̂(zk,j ,x

(i)
−j)− f̂(zk−1,j ,x

(i)
−j)
]

with Ng(k) being the index set of all i : xj ∈ ]zk−1,j , zk,j ] ∧ x(i) ∈ Ag.

• SD: regional SD f̂SDj|Ag
(xj) is estimated by fitting a GAM on {x(i)

j , φ̂
(i)
j }i:x(i)∈Ag

.

The regional effect for feature xj is visualized for all xj ∈ Ag. Therefore, the respective
GAM curve is plotted in the case of SD, while we linearly interpolate between the grid-
wise/interval-wise estimates of PD/ALE to receive the regional effect curves.

Interaction-Related Heterogeneity. The interaction-related heterogeneity for a feature xj
at feature value xj within a subspace/region Ag of GADGET is estimated by the loss
function in Eq. (6), which quantifies the variance of local effects at xj and is visualized by

• PD: 95% interval for (mean-centered) regional PD
[
f̂PD,cj|Ag

(xj)±1.96·
√
L̂j

PD
(Ag, xj)

]
.
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• ALE: standard deviation of local effects

√
L̂j

ALE
(Ag, xj).

• SD: Shapley values are recalculated within each region Ag and plotted with the fitted
GAM for the regional SD effect to visualize the variation of local feature effects aka
interaction-related heterogeneity.

For each feature j ∈ S, we generate one figure showing the regional effect curves of
all final regions we obtain after applying GADGET. For PD, the regional effect curves are
accompanied with intervals showing how much interaction-related heterogeneity remains
in the underlying local effects (see, e.g., Figures 12). For ALE, a separate plot visualizes
the interaction-related heterogeneity via the standard deviation of local effects, which is
inspired by the derivative ICE plots of Goldstein et al. (2015) (see, e.g., Figure 13). For SD,
the Shapley values that were recalculated conditioned on each subspace Ag are visualized
with the regional effect curve (see, e.g., Figure 22).

Note that we can also visualize the non-centered PD (f̂PDj|Ag
) instead of the mean-centered

PD, which might provide more insights regarding interpretation. However, the interaction-
related heterogeneity must be estimated by the mean-centered ICE curves to only represent
heteroegeneity induced by feature interactions (see Appendix B.3).

C.5 Handling of Categorical Features

In this section, we will summarize the particularities of categorical features. Compared to
numeric features, we have a limited number of K values (categories). Hence, compared
to numeric features, we find split points by dividing the K categories into the two new
subspaces. Since GADGET is based on the general concept of a CART (decision tree)
algorithm (Breiman et al., 1984) that can handle categorical features, the splitting itself
follows the same approach as for a common CART algorithm. If categorical features occur
in S, the calculation of the objective function remains unchanged, and the handling of
categorical features depends only on the underlying feature effect method:

PD Plot. Compared to numeric features, the grid points for categorical features are limited
to the number of categories. Otherwise, the calculation of the loss and the risk (see, Eq. 9
and Eq. 7) works the same as for numeric features.19

ALE Plot. ALE builds intervals based on quantiles for numeric features to calculate pre-
diction differences between neighboring interval borders for all observations falling within
this interval. For binary features, the authors solve this as follows: for all observations
falling in each of the categories, the prediction difference when changing it to the other
category is calculated. For more categories, they suggest a sorting algorithm.20 Hence, we
still receive the needed derivatives for GADGET for each category to calculate the loss and
risk function for GADGET.

SD Plot. Compared to numeric features, the x-axis of the SD plot is a grid of size K. For
each of these grid points (categories), the Shapley values for the observations belonging to

19. Since we calculate the loss point-wise at each grid point and sum it up over all grid points, the order of
the category does not make a difference for the objective of GADGET.

20. For more information, we refer to Apley and Zhu (2020).
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the specific category are calculated. Hence, instead of a spline to quantify the expected
value in Eq. (11), we use the arithmetic mean within each category (similar to PD plots)
and, thus, sum up the variance of Shapley values for each category over all categories (within
the respective subspace).

In general, if we apply GADGET and split w.r.t. a categorical feature such that only one
category is present within a subspace (e.g., we split the feature sex such that all individuals
are male in one resulting subspace), then the interaction-related heterogeneity vanishes to
zero since only an additive shift for the feature sex is left in this subspace.

Note: If a categorical feature xj is not only considered for splitting (j ∈ Z) but is also
a feature of interest (j ∈ S), the different splitting possibilities of categories of xj prompt
recalculation for ALE, since derivatives are only calculated for pre-sorted neighboring cate-
gories. In our implementations, we only split w.r.t. the pre-sorted categories and considered
them as integer values to reduce the computational burden of the calculations.

Appendix D. Definition and Specification of Stop Criteria for GADGET

The question of how many partitioning steps should be performed depends generally on
the underlying research question. If the user is more interested in reducing the interaction-
related heterogeneity as much as possible, they might split rather deeply, depending on the
complexity of interactions learned by the model. However, this might lead to many regions
that are more challenging to interpret. If the user is more interested in a small number
of regions, they might prefer a shallow tree, thus reducing only the heterogeneity of the
features that interact the most.

D.1 Definition of Stop Criteria

We propose the following stopping criteria to control the number of partitioning steps in
GADGET: First, we can use common decision tree hyperparameters such as the tree depth
or the minimum number of observations per leaf node. Alternatively, an early stop mech-
anism can be applied based on the interaction-related heterogeneity reduction. According
to our proposed split-wise measure, we further split only if the relative improvement is
at least γ ∈ [0, 1] times the total relative heterogeneity reduction of the previous split:

γ ×
∑

j∈S(Rj(AP ,x̃j))−I(t̂,ẑ)∑
j∈S(Rj(X ,x̃j)) . Another option is to stop splitting once a pre-defined total re-

duction of heterogeneity (R2
Tot) is achieved. Generally, higher γ values and lower thresholds

for R2
Tot result in fewer partitioning steps, and vice versa.

D.2 Recommendations to Specify Stop Criteria

GADGET performs binary splits, making it easier to minimize abrupt interactions (i.e.,
interactions where categorical or discretized features are involved, see also Section C.2).
Conversely, minimizing smooth interactions (i.e., interactions between continuous features)
may require multiple splits. We recommend a maximum tree depth between 3 and 6 to
maintain some degree of interpretability and setting γ (the minimum relative risk reduction
for a split) between 0.1 and 0.25 to further limit the number of terminal regions. For abrupt
interactions (with few interactions), the risk reduction for the first split is usually quite high.
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Therefore, to find further feature interactions, we recommend to set γ towards the lower
end of the recommended range (e.g., 0.1 to 0.2). In the case of smooth interactions, the
risk reduction for the first split is usually rather low compared to subgroup-specific feature
interactions. Therefore, setting γ to a small value leads to a vanishing improvement which
prevents the desired stop mechanism. However, the value should also not be too high to
prevent the first split. In summary, a tree depth of 3 to 6 and γ between 0.1 and 0.25
worked well in our examples. To precisely quantify feature interactions or to completely
minimize them, more splits and a smaller γ may be needed, possibly using R2

Tot as a stopping
criterion.

Appendix E. Theoretical Evidence of PINT

Here, we provide the proofs to the Theorems defined in Section 5.

E.1 Proof of Theorem 7

Proof Sketch In this proof we show that the type I error P(Rj(f̂Dn , x̃j ,X ) > z1−α) of the

test is constrained by α+ε with ε = maxt>0[P(Rj(f̂Dn , x̃j ,X ) > t)−P(Rj(f̂DΠ
n
, x̃j ,X ) > t)].

Proof The type I error probability is

P

(
Rj(f̂Dn , x̃j ,X ) > z1−α

)
= P

(
Rj(f̂DΠ

n
, x̃j ,X ) > z1−α

)
+

[
P

(
Rj(f̂Dn , x̃j ,X ) > z1−α

)
− P

(
Rj(f̂DΠ

n
, x̃j ,X ) > z1−α

)]
≤ P

(
Rj(f̂DΠ

n
, x̃j ,X ) > z1−α

)
+ max

t>0

[
P

(
Rj(f̂Dn , x̃j ,X ) > t

)
− P

(
Rj(f̂DΠ

n
, x̃j ,X ) > t

)]
≤ α+ ε,

where the last step follows from the definition of z1−α and independence of permutations.

E.2 Proof of Theorem 8

Proof Sketch Here, we show that the type II error of the PINT procedure strives towards 0.
Recall that a risk of 0 means that no interactions are learned by the model. If Condition
(12) holds—i.e., the risk under the permuted data set is less than every ε > 0 with high
probability—the type II error of the PINT procedure strives towards 0. The last step fol-
lows from the assumption that feature interactions have been learned by the model fitted
on the original data set. It follows that the power of the test strives towards 1.

Proof Condition (12) implies

P

(
Rj(f̂DΠ

n
, x̃j ,X ) > ε

)
→ 0
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for every ε > c > 0 and thus P(z1−α ≥ c)→ 0. The type II error probability is

P

(
Rj(f̂Dn , x̃j ,X ) ≤ z1−α

)
≤ P

(
Rj(f̂Dn , x̃j ,X ) ≤ z1−α, z1−α ≥ c

)
+ P

(
Rj(f̂Dn , x̃j ,X ) ≤ z1−α, z1−α < c

)
≤ P

(
z1−α ≥ c

)
+ P

(
Rj(f̂Dn , x̃j ,X ) < c

)
→ 0.

Appendix F. Further Empirical Validation of PINT

F.1 Example for Failure of PINT

Note that if the condition (12) in Section 5.2 is not fulfilled, the type I error is not con-
strained by the significance level α. This can be illustrated with the following example: Let
X1, X2, X4 ∼ U(−1, 1) and X3 = exp(X2) + δ with δ ∼ N(0, 0.01). We draw 500 observa-
tions and define the true functional relationship by y = βx1 exp(x2) + ε with ε ∼ N(0, 1)
and β ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3}. We again fit an SVM with
RBF kernel and apply PINT using the same hyperparameter settings as before. We repeat
the experiment 1000 times. In this setting, x3 almost perfectly reflects the influence of
exp(x2) and therefore it is possible to learn the simpler linear βx1x3 instead of the true
more complex non-linear interaction effect. Hence, it is very likely that f̂(x) does not ac-
curately approximate f(x) since f̂(x) most likely learns an interaction between x1 and the
non-influential feature (in f(x)) x3. Hence, this can lead to a higher type I error for x3

than α as illustrated in Figure 18.

F.2 Further Empirical Validation of PINT

Here, we provide further evaluations and empirical validation of using PINT to select truly
interacting features. The experiments in this section are based on the simulation study of
Section 6.3 where we analyzed the robustness of PINT concerning potential spurious inter-
actions and compared it to the H-Statistic. We now analyze in more detail the sensitivity of
PINT for the three feature effect methods considering varying correlations of the features,
a linear and non-linear true underlying function, differing effect sizes of the interaction ef-
fect and how the noise term of the true underlying function influences the rejection rate of
PINT. For all experiments, we consider drawing 500 observations of the considered random
variables and an SVM based on an RBF kernel with the hyperparameters Section 6.3. More
specifically we consider the following combination of different simulation settings:

Linear and non-linear functional relationships. We consider two different true underlying
functions. One with linear feature effects (as in Section 6.3) and one more complex one
with non-linear effects. Both of them include feature interactions between x1 and x2 and
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Figure 18: Rejection rates of PINT for 1000 repetitions for all three feature effect methods
and for varying interaction effect sizes β. For β = 0, all rejection rates correspond
to type I errors. For β > 0, the rejection rates of x1 and x2 correspond to the
power of the test, those of x3 and x4 to type I errors. The red dashed line in
the left plot represents the significance level of α = 0.05.

potential spurious interactions. We argue that the linear setting that we considered so far
is rather simple leading to a model fit that is (almost) perfect without too much model
uncertainty. Therefore, considering a more complex setting might lead to a worse and less
certain model fit.

• Linear true functional relationship: y = flin(x)+εk with flin(x) = x1+x2+x3−βx1x2

and k ∈ {1, 2}.

• Non-linear true functional relationship: y = fnlin(x) + εk with fnlin(x) = x2
1 + x3

2 +
exp(x3)− βx1x2 + εk with k ∈ {1, 2}.

Correlations and spurious interactions. We consider four features X1, X2, X4 ∼ U(−1, 1)
and X3 = X2 + δ with δ ∼ N(0, 0.09) for the setting defined in Section 6.3 with a high
linear correlation of ρ23 ≈ 0.9 between x3 and x2. This will very likely lead to a spurious
interaction between x1 and x3 as shown in the analysis of the mentioned section. To
investigate how sensitive PINT is concerning this phenomenon, we consider a second smaller
correlation which reduces the risk of spurious interactions. Therefore, we take into account
a medium correlation by defining X3 as a combination of X2 and a uniformly distributed
variable (similarly to Section 6.1): X3 = 0.37X2 +0.63u with u ∼ U(−1, 1) which leads to a
linear correlation of ρ12 ≈ 0.5. As a plausibility check and baseline, we consider all features
to be independent and thus X3 ∼ U(−1, 1).

Noise term. Regarding the noise term εk we take into consideration two alternatives: no
noise term, i.e., ε1 = 0. This is the setting we used in Section 6.3. Therefore, the noise did
not influence the modeling approach and thus did also not influence the interaction detection
with PINT. To analyze the influence of a noise term on PINT, we consider one that accounts
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for ten percent of the standard deviation of f(X) (similar to the other simulations in this
paper), i.e., ε2 ∼ N(0, 0.01 · var(f(X))).

Interaction effect size. Both functional relationships are also defined for different coefficient
values β for the interaction terms. In Section 6.3 we chose β = 2. The analysis showed
that the interaction can be detected very well. Hence, we take into consideration further
smaller values for β to see how it affects the power of the test. Therefore, we consider
β ∈ {0.75, 1, 1.25, 1.5, 1.75, 2}.

For each combination of the described settings, we perform 1000 repetitions. The rejec-
tion rates over these repetitions for the different settings of the linear functional relationship
are shown in Figure 19. It shows that when SD is used within PINT for the uncorrelated
setting the type I and type II error are always 0 independent of the interaction effect size.
This can be similarly observed for PD, however, for ALE the interaction is not detected
for β = 0.75. Also, the other settings show a higher power for PD and SD. A reason for
this might be the definition of the intervals for ALE since the results for ALE are more
sensitive concerning the size of the intervals than PD for the number of grid points. It is
also observable that the power of the test is in most cases slightly higher for the settings
without noise than with noise, however, the differences are rather small. In general, the
interaction effect is harder to detect for smaller effect sizes if the correlation increases. The
type I error does never exceed the significance level α = 0.05, also not for x3 which might
have been considered in a spurious interaction with x1 for the medium and high correlation
settings.

For the non-linear setting (see Figure 20), we can observe type I and II errors of 0
for the settings without and with medium correlations if PD or SD is used within PINT
for all interaction effect sizes. Compared to the linear setting, a type I error that exceeds
the significance level is observable for the high correlation settings. The type I error is
therefore particularly high for increasing effect sizes when PD is considered. Learning non-
linear effects leads to more oscillating behavior when extrapolating into unseen regions of
the feature space. As discussed and illustrated in Section 4.6, this problem is particularly
severe for PD plots leading to high heterogeneity and, therefore, could also affect PINT.

Appendix G. GADGET-SD Results for COMPAS

COMPAS Data Set. In addition to the results of GADGET based on PD presented in
Section 8, we also applied GADGET with the same settings based on SD.

The effect plots for the four resulting regions are shown in Figures 21 and 22. GADGET
based on SD finds the same first split as for PD. The second split is also executed according
to the number of prior crimes, but the split value is lower than for PD (at 2.5 instead of
4.5). The total interaction-related heterogeneity reduction (R2

Tot = 0.87) is also similar.
Note that Shapley values explain the difference between the actual and average prediction.
Hence, SD plots are centered, while Figure 12 shows the uncentered regional PD plots.

Appendix H. Further Details on Higher Dimensional Settings

In Section 9, we consider the spam data set as an example of a high-dimensional data set.
The data set contains 4601 samples of e-mails of 57 numeric features and a binary target
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Figure 19: Rejection rates across all runs for the linear functional relationship and for each
feature effect method shown in the rows. The columns are defined by the cor-
relation between x2 and x3 and if a noise term is included or not. For each of
these settings varying interaction effect sizes between 0.75 and 2 are considered.

(i.e., spam (1) or non-spam (0)). The features capitalLong, capitalAve, and capitalTotal
reflect the length of the longest, the average length and the total length of uninterrupted
sequences of capital letters in an e-mail, respectively. The remaining 48 features refer to
the percentage of the respective word or character appearing within an e-mail.

While we explained in Section 9 the filtering procedure to handle high-dimensional data,
we show here the results after applying the filtering steps and GADGET-PD on the spam
data set. Therefore, we apply GADGET on the 12 remaining features after the filtering
procedure described in Section 9. Figure 23 shows the regional effects plots for 3 of the
12 features. The first split feature chosen by GADGET is charDollar which indicates the
percentage of the dollar sign within an e-mail. A high number is an indicator for spam
e-mails. This region represented by the yellow curves is highly influenced by the number
of occurrences of the word edu. The combination of a lower number of dollar signs with
small values for capitalLong, decreases the probability of being classified as spam to most
likely being classified as non-spam. However, in combination with a higher frequency of the
words remove or credit the classification as spam becomes more likely. For a small number
of dollar signs but higher values of capitalLong, also the frequencies of the word remove and
of charExclamation are used to define the remaining three regions in Figure 23.
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Figure 20: Rejection rates across all runs for the non-linear functional relationship and for
each feature effect method shown in the rows. The columns are defined by the
correlation between x2 and x3 and if a noise term is included or not. For each of
these settings varying interaction effect sizes between 0.75 and 2 are considered.
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Figure 21: Global SD curves and Shapley values of considered features of the COMPAS
application example.

Appendix I. Rashomon Effect

The Rashomon effect in ML states that there are often various models of a function class
with almost equally good performance that are constructed differently (Breiman, 2001;
Semenova et al., 2022; Molnar et al., 2022). This set of models is called the Rashomon set.
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Figure 22: Regional SD plots for considered features of the COMPAS application after
applying GADGET. Shapley values within each region are recalculated and vi-
sualize the interaction-related heterogeneity within each region.
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Figure 23: Regional PD plots for remove, credit and edu of the spam data set after applying
GADGET when only interacting features are selected for S and Z according
to the pre-filtering steps. The grey areas indicate the 95% interaction-related
heterogeneity interval as defined in Appendix C.4.

Since these models are constructed differently, they might identify different patterns in the
data and rely on different features, which can lead to different results in the interpretation
methods. For example, Müller et al. (2023) evaluate empirically, how the Rashomon effect
influences different feature attribution methods. Their findings provide empirical support
for both the disagreement problem of different interpretation methods and the sensitivity of
these methods concerning their hyperparameter configurations. Hence, the Rashomon effect
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can also appear on the level of the interpretation method. A common example is seen in
counterfactual explanations, where different counterfactuals may provide the same desired
change in the outcome but based on different changes in the feature space. To address
this issue, Dandl et al. (2020) recommended to consider multiple counterfactuals instead
of only one counterfactual. Furthermore, the decomposition of the prediction function
of a fitted model f̂ into effects of varying orders is typically not unique. As a result,
many different exact decompositions are possible and can lead to differing interpretations
(Lengerich et al., 2020). One possibility to obtain a unique decomposition is the functional
ANOVA decomposition. However, this decomposition might still differ across other models,
as it is specifically calculated for one particular fitted model. Admittedly, the Rashomon
effect remains an important unsolved problem in interpretable ML and a further discussion
is outside of the scope of this work, but we refer the reader to Fisher et al. (2019) or Donnelly
et al. (2023) for potential approaches to deal with it.

Appendix J. Marginal- and Conditional-based Feature Effect Methods

Feature effect methods can be grouped into approaches based on marginal or conditional
distributions. While the PD plot is exemplary for the former and the M plot as well as the
ALE plot are based on the latter, Shapley values can be defined either way.

While marginal-based approaches are usually simple to define and efficiently computable,
they are known to extrapolate into unseen regions of the feature space when features are
highly correlated, which might lead to misleading interpretations as illustrated in Section
4.6 for PD plots (Hooker, 2007; Molnar et al., 2022). Conditional-based approaches solve
the extrapolation problem by considering the true underlying data distribution (Aas et al.,
2021). However, they require estimating the conditional data distribution, which is chal-
lenging, particularly in high-dimensional settings. The estimation influences the quality
of the derived interpretation (Aas et al., 2021; Sundararajan and Najmi, 2020; Janzing
et al., 2020). While both approaches come with different merits and weaknesses, the de-
rived interpretation often differs as well. For example, PD plots visualize the influence of
a feature of interest on the prediction function irrespective of the underlying feature corre-
lations. In contrast, the M plot accounts for the correlation structure and thus also takes
into account the influence of the features correlated with the feature of interest. Therefore,
the two approaches answer different questions: Marginal-based approaches primarily offer
insights into the inner workings of the ML model without explicitly considering the under-
lying data correlations, making them particularly useful for model audit and debugging.
Conditional-based approaches are used to derive interpretations that reflect the given data
distribution and thus are preferable for questions related to model inference (Chen et al.,
2020; Freiesleben et al., 2024; Watson, 2022).

To conclude, Chen et al. (2020) argue that the marginal-based approach is not generally
wrong and can be useful if we want to derive explanations that are true to the model, while
the conditional-based approach should be used when we want to extract interpretations
that are true to the data. The framework that we introduce in this paper works with both
marginal-based (e.g., PD plots as illustrated in Section 4.3) as well as conditional-based
(e.g., ALE as shown in Section 4.4) approaches. Hence, the user needs to decide on a
suitable feature effect method depending on their desired interpretation.
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