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Abstract
A novel fully distributed joint kernel learning and clustering framework is derived which is capable
of determining clustering configurations in an unsupervised manner. Semidefinite programming is
utilized to quantify closeness of candidate kernel similarity matrices to a block diagonal structure
of certain rank. Utilizing difference of convex functions and block coordinate descent a recursive
algorithm is derived that determines jointly a proper kernel similarity matrix and clustering factors.
Reformulating the involved semidefinite programs in a separable way we build on the alternating
direction method of multipliers, to construct a fully distributed scheme that enables joint kernel
learning and clustering in ad hoc networks via collaborating neighboring agents. Convergence
claims establish that the proposed algorithmic framework returns bounded similarity kernel updates
promoting a block diagonal structure. Detailed numerical examples utilizing both synthetic and real
data demonstrate that the distributed novel approach can achieve clustering performance that gets
close or even exceeds the one achieved by existing centralized alternatives.
Keywords: Distributed learning, kernels, clustering, unsupervised learning, optimization

1. Introduction

Clustering data vectors into different groups sharing similar properties has been extensively studied
as an unsupervised learning technique when data labels are not available. An essential aspect in
data clustering is picking a proper similarity metric. For instance in K-Means (Li and Guo, 2018;
Lloyd, 1982; Oliva et al., 2013), a workhorse in data clustering, each different cluster is represented
by a centroid point and the data are assigned to the cluster whose centroid is closest with respect
to a pre-selected distance metric. Different variants of matrix factorization have also been used to
explore the clustering problem given a known data similarity matrix (Cai et al., 2010; Huang et al.,
2013; Trigeorgis et al., 2016; Wang and Zhang, 2012).

To deal with non-linear settings kernel-based methods have been proposed that are capable of
unveiling data vector correlations in higher-dimensional spaces. Kernel target alignment (Cortes
et al., 2012; Cristianini et al., 2001; Müller et al., 2018) are such popular supervised approaches
wherein the suitable kernel matrices are identified by finding the alignment or the normalized inner
product between the kernel correlation matrices and the correlation of the class labels. Other kernel
learning techniques for classification and regression problems rely on convex optimization (Ghari
and Shen, 2020; Hoi et al., 2013; Jin et al., 2010; Motai, 2014), though they are still supervised or
semi-supervised in nature.

Unsupervised approaches have been recently proposed to jointly construct a proper kernel sim-
ilarity matrix while performing data clustering. The unsupervised approach in Ren and Sun (2020)
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relies on building proper graph similarity matrices to model correlations among the data vectors via
an affine weight strategy while preserving the data structure via proper constraints. Further, relying
on tensor factorization the method in (Ren et al., 2020) offers a more computationally expensive
option while improving clustering in a variety of different datasets. Another unsupervised joint
kernel learning and clustering approach in (Malhotra and Schizas, 2020) utilizes a sparsity regu-
larized non-negative matrix factorization along with eigenvalue maximization to find proper kernel
covariance matrices that facilitate data clustering.

All aforementioned approaches are centralized in the sense of requiring a central processor to
operate or multiple processing units in a tree formation (master-slave). Therefore they are not op-
erational in ad hoc architectures involving multiple sensing/processing agents/units. For instance,
distributed sensing units could correspond to accelerometers (e.g., smartphones) mounted on hu-
mans that engage in different activities, e.g., running, walking, jumping (Micucci et al., 2017) and
so on based on the situation they are facing. Clustering the sensing units based on the activity they
are monitoring is essential in facilitating situational awareness in large gatherings or tactical appli-
cations assessing how different groups of people behave. Distributed clustering in such situations is
desirable to enable scaling as the number of agents increases.

Distributed data clustering techniques relying on splitting centralized K-means in localized pro-
cessing tasks have been proposed (Chen et al., 2016; Oliva et al., 2013; Qin et al., 2016; Tsapanos
et al., 2015) with some of them requiring a fusion center (master processing unit) (Chen et al., 2016;
Li and Guo, 2018; Tsapanos et al., 2015). These approaches, as the centralized K-means approach
rely on a preset data similarity metric which can considerably limit the clustering performance. On
the other end, existing distributed kernel learning techniques rely on distributed optimization tech-
niques to derive localized learning tasks and perform supervised learning tasks, i.e., regression and
classification, (Bouboulis et al., 2017; Hong and Chae, 2021; Shin et al., 2018).

The main goal of this work is to derive a fully distributed algorithmic framework for joint ker-
nel learning and clustering in an unsupervised manner. Existing approaches in clustering and kernel
learning as mentioned earlier are centralized or rely on master-slave multiprocessing architectures
(Malhotra and Schizas, 2020; Ren and Sun, 2020; Ren et al., 2020). Such approaches are not ap-
plicable in ad hoc multi-agent architectures where there is no central processing unit. Building on
semidefinite programming (SDP) (Boyd and Vandenberghe, 2004), difference of convex functions
(Tao and An, 1997) and block coordinate descent strategies (Tseng, 2001) we first obtain a central-
ized joint kernel learning and clustering formulation. Different from existing approaches, the novel
minimization formulation is amenable to a separable reformulation which will enable the derivation
of local learning tasks across the sensing units. Despite the fact that a reformulation is needed to
obtain a separable non-equivalent formulation from the centralized one, due to single-hop connec-
tivity in the network of sensing units, it is established that the centralized and distributed optimal
solutions share block diagonal structure and equal rank which is crucial for the clustering task. The
proposed distributed and centralized formulations are not equivalent from an optimization point of
view, but their optimal solutions share a block diagonal structure.

Specifically, the alternating direction method of multipliers (ADMM) is employed to split the
involved SDP programs in a set of local SDP tasks that can be tackled using local information at
every sensing agent. A novel combination of ADMM, SDP programming and block coordinate
descent is employed to devise a fully distributed algorithm that facilitates proper kernel learning
and effective unsupervised clustering. Our work contributions are summarized as follows:

2
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1. Derivation of a SDP-based framework quantifying closeness of candidate kernel mappings to
a block diagonal structure that facilitates joint kernel learning and factorization-based clus-
tering.

2. A novel minimization formulation that combines block coordinate descent and semidefinite
programming that results a novel centralized joint kernel learning and clustering approach.

3. Derivation of pertinent localized SDP problems, where the alternating direction method of
multipliers is being employed in the separable kernel learning and clustering formulation that
leads to a fully distributed kernel learning and clustering approach that can be utilized in
ad hoc multi-agent networks. It turns out that the communication costs among neighboring
agents are linear in terms of the number of clusters, the size of the neighborhood and the
kernel dictionary.

4. Convergence of the novel framework is established showing that the kernel iterates move
towards a block diagonal structure facilitating data clustering.

5. Extensive numerical tests demonstrate the clustering accuracy advantage of the novel frame-
work over existing centralized alternatives.

The problem setting and preliminary concepts are provided in Sec. 2, while explaining the idea
of data clustering via a proper block diagonal kernel covariance matrix construction using an ad hoc
multi-agent network. In Sec. 3 the novel SDP-based kernel learning and clustering formulation is
derived, while a centralized algorithm is provided using block coordinate descent and difference of
convex functions, with convergence to a finite bound being established. Sec. 4 builds a separable
SDP-based formulation which is further tackled relying on ADMM that results localized kernel
learning and clustering tasks that can be addressed locally at each agent which via collaboration with
neighboring agents can tackle the global minimization formulation. Convergence analysis advocates
that the novel algorithm learns a kernel data similarity matrix approaching a block diagonal structure
that has the potential to reach the clustering performance of its centralized counterpart. Extensive
numerical tests are performed in Sec. 5 for the novel algorithm along with state-of-the-art clustering
methods using synthetic and real datasets and evaluating clustering accuracy, the normalized mutual
information (NMI) and purity.

2. Problem Setting and Preliminaries

Consider P agents spatially scattered across a field, with the ith unit acquiring signal measurements
xi(t) across a time horizon of duration t ∈ [0, T − 1], i.e.,

xi(t) = fq(i)(sq(i)(t)) + wi(t), , i = 1, . . . , P (1)

where fq(i)(·) represents a mapping between an underlying source sq(i)(t) and the measurement
xi(t), while wi(t) denotes spatially uncorrelated sensing noise.
Sensing assumption: It is assumed that among the Q underlying sources, each unit observes one
of them, i.e., unit i observes source q(i) where q(i) ∈ {1, . . . , Q} is an underlying unknown map-
ping matching sources with observations. Each of the vectors xi contains information about a
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specific source namely q(i) ∈ {1, . . . , Q} (thus belongs to a specific cluster). Further, the map-
ping function fq(·) is not available and nonlinear. Each agent groups its measurements in vector
xi := [xi(0), . . . , xi(T − 1)]T with T denoting the number of samples.

For the example given in the Introduction where different sensing units monitor the physical
activity a person is engaging to (running, walking and so on), it is reasonable to assume that there
is one dominant activity that will be measured from the accelerometers. Similarly, in hyperspectral
imaging data (Sal, 2021) (tested in Numerical Simulations) the majority of pixels acquire infor-
mation about multiple materials but only one has a dominant effect in the pixel value. Thus, the
assumption that each sensing unit detects one source can hold approximately in several scenaria.

The sensing noise corresponds to thermal noise that is caused locally at each sensing unit by
the sensing electronics equipment and it is not correlated with the source signals. Sensing units
are different and placed in different spatial locations. Therefore, the thermal sensing noise caused
by the individual sensing electronics at each unit can safely be assumed to be uncorrelated across
different units see e.g., (Peng et al., 2020).

For simplicity in exposition, we consider temporarily an affine mapping fq(s) = αq · s+βq and
uncorrelated sources {sq(t)}Qq=1, then the data covariance matrix Σx := E[(Xt − X̄)(Xt − X̄)T ],
with Xt := [x1(t), . . . , xP (t)]T and X̄ := E[Xt] has entries (E denotes the expectation operator)

[Σx]i,i′ = E[(xi(t)− x̄i)(xi′(t)− x̄i′)] = αqαq′δ(q − q′)σ2
sq + σ2

wδ(i− i′), (2)

where sq(t) and sq′(t) denote the source signals sensed in measurements xi(t) and xi′(t) on sensing
units i and i′, σ2

w and σ2
sq refer to the variances ofwi(t) and sq(t) respectively, while δ(q−q′) equals

1 if q = q′ and zero otherwise. Notice that if agents i and i′ sense correlated source signals then the
corresponding covariance entry in (2) will be nonzero, otherwise it will be equal to zero. It can be
concluded that sensing units observing the same source signal sq(t) are correlated, hence by apply-
ing proper row and column exchanges to the covariance matrix Σx we can transform it into a block
diagonal matrix having Q diagonal blocks, with each block clustering together the sensing units
observing the same source signal. It should be emphasized that affine mappings are not required by
the novel framework; they just serve as an illustrative example to show the importance of a block
diagonal structure and how diagonal blocks can be mapped to different groups of measurements
with each group sensing the same source.

Clearly, the block diagonal structure of the data covariance matrix Σx can be used to cluster the
sensed data according to their source content by using the indices of the diagonal blocks. Fig. 1 (left,
lower center) indicate how measurements observing the same source, translate to a diagonal block in
a properly defined similarity matrix (in the linear case Kx = Σx). Each of the covariance diagonal
blocks, can be considered to be of rank one since sensed data from the same source-group (diagonal
block) depend on the same source signal, while assuming that sensing noise has sufficiently low
variance.
Noise assumption: Essentially the noise variance σ2

w should be much smaller than the variances
σ2
sq associated with source sq(t) for q = 1, . . . , Q. This way each of the diagonal blocks is mainly

affected by the source signal, while the noise contribution is negligible, resulting diagonal blocks of
rank approximately equal to 1. There are several noise reduction techniques in signal processing,
including adaptive filtering and Bayesian inference, that can effectively suppress noise variance and
enhance the signal components of the sense data, see e.g., Vaseghi (2008). Thus, in the presence
of Q sources and an affine model in (1), the covariance matrix will contain Q, rank-1 diagonal
blocks. A block diagonal similarity matrix will further facilitate data clustering by pertinent sparse
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factorization of Kx, where the nonzero entries of the recovered sparse factors M,N [colored entries
in Fig. 1 (right)] will reveal the location of the diagonal blocks and therefore the indices of units
sensing the same source.

When the unknown mapping functions fq(·) are non-linear in (1) and the source signals are not
uncorrelated, then the resulting covariance matrix in (2) may not necessarily give rise to a block
diagonal structure. To bypass these challenges, we will build on kernel-based data transformations
to construct a pertinent kernel covariance matrix Kx which is as close as possible to i) having a
block diagonal structure; and ii) having rank Q. Note that the covariance matrix in Σx in (2) is a
special case of a kernel covariance matrix when using linear kernels, i.e., Kx = Σx. Depending on
the sensed data, different kernel functions should be used to give rise to a block diagonal structure
of rank Q that will facilitate data clustering. We will construct an optimization framework that
determines a proper kernel similarity matrix, via an optimal convex combination of kernels from a
kernel dictionary of available mappingsD := {A1

x, . . . ,A
B
x } that lead to a desirable block diagonal

kernel covariance structure [see Fig. 1 (upper center)]. The dictionary kernel matrices Ab
x, are

assumed to be pre-specified, and they can be evaluated from the available data using e.g., Gaussian,
polynomial and other well-established kernel mappings (Ren and Sun, 2020; Ren et al., 2020).

2.1 Spatially distributed sensing agents

The sensing agents are spatially scattered in the observed field. A communication graph G is utilized
to model the spatial configuration and connectivity of the units. Each agent corresponds to a graph
node in set V := {1, . . . , P}, while the graph edges in set E correspond to active communication
links. Connectivity in the graph is summarized by the adjacency matrix A whose (i, j)th entry is
equal to 1 if units i and j communicate, otherwise is zero. The adjacency matrix is symmetric, while
Nj is the single-hop neighborhood of unit j, i.e., the set of units which communicate directly (single-
hop) with unit j. An example with Q = 3 and P = 10 is provided in Fig. 1. The communication

Figure 1: Joint kernel learning and clustering framework.

graph is assumed to be connected, thus there is a communication path (possibly having multiple
edges) from one node to any other node.
Connectivity assumption: Further, it is assumed that there is at least one sensing unit j whose
single-hop neighborhood Nj consists of units with each of these units observing one source, but
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when considering the set of these neighborhood observations {xj′}j′∈Nj they cover all theQ sources
present in the field., i.e., the measurements {xi(t)}i∈Nj in neighborhoodNj cover all source signals
{sq(t)}Qq=1; we denote this set of units as SQ. An example is provided in Fig. 1 (left) where
SQ contains unit 3 sensing s1, though note that unit 3 has single-hop neighboring units 4 and 10
sensing sources s2 and s3, as well as units 1 and 2 sensing source s1. Thus, the set of observations
x3, x1, x2, x10 and x4 cover all Q = 3 sources present. The latter assumption can be achieved
using certain units that have transceivers with longer communication range to ensure these units can
receive information for a number of neighboring units whose measurements contain information
about all Q sources. The objective is to allow each unit cluster their measurements according to
their unknown source content by exchanging information only with their single-hop neighboring
units in set Nj . As we will explain in detail later (Sec. 4.3), satisfying this assumption does not
require knowing the data clustering configuration.

3. SDP Kernel Learning and Clustering

The idea is to construct, using the available data, a kernel similarity matrix Kx that is block diagonal
with a rank equal to Q, the number of underlying sources of interest. The diagonal blocks once
identified will facilitate identifying the data clusters via proper sparse matrix factorization. A block
diagonal matrix Kx, with Q diagonal blocks of rank 1 can be factorized as Kx = MNT , where the
P × Q matrix factors M,N have at most one nonzero entry across each of their rows [see Fig. 1
(right)]. A pertinent distance measure quantifying how far Kx is from a block diagonal structure is
the following (Malhotra and Schizas, 2020)

F (Kx) = ‖Kx −MNT ‖2F + ν
∑P

i=1 [‖Mi,:‖1 − ‖Mi,:‖2]

+ ν
∑P

i=1 [‖Ni,:‖1 − ‖Ni,:‖2] + ξ‖M−N‖2F , (3)

where || · ||1 and || · ||2 are the `1 and `2 norms of a vector, while ν, ξ are nonnegative regular-
ization parameters controlling the sparsity of the rows of M,N, and similarity of factors M and
N, respectively. Mi.:,Ni.: refer to the ith row of factors M and N, respectively. Penalty term
||Mi,:||1 − ||Mi,:||2 ≥ 0 will be zero only when Mi,: has one nonzero entry or is equal to an all-
zeroes vector. The `1− `2 term has proven advantages over many of the other sparsity metrics; (see
e.g., Yin et al., 2015). Note that function F (Kx) ≥ 0, attains its lowest value F (Kx) = 0 if Kx has
a block diagonal structure with each diagonal block having rank one, or Kx has rank Q. In these
two aforementioned cases ||Mi,:||1 = ||Mi,:||2 (and ||Ni,:||1 = ||Ni,:||2), i.e., the ith row Mi,: will
have at most one nonzero entry.

A good similarity matrix Kx is to have rank equal toQ > 1, whereQ corresponds to the number
of diagonal blocks that need to be present in Kx equal to the Q different groups of units sensing a
different source. Our idea is to induce rank Q by imposing constraints on the magnitude of the Q
largest eigenvalues of Kx. Thus, it is important to ensure that the matrix has Q strong eigenvalues.
To this end, we propose maximizing theQth largest eigenvalue, while introducing a mechanism that
penalizes matrices of rank exceeding Q.

We resort to semidefinite programming (SDP) and linear matrix inequalities (LMIs) (Boyd and
Vandenberghe, 2004) to enforce the aforementioned requirements. Further, the formulation in (3) is
not amenable to distributed implementations. SDP will provide an effective formulation that can be
further separated in local tasks across the sensing units. The following minimization formulation is
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employed

arg min−µ · w + v ·
∑P

`=1 [‖M`,:‖1 − ‖M`,:‖2]

+ v ·
∑P

`=1 [‖N`,:‖1 − ‖N`,:‖2] + ω · ψ + ξ · θ

s. to
[

IQ MT

M
∑M

b=1 αbA
b
x

]
� 0,

[
θ√
Q

IP M−N

(M−N)T 1√
Q

IQ

]
� 0 ψ√

P
IP

∑B
b=1 αbA

b
x −M ·NT(∑B

b=1 αbA
b
x −M ·NT

)T
1√
P

IP

 � 0

0.5 · (NT ·M + MT ·N) � w · IQ, w ≥ 0,

{αb ≥ 0}Bb=1 and
∑

b αb = 1, (4)

where � corresponds to a matrix inequality, whereas ≥ indicates entry-wise inequality. The as-
sociated optimization variables are the P × Q matrix factors M,N, and the scalar variables α :=
{αb}Bb=1,w, ψ and θ; IQ denotes an identity matrix of sizeQ×Q. The objective of the minimization
formulation in (4) is to determine a proper convex combination

∑B
b=1 αbA

b
x [see Fig. 1 (center)] of

kernel covariances matrices available in a dictionaryD := {Ab
x}Bb=1 to minimize the block diagonal

metric in (3). The penalty terms µ, v, ω, ξ > 0 are user-set.
Note that the kernel similarity matrix Kx is set as the convex combination, Kx :=

∑B
b=1 αbA

b
x,

of the kernel matrices available in the dictionaryD. To satisfy the convexity of the Kx :=
∑B

b=1 αbA
b
x,

the last two constraints in (4), forming a simplex, are employed. The first three matrix inequalities
in (4) are equivalent (using the Schur complement; details are provided in Apdx. A) to

B∑
b=1

αbA
b
x �M ·MT , ‖M−N‖2F ≤ θ,

∥∥∥∥∥
B∑
b=1

αbA
b
x −M ·NT

∥∥∥∥∥
2

F

≤ ψ,

respectively. Thus, the second and third inequalitiers in (4) combined with the second and third
terms in the cost in (4) ensure the minimization of the distance metric in (3).

Further, the fourth LMI in (4) combined with the first term in the cost of (4) ensure that both M
and N are full-column rank equal to Q. Lastly, the first LMI in (4) is equivalent to

∑B
b=1 αbA

b
x �

MMT which combined with the fourth inequality in (4) ensure that
∑B

b=1 αbA
b
x will also be of

rank equal to Q (details in Apdx. A). Thus, it is established (Apdx. A) that the formulation in
(4) promotes the selection of dictionary kernel covariances that give rise to a block diagonal kernel∑B

b=1 αbA
b
x of rank Q, as long as the dictionary has kernel members supporting that.

Proposition 1 The formulation in (4) has an optimal solution involving coefficients {α∗b} that result
a kernel covariance matrix

∑B
b=1 α

∗
bA

b
x which is block diagonal and has rank Q, as long as the

kernel dictionary D := {Ab
x}Bb=1 contains a convex linear combination of its kernel elements which

is block diagonal and has rank Q.

Remark: It should be emphasized that the dictionary elements Ab
x do not have to be block

diagonal and the size of the blocks does not have to be known. Only the number of sources Q is
assumed to be known in the present work. The proposed formulation in (4) (and related algorithms
later on) aim to construct a convex combination Kx :=

∑B
b=1 αbA

b
x using the elements of dictionary

D to construct a Kx as close to a block diagonal as possible.

7



SCHIZAS

3.1 Block Coordinate Descent and Difference of Convex Form

The formulation in (4) is nonconvex hindering the utilization of efficient optimization techniques.
The main reasons are: i) the cost function contains concave terms, namely−‖M`,:‖2 and−‖N`,:‖2
which give rise to a difference of convex functions cost; and ii) several of the matrix inequality
constraints contain the nonlinear terms M ·NT or NT ·M resulting nonconvex matrix inequality
constraints.

To work around these challenges we resort i) to a difference of convex formulation; and ii) a
block coordinate descent framework where we optimize with respect to M,α, w, ψ, θ while keeping
fixed the factor N to its more recent update during iteration τ , namely Nτ . In detail, when updating
M,α the nonlinear terms NT ·M and M ·NT will be replaced with Nτ ·MT and M ·NT

τ using
the most recent update Nτ ; while when updating N the nonlinear terms M ·NT and NT ·M will
be replaced with Mτ+1 ·NT and NT ·Mτ+1 using update Mτ+1.

Notice that the cost in (4) contains the terms
∑P

`=1 [‖M`,:‖1 − ‖M`,:‖2] and
∑P

`=1 [‖N`,:‖1
−‖N`,:‖2]. If we set H(M) =

∑P
`=1 ‖M`,:‖1 and G(M) =

∑P
`=1 ‖M`,:‖2 then the second and

third terms in (4) is essentially the difference of two convex functions, i.e, H(M)−G(M). To this
end, we will resort to the difference of convex functions approach (Tao and An, 1997). The algo-
rithm iteratively computes an affine majorization of the function −G(M), where the majorization
during the τ th iterate is given as, trace

(
MT ,

{
∂−G(M)
∂M |M=Mτ

})
.

The cost in (4) can be numerically minimized by utilizing block coordinate descent (Tseng,
2001) along with the difference of convex functions recursive approach. During iteration τ + 1 the
proposed algorithm involves the following steps
Step 1a: Fix factor N to most recent update Nτ and minimize (4) with respect to (wrt) the rest of
the variables. The gradient of ‖M`,:‖2 is evaluated at Mτ,κ which is obtained during difference of
convex algorithm (DCA) iteration κ

mτ,κ
` ∈ ∂‖M`,:‖2

∣∣
M=Mτ,κ = ‖Mτ,κ,`,:‖2−1 ·MT

τ,κ,`,:, (5)

where MT
τ,κ,`,: is the `th row of update Mτ,κ.

Step 1b: Solve the majorized version of (4) after replacing N = Nτ , and using the gradient in (5)
to linearize the concave terms −‖M`,:‖2, i.e. we obtain the SDP,

{Mτ,κ+1,ατ,κ+1, wτ,κ+1, ψτ,κ+1, θτ,κ+1} ∈ arg min−µ · w

+ ω · ψ + ξ · θ + v ·
∑P

`=1

[
‖M`,:‖1 −

Mτ,κ,`,:

‖Mτ,κ,`,:‖2 MT
`,:

]
s. to

[
IQ MT

M
∑B

b=1 αbA
b
x

]
� 0,

[
θ√
Q

IP M−Nτ

(M−Nτ )T 1√
Q

IQ

]
� 0 ψ√

P
IP

∑B
b=1 αbA

b
x −M ·NT

τ(∑B
b=1 αbA

b
x −M ·NT

τ

)T
1√
P

IP

 � 0

0.5 · (NT
τ ·M + MT ·Nτ ) � w · IQ, w ≥ 0,

{αb ≥ 0}Bb=1 and
∑

b αb = 1. (6)

Steps 1a and 1b are repeated until Mτ,κ+1,ατ,κ+1 converge (as will be established in Prop. 3),
which algorithmically will be verified by checking when the update amounts ‖Mτ,κ+1 −Mτ,κ‖F
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and ‖ατ,κ+1 − ατ,κ‖F drop below a user-set threshold ε1. We denote the converging entities as
Mτ+1 and ατ+1 which will be fixed next in (4) to update the factor N using the following two
steps.
Step 2a: Fix factor M and α to the most recent update Mτ+1 and ατ+1 respectively, and minimize
(4) with respect to the rest of the variables. To this end, we calculate the gradient of ‖N`,:‖2
evaluated at Nτ,κ that is obtained during DCA iteration κ = 0, 1, 2, . . . ,

nτ,κ` ∈ ∂‖N`,:‖2
∣∣
N=Nτ,κ = ‖Nτ,κ,`,:‖2−1 ·NT

τ,κ,`,:. (7)

Step 2b: Solve the majorized version of (4) after replacing M = Mτ+1 and α = ατ+1, and using
the gradient in (7) to linearize the concave terms −‖N`,:‖2 for ` = 1, . . . , P , i.e.,

{Nτ,κ+1, wτ,κ+1, ψτ,κ+1, θτ,κ+1} ∈ arg min−µ · w + ω · ψ

+ ξ · θ + v ·
∑P

`=1

[
‖N`,:‖1 −

Nτ,κ,`,:

‖Nτ,κ,`,:‖2 NT
`,:

]
(8)

s. to

[
θ√
Q

IP Mτ+1 −N

(Mτ+1 −N)T 1√
Q

IQ

]
� 0 ψ√

P
IP

∑B
b=1 ατ+1,bA

b
x −Mτ+1 ·NT(∑B

b=1 ατ+1,bA
b
x −Mτ+1 ·NT

)T
1√
P

IP

 � 0

0.5 · (NT ·Mτ+1 + MT
τ+1 ·N) � w · IQ, w ≥ 0.

Steps 2a and 2b are repeated until Nτ,κ+1 converges (as will be established in Prop. 3), which
algorithmically will be verified by checking when the update amount ‖Nτ,κ+1 − Nτ,κ‖F drops
below a user-set threshold ε1. We denote the converging factor as Nτ+1. The recursive method for
numerically solving (4) is tabulated in detail as Alg. 1. Notice that a similar breaking condition
is also utilized to terminate the outer block coordinate descent loop (with iteration index τ ) using
the user-defined threshold ε2. Kmax denotes the user-defined maximum number of DCA iterations
employed during coordinate descent iteration τ , in case it takes too long for the breaking conditions
in lines 7 or 15 of Alg. 1 to be satisfied. We set this value equal to Kmax = 20 for the numerical
tests conducted in the paper ensuring convergence.

3.2 Convergence

Next we demonstrate that Alg. 1 returns updates {Mτ ,ατ , wτ , ψτ , θτ} that result a non-increasing
sequence of cost values in (4). First, we establish in Apdx. B that

Lemma 2 The cost functions in (4), (6) and (8) are bounded below by a finite negative number. A
negative value of the cost in (4), (6) and (8) implies that factor Mτ has full rank Q.

Using Lemma 2 it is further established in Apdx. C that

Proposition 3 The iterates {Mτ ,Nτ ,ατ , wτ , ψτ , θτ} produced by Alg. 1 result a non-increasing
cost function value sequence Jτ (·) in (4) which converges to a finite value as τ →∞, i.e.,

lim
τ→∞

Jτ (Mτ ,ατ , wτ , ψτ ) = J <∞. (9)

Therefore using continuity of the cost in (4) the iterates {Mτ ,Nτ ,ατ , wτ , ψτ , θτ} converge too.
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Algorithm 1 Centralized Joint Kernel Selection and Clustering (CKC)
1: Initialize N0,0 randomly, and kernel weights α0,0,j = 1

B∀j ∈ 1, ..., B. Set penalty coefficients ω, ξ, µ, v.

2: The dictionary kernel matrices {Ab
x}Bb=1 are normalized to have unit trace.

3: for τ = 0, 1, 2... do
4: for κ = 0, 1, 2...Kmax − 1 do
5: Form the gradients {mτ,κ

` }P`=1 using (5).
6: Solve SDP formulation in (6) to obtain updates {Mτ,κ+1,ατ,κ+1, wτ,κ+1, ψτ,κ+1, θτ,κ+1}. This

can be done using interior point methods, (e.g., Boyd and Vandenberghe, 2004; Grant and Boyd,
2014).

7: if (‖Mτ,κ+1 −Mτ,κ‖F + ‖ατ,κ+1 −ατ,κ‖F < ε1) then
8: Mτ+1 = Mτ,κ+1 and ατ = ατ,κ+1.
9: Break.

10: end if
11: end for
12: for κ = 0, 1, 2...Kmax − 1 do
13: Form the gradients {nτ,κ` }P`=1 using (7).
14: Solve SDP formulation in (8) to obtain updates {Nτ,κ+1, wτ,κ+1, ψτ,κ+1, θτ,κ+1}. This can be

done using interior point methods.
15: if (‖Nτ,κ+1 −Nτ,κ‖F < ε1) then
16: Nτ+1 = Nτ,κ+1.
17: Break.
18: end if
19: end for
20: if ‖Mτ+1 −Mτ‖F + ‖Nτ+1 −Nτ‖F + ‖ατ+1 −ατ‖F < ε2 then
21: Break.
22: end if
23: end for

Remarks: Lemma 2 and Prop. 3 demonstrate that if the limit value J , to which iterates Jτ (·)
converge to, is negative then the iterates Mτ will be full rank Q. For sufficiently large µ the
updates ωτ,κ for sufficiently large τ should be strictly positive which combined with the LMI
0.5 · (MTN + NTM) ≥ w · IQ will return factors Mτ ,Nτ that have rank equal to Q (see also
proof in Apdx. B). Further, the iterates ψτ,κ are pushed towards zero as much as possible, and
since ‖

∑
b ατ,κ+1,bA

b
x −Mτ,κ+1N

T
τ ‖2F ≤ ψτ,κ+1 that further implies that the iterates ατ,κ+1,b

are selected such that
∑

b ατ,κ+1,bA
b
x get as close as possible to Mτ,κ+1N

T
τ that has rank Q,

while from the first LMI in (4)
∑

b ατ,κ+1,bA
b
x has rank at least equal to Q. Finally, the terms

‖Mτ,κ+1,`,:‖1 −
Mτ,κ,`,:

‖Mτ,κ,`,:‖2 (Mτ,κ+1,`,:)
T in (6) can only attain the lowest value of zero only if the

`th row Mτ,κ+1,`,: contains at most one nonzero entry. Similar arguments can be applied for row
updates Nτ,κ+1,`,:. Thus, Mτ+1,Nτ+1 factor iterates are pushed towards a block diagonal struc-
ture. These convergence claims hold as long asKmax is sufficiently large to ensure that the breaking
conditions on lines 7 and/or 15 in Alg.1 are met. Although, an analytical lower bound could not be
obtained for Kmax, a value of 20 meets the requirements for the numerical tests considered in this
work.
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4. Distributed Kernel-Based Clustering

The SDP formulations in (6) and (8) require storage of the dictionary kernels Ab
x and optimization

variables in one central location. Numerically solving (6) or (8) via interior point methods, (e.g.,
Boyd and Vandenberghe, 2004; Grant and Boyd, 2014), has a complexity of O(P 4) where P is the
number of agents.

In the network setting considered in Sec. 2 each agent j acquires a measurement xj(t) and
can directly exchange information with its single-hop neighbors. The objective is to derive from
(6) and (8) a separable minimization formulations that can be solved in a distributed fashion by
solving small scale local SDP problems across the sensing agents and exchanging information with
single-hop neighbors. Such a separable formulation will enable the implementation of joint kernel
learning and clustering in ad hoc distributed settings.

To this end, we introduce local optimization variables that will help reformulate (6) and (8) in
a separable fashion. At sensing unit j, let αj := {αjb}

B
b=1 denote the local version of the kernel

coefficient variables {αb}Bb=1. Similarly ψj , wj and θj are local replicas of the variables ψ, w and
θ, respectively. Further, we introduce the local |Nj | ×Q factor matrix

MNj :=
[
(Mj

j,:)
T , (Mj

j′,:)
T , . . . , (Mj

j′′,:)
T
]T
, (10)

where the indices j, j′, j′′ belong to Nj . Thus, MNj contains a local (at unit j) version Mj
j′,: of the

row Mj′,: in central P×Q factor M in (6) for j′ ∈ Nj . Similarly, we can define a local version NNj
for factor N stored at agent j. Unit j can exchange information directly with other units j′ ∈ Nj
in its single-hop neighborhood, therefore it can directly calculate the entries of dictionary kernels
Ab
x(j′, j′′) for j′, j′′ ∈ j ∪ Nj which form a (|Nj | + 1) × (|Nj | + 1) submatrix of Ab

x denoted
[Ab

x]Nj [see Fig. 2]. All units in the distributed setting utilize the same pre-determined dictionary
D = {Ab

x}Bb=1. This can be hardwired in the local sensing units. The only task that local units need
to perform with regard to the kernel elements in D is to extract the local submatrices [Ab

x]Nj , which
can be formed directly after keeping the rows and columns of Ab

x with indices in neighborhoodNj .
Similarly, at unit j only the entries with row and column indices from {j}∪Nj can be evaluated

directly via single-hop communications in H1
τ := M ·NT

τ and H2
τ := 0.5 · (NT

τ ·M + MT ·Nτ )
on the left hand side (lhs) of the third and fourth LMIs in (6), respectively. We denote this (|Nj |+
1)× (|Nj |+ 1) local submatrices of H1

τ and H2
τ , which are calculated locally at unit j as

[H1
τ (Nτ )]Nj = [M · (Nτ )T ]Nj (11)

[H2
τ (Nτ )]Nj = 0.5 ·

∑
j′∈Nj∪{j}[(N

j
τ,j′,:)

TMj
j′,: + (Mj

j′,:)
TNj

τ,j′,:],

where Nj
τ,j′,: a local version of row j′ of factor update Nτ contained in [Nτ ]Nj at unit j.

4.1 Separable SDP Formulation

The first two LMI constraints in (6) involve the central factor variables M,Nτ , as well as all the
entries of dictionary kernels {Ab

x} which are not available in a single location in the distributed
setting considered here. We substitute these two LMI constraints with the following set of local

11
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LMIs

G1,j :=

[
IQ (MNj )

T

MNj
∑B

b=1 α
j
b[A

b
x]Nj

]
� 0, (12)

Gτ,2,j(Nτ ) :=

[
θj√
Q

I|Nj |+1 [M−Nτ ]Nj
([M−Nτ ]Nj )

T 1√
Q

IQ

]
� 0 (13)

for j = 1, . . . , P which utilizes locally available entities MNj , [Nτ ]Nj and [Ab
x]Nj and using the

Schur complement ensures
∑B

b=1 α
j
b[A

b
x]Nj � MNjM

T
Nj and ‖[M − Nτ ]Nj‖2F ≤ θj . Using

similar reasoning the third LMI in (6) is replaced with the following set of local LMI constraints for
j = 1, . . . , P

Gτ,3,j(Nτ ) :=


ψj√
|Nj |+1

I|Nj |+1,
B∑
b=1

αjb[A
b
x]Nj − [H1

τ (Nτ )]Nj(
B∑
b=1

αjb[A
b
x]Nj − [H1

τ (Nτ )]Nj

)T
, 1√

|Nj |+1
I|Nj |+1

 � 0, (14)

which via the Schur complement is equivalent to ‖
∑B

b=1 α
j
b[A

b
x]Nj − [H1

τ (Nτ )]Nj‖2F ≤ ψj . Sim-
ilarly the fourth LMI is replaced with [H2

τ (Nτ )]Nj � wj for j ∈ SQ with SQ denoting the set of
those units j whose neighbors in Nj sense all Q sources. The entry-wise constraint (in)-equalities
are substituted with the local versions wj ≥ 0, {αjb ≥ 0},

∑
b α

j
b = 1 for j = 1, . . . , P .

Starting from the cost function in (6) we replace the global variables w,ψ and θ with the the av-
erage of their local versions, i.e., |SQ|−1

∑
j∈SQ wj , P

−1
∑P

j=1 ψj and P−1
∑P

j=1 θj , respectively,
with |SQ| denoting the cardinality of set SQ. In the summation term of cost (6) factors M`,: are
replaced with their local representation M`

`,:, while Mτ,κ,`,: are replaced with local update M`
τ,κ,`,:.

We also introduce constraints to ensure equality among the local versions of the variables rep-
resenting the coefficients {αb}Bb=1, among the local versions of the factor rows {Mj,:}Pj=1 and

{Nj,:}Pj=1, respectively. Auxiliary variables βj,j′ := {βj,j
′

b }
B
b=1, and row vectors Zj,j′ , Θj,j′ are

introduced in the following local equality constraints:

{αjb = βj,j
′

b , αj
′

b = βj,j
′

b }
B
b=1, for j = 1, . . . , P, j′ ∈ Nj (15)

Mj
j,: = Zj,j′ , Mj′

j,: = Zj,j′ , for j′ ∈ Nj , j = 1, . . . , P, (16)

Nj
j,: = Z̃j,j′ , Nj′

j,: = Z̃j,j′ , for j′ ∈ Nj , j = 1, . . . , P. (17)

The constraints in (15) result that αjb = αj
′

b for j′ ∈ Nj and j = 1, . . . , P ; since the communi-
cation graph of the sensing units is connected this further implies that α1

b = α2
b = . . . = αPb for

b = 1, . . . , P . Thus, all the local coefficient variables will be identical since they all represent the
centralized set of coefficients αb. Similarly, the equalities in (16) and (17) ensure that Mj

j,: = Mj′

j,:

and Nj
j,: = Nj′

j,: for j′ ∈ Nj and j = 1, . . . , P which combined with the communication graph
connectivity will ensure that all local row vectors Mj

j,: will be identical for j′ ∈ Nj since they rep-

resent the centralized row variable Mj,: for j = 1, . . . , P (similarly all local Nj′

j,: will be equal for

j′ ∈ Nj∪{j} ). The variables βj,j
′

b , Zj,j′ and Z̃j,j′ are utilized to facilitate distributed minimization

12
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of (6) and (8) via the alternating direction method of multipliers and eventually there will be no
need to update them separately in the recursive updates obtained, since they will be written as linear
functions of other optimization variables been updated. The following separable formulation of (6)
is obtained

arg min−µ|SQ|−1 ·
∑

j∈SQ wj + ωP−1∑
j ψj (18)

+ ξP−1∑
j θj + v ·

∑P
`=1

[
‖M`

`,:‖1 −
M`
τ,κ,`,:

‖M`
τ,κ,`,:‖2

(M`
`,:)

T

]
,

s. to G1,j � 0,Gτ,2,j(Nτ ) � 0,Gτ,3,j(Nτ ) � 0,

{[H2
τ (Nτ )]Nj � wj · IQ}j∈SQ , wj ≥ 0, {αjb ≥ 0}Bb=1∑
b α

j
b = 1, for j = 1, . . . , P,

{αjb = βj,j
′

b }
B
b=1, {α

j′

b = βj,j
′

b }
B
b=1

Mj
j,: = Zj,j′ , Mj′

j,: = Zj,j′ , for j′ ∈ Nj , j = 1, . . . , P.

Using similar steps, the SDP program in (8) is reformulated in the following separable formu-
lation

arg min−µ|SQ|−1∑
j∈SQ wj + ωP−1 ·

∑
j ψj (19)

+ ξP−1 ·
∑

j θj + v ·
∑P

`=1

[
‖N`

`,:‖1 −
N`
τ,κ,`,:

‖N`
τ,κ,`,:‖2

(N`
`,:)

T

]
,

s. to Gτ,2,j(Mτ+1) � 0,Gτ,3,j(Mτ+1) � 0,

{[H2
τ (Mτ+1)]Nj � wj · IQ}j∈SQ , wj ≥ 0,Nj

j,: = Θj,j′ , Nj′

j,: = Θj,j′ , for j′ ∈ Nj , j = 1, . . . , P,

where Gτ,2,j(Mτ ),Gτ,3,j(Mτ ), [H2
τ (Mτ )]Nj have the same structure given in (11),(12) and (14)

respectively, after replacing M with the most recent update Mτ+1 and Nτ with N which is the
main optimization variable in (8).

4.2 Separable vs. Centralized Formulation

The formulations in (18) and (19) are separable versions of (6) and (8) that will enable distributed
minimization of the corresponding cost functions within a connected network of sensing units.
These separable formulations will be an approximation of (6) and (8) due to the utilization of the
local LMI constraints. From the equality constraints in the last two lines of (18) and (19) notice that
Mj′

j,: = Mj,:, Nj′

j,: = Nj,: and {αjb = αb}Bb=1 for all j′ ∈ Nj ∪ {j} and j = 1, . . . , P . The next
result proved in Apdx. D delineates the relationship between the separable formulations in (18) and
(19), and the centralized formulation in (6) and (8).

Proposition 4 The set of local LMIs [H2
τ (Nτ )]Nj ≥ wj · IQ and [H2

τ (Mτ+1)]Nj ≥ wj · IQ for
j ∈ SQ in (18) and (19) respectively, guarantee that their minimizers M∗,N∗ have rank equal to
Q .

Further, the local LMI constraints G1,j � 0 for j = 1, . . . , P in (18) ensure that the feasible
set of (18) contains a minimizing factor M∗ and kernel coefficients {α∗b}Bb=1 such that

∑
b α
∗
bA

b
x

has rank at least Q.
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If the kernel dictionaryD contains a unique subset of kernels whose convex combination is block
diagonal with Q diagonal blocks of rank 1, then factors M∗,N∗ and coefficients {α∗b}Bb=1 exist that
are minimizers of both (6),(8) and (18)-(19) for sufficiently large ω and v parameters.

Prop. 4 implies that although the formulations in (6) [ or (8)] and (18) [or (19)] are not equiva-
lent, the minimizing M∗,N∗ and {α∗b}Bb=1 will be selected such that rank(M∗) = rank(N∗) = Q
and rank(

∑
b α
∗
bA

b
x) ≥ Q. These are the exact same rank requirement imposed by the first and

fourth LMI constraints in the centralized formulation in (4).

4.3 Distributed Minimization via Alternating Direction Method of Multipliers (ADMM)

ADMM (Bertsekas and Tsitsiklis, 2015; Boyd et al., 2011) is utilized to solve the minimization
problems in (18) and (19) in a distributed fashion that allows communication only between single-
hop neighboring units. The augmented Lagrangian associated with (18) is

Lτ,κ({MNj ,α
j , wj , ψj}Pj=1, ζ, ζ̄, ξ, ξ̄) := −µ · |SQ|−1

∑
j∈SQ

wj + P−1
∑
j

[ωψj + ξθj ] (20)

+ v

P∑
`=1

[
‖M`

`,:‖1 −
M`

τ,κ,`,:

‖M`
τ,κ,`,:‖2

(M`
`,:)

T

]
+

P∑
j=1

∑
j′∈Nj

ζTj,j′ [M
j
j,: − Zj,j′ ]

T +
P∑
j=1

∑
j′∈Nj

ζ̄
T
j′,j [M

j′

j,:

− Zj,j′ ]
T +

P∑
j=1

∑
j′∈Nj

ξTj,j′ [α
j − βj,j′ ] +

P∑
j=1

∑
j′∈Nj

ξ̄
T
j′,j [α

j′ − βj,j′ ]

+ 0.5 · c ·
P∑
j=1

∑
j′∈Nj

[
‖Mj

j,: − Zj,j′‖22 + ‖Mj′

j,: − Zj,j′‖22
]
,

+ 0.5 · c ·
P∑
j=1

∑
j′∈Nj

[
‖αj − βj,j′‖22 + ‖αj′ − βj,j′‖22

]

where αj = [αj1, . . . , α
j
B], βj,j′ = [βj,j

′

1 , . . . , βj,j
′

B ], while ζ := {ζj,j′}, ζ̄ := {ζ̄j,j′}, ξ :=
{ξj,j′}, ξ̄ := {ξ̄j,j′} contain the Q × 1 Lagrange multiplier vectors ζj,j′ and ζ̄j′,j associated with

the constraints Mj
j,: = Zj,j′ and Mj′

j,: = Zj,j′ , respectively, whereas the B × 1 multiplier vectors
ξj,j′ and ξ̄j′,j are associated with the equality constraints αj = βj,j′ and αj′ = βj,j′ , respectively.
Constant c is a nonnegative coefficient imposing strict convexity and it will be acting as a step-size
for updating the multipliers.

ADMM updates the variables and multipliers in (20) during alternating iteration ρ+ 1 through
the following step
Step D1a: Unit j obtains local iterates {Mτ,κ

Nj (ρ+1),αj
τ,κ(ρ+1), wτ,κj (ρ+1), ψτ,κj (ρ+1), θτ,κj (ρ+

1)} by solving the following local minimization problem that stems from (20) and the constraints
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Figure 2: Localized kernel learning and clustering tasks.

in (18), after keeping the jth unit local terms/variables

arg min
MNj ,α

j ,wj ,ψj ,θj
−µ1j∈SQ |SQ|

−1wj + ωP−1ψj + ξP−1θj +

[
‖Mj

j,:‖1 −
Mj

τ,κ,j,:

‖Mj
τ,κ,j,:‖2

(Mj
j,:)

T

]
+
∑
j′∈Nj

(ζτ,κj,j′)
T (ρ)[Mj

j,: − Zτ,κj,j′(ρ)]T +
∑
j′∈Nj

(ζ̄
τ,κ
j,j′)

T (ρ)[Mj
j′,: − Zτ,κj′,j(ρ)]T

+
∑
j′∈Nj

(ξτ,κj,j′)
T (ρ)[αj − βτ,κj,j′(ρ)] +

∑
j′∈Nj

(ξ̄
τ,κ
j,j′)

T (ρ)[αj − βτ,κj′,j(ρ)]

+ 0.5 · c ·
∑
j′∈Nj

[
‖Mj

j,: − Zτ,κj,j′(ρ)‖22 + ‖Mj
j′,: − Zτ,κj′,j(ρ)‖22

]
+ 0.5 · c ·

∑
j′∈Nj

[
‖αj − βτ,κj,j′(ρ)‖22 + ‖αj − βτ,κj′,j(ρ)‖22

]
,

s. to G1,j � 0,Gτ,2,j(Nτ ) � 0,Gτ,3,j(Nτ ) � 0,

1j∈SQ ·
(
[H2

τ (Nτ )]Nj − wj · IQ
)
� 0, wj ≥ 0, {αjb ≥ 0}Bb=1,

∑
b α

j
b = 1, (21)

where 1j∈SQ is an indicator function equal to 1 if j ∈ SQ and zero otherwise.
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Step D1b: Unit j updates the auxiliary variables Zτ,κj,j′(ρ + 1),βτ,κj,j′(ρ + 1) for j′ ∈ Nj via the
quadratic program

{Zτ,κj,j′(ρ+ 1),βτ,κj,j′(ρ+ 1)} = arg min
Zj,j′ ,βj,j′

−(ζτ,κj,j′)
T (ρ) · Zj,j′

− (ζ̄
τ,κ
j′,j)

T (ρ) · Zj,j′ − (ξτ,κj,j′)
T (ρ) · βj,j′ − ξ̄

T
j′,j(ρ)βj,j′ (22)

+ 0.5 · c
[
‖Mj

τ,κ,j,:(ρ+ 1)− Zj,j′‖22 + ‖Mj′

τ,κ,j,:(ρ+ 1)− Zj,j′‖22
]

+ 0.5 · c ·
[
‖αj

τ,κ(ρ+ 1)− βj,j′‖22 + ‖αj′
τ,κ(ρ+ 1)− βj,j′‖22

]
,

which after applying first-order optimality conditions results:

Zτ,κj,j′(ρ+ 1) = 0.5 · c−1[ζτ,κj,j′(ρ) + ζ̄
τ,κ
j′,j(ρ)] + 0.5 · [Mj

τ,κ,j,:(ρ+ 1) + Mj′

τ,κ,j,:(ρ+ 1)], (23)

βτ,κj,j′(ρ+ 1) = 0.5 · c−1[ξτ,κj,j′(ρ) + ξ̄
τ,κ
j′,j(ρ)] + 0.5 · [αj

τ,κ(ρ+ 1) + αj′
τ,κ(ρ+ 1)]. (24)

Step D1c: Sensing unit j = 1, . . . , P updates the Lagrange multipliers ζτ,κj,j′(ρ + 1), ζ̄τ,κj,j′(ρ + 1),
ξτ,κj,j′(ρ+ 1), ξ̄τ,κj,j′(ρ+ 1) for j′ ∈ Nj using the gradient ascent iterations:

ζτ,κj,j′(ρ+ 1)=ζτ,κj,j′(ρ)+c· [Mj
τ,κ,j,:(ρ+ 1)−Zτ,κj,j′(ρ+ 1)], (25)

ζ̄
τ,κ
j,j′(ρ+ 1)=ζ̄

τ,κ
j,j′(ρ)+c· [Mj

τ,κ,j′,:(ρ+ 1)−Zτ,κj′,j(ρ+ 1)], (26)

ξτ,κj,j′(ρ+ 1)=ξτ,κj,j′(ρ)+c· [αj
τ,κ(ρ+ 1)−βτ,κj,j′(ρ+ 1)], (27)

ξ̄
τ,κ
j,j′(ρ+ 1)=ξ̄

τ,κ
j,j′(ρ)+c· [αj

τ,κ(ρ+ 1)−βτ,κj′,j(ρ+ 1)]. (28)

Substituting (23) into (25) and (26), and (24) into (27) and (28), it follows that if the Lagrange
multipliers are initialized such that ζτ,κj,j′(0) = −ζ̄τ,κj′,j(0) and ξτ,κj,j′(0) = −ξ̄τ,κj′,j(0) then ζτ,κj,j′(ρ) =

−ζ̄τ,κj′,j(ρ) and ξτ,κj,j′(ρ) = −ξ̄τ,κj′,j(ρ) for all τ, κ and ρ indices. This implies that there is no need to
keep track of the multipliers ζ̄j′,j and ξ̄j′,j as long as the multipliers ζj,j′ and ξj,j′ are updated using
the recursions

ζτ,κj,j′(ρ+ 1) = ζτ,κj,j′(ρ) + 0.5 · c · [Mj
τ,κ,j,:(ρ+ 1)−Mj′

τ,κ,j,:(ρ+ 1)], (29)

ξτ,κj,j′(ρ+ 1) = ξτ,κj,j′(ρ) + 0.5 · c · [αj
τ,κ(ρ+ 1)−αj′

τ,κ(ρ+ 1)], (30)

which can be obtained after employing (23) and (24) in (25) and (27), respectively. Further, eqs.
(23) and (24) are simplified

Zτ,κj,j′(ρ+ 1) = 0.5 · [Mj
τ,κ,j,:(ρ+ 1) + Mj′

τ,κ,j,:(ρ+ 1)] (31)

βτ,κj,j′(ρ+ 1) = 0.5 · [αj
τ,κ(ρ+ 1) + αj′

τ,κ(ρ+ 1)], (32)

and replace Zτ,κj,j′(ρ + 1) and βτ,κj,j′(ρ + 1) in (21) with expressions in (31) and (32), respectively.
Thus, Zτ,κj,j′ ,β

τ,κ
j,j′ do not have to be updated as separate variables.

The formulation in (21) can be transformed in a SDP formulation after introducing local vari-
ables δ1

j,j′ , δ
2
j,j′ , and δ3

j,j′ for j′ ∈ Nj , that will replace the last four quadratic terms in the cost of
(21) by introducing the inequality constraints

‖Mj
j,: − Zτ,κj,j′(ρ)‖22 ≤ δ1

j,j′ , ‖M
j
j′,: − Zτ,κj′,j(ρ)‖22 ≤ δ2

j,j′

‖αj − βτ,κj,j′(ρ)‖22 = ‖αj − βτ,κj′,j(ρ)‖22 ≤ δ3
j,j′ , (33)
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which can be rewritten using the following LMIs

∆1
j,j′ :=

[
δ1
j,j′ · IQ (Mj

j,: − Zτ,κj,j′(ρ))T

Mj
j,: − Zτ,κj,j′(ρ) 1

]
� 0,

∆2
j,j′ :=

[
δ2
j,j′ · IQ (Mj

j′,: − Zτ,κj′,j(ρ))T

Mj
j′,: − Zτ,κj′,j(ρ) 1

]
� 0,

∆3
j,j′ :=

[
δ3
j,j′ · IQ (αj − βτ,κj,j′(ρ))T

αj − βτ,κj,j′(ρ) 1

]
� 0. (34)

Thus, the minimization formulation (21) in Step D1 can be rewritten as an SDP in the following
way:

arg min
MNj ,α

j ,wj ,ψj ,θj
−µ1j∈SQ |SQ|

−1wj + ωP−1ψj + ξP−1θj +

[
‖Mj

j,:‖1 −
Mj

τ,κ,j,:

‖Mj
τ,κ,j,:‖2

(Mj
j,:)

T

]
+
∑
j′∈Nj

(ζτ,κj,j′)
T (ρ)[Mj

j,: − Zτ,κj,j′(ρ)]−
∑
j′∈Nj

(ζτ,κj′,j)
T (ρ)[Mj

j′,: − Zτ,κj′,j(ρ)]

+
∑
j′∈Nj

(ξτ,κj,j′)
T (ρ)[αj − βτ,κj,j′(ρ)]−

∑
j′∈Nj

(ξτ,κj′,j)
T (ρ)[αj − βτ,κj′,j(ρ)]

+ 0.5 · c ·
∑
j′∈Nj

[
δ1
j,j′ + δ2

j,j′ + 2 · δ3
j,j′
]

subject to G1,j � 0,Gτ,2,j(Nτ ) � 0,Gτ,3,j(Nτ ) � 0,1j∈SQ ·
(
[H2

τ (Nτ )]Nj − wj · IQ
)
� 0,

∆1
j,j′ � 0, ∆2

j,j′ � 0, ∆3
j,j′ � 0, j′ ∈ Nj , wj ≥ 0, {αjb ≥ 0}Bb=1,

∑
b α

j
b = 1, (35)

where the equation ζτ,κj,j′(ρ) = −ζ̄τ,κj′,j(ρ) and ξτ,κj,j′(ρ) = −ξ̄τ,κj′,j(ρ) for all τ, κ and ρ has been
employed, while (31) and (32) can be employed to replace Zτ,κj,j′(ρ) and βτ,κj,j′(ρ).

Essentially the distributed steps D1a-D1c facilitate solving the SDP cost (6) involved in Step 1b
of the centralized algorithm in Sec. 3.1, i.e., provide a distributed implementation of line 6 in Alg.
1. Steps D1a-D1c essentially consist a third recursive layer nested within that τ , and κ iterations in
Alg. 1. A similar process can be obtained when tackling (8) via ADMM that involves the following
steps

Step D2a: Sensing unit j = 1, . . . , P obtains local iterates {Nτ,κ
Nj (ρ+1), wτ,κj (ρ+1), ψτ,κj (ρ+

1), θτ,κj (ρ+ 1)} by solving

arg min
NNj ,wj ,ψj ,θj

−µ1j∈SQ |SQ|
−1wj + ωP−1ψj + ξP−1θj +

[
‖Nj

j,:‖1 −
Nj
τ,κ,j,:

‖Nj
τ,κ,j,:‖2

(Nj
j,:)

T

]
(36)

+
∑
j′∈Nj

(ζ̃
τ,κ
j,j′)

T (ρ)[Nj
j,: − Z̃τ,κj,j′(ρ)]−

∑
j′∈Nj

(ζ̃
τ,κ
j′,j)

T (ρ)[Nj
j′,: − Z̃τ,κj′,j(ρ)] + 0.5 · c ·

∑
j′∈Nj

[
δ̃1
j,j′ + δ̃2

j,j′

]
s. to Gτ,2,j(Mτ+1) � 0,Gτ,3,j(Mτ+1) � 0,

1j∈SQ ·
(
[H2

τ (Mτ+1)]Nj − wj · IQ
)
� 0,

∆̃
1
j,j′ � 0, ∆̃

2
j,j′ � 0, j′ ∈ Nj , wj ≥ 0,
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Algorithm 2 Distributed Kernel Selection and Clustering (DKC)
1: Each unit j = 1, . . . , P initializes the multipliers ζτ,κj,j′(0), and ξτ,κj,j′(0), e.g., set them to all-zero vectors .
2: for ρ = 0, 1, 2..., ρt do
3: Unit j = 1, . . . , P transmits multipliers ζτ,κj,j′(ρ), ξτ,κj,j′(ρ), row factors Mj

τ,κ,j′,:(ρ+1),Mj
τ,κ,j,:(ρ+1)

and kernel coefficients αjτ,κ(ρ+ 1) to its neighbors j′ ∈ Nj .
4: Unit j = 1, . . . , P receives from neighbors j′ ∈ Nj the factors Mj′

τ,κ,j,:(ρ+ 1), Mj′

τ,κ,j′,:(ρ+ 1), the
kernel coefficients αj

′

τ,κ(ρ+ 1) and the Lagrange multipliers ζτ,κj′,j(ρ) and ξτ,κj′,j(ρ).
5: Update the auxiliary variables Zτ,κj,j′(ρ), Zτ,κj′,j(ρ) and βτ,κj,j′(ρ) using (31) and (32).
6: Unit j = 1, . . . , P fsolves the local SDP program in (35) to obtain the updates Mτ,κ

Nj
(ρ+ 1),αjτ,κ(ρ+

1). This can be done locally at unit j using interior point methods.
7: Unit j updates the local Lagrange multipliers ζτ,κj,j′(ρ+ 1) and βτ,κj,j′(ρ+ 1) for j′ ∈ Nj using (29) and

(30).
8: end for
9: Form Mτ,κ+1 using the locally factor rows, i.e., Mτ,κ+1 = {Mj

τ,κ,j,:(ρt + 1)}Pj=1, and ατ,κ+1 =

αjτ,κ(ρt + 1) for any j.

where local variables and multipliers ζ̃
τ,κ
j,j′(ρ), ξ̃

τ,κ
j,j′(ρ), Z̃τ,κj,j′(ρ), β̃

τ,κ
j,j′(ρ), δ̃1

j,j′ , δ̃
2
j,j′ , ∆̃

1
j,j′ , ∆̃

2
j,j′ , are

defined similarly to the corresponding variables without the˜notation in (35), and replacing M with
N, δ with δ̃, ∆ with ∆̃ and Z with Z̃ in (33)-(34).

Step D2b: Sensing unit j = 1, . . . , P updates the auxiliary variables, i.e., Z̃τ,κj,j′(ρ + 1) for
j′ ∈ Nj via [similar process as in (23)]

Z̃τ,κj,j′(ρ+ 1) = 0.5 · [Nj
τ,κ,j,:(ρ+ 1) + Nj′

τ,κ,j,:(ρ+ 1)], (37)

and can be used in place of Z̃τ,κj,j′(ρ+1) in (36). Thus, Z̃τ,κj,j′ does not have to be updated as a separate
variable.

Step D2c: Sensing unit j = 1, . . . , P updates the Lagrange multipliers ζ̃
τ,κ
j,j′(ρ + 1) using the

gradient ascent iterations:

ζ̃
τ,κ
j,j′(ρ+ 1) = ζ̃

τ,κ
j,j′(ρ) + 0.5 · c · [Nj

τ,κ,j,:(ρ+ 1)−Nj′

τ,κ,j,:(ρ+ 1)], (38)

Alg. 2 tabulates in detail the steps involved in implementing D1a-D1c (similarly for D2a-D2c); see
also Fig. 2. Alg. 2 can also be used to summarize steps D2a-D2c after replacing i) ζτ,κj,j′ with ζ̃

τ,κ
j,j′ ;

ii) Mj′

τ,κ,j,:(ρ+1) with Nj′

τ,κ,j,:(ρ+1); iii) Zτ,κj′,j(ρ) with Z̃τ,κj′,j(ρ); iv) remove αj,τ,κ, ξτ,κj′,j , and βτ,κj,j′ ;
and replace (35) with (36). Further, replace eqs. (31) and (32) with (37), and eqs. (29) and (30) with
(38). Note that ρt denotes the number of ADMM iterations applied for every τ and κ iterations.
Communication Costs: During steps D1a-D1c unit j has to receive i) |Nj | Lagrange multiplier
vectors {ζτ,κj′,j(ρ)}j′∈Nj , 2 · |Nj | row factors {Mj′

τ,κ,j,:(ρ + 1)}j′∈Nj , {M
j′,τ,κ
j′,: (ρ + 1)}j′∈Nj each

having Q scalar entries; and ii) |Nj | Lagrange multiplier vectors {ξτ,κj′,j(ρ)}j′∈Nj , and |Nj | kernel

coefficient vectors {αj′
τ,κ(ρ+1)}j′∈Nj of lengthB. Thus, the number of scalars unit j has to receive

during ADMM iteration ρ amounts to 3|Nj | ·Q+ 2|Nj | ·B.
Further, unit j has to transmit i) |Nj | Lagrange multiplier vectors {ζτ,κj,j′(ρ)}j′∈Nj , |Nj | + 1

row factors {{Mj
τ,κ,j′,:(ρ + 1)}j′∈Nj ,M

j
τ,κ,j,:(ρ + 1)} each of length Q; and ii) |Nj | Lagrange

multiplier vectors {ξτ,κj,j′(ρ)}j′∈Nj , and one kernel coefficient vector {αj
τ,κ(ρ + 1)}j′∈Nj each of
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length B. Thus, the total number of scalars to be transmitted during ADMM iteration ρ amounts to
(2 · |Nj |+ 1)Q+ (|Nj |+ 1)B.

During steps D2a-D2c unit j has to receive |Nj | Lagrange multiplier vectors {ζ̃τ,κj′,j(ρ)}j′∈Nj ,
2 · |Nj | row factors {{Nj′

τ,κ,j,:(ρ+ 1)}j′∈Nj , {N
j′

τ,κ,j′,:(ρ+ 1)}}j′∈Nj each having Q scalar entries.
Thus, the number of scalars unit j has to receive during iteration ρ amounts to 3|Nj | · Q. Fur-
ther, unit j has to transmit |Nj | Lagrange multiplier vectors {ζ̃τ,κj,j′(ρ)}j′∈Nj , |Nj | + 1 row factors
{Nj

τ,κ,j′,:(ρ + 1)}j′∈Nj ,N
j
τ,κ,j,:(ρ + 1) each of length Q. Thus, the total number of scalars to be

transmitted during ADMM iteration ρ amounts to (2 · |Nj |+ 1)Q.
In summary, the communication cost is proportional to the neighborhood size |Nj |, the number

of different classes/sources Q and the size of the kernel dictionary B which in practice are much
smaller compared to the number of sensing agents P .
Remark on finding set SQ: The clustering problem does not have to be solved to determine which
such nodes belong in SQ and have access to neighborhood measurements that cover all Q sources
present. Specifically, each unit Sj can solve a local version of (4) [considering only its neighbor-
hood observations and corresponding kernel similarity matrices]. This can be done once during an
initialization phase. If the neighborhood Nj is large enough such that the associated measurements
contain information about all Q sources, then when solving a local version of (4) at the candidate
unit Sj the optimal variable w in (4) will be strictly positive (details in Apdx. A), whereas if the
neighborhood measurements were covering less than Q sources then w will be zero (rank-reduced
M). Thus, each unit Sj can identify whether they belong to a set SQ and adjust their corresponding
constraints in steps D1a and D2a accordingly.

The same idea can be applied when setting up the network of sensing units during an initial-
ization phase to ensure the presence of such a node, i.e., nonempty set SQ. During initialization,
one such node Sj with longer receiving range capabilities can start gradually increasing reception
range, thus incrementally increasing its neighborhood radius, and therefore the set of neighborhood
measurements xj′ for j ∈ Nj that it can access. Unit Sj can then solve a local version of (4) with
each current neighborhood size and if w = 0 then it keeps increasing the neighborhood size (or
communication range) , until w > 0 in which case Sj knows its neighborhood measurements cover
all Q sources present.
Distributed Convergence: Given that the separable formulations in (18) and (19) are convex, we
prove in Apdx. E that the updates {Mτ,κ

Nj (ρ+ 1),αj
τ,κ(ρ+ 1)} and Nτ,κ

Nj (ρ+ 1) obtained via steps
D1a-D1c and D2a-D2c to cluster the data and determine the kernel similarity matrix, converge, i.e.,

Proposition 5 Under the assumptions of Prop. 4 and for fixed iteration indices τ, κ the ADMM
iterates from (18) and (19) {Mτ,κ

Nj (ρ+ 1),Nτ,κ
Nj (ρ+ 1),αj

τ,κ(ρ+ 1)} converge as ρ→∞, i.e.,

lim
ρ→∞

Mj′

τ,κ,j,:(ρ+ 1) = M̃τ,κ+1,j,:, (39)

lim
ρ→∞

Nj′

τ,κ,j,:(ρ+ 1) = Ñτ,κ+1,j,:, for j′ ∈ Nj ∪ {j} (40)

lim
ρ→∞

αj
τ,κ(ρ+ 1) = α̃τ,κ+1,

for j = 1, . . . , P , implying that all local vectors {Mj′

τ,κ,j,:(ρ + 1),Nj′

τ,κ,j,:(ρ + 1)}j′∈Nj∪{j} con-

verge to M̃τ,κ+1,j,: and Ñτ,κ+1,j,: respectively, while all local coefficient vectors {αj
τ,κ(ρ+ 1)}Pj=1
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converge to the same limit α̃τ,κ+1; thus satisfying the equality constraints in (18) and (19). Further,

lim
ρ→∞

− µ

|SQ|
∑
j∈SQ

wτ,κj (ρ)+
ω

P

∑
j

[ψτ,κj (ρ) + ξθτ,κj (ρ)] (41)

+v
P∑
`=1

[
‖M`

τ,κ,`,:(ρ)‖1 −
M`

τ,κ,`,:

‖M`
τ,κ,`,:‖2

(M`
τ,κ,`,:(ρ))T

]]
= f∗τ,κ,

lim
ρ→∞

− µ

|SQ|
∑
j∈SQ

wτ,κj (ρ)+
ω

P

∑
j

[ψτ,κj (ρ) + ξθτ,κj (ρ)] (42)

+v

P∑
`=1

[
‖N`

τ,κ,`,:(ρ)‖1 −
N`
τ,κ,`,:

‖N`
τ,κ,`,:‖2

(N`
τ,κ,`,:(ρ))T

]]
= g∗τ,κ,

where f∗τ,κ and g∗τ,κ correspond to the minimum values of the costs in (18) and (19) respectively.

The result of Prop. (5) combined with Prop. 4 implies that for ρ → ∞ the factor and coeffi-
cient iterates {Mj

τ,κ,j,:(ρ+ 1),Nj
τ,κ,j,:(ρ+ 1),αj

τ,κ(ρ+ 1)}Pj=1 will converge to limits M̃τ,κ+1,j,:,
Ñτ,κ+1,j,: and α̃τ,κ+1 such that

∑
b α̃τ,κ+1,bA

b
x is block diagonal with rank Q as τ, κ→∞. Thus,

despite the fact that the converging limits of the centralized and distributed algorithms may not
be the same, they share the block diagonal property crucial for facilitating the clustering task. In
practice a sufficiently large finite number of ADMM iterations ρt <∞ suffices to approach conver-
gence. This is demonstrated using the numerical examples following next.

Computational Complexity: The computational complexity of our novel framework is com-
pared with the complexity of the tensor multiple kernel graph-based clustering (TMKGC) scheme
in (Ren et al., 2020), the structure-preserving multiple kernel clustering approach (SPMKC) in (Ren
and Sun, 2020) and the K-means algorithm.

The computational complexity per iteration in TMKGC (Ren et al., 2020) isO(BP 2 log2(P ) +
B2P 2) whereB is the number of elements in the kernel dictionary, P the number of data vectors (or
sensing units) and Q the number of underlying sources. The computational complexity per iteration
in SPMKC (Ren and Sun, 2020) is O(P 3). The computational complexity of K-means is O(P 2).

The computational complexity in the novel distributed kernel clustering (DKC) scheme per node
per iteration is mainly accounting for steps D1a-D1c and D2a-D2c. These can be be divided into
two tasks at unit j: i) Updating the |Nj | multipliers with a cumulative complexity of O(|Nj |(B +
Q)); and ii) Solve the local SDP problems involved in steps D1c and D2c with a complexity of
O((B +Q)4) and O((Q)4) respectively [see e.g., (Vandenberghe et al., 2005)].

It is practical to assume B << P and Q << P , since the size of the kernel dictionary B and
the number of underlying sources Q are smaller than the number of measurement vectors/ sensing
units P .

Comparing the computational complexity of DKC and TMKGC, we study under what condi-
tions the following inequality

|Nj |(B+Q)+(B+Q)4+Q4 < B2P 2 ⇔ |Nj |
B

(1+
Q

B
)+

(
1 +

Q

B

)2

(B+Q)2+
Q4

B2
< P 2, (43)

is satisfied. Taking into account that in practice P >> B,Q and Q < B since the number of
elements in the dictionary can be chosen to be larger than the number of sources Q then (43) can be
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satisfied if

B +Q ≤
√
P 2 − 3

2
≈ P

2
, (44)

which holds true for large P and B,Q << P .
Comparing the computational complexity of DKC and SPMKC, we study under what conditions

the following inequality

|Nj |(B +Q) + (B +Q)4 +Q4 < P 3 ⇔ |Nj |
B +Q

P 3
+

(
B +Q

P

)3

(B +Q) +
Q4

P 3
< 1, (45)

is satisfied. The second inequality in (45) can be easily satisfied when B,Q << P . Thus, the
computational complexity of our approach per unit per iteration is definitely lower when the amount
of data vectors P is considerably larger than the cardinality of the dictionary B and the number of
sources Q.

When studying under what conditions our approach has lower computational complexity per
iteration per unit than K-means, i.e.,

|Nj |(B +Q) + (B +Q)4 +Q4 < P 2 ⇔ |Nj |
B +Q

P 2
+

(
B +Q

P

)2

(B +Q)2 +
Q4

P 2
< 1, (46)

then the computational complexity of our approach will be lower than the one of K-means when
the amount of data vectors P is considerably larger than the cardinality of the dictionary B and the
number of sources Q.

5. Numerical Simulations

Numerical tests are utilized next to study the effectiveness of the proposed algorithmic framework on
multiple datasets. We compare the performance of the novel approach with competing alternatives
using three different datasets: (1) The Unimib dataset (Micucci et al., 2017) corresponding to a
collection of smartphone-based human activity detection readings with Q = 3 different classes;
(2) The Salinas dataset in (Sal, 2021) which consists of 3-dimensional hyperspectral images with
Q = 4; and (3) a synthetic dataset with Q = 4.

The performance of the novel clustering and learning scheme proposed in this paper (abbrevi-
ated as CKC for the centralized version and DKC for the distributed version) is compared with:
(1) the tensor multiple kernel graph-based clustering (TMKGC) scheme in (Ren et al., 2020); (2)
the structure-preserving multiple kernel clustering approach (SPMKC) in (Ren and Sun, 2020); and
(3) the K-means clustering algorithm using Euclidean distance. Note that the distributed K-means
approaches in (Chen et al., 2016; Oliva et al., 2013; Qin et al., 2016; Tsapanos et al., 2015) are per-
forming at best similar to the centralized K-means. This is the reason we are using the centralized
K-means for comparisons reasons. Further, the only other distributed kernel-learning clustering
approach available is the one in (Ren et al., 2020) for which we have performed extensive compar-
isons. It has to be emphasized though that this comparison is unfair for our approach, in the sense
that TMKGC requires a central processing center acting as a fusion center, whereas our framework
does not require a fusion center and can operate in ad hoc network architectures.

Three figures of merit are employed to compare the clustering performance of CKC/DKC with
the aforementioned alternatives: accuracy, NMI, and purity. Accuracy quantifies the success per-
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centage in clustering data in the correct groups

Accuracy = P−1 ·
∑P

j=1 δ(C̃j −map(Ĉj)) (47)

where Ĉj is the cluster label returned by the clustering algorithms considered, whereas C̃j is the
ground truth label, δ(·) denotes the Kronecker delta function and map(Ĉj) is the mapping of cluster
label Ĉj to a class label using the Hungarian assignment algorithm (Kuhn, 1955). NMI quantifies
the quality of clusters
NMI(Ψ, Ψ̃) = I(Ψ;Ψ̃)√

H(Ψ)·H(Ψ̃)
,

where I and H refer to the mutual information and entropy respectively evaluated as:

I(Ψ; Ψ̃) :=

Q∑
q=1

Q∑
p=1

|Ψq ∩ Ψ̃p|
P

log

[
P · |Ψq ∩ Ψ̃p|
|Ψq| · |Ψ̃p|

]
, (48)

H(Ψ) :=

Q∑
q=1

|Ψq|
P

log
[
|Ψq|
P

]
, H(Ψ̃) :=

Q∑
q=1

|Ψ̃q|
P

log

[
|Ψ̃q|
P

]

where Ψ = {Ψ1,Ψ2, ...,ΨQ} correspond to the Q clusters found by the clustering scheme, while
Ψ̃ = {Ψ̃1, Ψ̃2, ..., Ψ̃Q} denotes the ground-truth cluster sets that contain correctly assigned data
entries. It pertains more to a setting where the data labels are given (not the case in our setting) but
it is provided for a complete performance analysis.

Purity quantifies the degree at which the found clusters contain elements from one class. Purity
is calculated as

Purity = P−1 ∗
∑Q

q=1 maxj=1,...,Q|Ψq ∩ Ψ̃j |.

Each cluster is matched with the class set that has the most overlap and the number of correctly
assigned elements is used, i.e., maxj=1,...,Q|Ψq ∩ Ψ̃j |.

The performance of DKC will be tested in an ad hoc connected network of sensing units com-
prising of P = 60 units placed randomly in the area [0, 1]× [0, 1]. Two sensing units are connected
if their Euclidean distance is less than 0.25. For the synthetic data, and the Salinas dataset the set
of sensors SQ whose single-hop neighbors sense all Q clusters has 7 units, whereas in the Unimib
dataset it has 8.

5.1 Synthetic Data

The synthetic dataset comprises of Q = 4 different classes modeled as a kernel dictionary with
six 60 × 60 kernel elements {A1(x)}6b=1. Kernel matrix A1

x is equal to a 60 × 60 random matrix.
Kernel matrix A2

x consists of two diagonal blocks occupying the first 15 rows and columns, and
rows and columns with indices 29 to 46, respectively. Dictionary kernel A3

x contains one diagonal
block occupying rows with indices 16 to 28 and columns 16 to 28 while the remainder of the entries
are set to zeros. Dictionary kernel A4

x contains one diagonal block occupying rows with indices 47
to 60 and columns 47 to 60, while the remainder of the entries are set to zeros. Additionally, A5

x is
set to an all-ones matrix normalized to have trace one, while A6

x is set equal to the identity matrix
normalized to have trace one.
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Fig. 3 depicts the trajectory of the six kernel coefficients {αb}6b=1 versus the DCA number of
iterations. Each DCA iteration entails ρt = 5 ADMM iterations when utilizing Alg. 2 to tackle
the tasks in line 6 and 14 of Alg. 1 (DKC). All kernel coefficients are initialized at the same value
{α0,0,b = 1/6}6b=1. Throughout Sec. 5, the kernel factors Mj

j,: and Nj
j,: for j ∈ SQ are initialized

applying CKC locally at each sensing unit j ∈ SQ, while the rest of the sensing units j /∈ SQ set the
entries of Mj

j,: and Nj
j,: to zero initially. As the DKC algorithm progresses through iterations it can

be seen only the coefficients weighing the block diagonal kernels in the dictionary are converging
to a nonzero value (α2, α3, α4), while the rest α1, α5, α6 converge to zero since they correspond to
kernel matrices that do not promote a block diagonal structure in the synthetic dictionary.

Figs. 4 and 5 depict the accuracy, purity and NMI for DKC vsersus DCA iteration index
for various number of ADMM iterations ρt. The parameters for DKC where set as v = 0.01,
µ = 10, ω = 2, ξ = 15 and c = 0.01. All methods in this synthetic example are able to reach accu-
racy, NMI and purity equal to one, though the novel DKC approach does not require the presence
of a central processor. Note that as the number of ADMM iterations increases the rate of conver-
gence goes up; especially when increasing from ρt = 1 to ρt = 3 beyond which the rate gains
are negligible. Fig. 3 (Right) depicts the cumulative disagreement between the local kernel coef-
ficients across all 60 units, i.e.,

∑
j,j′ δ

3
j,j′ in (36). It can be seen that the disagreement converges

to zero demonstrating that all units estimate the same kernel coefficients and therefore same kernel
similarity matrix.
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Figure 3: Trajectory of the kernel coefficients {αb}6b=1 vs. DCA iteration index.

5.2 Unimib Dataset

The second dataset corresponds to the University of Milano Bicocca Smartphone-based Human
Activity Recognition (Unimib) which consists of accelerometer readings of users that participated
in activities such as walking, running, and climbing stairs (Q = 3). The signals are pre-processed
such that the data vectors are grouped into individual epochs with each of them conformed of 51
samples in length and centered around the peak of the epochs. Since the accelerometer readings are
considered along all the 3-D axes, the concatenated signal is 153 samples long. In the distributed
setting, unit j acquires data entry xt(j); 20 sensing units acquire data entries xt(j) corresponding
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Figure 4: (Left) Accuracy vs. DCA iteration index for different number of ADMM iterations;
(Right) NMI vs. DCA iteration index.
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Figure 5: (Left) Purity vs. DCA iteration index for different number of ADMM iterations; (Right)
Cumulative spatial disagreement between the local kernel coefficients across all units vs.
DCA iteration index.
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to walking, 20 units corresponding to running, and 20 units correspond to climbing stairs. The
objective is to cluster the signals based on the activity class they belong to.

Figs. 6-8 depict a box plot of the accuracy, NMI and purity respectively of DKC, TMKGC,
SPMKC and K-means averaged over 30 independent trials of the Unimib dataset. The parameters
utilized for DKC are v = 0.01, µ = 10, ω = 2, ξ = 15 and c = 0.01, further the kernel dictionary
D consists of 17 candidate kernel matrices among which 10 are Gaussian with variances in the
interval [10−4, 108] and 7 are polynomial with degrees in {1, . . . , 7}. For SPMKC parameter values
that gave good performance were λ1 = 4, λ2 = 1, λ3 = 400 and λ4 = 1, while for TMKGC
α = 0.1, β = 10−3. The red mark inside these box plots indicates the median accuracy for each
method and the edges of the box mark the 25 and 75 percentiles of the accuracy across the number
of trials utilized.

Fig. 6 and 8 show that both CKC and DKC outperform TMKGC, SPMKC as well as K-Means
in terms of accuracy and purity across 30 independent trials of Unimib data. CKC is formulated
to learn a block diagonal similarity structure of certain rank in contrast to TMKGC. Interestingly,
DKC also outperforms TMKGC showing the effectiveness of the collaboration between single-
hop neighboring units in carrying out the clustering task. For the NMI in Fig. 7 TMKGC got
the largest value and our novel CKC/DKC framework has the second highest value, outperforming
SPMKC and K-Means. One reason is the utilization of tensors in TMKGC that leads to higher-order
graph learning, leading to better quality clusters, though at the cost of much higher computational
complexity.
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Figure 6: Accuracy box plot over 30 independent trials on the Unimib dataset.

Figs. 9-10 depict the accuracy, NMI, purity and cumulative disagreement of DKC, versus block
coordinate descent iteration index τ for different number of DCA iterations K and ADMM iter-
ations ρt. For comparison the accuracy, NMI and purity of centralized TMKGC, SPMKC and
K-means methods are also provided. The results are depicted for the parameter values selected
earlier. One dataset among the 30 independent ones was utilized here to show the convergence
properties of DKC. Fig. 9 shows that both the accuracy and NMI, as the number of block iterations
τ increases, converge to the corresponding values achieved by CKC for sufficiently large number
of ADMM iterations ρτ and DCA iterations K. CKC and TMKGC have close accuracies, though
DKC running for limited K and ρt falls short of the centralized performance. NMI is still better for

25



SCHIZAS

CKC DKC TMKGC SPMKC K-Means

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Figure 7: NMI box plot over 30 independent trials on the Unimib dataset.
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Figure 8: Purity box plot over 30 independent trials on the Unimib dataset.
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TMKGC for this dataset. In fact DKC outperforms the clustering performance metrics achieved by
the centralized approaches SPMKC and K-Means. This advocates the collaborative nature of our
novel approach which allows information to diffuse more and more across the agents as the ADMM
iterations increase.

0 2 4 6 8 10 12 14 16 18 20

Block coordinate descent iteration index

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
c

c
u

ra
c

y

CKC

TMKGC

SPMKC

K-Means

DKC (K=3, 
t
=5)

DKC (K=1, 
t
=5)

DKC (K=1, 
t
=1)

0 2 4 6 8 10 12 14 16 18 20

Block coordinate descent iteration index

0

0.1

0.2

0.3

0.4

0.5

0.6

N
M

I

CKC

SPMKC

K-Means

DKC (K=3, 
t
=5)

DKC (K=1, 
t
=5)

DKC (K=1, 
t
=1)

TMKGC

Figure 9: (Left) Accuracy vs. block coordinate iteration index for different number of ADMM and
DCA iterations; (Right) NMI vs. iteration index for different number of ADMM and
DCA iterations on the Unimib dataset.

Similar conclusions can be drawn for the purity metric in Fig. 10 (Left). Fig. 10 (Right)
depicts the cumulative disagreement between the local kernel coefficients vs. block coordinate
descent iteration index τ and similarly to the synthetic scenario as the ADMM iterations ρτ and
DCA iterations K increase it gets closer to zero.
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Figure 10: (Left) Purity vs. block coordinate iteration index for different number of ADMM and
DCA iterations; (Right) Cumulative spatial disagreement between the local kernel co-
efficients across all units vs. block coordinate iteration index for different number of
ADMM and DCA iterations on the Unimib dataset.
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5.3 Salinas Dataset

This is a hyperspectral image dataset captured by an Aviris sensing system over the Salinas valley,
California. These are primarily farmland images that indicate the presence of different crops/materials
in different parts of the images. Each sensing unit measurement vector xi has 224 entries; each of
these vectors will be clustered into different groups based on the crop/material they belong to. A
total of Q = 4 different randomly selected materials were considered and 25 random pixels were
chosen.

In the distributed setting, unit j acquires data entry xt(j) for j = 1, . . . , 60; 15 sensing units
acquire data entries xt(j) corresponding to the first material, 13 units corresponding to the second
material, 18 units correspond to the third material and 14 units to the fourth material. The objective
is to cluster the signals based on the crop/material class they belong to. The parameters utilized for
DKC are v = 0.01, µ = 10, ω = 2, ξ = 15 and c = 1. Further, the kernel dictionary D consists of
17 candidate kernel matrices among which 10 are Gaussian with variances in the interval [10−4, 108]
and 7 are polynomial with degrees in {1, . . . , 7}. For SPMKC values that gave good performance
were λ1 = 6, λ2 = 1, λ3 = 600 and λ4 = 1, while for TMKGC α = 0.1, β = 10−4.

Figs. 11-13 depict a box plot of the accuracy, purity and NMI respectively of DKC, TMKGC,
SPMKC and K-means averaged over 50 independent trials of the Salinas dataset. The red mark
inside these box plots indicates the median accuracy for each method and the edges of the box mark
the 25 and 75 percentiles of the accuracy across the number of trials utilized.
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Figure 11: Accuracy box plot over 50 independent trials on the Salinas dataset.

Fig. 11 and 13 show that both CKC outperforms TMKGC, SPMKC as well as K-Means in terms
of accuracy and purity. DKC accuracy gets really close to the centralized one achieved by CKC.
For the NMI, which here is given for completeness since labels are not available, TMKGC got the
largest value, though CKC and DKC get really close and outperform SPMKC and K-Means. NMI
is better in TMKGC again due to the usage of a tensor based formulation extracting higher-order
graph similarities.

Figs. 14-15 depict the accuracy, NMI, purity and cumulative disagreement of DKC, versus
block coordinate descent iteration index τ for different number of DCA iterations K and ADMM
iterations ρt. For comparison the accuracy, NMI and purity of centralized TMKGC, SPMKC and K-
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Figure 12: NMI box plot over 50 independent trials on the Salinas dataset.

CKC DKC TMKGC SPMKC K-Means

0.5

0.6

0.7

0.8

0.9

1

P
u

ri
ty

Figure 13: Purity box plot over 50 independent trials on the Salinas dataset.
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means methods are also provided. The results are depicted for the parameter values selected earlier.
One dataset among the 50 independent Salinas datasets was utilized here to show the convergence
properties of DKC. Fig. 14 shows that both accuracy and NMI, as the number of block iterations
τ increases, approach closely the corresponding values achieved by CKC as the number of ADMM
iterations ρτ and DCA iterations K increase. In fact DKC outperforms the clustering performance
metrics achieved by the centralized approaches TMKGC, SPMKC and K-Means for sufficiently
large number of ADMM and DCA iterations. The results here are depicted for one dataset among the
50 realizations for which case CKC outperforms TMKGC. Again the objective is to demonstrate the
potential of DKC in getting close to the CKC performance and potentially outperforming alternative
centralized approaches.

0 2 4 6 8 10 12 14

Block coordinate iteration index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

CKC

TMKGC, SPMKC

DKC (K=1, 
t
=1)

DKC (K=1, 
t
=3)

DKC (K=3, 
t
=3)

K-Means

0 2 4 6 8 10 12 14

Block coordinate iteration index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

CKC

TMKGC

DKC (K=1, 
t
=1)

DKC (K=1, 
t
=3)

DKC (K=3, 
t
=3)

SPMKC

K-Means

Figure 14: (Left) Accuracy vs. block coordinate iteration index for different number of ADMM
and DCA iterations; (Right) NMI vs. iteration index for different number of ADMM
and DCA iterations on the Salinas dataset.

Similar conclusions can be drawn for the purity metric in Fig. 15 (Left). Fig. 15 (Right) depicts
the cumulative spatial disagreement between the local kernel coefficients vs. block coordinate de-
scent iteration index τ and similarly to the synthetic scenario as the ADMM iterations ρτ and DCA
iterations K increase it gets closer to zero. Again Figs. 14-15 advocate the collaborative nature of
our novel approach which allows information to diffuse more and more across the network as the
ADMM iterations increase.

6. Conclusions

A novel distributed framework for joint kernel learning and clustering was derived capable of deter-
mining clustering configurations in an unsupervised manner. Utilizing principles from semidefinite
programming, block coordinate descent and difference of convex formulations we arrive at a mini-
mization formulation that facilitates the selection of proper block diagonal kernel similarity matrices
that allow effective unsupervised data clustering. The SDP problems solved during a block coordi-
nate cycle are further reformulated in a separable fashion allowing the application of ADMM which
leads to a fully distributed joint kernel learning and clustering approach. Convergence guarantees
demonstrate that the novel framework promotes the construction of block diagonal data similar-
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Figure 15: (Top) Purity vs. block coordinate iteration index for different number of ADMM and
DCA iterations; (Bottom) Cumulative disagreement between the local kernel coeffi-
cients across all sensing units vs. block coordinate iteration index for different number
of ADMM and DCA iterations on the Salinas dataset.

ity matrices. Detailed numerical examples show the superior clustering accuracy achieved by the
distributed framework over existing alternatives. Last but not least, it should be emphasized that
multi-hop communication typically comes with severe challenges on message reception, schedul-
ing and routing to name a few. In this work we emphasized more on the learning aspects of the
clustering problem. Moreover, kernel dictionary selection and unknown number of sources are also
practical aspects that should be considered. Future work will focus on addressing the aforemen-
tioned difficulties to generalize the capabilities of our novel clustering framework.
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Appendix A. Proof of Proposition 1

Assume that the dictionary of kernels D := {Ab
x}Bb=1 contains elements for which there exist non-

negative scalars β1, . . . , βB with
∑B

b=1 βb = 1 such that
∑B

b=1 βbA
b
x is block diagonal with Q

diagonal blocks and equal rank. We show that the formulation in (4) is able to find a set of optimal
α∗b coefficients such that

∑B
b=1 α

∗
bA

b
x is also block diagonal with Q diagonal blocks each of rank

one. Employing the Schur complement (Boyd and Vandenberghe, 2004) the first matrix inequality
in (4) is rewritten [

IQ MT

M
∑B

b=1 αbA
b
x

]
� 0⇔

B∑
b=1

αbA
b
x �M ·MT . (49)

The fourth matrix inequality (NTM + MTN) ≥ w · IQ, w > 0 in (4) implies that the rank of M
and N should be equal to Q. To prove this consider the singular value decomposition of MTN =
UmnΣmnV

T
mn where Umn and Vmn are Q × Q orthonormal matrices, while Σmn is a Q × Q

diagonal matrix. Let us assume that rank(MTN) = Q − Z < Q, and let VZ ∈ RQ×Z corre-
spond to these columns of Vmn that span the nullspace of MTN; note that the dimensionality of
nullpace(MTN) is equal to Z > 0. Given that VT

ZVZ = IZ we multiply the left and right parts of
the matrix inequality in (4) from the left with VT

Z and the right with VZ to obtain

VT
Z(UmnΣmnV

T
mn + VmnΣmnU

T
mn)VZ � w · IZ (50)

⇔ VT
ZUmnΣmnV

T
mnVZ + VT

ZVmnΣmnU
T
mnVZ � w · IZ .

Assuming that MTN is rank deficient, then the nullspace of MTN is nonempty with dimensionality
Z ≥ 1. Then, it follows that the lhs side of the second inequality in (50) will be zero, and 0Z×Z �
w ·IZ which cannot be true since w > 0. Therefore matrix MTN has full rank equal toQ, therefore
both factors M and N have full rank equal to Q when w > 0 [for sufficiently large coefficient µ in
(4)].

Thus, from (49)
∑B

b=1 α
∗
bA

b
x will have rank at least Q for w > 0. The second matrix inequality

in (4) gives [
θ√
Q

IP M−N

(M−N)T 1√
Q

IQ

]
� 0⇔ ‖M−N‖2F ≤ θ, (51)

which for sufficiently large ξ ensures that M∗ and N∗ are approximately equal.
From the Schur complement the third matrix inequality in (4)[

ψ√
P

IP
∑B

b=1 αbA
b
x −M ·NT

(
∑B

b=1 αbA
b
x −M ·NT )T 1√

P
IP

]
� 0

⇔

∥∥∥∥∥
B∑
b=1

αbA
b
x −M ·NT

∥∥∥∥∥
2

F

≤ ψ. (52)

Optimal ψ∗ = 0, since there exists a convex combination
∑B

b=1 βbAxb which has rank Q.
ψ∗ = 0 can be achieved by choosing optimal α∗b that result a rank Q kernel

∑B
b=1 α

∗
bA

b
x, while

there exist optimal factors M∗,N∗ such that
∑B

b=1 α
∗
bA

b
x = M∗(N∗)T which results ψ∗ = 0.

32



DISTRIBUTED KERNEL-DRIVEN DATA CLUSTERING

Finally the term v ·
∑P

`=1 [‖M`,:‖1 − ‖M`,:‖2] ≥ 0 can get its lowest value of zero if factor M∗

has at most one nonzero element on each row M∗
`,: for ` = 1, . . . , Q (cf. Sec. 3). The same holds

for term v ·
∑P

`=1 [‖N`,:‖1 − ‖N`,:‖2] ≥ 0.
Given the P × Q factors M∗,N∗ have rank Q, this implies the presence of Q linearly inde-

pendent columns in M∗, N∗. Thus, the nonzero elements in each column of M∗ should be in
nonoverlaping positions resulting a block diagonal matrix

∑B
b=1 α

∗
bA

b
x with Q blocks with posi-

tions corresponding to the support of each of the Q columns of M∗ and N∗. Every row M∗
`,: (and

N∗`,: ) should have exactly one nonzero entry, otherwise there is at least one diagonal block with
rank greater than 1 resulting rank(

∑B
b=1 α

∗
bA

b
x) > Q which is not true. �

Appendix B. Proof of Lemma 2

We establish that the cost function, namely JM,τ,κ(·), in (6) is bounded below by a finite negative
number for any τ and κ [similar arguments can be applied for (4)]. Note that variable wτ,κ+1 ≥ 0.
For the variable ψ, after using Schur complement in the third LMI in (6), we obtain∥∥∥∥∥

B∑
b=1

ατ,bA
b
x −Mτ,κ+1N

T
τ

∥∥∥∥∥
2

F

≤ ψτ,κ+1, (53)

from which ψτ,κ+1 ≥ 0. Similarly, θτ,κ+1 ≥ 0. From the constraints in (6)

wτ,κ+1 ≤ Q−1trace((Mτ,κ+1)TNτ ) (54)

≤
∑P

`=1 ‖Nτ,`,:‖2‖Mτ,κ+1,`,:‖2
≤
∑P

`=1 max(‖Nτ,`,:‖22, ‖Mτ,κ+1,`,:‖22)

≤
∑P

`=1[‖Nτ,`,:‖22 + ‖Mτ,κ+1,`,:‖22].

The second inequality in (54) follows from the Cauchy-Schwarz inequality (Horn and Johnson,
2012). Now, from the first LMI in (6) it follows that trace(Mτ,κ+1(Mτ,κ+1)T ) ≤ trace(

∑
b ατ+1,bA

b
x)

= 1, since trace(Ab
x) = 1 and

∑
b αb = 1. The second LMI in (6) gives

‖Mτ,κ+1 −Nτ‖2F ≤ θτ,κ+1, (55)

from which it follows that Nτ = Mτ,κ+1 + Eτ,κ+1 with ‖Eτ,κ+1‖2F ≤ θτ,κ+1. Then, it follows that

‖Nτ‖2F ≤ ‖Mτ,κ+1‖2F + ‖Eτ,κ+1‖2F + 2trace(MT
τ,κ+1Eτ,κ+1)

≤ 1 + θτ,κ+1 + 2 ·
P∑
`=1

[‖Mτ,κ+1,`,:‖22 + ‖Eτ,κ+1,`,:‖22]

≤ 3 + 3θτ,κ+1, (56)

where the second and third inequalities in (56) resulted from (54), ‖Eτ,κ+1‖2F ≤ θτ,κ+1 and
‖Mτ,κ+1‖2F ≤ 1. Combining (54) and (56) it follows for any τ, κ that

wτ,κ+1 ≤ Q−1 · [4 + 3θτ,κ+1]. (57)
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By increasing ξ, θτ,κ+1 can be made small and finite. Next we demonstrate that terms ‖M`,:‖1 −
Mτ,κ,`,:

‖Mτ,κ,`,:‖2 MT
`,: are nonnegative. Specifically

Mτ,κ,`,:M
T
`,: ≤ ‖Mτ,κ,`,:‖2 · ‖M`,:‖2 ≤ ‖Mτ,κ,`,:‖2 · ‖M`,:‖1

⇒ ‖M`,:‖1 −
Mτ,κ,`,:

‖Mτ,κ,`,:‖2
MT

`,: ≥ 0. (58)

The first inequality in (58) is direct application of the Cauchy-Schwarz inequality (Horn and
Johnson, 2012), whereas the second inequality is the result of the `1 norm of a vector been larger
than or equal to the `2 norm. The second line in (58) follows after dividing both sides of the
first line with ‖Mτ,κ,`,:‖2. Note that ‖M`,:‖1 −

Mτ,κ,`,:

{Mτ,κ,`,:‖2
M`,: = 0 if and only if M`,: has one

nonzero element in which case ‖M`,:‖2 = ‖M`,:‖1. Thus, we conclude that the cost function
JM,τ,κ(·) ≥ −µ ·Q−1 · [4 + 3θτ,κ] and therefore is bounded below from a finite negative value. The
same process is applied for the cost in (4) and (8).

If the cost function JM,τ,κ+1(·) reaches a negative value that implies that wτ,κ+1 > 0 otherwise
the cost would be positive. This further implies from (6) that

0Q×Q � wτ,κ+1 · IQ � 0.5 · (NT
τ Mτ,κ+1 + Mτ,κ+1N

T
τ ). (59)

Using the line of arguments between eqs. (49) and (51) it follows that (59) guarantees that Mτ,κ+1

has full rank Q. Similar arguments can be applied for the costs in (4) and (8). �

Appendix C. Proof of Proposition 3

Let Jτ,0(M, w, ψ, θ,α,Nτ ) denote the cost function in (4), when fixing factor N with Nτ . Utilizing
Thm 3. in (Tao and An, 1997), it turns out that Steps 1a and 1b of Alg. 1 applied to minimize convex
formulation (6) for fixed N = Nτ , result a decreasing sequence of cost values, i.e., for κ = 0, 1, . . .

Jτ,κ+1(Mτ,κ+1,ατ,κ+1, wτ,κ+1, ψτ,κ+1, θτ,κ+1,Nτ )

≤ Jτ,κ(Mτ,κ,ατ,κ, wτ,κ, ψτ,κ, θτ,κ,Nτ ). (60)

Lemma 2 and (60) (monotone convergence theorem) imply

limκ→∞Jτ,κ+1(·) = Jτ , (61)

where Jτ is finite. Thus, there exists a sufficiently large iteration indexK ≥ 0 such that |Jτ,κ+1(·)−
Jτ,κ(·)| ≤ ε, ∀ k ≥ K. Since cost Jτ,κ+1(·) is a continuous function there exists such integer K
such that ‖Mτ,κ+1 −Mτ,κ‖F ≤ ε1 and ‖ατ,κ+1 − ατ,κ‖F ≤ ε1 for all κ ≥ K. This follows also
from the convergence properties of DCA in (Tao and An, 1997).

At iteration κ = K the stopping criterion will be satisfied at the end of Step 1b. At this point the
iterates will be Mτ+1,ατ+1,Nτ , wτ,K , ψτ,K and θτ,K . The corresponding cost function value of
(4) will be equal to Jτ,K = −µ ·wτ,K +ω ·ψτ,K +ξ ·θτ,K +v ·

∑P
`=1[‖Mτ+1,`,:‖1−‖Mτ+1,`,:‖2]+

v ·
∑P

`=1[‖Nτ,`,:‖1 − ‖Nτ,`,:‖2].
During iteration τ and before Steps 2a and 2b are recursively carried out, the initial cost value

for (4), is equal to Jτ,K calculated for using the most recent updates Mτ+1,ατ+1,Nτ , wτ,K , ψτ,K
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and θτ,K . During Steps 2a and 2b factor M = Mτ+1, kernel coefficients α = ατ+1 and the cost
in (4) is minimized wrt N, w,ψ and θ. Again using Thm. 3 in (Tao and An, 1997), it turns out that
Steps 2a and 2b of Alg. 1 applied to minimize convex formulation (4) for fixed M, and α result a
decreasing sequence of cost values, i.e., for κ = 0, 1, . . .

Jτ,κ+1(Mτ+1,ατ+1, wτ,κ+1, ψτ,κ+1, θτ,κ+1,Nτ,κ+1)

≤ Jτ,κ(Mτ+1,ατ+1, wτ,κ, ψτ,κ, θτ,κ,Nτ,κ), (62)

while Jτ,0(Mτ+1,ατ+1) = Jτ,K when Steps 2a and 2b start. Thus, there exists integer K ′ such
that ‖Nτ,κ+1 −Nτ,κ‖F ≤ ε1 for all κ ≥ K ′. From (60) and (62) the cost function values iterates
Jτ (Mτ ,Nτ ,ατ ) for (4) form a decreasing sequence, since the cost is lower bounded from below
the cost iterates converge to a finite value. The continuity of cost (4), implies that a sufficiently large
T exists such that ‖Mτ+1 −Mτ‖F + ‖Nτ+1 −Nτ‖F + ‖ατ+1 −ατ‖F < ε2 for τ > T . �

Appendix D. Proof of Proposition 4

From the equality constraints in the last two lines of (18) and (19) notice that Mj′

j,: = Mj,:, Nj′

j,: =

Nj,: and αjb = αb for all j′ ∈ Nj and j = 1, . . . , P and b = 1, . . . , B. Next, we simplify notation
accordingly. Using similar arguments as in the last two paragraphs of Apdx. B, it follows that the
set of local LMIs [H2

τ (Nτ )]Nj � wj · IQ for j ∈ SQ for wj > 0 in (18) ensures that a minimizing
factor M∗ will satisfy

0.5 ·
∑

j′∈Nj∪{j}[(N
j
τ,j′,:)

TM∗
j′,: + (M∗

j′,:)
TNj

τ,j′,:] � wj · IQ � 0,

which further implies that (|Nj |+1)×Q factor submatrix M∗
Nj :=

[
(M∗

j,:)
T , (M∗

j′,:)
T , . . . , (M∗

j′′,:)
T
]T

, with j, j′, j′′ ∈ Nj , has rank equal to Q, thus rank(M∗) = Q. Similarly the third LMI in (19)
guarantees that a minimizing N∗ will also have rank equal to Q.

The local LMI constraint G1,j � 0 can be rewritten as
∑B

b=1 αb[A
b
x]Nj −MNj · (MNj )

T � 0
which for an optimal set of variables M∗ and {α∗b}Bb=1 produces

B∑
b=1

α∗b [A
b
x]Nj −M∗

Nj · (M
∗
Nj )

T

= ENj

[
B∑
b=1

α∗b [A
b
x]−M∗ · (M∗)T

]
ET
Nj � 0, (63)

where ENj is a (|Nj | + 1) × P matrix where each row has a single nonzero entry equal to one.
The column indices for those nonzero entries in ENj are in the set Nj ∪ {j}. The second row in
(63) is indicating that

∑B
b=1 α

∗
b [A

b
x]Nj −M∗

Nj · (M
∗
Nj )

T is a submatrix of
∑B

b=1 α
∗
b [A

b
x] −M∗ ·

(M∗)T . Given that
∑B

b=1 α
∗
b [A

b
x]Nj −M∗

Nj · (M
∗
Nj )

T � 0 and rank(M∗
Nj · (M

∗
Nj )

T ) = Q,

then it follows that rank(
∑B

b=1 α
∗
b [A

b
x]Nj ) ≥ Q which ensures that rank(

∑B
b=1 α

∗
b [A

b
x]) ≥ Q since∑B

b=1 α
∗
b [A

b
x]Nj is a submatrix of

∑B
b=1 α

∗
b [A

b
x].

If the kernel dictionary D contains a unique subset of kernels whose convex combination is
block diagonal with Q diagonal blocks of rank 1, then there exists kernel coefficients {α∗b}Bb=1 and
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P × Q factors M∗,N∗ such that
∑B

b=1 α
∗
b [A

b
x] = M∗(N∗)T from which it follows that for suffi-

ciently large ω, Gτ,3,j(N
∗) = 0 which further implies that ψ∗j = 0 for j = 1, . . . , P in (18). Sim-

ilarly, for sufficiently large ω in (19) , Gτ,3,j(M
∗) = 0 which further implies that ψ∗j = 0 in (19).

The block diagonal structure of
∑B

b=1 α
∗
b [A

b
x] implies that M∗ and N∗ can have at most one nonzero

entry per row. For sufficiently large v and DCA iterations K, if Mτ,κ = diag(c1, c2, . . . , cp)M
∗ for

κ ≥ K, with {ci}Pi=1 fixed arbitrary scalars that results[
‖M∗

`,:‖1 −
Mτ,κ,`,:

‖Mτ,κ,`,:‖2
(M∗

`,:)
T

]
(64)

= ‖M∗
`,:‖1 −

c` ·M∗
`,: · (M∗

`,:)
T

c` · ‖M∗
`,:‖2

= ‖M∗
`,:‖1 − ‖M∗

`,:‖2 = 0,

where ` = 1, . . . , P , the first equality stems from Mτ,κ
`,: = c` ·M∗

`,: whereas the second inequality
from the property that M∗ has at most one nonzero entry per row. Thus, for sufficiently large v
the fourth summation term in the cost in (18) will be zero. Similarly, it can shown that the fourth
summation term in (19) will also be zero. Further, w∗j in (18) will attain the maximum possible
value coinciding with theQth eigevalue of the local matrix [H2

τ (N∗)]Nj formed using the submatrix
M∗
Nj . Thus, M∗ and {α∗b} are minimizers of (18), and N∗ minimizer of (19) for sufficiently large

v and ω.
Similarly, for sufficiently large ω and v, M∗,N∗ and {α∗b}Bb=1 result ψ∗ = 0 following from the

third LMI in (6) and second LMI in (8) being equal to a zero matrix, while[
‖M∗

`,:‖1 −
Mτ,κ,`,:

‖Mτ,κ,`,:‖2
(M∗

`,:)
T

]
=[

‖N∗`,:‖1 −
Nτ,κ,`,:

‖Nτ,κ,`,:‖2
(N∗`,:)

T

]
= 0, (65)

for ` = 1, . . . , P and κ ≥ K when Mτ,κ = diag(c1, c2, . . . , cP )M∗ and Nτ,κ = diag(c′1, c
′
2, . . . , c

′
P )

·N∗, with {ci, c′i}Pi=1 fixed arbitrary scalars. Again w∗ will attain the maximum possible value co-
inciding with the Qth eigevalue of H2

τ,κ(M∗). Thus, M∗,N∗ and {α∗b}Bb=1 are also minimizers
of (6)-(8) for sufficiently large v and ω. Thus, both the central and separable formulations in (6)
and (18) may not be equivalent but they share optimal solutions under the assumptions of Prop. 4
[similarly for (8) and (19)]. �

Appendix E. Proof of Proposition 5

We will utilize the convergence claims in (He and Yuan, 2015). First we establish that the constraint
set of (18) is strictly feasible (Slater’s condition). Consider a set of nonnegative kernel coefficients
values {α∗b}Bb=1 such that αjb = βj,j

′

b = α∗b for j′ ∈ Nj and j = 1, . . . , P that satisfy
∑B

b=1 α
∗
b = 1,

as well as the equality constraints involving αjb and βj,j
′

b in (18).
Let the eigenvalue decomposition

∑B
b=1 α

∗
bA

b
x = Ux,BΛBUT

x,B and consider factor matrix

M∗ = Ux,B[:, 1 : Q]Λ
1/2
B,Q, where Ux,B[:, 1 : Q] corresponding to the firstQ principal eigenvectors

in UB with ΛB,Q containing the corresponding principal eigenvalues. Note that
∑B

b=1 α
∗
bA

b
x −

M∗(M∗)T =
∑B

b=1 α
∗
bA

b
x −Ux,B[:, 1 : Q]ΛB,QUx,B[:, 1 : Q]T is a positive semidefinite matrix,
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thus
∑B

b=1 α
∗
bA

b
x � M∗(M∗)T which further implies that G1,j � 0 is satisfied for j = 1, . . . , P

in (18). Further, setting Zj,j′ = Mj
j,: = Mj′

j,: = M∗
j,: for j = 1, . . . , P and j′ ∈ Nj ensures that the

last two equalities in (18) are satisfied.
For the coefficient values {α∗b}Bb=1 and factor M∗ we can choose values ψ∗j , θ

∗
j that satisfy

Gτ,2,j(Nτ ) � 0 and Gτ,3,j(Nτ ) � 0 for j = 1, . . . , P . By settingw∗j = {Qth largest eigenvalue of
[M∗
Nj (M

∗
Nj )

T } ≥ 0 and sufficiently small θ∗j the LMI [H2
τ (Nτ )]Nj � w∗j · IQ for j ∈ SQ is

satisfied. Thus, the solution set of (18) is non-empty.
The x variables in (He and Yuan, 2015, Eqn. (1.1)) correspond to factor vectors Mj

j,:, {M
j′

j,:}j′∈Nj ,
coefficients {αjb}

B
b=1, variables wj , ψj and θj for j = 1, . . . , P . The y variables in (Eqn. (1.1) He

and Yuan, 2015) include the auxiliary variates Zj,j′ and βj,j
′

b for j = 1, . . . , p and j′ ∈ Nj . The
equality constraint A · x + B · y = 0 in (Eqn. (1.1) He and Yuan, 2015) corresponds to the last
four equality constraints in (18). Further, convex set X corresponds to the convex LMIs in (18) and
scalar inequality constraints, as well as convex linear equality

∑
b α

j
b = 1 for j = 1, . . . , P . Set

Y in (Eqn. (1.1) He and Yuan, 2015) is the entire vector space RQ×1 in which the Zj,j′ vectors lie
which by definition is convex. Finally, θ1(x) in (Eqn. (1.1) He and Yuan, 2015) corresponds to the
convex cost function in (18), and θ2(y) = 0.

Thus, the convergence claims follow as a direct application of (Thm. 6.1 He and Yuan, 2015)
since (18) was proved to be a special case of the family of problems considered in (Eqn. (1.1) He
and Yuan, 2015). The exact same line of arguments can be applied for (19) to show that is a special
case of the formulation in (Eqn. (1.1) He and Yuan, 2015). �
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