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Abstract

In this paper, we focus our attention on the high-dimensional double sparse linear re-
gression, that is, a combination of element-wise and group-wise sparsity. To address this
problem, we propose an IHT-style (iterative hard thresholding) procedure that dynamically
updates the threshold at each step. We establish the matching upper and lower bounds for
parameter estimation, showing the optimality of our proposal in the minimax sense. More
importantly, we introduce a fully adaptive optimal procedure designed to address unknown
sparsity and noise levels. Our adaptive procedure demonstrates optimal statistical accu-
racy with fast convergence. Additionally, we elucidate the significance of the element-wise
sparsity level s0 as the trade-off between IHT and group IHT, underscoring the superior
performance of our method over both. Leveraging the beta-min condition, we establish
that our IHT-style procedure can attain the oracle estimation rate and achieve almost full
recovery of the true support set at both the element level and group level. Finally, we
demonstrate the superiority of our method by comparing it with several state-of-the-art
algorithms on both synthetic and real-world datasets.

Keywords: double sparsity, iterative hard thresholding, minimax optimality, fully adap-
tive procedure, oracle estimation rate.

1. Introduction

Over the last decade, the rapid growth of high-dimensional data has drawn broad at-
tention to sparse learning across many scientific communities, with plenty of remarkable
achievements in algorithms, theory, and applications. One of the well-studied problems
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is the sparsity-constrained linear regression, also known as the best subset selection. We
consider a linear model

y = Xβ∗ + ξ,

where y ∈ Rn is the response vector, X ∈ Rn×p is the design matrix, β∗ ∈ Rp is the
underlying regression coefficient and ξ ∈ Rn is the sub-Gaussian random error with scale
parameter σ2. In the high-dimensional framework, we focus on the case where p � n and
the coefficient β∗ is sparse in the sense that only a few covariates are important to the
model. Traditionally, element-wise `0 sparse problem considers the parameter space

β∗ ∈ {β ∈ Rp :

p∑
i=1

I(βi 6= 0) ≤ s′},

where βi is the ith entry of β and s′ is some positive integer, which controls the sparsity
level of the sparsity-constrained linear regression problem. Best subset selection is a famous
NP-hard problem (Natarajan, 1995), and it has been widely studied in the fields of statistics
and machine learning (Bertsimas et al., 2016; Yuan et al., 2018; Huang et al., 2018; Zhu
et al., 2020).

Recently, an increasing number of studies on high-dimensional variable selection have
focused on the concept of structured sparsity. These studies assume that important vari-
ables form specific structures or patterns, with group-wise sparsity being one of the most
prominent examples. The group-wise `0 sparsity considers the parameter space

β∗ ∈ {β ∈ Rp :

m∑
j=1

I(βGj 6= 0) ≤ s},

where {Gj}mj=1 are the indices of m non-overlapping groups such that ∪mj=1Gj = {1, . . . , p}.
Here positive integer s controls the number of nonzero groups in the model. The group
sparsity means that within a group, the coefficients are either all zeros or at least one
nonzero. In particular, when |G1| = . . . = |Gm| = 1, the group selection problem boils
down to the standard best subset selection. To date, a variety of practical algorithms have
been explored and investigated to conduct group `0 selection (Eldar et al., 2010; Huang
et al., 2011; Hazimeh et al., 2023; Zhang et al., 2023).

When considering each group that has been selected, it is generally accepted that only
a few of the variables that make up the group are actually significant. We refer to this idea
as double sparsity and define it as follows:

Definition 1 (Double sparsity) The regression coefficient β∗ ∈ Rp is called (s, s0)-sparse
if

‖β∗‖0,2 :=

m∑
j=1

I(β∗Gj
6= 0) ≤ s and ‖β∗‖0 :=

p∑
i=1

I(β∗i 6= 0) ≤ ss0. (1)

Double sparsity promotes sparsity both within and between groups. Specifically, it restricts
the number of nonzero groups included in the model to s, and within these s groups, the
number of nonzero elements must be no more than ss0. Intuitively, s0 can be thought of as
the average sparsity within the s selected groups, providing insight into the sparsity levels
within the nonzero groups.
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1.1 Related Work

Recently, sparse group selection has emerged as a prominent area of high-dimensional
structured sparsity learning. To tackle this problem, a combination of two penalized meth-
ods is often considered. In order to perform sparse group selection, Friedman et al. (2010)
and Simon et al. (2013) proposed sparse group Lasso (SGLasso), a combination of the Lasso
penalty (Tibshirani, 1996) and the group Lasso penalty (Yuan and Lin, 2006) joined to-
gether. Numerous efforts have been dedicated to accelerating the convergence of SGLasso
(Ida et al., 2019; Zhang et al., 2020).

The theoretical research on double sparsity began with Cai et al. (2022), which estab-
lished the minimax lower bounds for the estimation error of the double sparse linear regres-
sion, and the near-optimal upper bounds for the estimation error of SGLasso are obtained
under the irrepresentable condition. Moreover, they provided the theoretical guarantees for
both the sample complexity and estimation error of SGLasso. Li et al. (2024) concentrated
on the Gaussian location model with a double sparse structure. They established the min-
imax rates for the estimation error over `u(`q) mixed-norm for u, q ∈ [0, 1]. Despite these
advancements, there still remains a dearth of methods with optimal theoretical guarantees.

Traditional convex relaxation-based methods, such as SGLasso, inherently introduce
estimation bias for the coefficients, especially when large coefficients undergo significant
shrinkage. Moreover, Bellec (2018) demonstrated that convex estimators, such as the Lasso-
type estimator, cannot attain the oracle estimation rate O(σ

√
ss0
n ), even when the beta-min

condition is satisfied. This phenomenon motivates us to develop computationally feasi-
ble non-convex algorithms, with iterative hard thresholding (IHT, Blumensath and Davies
(2009)) being a representative example. IHT and its variants have garnered increasing at-
tention for their efficacy in addressing a variety of high-dimensional statistical inference
problems (Blumensath and Davies, 2010; Jain et al., 2014; Yuan et al., 2020; Hao et al.,
2021). Given sparsity level s′, IHT performs a gradient descent step on the parameter β,
followed by the selection of the s′ largest absolute values at each subsequent step. Under
restricted convexity/smoothness conditions, Jain et al. (2014) showed that IHT can obtain a
minimax optimal estimator for high-dimensional M-estimation given a sufficient large spar-
sity level. Yuan et al. (2018) investigated the parameter estimation and support recovery
of IHT for both s = s∗ and s � s∗ under RIP-type conditions. Giraud (2021) employed
the IHT procedure in the context of linear regression with group sparsity and established
the optimal upper bound for parameter estimation. However, most of the related works
consider the known sparsity level s′ as prior information, making it challenging to analyze
theoretical guarantees in the non-asymptotic sense without the knowledge of s′. To tackle
this problem, Ndaoud (2020) proposed a fully adaptive IHT-style procedure, which can
achieve the optimal rates for parameter estimation with unknown s′.

1.2 Main Results and Contributions

In this paper, our goal is to construct feasible methods for double sparse linear regression
that are not only efficient but also with optimal statistical properties guaranteed. To the
best of our knowledge, our paper is the first to develop a fully adaptive optimal procedure
for high-dimensional double sparse linear regression with unknown s, s0, and σ.
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Addressing the signal under the double sparse assumption was an unresolved challenge
until Cai et al. (2022); Li et al. (2024). The approach employed in Cai et al. (2022) relies
on sub-gradient and dual certificate constructions, applicable only in the context of `1-type
penalties. An earlier work by Li et al. (2024) introduced an IHT-style algorithm for detecting
signals with a double sparse structure. They demonstrated the minimax optimality of
the proposed algorithm for parameter estimation. However, this algorithm is impractical
because it depends on the unknown parameters s, s0, and σ. Notably, achieving adaptivity
for double sparsity is much more challenging than for element-wise or group-wise sparsity. A
natural approach is using a grid search technique for tuning the unknown parameters s and
s0 such as Cai et al. (2022). However, the grid search approach is computationally infeasible,
and difficult to establish optimal guarantees from a theoretical perspective. Motivated
by the adaptive framework for element-wise sparsity (Verzelen, 2012; Ndaoud, 2020), we
develop a two-step adaptive procedure for parameter estimation and variable selection in
the context of double sparse linear regression.

Importantly, our procedure is not a simple combination of classical IHT (Ndaoud, 2020)
and group IHT (Giraud, 2021). The sequence of our two-step IHT operators is critical and
the order cannot be interchanged. Specifically, reversing the order of these two steps could
compromise the logical framework of the proof by contradiction.

The advantages of double sparse IHT over convex counterparts, such as sparse group
Lasso, are evident. Our theory is entirely based on the RIP-type condition, while the theory
of sparse group Lasso (cf. Cai et al. (2022)) relies on a stronger irrepresentable condition.
We further establish that under the beta-min conditions, our algorithm can achieve the
oracle estimation rate O(σ

√
ss0
n ), showcasing the superiority of our algorithm over sparse

group Lasso. Moreover, as far as we know, support recovery results in sparse group Lasso
have not been established under mild assumptions, while we obtain the almost full recovery
(Butucea et al., 2018) at both the element-wise and group-wise levels. This is further
supported by synthetic and real-world data analyses.

In conclusion, the main contribution of this paper is summarized as follows:

• We introduce a novel double sparse IHT operator that ensures both element-wise and
group-wise sparsity. This operator consists of two steps that control model complexity
efficiently. Building upon the double sparse IHT operator, we introduce a novel IHT-
style procedure that dynamically updates the threshold at each iteration. We analyze
upper bounds on the estimation error of our method and establish matching minimax

lower bounds for the estimation error O
(√

σ2

n (ss0 log ed
s0

+ s log em
s )
)

, conclusively

demonstrating the optimality of our proposed approach.

• We propose a fully adaptive optimal procedure that handles unknown sparsity levels
s, s0 and noise level σ. Through our research, we demonstrate that the estimator ob-
tained by our adaptive procedure attains optimal performance in the minimax sense.
As far as we know, it is the first minimax adaptive procedure for the double sparse lin-
ear regression. Furthermore, we discover the pivotal role of the element sparsity level
s0 as the trade-off between IHT and group IHT, underscoring the superior performance
of our method over both. We have implemented our proposals in an open-source R
package named ADSIHT.
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• Under the element-wise and group-wise beta-min conditions, we establish that our
algorithm attains the oracle estimation rate O(σ

√
ss0
n ). This result indicates that our

procedure performs comparably to the ordinary least-squares estimator when given
the true support set. It highlights the superiority of our DSIHT procedure over convex
counterparts such as sparse group Lasso in theory. Additionally, we demonstrate that
our procedure achieves almost full recovery of the true support set at both the element
and group levels.

• We apply our proposed methods to both synthetic and real-world datasets, and com-
prehensive empirical comparisons with several state-of-the-art methods show the supe-
riority of our method across a variety of metrics. Additionally, computational results
for a real-world dataset demonstrate that our approach produces more accurate pre-
dictive power with fewer variables and groups.

1.3 Organization

The remainder of the paper is structured as follows. We introduce the notation used
throughout the paper towards the end of this section. In Section 2, we introduce an IHT-
style procedure with fast convergence and establish matching upper and lower bounds for
estimation error. In Section 3, we firstly propose a novel information criterion to determine
the optimal stopping time and develop an adaptive procedure for conducting sparse group
selection with unknown s and σ. Then, we elucidate the connection between our work, IHT,
and group IHT. We also present a minimax adaptive procedure to select the optimal value of
s0, which makes our method a fully adaptive optimal procedure. In Section 4, we establish
that our DSIHT algorithm achieves the oracle estimation rate and accomplishes almost full
recovery under the beta-min conditions. In Section 5, we present numerical experiments
comparing our methods with several state-of-the-art approaches using both synthetic and
real-world datasets. Finally, in Section 6, we provide a summary of our study and offer
detailed proofs of our main results in the Appendix.

1.4 Notations

For the given sequences an and bn, we say that an = O(bn) or an . bn (resp. an = Ω(bn)
or an & bn) when an ≤ cbn (resp. an ≥ cbn) for some positive constant c. We write an � bn
if an = O(bn) and an = Ω(bn). Let d = max1≤j≤m |Gj | be the maximum group size. Denote
[m] as the set {1, 2, . . . ,m}, and I(·) as the indicator function. Let x ∨ y be the maximum
of x and y, while x ∧ y is the minimum of x and y. Denote S∗ = {i : β∗i 6= 0} ⊆ [p] as
the support set of β∗. Similarly, let G∗ = {j : β∗Gj

6= 0, Gj ⊆ [p], and Gj ∩ Gj′ = ∅, ∀j 6=
j′} ⊆ [m] be the group-wise support set of β∗. Let SG∗ = ∪j∈G∗Gj be all the elements
contained in groups G∗. Obviously, S∗ ⊆ SG∗ . For any set S with cardinality |S|, let
β∗S = (βj , j ∈ S) ∈ R|S| and XS = (Xj , j ∈ S) ∈ Rn×|S|, and let (X>X)SS ∈ R|S|×|S| be the
submatrix of X>X whose rows and columns are both listed in S. For a vector β, denote
‖β‖2 as its Euclidean norm. For a matrix A, denote ‖A‖2 as its spectral norm and ‖A‖F as
its Frobenius norm. Denote Ip as the p×p identity matrix. Let C,C0, C1, . . . denote positive
constants whose actual values vary from time to time. Denote the parameter space of double
sparsity as Θm,d(s, s0). Denote Sm,d(s, s0) as the space consisting of all the support sets

5



Zhang, Li, Liu and Yin

of (s, s0)-sparse vector. Notably, according to the definition of double sparsity, we have
Sm,d(a1s, b1s0) ⊆ Sm,d(a2s, b2s0) for any positive constants a1b1 = a2b2 and a1 ≤ a2. For
example, Sm,d(2s, 2s0) is a subspace of Sm,d(4s, s0). To facilitate computation, we assume
‖Xj‖2 =

√
n, ∀j ∈ [p].

2. Analysis of minimax optimality

In Section 2.1, we introduce the double sparse iterative hard thresholding (DSIHT)
operator. In particular, we provide a clear explanation of its construction and develop a
DSIHT algorithm with known sparsity and noise levels. Following this, in Section 2.2, we
analyze the sources of estimation error. Then, we establish the upper bounds for parameter
estimation of the DSIHT algorithm in Section 2.3. In Section 2.4, we derive the minimax
lower bound for double sparse linear regression, which yields that the upper bound in Section
2.3 is minimax optimal.

2.1 Double sparse iterative hard thresholding operator

Given λ, s0 > 0, we define the double sparse iterative hard thresholding operator Tλ,s0 :
Rp → Rp as the following two steps:

Step 1 (Element-wise Condition Checking): define an element-wise hard thresh-

olding operator T (1)
λ : Rp → Rp on β ∈ Rp as

{T (1)
λ (β)}j = βjI(|βj | ≥ λ), ∀j ∈ [p].

The operator T (1)
λ preserves the signal whose absolute magnitude is greater than or equal to

λ, thus it can be seen as a preliminary screening process for identifying important variables.
Step 2 (Group-wise Condition Checking): denote

Js0 := {j ∈ [m] : ‖βGj‖22 ≥ s0λ
2}.

The definition of operator T (2)
λ,s0

: Rp → Rp is

{T (2)
λ,s0

(β)}Gj =

{
βGj , if j ∈ Js0 .
0, if j ∈ [m]\Js0 .

The operator T (2)
λ,s0

selects groups with large magnitudes, utilizing group information to fur-

ther filter the important variables. The operator Tλ,s0 = T (2)
λ,s0
◦T (1)

λ is a composition of these
two steps. Unlike the classical IHT procedure, our procedure updates the threshold λ in
Tλ,s0 at each step in order to achieve both optimal statistical accuracy and fast convergence.
Given λ0 > λ∞ > 0 and 0 < κ < 1, we provide the form of the sequence {λt}∞t=1 as follows

λt = κtλ0 ∨ λ∞, t = 0, 1, 2, . . . (2)

For a given s0 and sequence of threshold {λt}∞t=1, we denote the estimators {βt}∞t=1 as

βt = Tλt,s0
(
βt−1 +

1

n
X>(y −Xβt−1)

)
, t = 1, 2, . . . . (3)
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Moreover, we denote the corresponding support set of {βt}∞t=1 as {St}∞t=1. In the studies
of variable selection, the misidentification of true support set S∗, i.e., St ∩ (S∗)c is called
type-I error, and the omission of S∗, i.e., (St)c ∩ S∗ is called type-II error. We summarize
our procedure as the following algorithm:

Algorithm 1 Double Sparse IHT (DSIHT) algorithm with known s, s0 and σ.

Require: X, y, {Gj}mj=1, κ, λ0, s0, s, σ.

1: Initialize t = 0, βt = 0 and λ∞ = 4
√

σ2

n (log ed
s0

+ 1
s0

log em
s ).

2: while λt ≥ λ∞, do
3: βt+1 = Tλt,s0

(
βt + 1

nX
>(y −Xβt)

)
.

4: λt+1 = κλt.
5: t = t+ 1.
6: end while

Ensure: β̂ = βt.

Here we offer an intuitive explanation for the choice of λt. A large λt promotes sparsity
in the estimator βt, which significantly reduces the type-I error by preventing spurious
variables from being incorporated into the model. However, excessive sparsity can result
in a high type-II error by omitting too many true variables. As Section 2.2 shows, it
leads to a high estimation error because the magnitude of β∗ is drastically shrunk to zero.
Conversely, a small λt can reduce the type-II error by increasing the complexity of the
model. Nevertheless, this allows too many spurious variables into the model, resulting in a
high type-I error. This intuition motivates us to choose the specific form of the sequence
{λt}∞t=1 by balancing these two types of errors.

In our procedure, we employ a decreasing sequence (2) instead of directly setting the
threshold as this order. The reason is that such a small threshold can potentially result in the
selection of too many unimportant variables at the initial step. This lack of sparsity makes
our procedure hard to benefit from the contraction property of the DSRIP condition, and
the estimation error cannot be well-controlled in iterations. In comparison, a sufficiently
large λ0 identifies a small set of variables, effectively controlling the false discoveries of
the initial solution. With the decrease of the threshold, we optimize the solution in an
appropriate direction iteratively without losing sparsity. A novelty of our procedure lies in
the fact that it implicitly controls the type-I error at a low level at each step, and reduces the

type-II error through iterations. In Theorem 4, we choose λ∞ �
√

σ2

n (log ed
s0

+ 1
s0

log em
s )

and show its optimality in the minimax sense.

2.2 Analysis of estimation error

To conduct the theoretical analysis, we decompose the iterative term into three parts:

Ht+1 :=βt +
1

n
X>(y −Xβt)

=β∗ +

(
1

n
X>X − Ip

)
(β∗ − βt) +

1

n
X>ξ

=β∗ + Φ(β∗ − βt) + Ξ,

(4)
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where Φ := 1
nX
>X − Ip and Ξ := 1

nX
>ξ. Equation (4) shows that the estimation error

comes from three sources:

• The true parameters β∗ shrunk by mistake.

• The optimization error that βt approximates β∗.

• The randomness caused by the errors ξ.

Among these three sources, the optimization error corresponds to the iterative procedure,
and the randomness of our proposed procedure mainly comes from the third term Ξ. In what
follows, we detail how to upper bound the latter two sources of errors accurately. Firstly,
we introduce an essential condition for the design matrix X in order to get a contraction of
the optimization error.

Assumption 1 (DSRIP condition) We say that X ∈ Rn×p satisfies the Double Sparse
Restricted Isometry Property DSRIP (s, s0, δ) with constant 0 < δ < 1, if ∀S ∈ Sm,d(s, s0)
and ∀u 6= 0, u ∈ R|S|, it holds that

1− δ ≤
‖XSu‖22
n‖u‖22

≤ 1 + δ.

Remark 2 The Double Sparse Restricted Isometry Property (DSRIP) serves as a natural
extension of the ordinary RIP condition (Candes and Tao, 2005) under the double sparse
linear regression. For sub-Gaussian design, considering a p-dimensional ss0-sparse struc-
ture, we require a sample size of n = Ω(ss0 log ep

ss0
) to ensure that the RIP condition holds

with high probability. However, for the satisfaction of the DSRIP condition, we only need
n = Ω(ss0 log ed

s0
+ s log em

s ). It is worth noting that, given p = m× d, the DSRIP condition
can be satisfied with a smaller sample size compared to RIP. Further details can be found
in Appendix C.

DSRIP serves as an essential component for analyzing the high-dimensional double
sparse linear regression (Li et al., 2024). It imposes a less stringent condition than the
ordinary RIP. Assuming the same element-wise sparsity, DSRIP only requires subsets of
ss0-sparse vectors with no more than s groups to be satisfied, whereas RIP requires all ss0-
sparse vectors to hold. If design matrix X satisfies DSRIP(s, s0, δ), we have ‖Φ‖2 ≤ δ < 1,
demonstrating that Φ serves as the contraction factor for all (s, s0)-sparse vectors. As a
result, by leveraging both DSRIP and the sparse structure of the signal, the contraction
factor Φ enables iterative reduction of the optimization error.

Next, we turn to the analysis of the random error term Ξ. To upper bound this source
of error, we need to capture the complexity of the noise term.

Lemma 3 Assume that X satisfies DSRIP(s, s0, δ). Then, there exists a constant C > 0,
the event

E :=

{
∀S ∈ Sm,d(s, s0) :

∑
i∈S

Ξ2
i ≤

4σ2

n

(
ss0 log

ed

s0
+ s log

em

s

)}

holds with probability at least 1− exp
{
−C(ss0 log ed

s0
+ s log em

s )
}

.
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Lemma 3 provides the uniform upper bounds of the random error term with high probability.
We now analyze the random term Ξ in detail and decompose the source of random errors
into two parts:

• The random errors Ξ attached to the true support set S∗.

• The random errors Ξ caused by type-I error, the mis-identification of true parameters
β∗. More concretely, some random errors escape from operator Tλ,s0 , which we call
these errors as pure errors below.

The errors caused by random errors Ξ can be attributed to two sources: the random errors
corresponding to S∗ and (S∗)c, respectively. Since S∗ ∈ Sm,d(s, s0) is with a sparse prior,
the random errors attached to S∗ can be well-bounded by event E with high probability.
However, it is difficult to find an upper bound for the pure errors since the amount of the
pure errors is undetermined. Therefore, the central problem that operator Tλ,s0 addresses is
to bound the support set of the pure errors. Intuitively, we want to collect the pure errors
in some subsets belonging to Sm,d(s, s0). Then, the magnitude of pure errors can be upper
bounded by event E .

We consider applying Tλ,s0 to the pure errors directly and show that if the pure errors
overflow Sm,d(s, s0), it will contradict with E with high probability. According to the
structure of Sm,d(s, s0), we decompose the discussion into two cases:

Case 1: Assume that the set selected by Tλ,s0 lies in no more than s groups but the amount
exceeds ss0. Element-wise condition checking ensures that all the selected entries
are larger than λ. Then, for any (s, s0)-shaped subset of this set with cardinal-
ity ss0, the total magnitude of these subsets exceeds ss0λ

2. With the choice of

λ ≥ 2
√

σ2

n (log ed
s0

+ 1
s0

log em
s ), we have ss0λ

2 ≥ 4σ
2

n (ss0 log ed
s0

+ s log em
s ), which con-

tradicts event E with high probability. We provide an illustrative example in Figure
1.

Case 2: Assume that the set selected by Tλ,s0 lies in more than s groups, yet within any
s selected groups, the number of the selected entries does not exceed ss0. Group-
wise condition checking implies that the magnitude of each selected group is larger
than s0λ

2. Consequently, the (s, s0)-shaped subset consisting of any s selected groups

satisfies that the total magnitude exceeds ss0λ
2. For λ ≥ 2

√
σ2

n (log ed
s0

+ 1
s0

log em
s ), it

contradicts with event E with high probability. We provide an illustrative example in
Figure 2. Notably, if there exist s selected groups with the number of selected entries
exceeding ss0, we analyze this case similarly to Case 1.

Overall, by applying operator Tλ,s0 directly, Ξ can be shrunk into a (s, s0)-shaped subset
with high probability.

2.3 Upper bound for estimation error

In Section 2.2, we have introduced the idea to control the estimation error caused by
optimization error and randomness. Formally speaking, the three sources of estimation
error can be bounded in sequence. In what follows, we analyze the error bounds of our
proposed procedure. The main result of our theoretical analysis is given by Theorem 4.
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s

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Figure 1: Illustrative example of case 1. There are 10 groups with equal group size d =
6, and we reshape the group structure as a 6 × 10 matrix with each column
representing a group. Here s = 5 and s0 = 4. The blue region represents the
selected set, and the red region represents a (s, s0)-shaped subset satisfying that
total magnitude exceeds ss0λ

2. Here the cardinality of the red-colored set is
s×s0 = 20. Note that the whole vector of support is reshaped into a matrix with
a particular group structure.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

s

Figure 2: Illustrative example of case 2. The elements in Figure 2 are the same as in Figure
1. The entries of the red region cover s = 5 groups and its cardinality is less than
s× s0 = 20.
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Theorem 4 Assume that β∗ is (s, s0)-sparse and X satisfies DSRIP(3s, 5
3s0, δ). Assume

that δ < 0.11∧κ10, ‖β∗‖2 ≤
√
ss0λ0 and λ∞ ≥ 4

√
σ2

n (log ed
s0

+ 1
s0

log em
s ). We run Algorithm

1 and obtain the corresponding solution sequence {βt}, t = 1, 2, · · · . Then, with probability

at least 1− exp
{
−C(ss0 log ed

s0
+ s log em

s )
}

, we have

(i) Inside groups G∗, the type-I error can be controlled by a (s, s0)-shaped subset, that is,

SG∗ ∩ St ∩ (S∗)c ∈ Sm,d(s, s0). (5)

(ii) Outside groups G∗, the type-I error can be controlled by a (s, s0)-shaped subset, that
is,

ScG∗ ∩ St ∈ Sm,d(s, s0). (6)

(iii) The upper bounds for estimation error are

‖β∗ − βt‖2 ≤
3

2
(1 +

√
2)
√
ss0λt. (7)

Part (i) of Theorem 4 shows that the type-I error of {βt} within the true groups G∗ can be
controlled in a (s, s0)-shaped set. Part (ii) of Theorem 4 asserts that our procedure selects
fewer than s incorrect groups into the model, and at most ss0 variables outside groups G∗.
Together, they show that the solution sequence {βt} generated by our procedure is (2s, 3

2s0)-
sparse at each step, affirming that our procedure effectively controls false discoveries at
both the element and group levels. The non-convexity of the IHT-style method may cause
the parameter estimation error to not decrease at each step. To address this issue, a
common approach to get around this issue is constructing a surrogate function of the upper
bound that decreases exponentially (Yuan et al., 2018; Zhu et al., 2020; Zhang et al., 2023).
With the choice of {λt}, (7) gives a decreasing upper bound for the parameter estimation

error. Notably, with the choice of λ∞ �
√

σ2

n (log ed
s0

+ 1
s0

log em
s ), the upper bound decays

geometrically to the minimax lower bounds in (8), which demonstrates the optimality of
our procedure in the minimax sense.

Remark 5 In the above discussion, we have discussed the idea of the construction of Tλ,s0
by applying it to Ξ directly. In our practical procedure, we apply Tλ,s0 to Ht rather than Ξ.
Referring to the two cases above, we can show that

(i) Inside the true groups G∗, if St ∩ (S∗)c /∈ Sm,d(s, s0), there exists a (s, s0)-shaped
subset S̃1,t ⊆ St ∩ SG∗ ∩ (S∗)c such that ss0λ

2
t+1 ≤

∑
i∈S̃1,t

{Tλt+1,s0
(Ht+1)}2i .

(ii) Outside the true groups G∗, if St ∩ (S∗)c /∈ Sm,d(s, s0), there exists a (s, s0)-shaped
subset S̃2,t ⊆ St ∩ ScG∗ such that ss0λ

2
t+1 ≤

∑
i∈S̃2,t

{Tλt+1,s0
(Ht+1)}2i .

Notably, our proof mainly relies on the method of mathematical induction. Assuming the
results (5),(6),(7) in Theorem 4 hold for step t, we first prove that (5) and (6) hold for step
t + 1 by induction hypothesis. We then combine the induction hypothesis with (5) and (6)
for step t+ 1 to establish (7), completing the inductive steps.
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G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

s

s0

G∗

Figure 3: Illustrative example of two cases of false discovery. Here G∗ = {G1, G2, G3, G4}
and s = s0 = 4. The green region represents the true support set S∗ and the blue
region represents the selected set St. The remaining elements in Figure 3 are the
same as in Figure 1.

Remark 6 Here we elaborate on why we split the analysis of false discovery into two cases.
Subsequently, we present an example demonstrating that in the false discovery St ∩ (S∗)c,
there does not exist a subset S̃t satisfying S̃t ⊆ ScG∗ such that ss0λ

2
t+1 ≤

∑
i∈S̃t
{Tλt+1,s0

(Ht+1)}2i .

In Figure 3, it is easy to verify that St∩ (S∗)c has 8 entries and St∩ (S∗)c /∈ Sm,d(s, s0)
since it covers 5 groups. By the group-wise condition checking, ‖{Tλt+1,s0

(Ht+1)}Gi‖22 ≥
s0λ

2
t+1 for i = 7, 8. On the other hand, inside G∗, the absolute value of each element

of St ∩ (S∗)c is not less than λt+1. However, we cannot find a (s, s0)-shaped subset such
that ss0λ

2
t+1 ≤

∑
i∈S̃t
{Tλt+1,s0

(Ht+1)}2i . Therefore, we consider covering the false discovery
inside G∗ and outside G∗ by two (s, s0)-shaped subsets, respectively.

2.4 Minimax lower bound for double sparse linear regression

In previous works, minimax rates for the high-dimensional sparse linear regression
have been studied thoroughly. A number of papers focus on element-wise s-sparsity class
(Raskutti et al., 2011; Verzelen, 2012; Bellec et al., 2018), and there is also some work de-
voted to group sparsity such as Huang and Zhang (2010) and Lounici et al. (2011). Recently,
Cai et al. (2022) provided the non-asymptotic minimax lower bounds of double sparse lin-
ear regression. Here we prove it using a more concise technique. Consider parameter space

12
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Θ̃m,d(s, s0):

Θ̃m,d(s, s0) := {β ∈ Rp : ‖β‖0,2 ≤ s and ‖βGj‖0 ≤ s0, ∀j ∈ [m]}.

Unlike Θm,d(s, s0), Θ̃m,d(s, s0) imposes an `0-ball constraint on each group with a radius of
s0. Additionally, the total sparsity of Θ̃m,d(s, s0) is limited to ss0. It can be easily observed
that Θ̃m,d(s, s0) ⊆ Θm,d(s, s0). Therefore,

inf
β̂

sup
β∗∈Θm,d(s,s0)

Eβ̂‖β̂ − β
∗‖22 ≥ inf

β̂
sup

β∗∈Θ̃m,d(s,s0)

Eβ̂‖β̂ − β
∗‖22,

where Eβ̂ represents the expectation with respect to β̂.

Definition 7 (Packing Number) A ρ-packing of a set S with repsect to a metric ‖ · ‖ψ
is a collection

{
β1, . . . , βM

}
⊂ S such that ‖βi − βj‖ψ > ρ for all distinct i, j ∈ [M ]. The

ρ-packing number M(δ;S, ‖ · ‖ψ) is the cardinality of the largest ρ-packing.

Let M(ρ; Θ̃m,d(s, s0), ‖ · ‖H) be the cardinality of ρ-packing set of the parameter space
Θ̃m,d(s, s0) with repsect to Hamming metric ‖ · ‖H . The lower bounds for the packing
number of Θ̃m,d(s, s0) are provided as follows.

Lemma 8 (Lower bounds for the packing number (Li et al., 2024)) The cardinal-
ity of ss0

4 -packing set of Θ̃m,d(s, s0) is lower bounded as

log
(
M(

ss0

4
; Θ̃m,d(s, s0), ‖ · ‖H)

)
≥
ss0 log ed

s0
+ s log em

s

4
.

Li et al. (2024) leveraged the structures of double sparsity and combined multi-ary Gilbert-
Varshamov bounds (Gilbert, 1952) to construct the packing set of Θ̃m,d(s, s0) in a more
concise way. By combining Lemma 8, we establish a minimax lower bound that is consistent
with the results presented in Cai et al. (2022). This is stated in the following theorem.

Theorem 9 Consider linear regression model y = Xβ∗+ ε, where ε ∼ N (0, σ2In). Denote
the maximal (2s, 2s0)-sparse eigenvalue as

ϑmax = max
u∈Θm,d(2s,2s0)

‖Xu‖2√
n‖u‖2

.

Assume that ϑmax <∞. Then, we have

inf
β̂

sup
β∗∈Θm,d(s,s0)

Eβ̂‖β̂ − β
∗‖22 ≥

σ2

512ϑ2
maxn

(
ss0 log

ed

s0
+ s log

em

s

)
. (8)

Theorem 9 establishes the lower bounds for the `2 estimation errors, which are consistent
with the results in Cai et al. (2022). The estimation error for βt∞ matches the minimax
lower bound (8), demonstrating the optimality of our IHT-style procedure.
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3. A fully adaptive optimal procedure

The procedure proposed in Section 2 relies on the unknown sparsity levels s, s0, and
noise level σ, which pose a challenge in practical applications. To address this, we adopt
a data-driven approach to determine the initial threshold and the optimal stopping time
of our procedure, making it more feasible for real-world settings. Given s0, we introduce a
procedure that is adaptive to the unknown s and σ in Section 3.1. In Section 3.2, we explore
the trade-off between classical IHT and group IHT with respect to different values of s0.
Finally, we propose a data-adaptive tuning approach for s0 and demonstrate its optimality,
rendering our method a fully adaptive procedure.

3.1 Adaptation to unknown s and σ

In the remaining part of Section 3.1, we assume that sparsity level s0 is given. Firstly,
we introduce the adaptive choice of the initial threshold λ0. The assumption of Theorem 4
provides a lower bound for the choice of λ0. However, choosing a significantly large value
of λ0 may decrease the efficiency of the algorithm from an optimization perspective since it
can result in more redundant iterations. In the rest of our paper, denote

M :=
1

n
X>y = β∗ + Φβ∗ + Ξ and σ2

t :=
1

n
‖y −Xβt‖22.

We provide an explicit form of λ0 as

λ0 :=
100

9

√
σ2

0

n

(
log

ed

s0
+

1

s0
log em

)
∨ 19

4
‖M‖∞, (9)

where ‖M‖∞ := max
i
|Mi|.

Theorem 10 Assume that β∗ is (s, s0)-sparse and X satisfies DSRIP(2s, 3
2s0, δ). Assume

that δ < 0.11 and n > 1052(ss0 log ed
s0

+ s log em). Then, with probability at least 1 −
exp{−C(ss0 log ed

s0
+ s log em

s )}, we have ‖β∗‖2 ≤ ss0λ0.

Theorem 10 states that the choice of (9) guarantees the satisfaction of the assumption in
Theorem 4 with high probability. Next, we define three stopping times t∞, t0 and t̄ as
follows

t∞ := inf

{
t : λt ≤ 4

√
σ2

n

(
log

ed

s0
+

1

s0
log

em

s

)}
,

t0 := inf

{
t : λt ≤ 12

√
σ2

n

(
log

ed

s0
+

1

s0
log em

)}
,

t̄ := inf

{
t : λt ≤ 8

√
σ2
t

n

(
log

ed

s0
+

1

s0
log em

)}
.

(10)

t∞ is the stopping time that hits the optimal threshold λ∞. Obviously, t̄ is an accessible
stopping time that is independent of s and σ. On the other hand, t0 and t∞ are the
theoretical stopping time that corresponds to the unknown parameters s and σ. We state
the relationship among these three stopping times in the following theorem.
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Theorem 11 Assume all the conditions in Theorem 4 hold and sample size n > 1052(ss0 log ed
s0

+

s log em). Then, with probability at least 1− exp
{
−C(ss0 log ed

s0
+ s log em

s )
}

, we have

t0 ≤ t̄ ≤ t∞.

Theorem 11 shows that t̄ can be bounded by the theoretical stopping times t0 and t∞.
In particular, since t̄ is dominated by the optimal stopping time t∞, the estimation error
‖β t̄ − β∗‖ can be upper bounded by (7). Additionally, Theorem 4 implies that βt0 is sub-
optimal in the minimax sense. More concretely, we can deduce that β t̄ achieves optimal
statistical accuracy up to a logarithmic factor. We state this minimax sub-optimal result
as Corollary 12.

Corollary 12 Assume the conditions in Lemma 11 hold. Then, we have

sup
S∗∈Sm,d(s,s0)

P

(
‖β t̄ − β∗‖2 ≥ 50

√
σ2

n

(
ss0 log

ed

s0
+ s log em

))
≤ e−C(ss0 log ed

s0
+s log em

s
)
.

Corollary 12 is a direct consequence of Theorem 11. It demonstrates that stopping at t̄ is
a minimax sub-optimal procedure. The next open question is whether we can improve this
sub-optimal procedure to be minimax optimal. The following analysis answers the question
positively under certain conditions. Denote

Ω(β) := s0‖β‖G log
ed

s0
+ ‖β‖G log

em

‖β‖G
, (11)

where ‖β‖G := ‖β‖0,2 ∨ ‖β‖0s0
. We consider a variant of Birgé-Massart criterion (Birgé and

Massart, 2001) :

t̃ = arg min
t∈[T ]\[t̄−1]

{
1

n

∥∥y −Xβt∥∥2

2
+

1000σ2
t̄Ω(βt)

n

}
, (12)

where T := inf{t : λt ≤ 4 σt̄√
n
} + 1. Here stopping time T takes a value larger than t∞ to

ensure a sufficiently large search domain. Once the iterations hit the sub-optimal stopping
time t̄, we begin to select the optimal iteration according to (12). Now we are ready to
present the detailed pseudocode of our adaptive proposed procedure in Algorithm 2.

Algorithm 2 relies on the parameter s0 and eliminates the dependence on the unknown
values of s and σ. The optimal results of stopping time t̃ are presented as follows.

Theorem 13 Assume that β∗ is (s, s0)-sparse and X satisfies DSRIP(5s, s0, δ). Assume
that δ < 0.11 ∧ κ10 and n > 10002(ss0 log ed

s0
+ s log em). Then, we have

sup
S∗∈Sm,d(s,s0)

P

(
‖β t̃ − β∗‖2 ≥ 150

√
σ2

n

(
ss0 log

ed

s0
+ s log

em

s

))
≤ e−C(ss0 log ed

s0
+s log em

s
)
,

and
sup

S∗∈Sm,d(s,s0)

P
(
‖β t̃‖G ≥ 4s

)
≤ e−C(ss0 log ed

s0
+s log em

s
)
.
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Algorithm 2 Double Sparse IHT (DSIHT) algorithm with known s0

Require: X, y, {Gj}mj=1, κ, s0.

1: Initialize t = 0, β0 = 0 and λ0 = 100
9

√
σ2

0
n (log ed

s0
+ 1

s0
log em) ∨ 19

4 ‖M‖∞.

2: while λt ≥ 8
√

σ2
t
n (log ed

s0
+ 1

s0
log em), do

3: βt+1 = Tλt,s0
(
βt + 1

nX
>(y −Xβt)

)
.

4: λt+1 = κλt.
5: t = t+ 1.
6: end while
7: Compute σ2

t̄ = 1
n‖y −Xβ

t‖22.

8: while λt ≥ 4σt̄√
n
, do

9: Compute Ct = 1
n

∥∥y −Xβt∥∥2

2
+

1000σ2
t̄
Ω(βt)

n .

10: βt+1 = Tλt,s0
(
βt + 1

nX
>(y −Xβt)

)
.

11: λt+1 = κλt.
12: t = t+ 1.
13: end while
14: t̃ = argmin

t
Ct.

Ensure: β̂ = β t̃.

Theorem 13 establishes the upper bound for the estimation error of β t̃, indicating that
β t̃ adaptively achieves the minimax optimal rate of convergence. Moreover, Theorem 13
demonstrates that our procedure can guarantee the sparsity of the estimator β t̃ with high
probability. Specifically, we can control the model size ‖β t̃‖0 within the order of O(ss0) and
the selected number of groups ‖β t̃‖0,2 within the order of O(s).

Corollary 14 Assume that all conditions in Theorem 13 hold. For the stopping time T in
(12), we have

sup
S∗∈Sm,d(s,s0)

P

(
T ≥ log

(
6(

√
n‖β∗‖2
σ

∨
√

log ep)

)
/ log(1/κ) + 1

)
≤ e−C(ss0 log ed

s0
+s log em

s
)
.

Corollary 14 guarantees that our IHT procedure achieves optimal statistical accuracy with
linear convergence with high probability, demonstrating the efficiency of our proposed
method.

3.2 Adaptive trade-off between IHT and group-IHT

In this section, we investigate the problem of misspecification of s0, which is typically
unobservable in real-world applications. Let s̄0 be the input parameter in Algorithm 2.
Notably, given the sample (X, y) and step size κ, estimator β̂ is solely determined by s̄0

in Algorithm 2. Therefore, we introduce the following statistical measures derived from
Algorithm 2 with the given s̄0:

• β̂(s̄0) denotes the estimator of Algorithm 2 given s̄0.
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• ŝ(s̄0) denotes the selected number of groups of β̂(s̄0).

• Â(s̄0) denotes the number of nonzero entries of β̂(s̄0).

By the definition of (s, s0)-sparsity and parameter space Sm,d(s, s0), we establish the rela-
tionship

Sm,d(s, s0) ⊆

{
Sm,d(ss0/s̄0, s̄0), s̄0 ≤ s0.

Sm,d(s, s̄0), s̄0 > s0.

On one hand, when s̄0 > s0 in Algorithm 2, the design matrix X satisfies DSRIP(5s, s̄0, δ),
and β∗ is (s, s̄0)-sparse. Algorithm 2 can obtain a minimax optimal estimator concerning
parameter space Sm,d(s, s̄0), preserving all the previous theoretical results from Theorem
4 to Corollary 14. On the other hand, given s̄0 ≤ s0 in Algorithm 2, if the design matrix
X satisfies DSRIP(5ss0/s̄0, s̄0, δ), and β∗ is (ss0/s̄0, s̄0)-sparse, Algorithm 2 can obtain a
minimax optimal estimator with respect to parameter space Sm,d(ss0/s̄0, s̄0), preserving all
the previous theoretical results. We summarize these results in Table 1:

Table 1: Properties for s0-mis-specified models.

Value Parameter space Minimax Rate Support Control

s̄0 < s0 Sm,d(ss0/s̄0, s̄0)

√
σ2

n

(
ss0 log ed

s̄0
+ ss0

s̄0
log ems̄0

ss0

)
Â(s̄0) . ss0

s̄0 = s0 Sm,d(s, s0)

√
σ2

n

(
ss0 log ed

s0
+ s log em

s

)
Â(s̄0) . ss0,
ŝ(s̄0) . s

s̄0 > s0 Sm,d(s, s̄0)

√
σ2

n

(
ss̄0 log ed

s̄0
+ s log em

s

)
ŝ(s̄0) . s

Table 1 indicates that the theoretical properties differ significantly between the cases
s̄0 > s0 and s̄0 < s0. When s̄0 < s0, the upper bound for estimation error is given as√

σ2

n

(
ss0 log ed

s̄0
+ ss0

s̄0
log ems̄0

ss0

)
, and model size can be controlled within an order of O(ss0).

In the case of s̄0 > s0, the upper bound is

√
σ2

n

(
ss0 log ed

s0
+ s log em

s

)
, and the selected

groups can be controlled within an order of O(s). Notably, whether s̄0 < s0 or s̄0 > s0,
simultaneous control of sparsity at both the element and group levels is unattainable.

We illustrate the minimax rate with varying values of s0 from 1 to d in Figure 4.
As depicted in Figure 4, when 1 ≤ s̄0 < s0, the minimax rate tends to be an inversely
proportional function. On the other hand, when s0 < s̄0 ≤ d, the minimax rate exhibits a
trend of near-linear growth. Notably, for s̄0 = s0, the minimax rate attains the minimum
among these values.
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σ2

n (ss0 log ed
s̄0

+ ss0
s̄0

log ems̄0
ss0

)

σ2

n (ss̄0 log ed
s̄0

+ s log em
s )

s̄0

Minimax rate

s01 d

Figure 4: Minimax rate with metric ‖ · ‖22 for different parameter spaces.

Remark 15 Regardless of the value of s̄0, the above results provide the upper bound for
estimation error and properties of sparsity control for Algorithm 2. In particular, when
s̄0 = 1, the DSIHT algorithm reduces to the classical IHT algorithm (Ndaoud, 2020), and

the results in Table 1 recover the minimax rate O(
√

σ2

n ss0 log ep
ss0

) (Raskutti et al., 2011).

When s̄0 = d, the results in Table 1 recover the minimax rate of group sparsity, namely,

O(
√

σ2

n (sd+ s log em
s )) (Lounici et al., 2011). Therefore, DSIHT can be viewed as the

trade-off between IHT (Ndaoud, 2020) and group IHT (Giraud, 2021) determined by the
parameter s0.

3.3 Data-adaptive tuning for unknown s0

Previous sections have introduced an adaptive procedure to address cases with unknown
s and σ. In this section, we focus on constructing an adaptive estimator that achieves
minimax optimality without prior knowledge of s0, further demonstrating that our method
(cf. Algorithm 3) is a fully adaptive algorithm.

Given a sequence {s0,l}Ll=1, an intuitive approach to determine the optimal choice in-
volves treating s0 as a tuning parameter. This entails running the DSIHT algorithm along
the sequence and employing a model selection criterion to identify the optimal model size.
Here, we utilize a variant of the Birgé-Massart criterion introduced by Verzelen (2012). This
variant implicitly incorporates the knowledge of σ2, rather than plugging in a same-order
estimator of σ as demonstrated in criterion (12). Motivated by this, we propose a novel
double sparse information criterion (DSIC) as follows, with Â(s̄0) and ŝ(s̄0) defined at the
beginning of section 3.2:

DSIC(s̄0) = log

(
‖y −Xβ̂(s̄0)‖22

n

)
+
K

n

(
Â(s̄0) log ed+ ŝ(s̄0) log

em

ŝ(s̄0)

)
, (13)

where K is a positive constant. The estimator β̂s̄0 minimizing (13) is the optimal solution
of our procedure. The algorithm is summarized as follows:
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Algorithm 3 Adaptive Double Sparse IHT (ADSIHT) algorithm

Require: X, y, {Gj}mj=1, κ, {s0,l}Ll=1.
1: for l = 1, . . . , L, do
2: β̂l = Algorithm 2(X, y, {Gj}mj=1, κ, s0,l).
3: Compute the double sparse information criterion DSIC(s0,l).
4: end for
5: l∗ = argmin

l∈[L]
{DSIC(s0,l)}.

Ensure: β̂ = β̂l
∗
.

Remark 16 As discussed in Section 3.2, achieving optimal statistical performance neces-
sitates that s̄0 is of the same order as s0. Following the approach of Bellec et al. (2018),

we set the candidate values of s0 as an exponential sequence {s0,l}Ll=1 =
{

2
l−1
2 , 1 ≤ l ≤ L

}
,

where L := max
{
l ∈ N : 2

l−1
2 ≤ d

}
. This setting ensures that the candidate set includes a

value of the same order as s0. Recall that Cai et al. (2022) introduced candidate sets for the
unknown parameters s and s0, and employed a grid search technique for their tuning. In
contrast, Algorithm 3 requires only a candidate set for s0 with O(log d) elements, making it
a much more computationally efficient tuning approach.

Before presenting our theoretical results, we require some assumptions on the sample
size and design matrix. First, we assume that there exists an interval S0 := [s0,min, s0,max]
such that s0 ∈ S0.

Assumption 2 (Sample size assumption) We assume that the sample size n satisfies

n &
{(
ss0 log ed+ ss0

s0,min
log em

)
∨
(
ss0,max log ed+ s log em

)}
.

Assumption 2 is a necessary technical assumption for the minimax adaptation with an
unknown noise level σ (Verzelen, 2012; Giraud et al., 2012). In addition, we require the
DSRIP condition to satisfy each element of S0.

Assumption 3 (Adaptive DSRIP condition) We assume that the design matrix X
satisfies both DSRIP(5s, s0,max, δ) and DSRIP(5ss0/s0,min, s0,min, δ).

Remark 17 In particular, when s0,min is relatively small, especially for s0,min = 1, we
observe that DSRIP(5ss0/s0,min, s0,min, δ) reduces to the classical RIP condition (Candes
and Tao, 2005). Conversely, when s0,max = d, DSRIP(5s, s0,max, δ) becomes the group RIP
condition (Eldar and Mishali, 2009).

Now we give the minimax adaptive result in the following theorem:

Theorem 18 Assume that β∗ is (s, s0)-sparse. Given interval S0, assume that Assumption
2 and 3 hold and δ < 0.11 ∧ κ10. Let ŝ0 = arg mins̄0∈S0 DSIC(s̄0) with a sufficiently large
K. Then, with probability greater than 1 − exp

{
− C1(ss0 log(ed/s0) + s log(em/s))

}
, we

have ∥∥∥β̂(ŝ0)− β∗
∥∥∥

2
≤ C2σ

√
ss0 log ed+ s log(em/s)

n
. (14)
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Theorem 18 shows that our adaptive procedure, i.e., Algorithm 3, is an optimal fully adap-
tive procedure. Importantly, Algorithm 3 obtains the minimax adaptive solution without
the knowledge of s, s0 and σ.

Remark 19 The significance of adapting to s0 lies in achieving an optimal trade-off be-
tween classical IHT (Ndaoud, 2020) and group IHT (Giraud, 2021). If both Assumptions 2
and 3 are satisfied, this optimal trade-off can be attained. It is important to emphasize that
when s0 is unknown, simultaneous control of element-wise sparsity and group-wise spar-
sity is unattainable. Consequently, we derive near-optimal estimation error bounds for our
adaptive estimator. Further details are provided in the proof of Theorem 18.

4. Oracle estimation rate with beta-min condition

As is well-known, the ordinary least-squares (OLS) estimator supported on the true
support set S∗ can achieve the oracle estimation rate of O(σ

√
ss0
n ). In this section, under

the beta-min condition, we demonstrate that the DSIHT algorithm can also attain the oracle
estimation rate. This implies that the estimator obtained by DSIHT performs as well as the
oracle OLS estimator. Furthermore, DSIHT exhibits almost full recovery (Butucea et al.,
2018) of the true support set S∗ under the beta-min condition.

Denote

λ̃a := a

√
8σ2

n

(
log

ed

s0
+

1

s0
log

em

s

)
, a > 0. (15)

Given an initial estimator β̃0, we update the estimator by using a fixed threshold λ̃2 in the
DSIHT operator Tλ̃2,s0

. In specific, we update the coefficient by

β̃t+1 = Tλ̃2,s0

(
β̃t +

1

n
X>(y −Xβ̃t)

)
. (16)

Denote S̃t as the support set of β̃t. The following theorem investigates the theoretical
guarantees of the iteration procedure with a fixed threshold.

Theorem 20 Assume min
i∈S∗
|β∗i | ≥ (

√
2 + ε)λ̃2 and min

j∈G∗
‖β∗Gj

‖2 ≥ (
√

2 + ε)
√
s0λ̃2 for any

constant ε > 0. Assume that X satisfies DSRIP (3s, 5
3s0, δ) and δ ≤ ε4 ∧ 0.05. Let β̃0 be an

initial estimator satisfying (5)-(7) in Theorem 4. We run (16) and obtain the corresponding

solution sequence {β̃t}. Then, for ∀t ≥ 0, as min

{
log ed

s0
+ 1

s0
log em

s ,
ss0

log ed
s0

+ 1
s0

log em
s

}
→

∞, with probability tending to 1‡, we have

(i) ScG∗ ∩ S̃t ∈ Sm,d(s, s0).

(ii) SG∗ ∩ (S∗)c ∩ S̃t ∈ Sm,d(s, s0).

‡. In specific, when ∆ := 1
s0

log(em/s) + log(ed/s0) is sufficiently large, this probability is greater than

1− C1 exp (−C2ss0/∆)− C3∆2 exp (−C4∆). And the tail probability of Theorem 21 is the same case.
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(iii) The upper bound for estimation error satisfies

∥∥∥β̃t − β∗∥∥∥
2
< 16

(
3

4

)t√σ2

n

(
ss0 log

ed

s0
+ s log

em

s

)
+ 16

√
σ2ss0

n
. (17)

The fixed iteration procedure preserves the results of false discoveries control, as shown
in Theorem 20. Specifically, under the beta-min conditions, result (17) indicates that the
upper bound for estimation error can be decomposed into two components: a diminishing

optimization error 16
(

3
4

)t√σ2

n (ss0 log ed
s0

+ s log em
s ) that approaches zero as t→∞, and a

statistical error 16
√

σ2ss0
n . When the optimization error becomes smaller than the statistical

error, the term O

(√
σ2ss0
n

)
dominates the estimation error.

As a consequence of Theorem 20, for a sufficiently large t, the estimator β̃t can achieve
the oracle estimation rate and almost recover the true support set at both the element and
group levels. To clarify this property, we denote the element-wise decoder η∗ ∈ {0, 1}p as
η∗i = I(β∗i 6= 0), and the group-wise decoder η∗G ∈ {0, 1}m as (η∗G)j = I(β∗Gj

6= 0). For

β̃t, denote η̃t ∈ {0, 1}p as η̃ti = I(β̃ti 6= 0), and the group-wise decoder η̃tG ∈ {0, 1}m as
(η̃tG)j = I(β̃tGj

6= 0).

Theorem 21 Assume that all the conditions in Theorem 20 hold. For ∀t > 2 log
(
256(log ed

s0
+

1
s0

log em
s )
)
, as min

{
log ed

s0
+ 1

s0
log em

s ,
ss0

log ed
s0

+ 1
s0

log em
s

}
→∞, with a probability tending to

1, we have:

(i) The estimator β̃t satisfies ∥∥∥β̃t − β∗∥∥∥
2
≤ 17σ

√
ss0

n
. (18)

(ii) The estimator β̃t achieves group-wise almost full recovery, that is,

‖η̃tG − η∗G‖0 = o (s) . (19)

(iii) The estimator β̃t achieves element-wise almost full recovery, that is,

‖η̃t − η∗‖0 = o (ss0) . (20)

Theorem 21 affirms that, for a sufficiently large number of iterations, β̃t achieves the ora-
cle estimation rate. Crucially, Bellec (2018) demonstrated that convex estimators cannot
achieve the oracle estimation rate even when the beta-min conditions are satisfied. This
highlights the superiority of our DSIHT algorithm over sparse group Lasso. Moreover, the
beta-min conditions also ensure almost full recovery (Butucea et al., 2018) at both the
element-wise and group-wise levels. Specifically, we can control both type-I and type-II
errors within the order of o(ss0) and o(s) at the element-wise and group-wise levels, respec-
tively.
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Table 2: Properties for s0-mis-specified models under the beta-min conditions.

Value
Parameter

space
Order of λ̃2

Oracle
Estimation

Rate

Almost Full
Recovery

s̄0 < s0 Sm,d
(
ss0
s̄0
, s̄0

) √
σ2

n

(
log ed

s̄0
+ 1

s̄0
log ems̄0

ss0

) √
σ2

n ss0 element-wise

s̄0 = s0 Sm,d(s, s0)

√
σ2

n

(
log ed

s0
+ 1

s0
log em

s

) √
σ2

n ss0

element-wise
and

group-wise

s̄0 > s0 Sm,d(s, s̄0)

√
σ2

n

(
log ed

s̄0
+ 1

s̄0
log em

s

) √
σ2

n ss̄0 group-wise

Similar to the approach in Table 1, when s̄0 > s0 or s̄0 < s0, we can utilize alternative
parametric spaces, i.e., Sm,d(s, s̄0) or Sm,d(ss0/s̄0, s̄0), and obtain the corresponding oracle
estimation rates. These outcomes are illustrated in Table 2.

Table 2 reveals that when s̄0 ≤ s0, the oracle estimation rate is
√

σ2

n ss0, showing

insensitivity to the variations in s̄0. Conversely, for s̄0 > s0, the oracle estimation rate

increases to
√

σ2

n ss̄0, further emphasizing the role of s0 as a trade-off between IHT and

group IHT as discussed in Section 3.2.

Remark 22 When s̄0 = 1, our results align with the assumptions and findings of element-
wise IHT (Ndaoud, 2020). While both IHT and DSIHT attain the oracle estimation rate

O(
√

σ2

n ss0) for (s, s0)-sparse vectors with the beta-min conditions, Theorem 21 demonstrates

that DSIHT not only achieves almost full recovery at the element level, as indicated by (20),
but also at the group level, as indicated by (19). This underscores the superiority of DSIHT
over IHT.

5. Numerical experiments

In this section, we present numerical experiments that shed light on the empirical perfor-
mances of our proposals using both synthetic and real-world data sets. Our algorithms are
implemented in R package ADSIHT. We compare against several state-of-the-art methods:
sparse group Lasso (SGLasso, Simon et al. (2013)), which is fitted by R package sparsegl

(Liang et al., 2024), group bridge (GBridge, Huang et al. (2009)), group exponential Lasso
(GEL, Breheny (2015)) and composite minimax concave penalty (CMCP, Breheny and
Huang (2009)), which are computed by R package grpreg (Breheny, 2015). For SGLasso,
we determine the tuning parameter by five-fold cross-validation. For the other comparison
methods, we select the optimal solution using EBIC (Chen and Chen, 2008). For ADSIHT,
we use our proposed DSIC with K = 5 to select the optimal model. Moreover, we leave the
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remaining hyper-parameters to their default values in sparsegl and grpreg. All numerical
experiments are conducted in R and executed on a personal laptop (AMD Ryzen 9 5900HX,
3.30 GHz, 16.00GB of RAM).

5.1 Analysis on Synthetic Data

Synthetic data sets are generated from the underlying model y = Xβ∗+ξ, where β∗ ∈ Rp
has m groups with equal group size, namely, p1 = · · · = pm = d. The design matrix X is
generated from a multivariate Gaussian distributionMVN (0,Σ). The covariance matrix Σ
is considered as the auto-regressive structure, that is, Σij = 0.5|i−j| for 1 ≤ i, j ≤ p. Next,
the coefficients β∗ are generated under the following two scenarios:

• Homogeneous signal: β∗ is randomly chosen from {1,−1}.

• Heterogeneous signal: β∗ is randomly chosen from N (0, 1).

Finally, the random error ξi is generated independently from N(0, σ2), and σ is chosen
to achieve a desired signal-to-noise ratio (SNR). All simulation results are based on 100
repetitions. Given an output (Ŝ, β̂), we use the following measures to assess the accuracy
of variable selection and parameter estimation:

• Sparsity Error (SE): |Ŝ| − |S∗|.

• Group-wise Sparsity Error (GSE): ‖β̂‖0,2 − ‖β∗‖0,2.

• Mathew’s Correlation Coefficient (MCC):

MCC =
TP× TN− FP× FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
,

where TP= Ŝ∩S∗ and TN= Ŝc∩(S∗)c stand for true positives/negatives, respectively.
FP= Ŝ ∩ (S∗)c and FN= Ŝc ∩ S∗ stand for false positives/negatives, respectively.

• Estimation Error (EE): ‖β̂ − β∗‖2.

Here SE or GSE close to zero means better estimation results on the support set. MCC
ranges in [−1, 1], and a larger MCC means a better variable selection performance.

5.1.1 Statistical performance for varying SNR

In this section, we study the effect of varying the SNR of model on the performance of
ADSIHT and other state-of-the-art methods. We consider the generating model contains 50
nonzero coefficients, distributed evenly into 10 groups. We set sample size n = 300, group
size d = 10, number of group m = 100. The SNR increases from to 20 with an increment
equal to 2. Figure 5 shows the computational results of the homogeneous scenario and
heterogeneous scenario in sub-figure A and B, respectively.

Figure 5 shows that with the increase of SNR, all methods tend to perform better.
Our method exhibits excellent performances in terms of all measures across the whole SNR
range. For the homogeneous signal setup, our method is able to achieve full support recovery
for high SNR. On the other hand, although none of the considered methods can identify all
the true variables accurately even for high SNR, our method still shows its superiority in
terms of variable selection and parameter estimation.
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Figure 5: Performance measures as the signal-to-noise ratio (SNR) increases from 1 to 10.
(A) Computational results with homogeneous signal. (B) Computational results
with heterogeneous signal.
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5.1.2 Statistical performance for varying number of groups

Here we study how the statistical metrics change with the number of groups. We consider
the generating model contains 50 nonzero coefficients, distributed evenly into 10 groups. We
set sample size n = 500, group size d = 10 and SNR = 5. The number of groups increases
from 50 to 500 with an increment equal to 50. We show the results in figure 6.

From Figure 6, we see that our method is more robust in the high-dimensional settings.
In terms of variable selection and parameter estimation, our method appears to outperform
the other considered methods, with the differences being most pronounced in the high-
dimensional settings. As the number of groups increases, the performances of other methods,
especially for GBridge, decrease significantly.

5.1.3 Statistical performance for varying sample size

Here we investigate the effect of varying the sample size on the performances while
keeping the other parameters fixed. We consider the generating model contains 50 nonzero
coefficients, distributed evenly into 5 groups. We set group size d = 20, number of group
m = 200 and SNR= 5. The sample size increases from 300 to 1000 with an increment equal
to 100.

As shown in Figure 7, the performances of all methods improve significantly as the
sample size increases. Our method notably outperforms the other methods across different
statistical metrics. For the homogeneous signal setup, our method perfectly recovers the
support set when the sample size exceeds 800. In comparison, other methods cannot achieve
full support recovery even for a sufficiently large sample size. In particular, for both setups of
signals, our method can estimate the coefficients accurately, which aligns with the minimax
optimality of our method in the sense of parameter estimation.

5.2 Analysis on Real-world Data

The TRIM32 dataset, which pertains to the Bardet-Biedl syndrome gene expression,
was initially presented by Scheetz et al. (2006) and has been extensively studied in various
statistical works (Huang et al., 2010; Fan et al., 2011; Zhang et al., 2023). In this study,
120 twelve-week-old male rats were gathered for tissue harvesting from the eyes and for
micro-array analysis. For this data set, TRIM32, a gene that has been associated with
causing Bardet-Biedl syndrome (Chiang et al., 2006), serves as the response variable, while
the remaining 18,975 gene probes that have the potential to impact TRIM32 expression are
treated as covariates.

In this paper, we aim to identify the genes which are statistically significantly related
to gene TRIM32 and build an accurate prediction model. Of the 18,975 probes, the top
300 probes with the highest marginal ball correlation (Pan et al., 2019) are considered.
Then, for each gene, we utilize a ten-term natural cubic spline basis expansion to form a
group with 10 variables. This technique, which is commonly employed in scientific research
(Huang et al., 2010; Breheny and Huang, 2015; Zhang et al., 2023), allows us to analyze the
data more effectively. After performing the aforementioned operations, this problem can
be described as a high-dimensional variable selection problem with n = 120, m = 300, and
d = 10. In our analysis, the 120 rats are randomly split into a training set with 100 samples
and a test set with the remaining 20 samples. We repeat these random splitting procedures
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Figure 6: Performance measures as the number of groups increases from 100 to 1200. (A)
Computational results with homogeneous signal. (B) Computational results with
heterogeneous signal.
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Figure 7: Performance measures as the sample size increases from 300 to 1000. (A) Com-
putational results with homogeneous signal. (B) Computational results with het-
erogeneous signal.
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200 times and compute the average of the numbers of selected variables and groups and the
prediction mean square error (PMSE) in the test set. The computational results and the
box plot of the PMSE are shown in Table 3 and Figure 8, respectively.

Table 3: Computational results for TRIM32 dataset. The standard deviations are shown
in parentheses.

Method Number of variables Number of groups 100×PMSE

SGLasso 139.26 (68.74) 26.95 (12.45) 1.71 (1.84)
GBridge 2.95 (0.81) 1.04 (0.18) 2.01 (2.00)

GEL 35.78 (28.03) 7.07 (3.69) 2.55 (2.70)
cMCP 21.60 (3.37) 20.95 (3.08) 1.92 (2.12)

ADSIHT 29.06 (11.93) 9.20 (4.09) 1.70 (1.85)

Table 3 demonstrates that SGLasso identifies significantly more variables and groups
than other methods. However, this does not lead to the best prediction performance on the
test set. On the other hand, our proposed method delivers the highest statistical accuracy
in predicting outcomes, despite using fewer variables and groups. Furthermore, Figure 8
illustrates that our approach is both accurate and robust in its predictive performance,
demonstrating the superiority of our method over other methods.
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Figure 8: Boxplot of the PMSE.

To perform further investigation, we consider the entire set of 120 samples to learn
a double sparse linear model for TRIM32 expression. Figure 9 displays QQ-plots of the
residuals estimated from our proposed method and comparative methods. The sub-figures
of cMCP and ADSIHT have points that roughly lie on the diagonal line, which indicates
the satisfaction of the normality assumption. In contrast, Figure 9 reveals that the residual
distributions of SGLasso, GBridge, and GEL have longer tails on the left side, which implies
that analyzing this dataset using the fitted linear models may be unconvincing. Moreover,
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Figure 9: QQ-plots of the residuals.

we calculate the R2 and adjusted R2 for each method, as outlined in Table 4. The com-
putational results in Table 4 demonstrate the favorable fitting performance of ADSIHT.
Specifically, ADSIHT effectively identifies 14 important groups and 31 significant variables
within these groups, collectively explaining 79% of the variance in TRIM32 expression.
While SGLasso achieves the highest variance explanation in TRIM32 expression, there is a
potential concern of overfitting, as it selects an excessively large model.

Table 4: The R2 and adjusted R2 for each method. Adjusted R2 is omitted for SGLasso
due to the excessively large model size selected by SGLasso.

SGLasso GBridge GEL cMCP ADSIHT

R2 88% 44% 54% 75% 79%
Adjusted R2 × 42% 52% 68% 71%

6. Conclusion

In our work, we propose a minimax optimal IHT-style procedure for high-dimensional
double sparse linear regression. In specific, we introduce a novel double sparse iterative
hard thresholding (DSIHT) operator. To effectively control false discoveries, we iteratively
decrease the threshold in the DSIHT operator until it reaches the optimal threshold. Un-
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der certain conditions, we prove that our DSIHT algorithm obtains a minimax optimal
estimator.

Notably, for the (s, s0)-sparse structure, we devise a fully adaptive optimal procedure
that enables our algorithm to derive a minimax optimal estimator with unknown sparsity
levels s, s0, and variance σ2. Initially, given s0, we introduce an adaptive procedure that
determines the optimal stopping time using a variant of the Birgé-Massart criterion, which
is independent of s and σ. Importantly, we highlight the role of sparsity level s0 as the
trade-off between IHT and group IHT. Building on this result, we propose a novel double
sparse information criterion to select the optimal s0, making our method a fully adaptive
procedure. In theory, we demonstrate that our two-step adaptive procedure achieves optimal
statistical accuracy with fast convergence. More importantly, to illustrate why our algorithm
outperforms sparse group Lasso, we prove that under the beta-min conditions, our algorithm
can attain the oracle estimation rate, which is unachievable for convex estimators, and
achieve almost full recovery of the true support set. Finally, numerical experiments show
that our methods exhibit more accurate and robust statistical performance than other
state-of-the-art methods.

In this paper, we consider the double sparse structure in linear regression, and a similar
approach can be explored in generalized linear models or single-index models. Moreover,
our technical results can be applicable to various other problems with simultaneous sparsity
structures, such as sparse additive models (Raskutti et al., 2012; Yuan and Zhou, 2016) and
high-dimensional change point problems (Liu et al., 2021). We identify these avenues as
potential future lines of research.
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Appendix

The Appendix contains the technical proofs of all Theorems and Corollaries. The proofs
of the main results are presented in Appendix A. Appendix B contains the proofs of the
auxiliary lemmas. Appendix C provides an example of DSRIP condition under sub-Gaussian
random design. To simplify the notations of the appendix, we denote

∆ := log
ed

s0
+

1

s0
log

em

s
and ∆′ := log

ed

s0
+

1

s0
log em.

Given a p-dimensional vector β with ‖β‖0 = Â and ‖β‖0,2 = ŝ, denote

Ω∗(β) := (s+ ŝ) log
em

s+ ŝ
+ (ss0 + Â) log

ed(s+ ŝ)

ss0 + Â
.

Appendix A : Proofs of main results

Proof of Lemma 3

From Theorem 2.1 of Hsu et al. (2012), ∀S ∈ S, we have

P

(
‖X>S ξ‖22
σ2

≥ Tr(X>S XS) + 2‖X>S XS‖F
√
t+ 2λmax(X>S XS)t

)
≤ e−t, (21)

where constant t ≥ 0. Since XS ∈ Rn×ss0 and ‖Xj‖2 =
√
n, j ∈ [p], we have

Tr(X>S XS) =

 ss0∑
j=1

n∑
i=1

X2
ij

 ≤ ss0n. (22)

On one hand, we have
λmax(X>S XS) ≤ n(1 + δ). (23)

On the other hand, from (22) and (23), we have

‖X>S XS‖F =
√
Tr(X>S XSX>S XS) ≤ (1 + δ)

√
ss0n, (24)

Substituting (22) - (24) into (21), we have

P

(
1

nσ2
‖X>S ξ‖22 ≥ 2(1 + δ)

[√
t+

√
ss0

2

]2

+
1− δ

2
ss0

)
≤ e−t.

Note that δ < 1 and ∆ � 1. For some positive constant C, let t = (1 + C)ss0∆, and we

have 2(1 + δ)
[√

t+
√
ss0
2

]2
+ 1−δ

2 ss0 < 4ss0∆. Consequently, we have

P

(
1

n
‖X>S ξ‖22 ≥ 4σ2ss0∆

)
≤ e−(1+C)ss0∆. (25)

Note that

|Sm,d(s, s0)| ≤
(
m

s

)
×
(
sd

ss0

)
≤
(em
s

)s
×
(
ed

s0

)ss0
≤ ess0∆. (26)
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Therefore, combining (25) and (26), we have

P

(
∀S ∈ Sm,d(s, s0),

∑
i∈S

Ξ2
i ≤

4σ2ss0∆

n

)

=1− P

(
∃S ∈ Sm,d(s, s0),

∑
i∈S

Ξ2
i >

4σ2ss0∆

n

)

≥1− |Sm,d(s, s0)|P

(∑
i∈S

Ξ2
i >

4σ2ss0∆

n

)
≥1− e−Css0∆,

where the first inequality follows from the union bound. This completes the proof of Lemma
3.

Proof of Theorem 4

We proceed with the proof of Theorem 4 under the assumption that event E holds.
Initially, it’s straightforward to confirm that the results are trivial for t = 0. Then, we
assume that the results are true for step t, and prove them for step t+ 1.

We first prove (5) and (6) by contradiction. Assume that (5) and (6) are wrong for t+1,
i.e., SG∗ ∩ St+1 ∩ (S∗)c /∈ Sm,d(s, s0) and ScG∗ ∩ St+1 /∈ Sm,d(s, s0).

Step 1

For result (5), note that SG∗ ∩ (S∗)c covers no more than s groups. According to the
Case 1 in Section 2, it holds that there exists a (s, s0)-shaped subset S̃1,t+1 of SG∗ ∩ (S∗)c

with cardinality ss0 such that

ss0λ
2
t+1 ≤

∑
i∈S̃1,t+1

{
Tλt+1,s0

(Ht+1)
}2

i
.

Note that β∗i = 0 for i ∈ S̃1,t+1 ⊆ (S∗)c. Then, using equation (4) and the triangle
inequality, we obtain

√
ss0λt+1 ≤

√ ∑
i∈S̃1,t+1

〈Φ>i , βt − β∗〉2 +
√ ∑
i∈S̃1,t+1

Ξ2
i .

Recall that β∗ is (s, s0)-sparse, and both (5) and (6) hold for t by assumption. Then, we
have βt − β∗ is (2s, 3

2s0)-sparse. Consequently, using the DSRIP condition and Lemma 3,
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we have

√
ss0λt+1 ≤δ‖β∗ − βt‖2 + 2σ

√
ss0∆

n

≤3

2
(1 +

√
2)δ
√
ss0λt + 2σ

√
ss0∆

n

≤3

2
(1 +

√
2)δ

9
10
√
ss0λt+1 +

1

2

√
ss0λ∞

≤
(

1

2
+

3

2
(1 +

√
2)δ

9
10

)
√
ss0λt+1

<
√
ss0λt+1,

which leads to a contradiction. Since we have assumed that (7) holds for t, the second
inequality holds based on it, and the last inequality follows from δ < 0.11∧ κ10. Therefore,
we have SG∗ ∩ St+1 ∩ (S∗)c ∈ Sm,d(s, s0), indicating that (5) holds for t+ 1.

Step 2

For result (6), if ScG∗∩St+1 covers no more than s groups, the analysis of result (6) is the
same as Step 1. Otherwise, according to Case 2 in Section 2, there exists a (s, s0)-shaped
subset S̃2,t+1 of ScG∗ such that

ss0λ
2
t+1 ≤

∑
i∈S̃2,t+1

{
Tλt+1,s0

(Ht+1)
}2

i
.

The remaining proof of (6) is similar to Step 1. Therefore, (6) holds for t+ 1.

Step 3

We now turn to the proof of (7). Note that results (5) and (6) hold for t + 1, which
imply that βt+1 − β∗ is (2s, 3

2s0)-sparse. Observe that for any i ∈ [p],

βt+1
i − β∗i = −Ht+1

i I(i /∈ St+1) + 〈Φ>i , β∗ − βt〉+ Ξi. (27)

On one hand, summing both sides of (27) over set St+1 ∩ (S∗)c, we have

‖βt+1
(S∗)c‖2 ≤

√ ∑
i∈St+1∩(S∗)c

〈Φ>i , β∗ − βt〉2 +

√ ∑
i∈St+1∩(S∗)c

Ξ2
i

≤δ‖β∗ − βt‖2 + 2σ

√
2ss0∆

n
,

(28)

where the right-hand side of the second inequality comes from the accumulation of two
parts of random errors corresponding to (5) and (6). On the other hand, summing both
sides of (27) over support set S∗, we have

‖(βt+1 − β∗)S∗‖2 ≤
√∑
i∈S∗

(Ht+1
i )2I(i /∈ St+1) +

√∑
i∈S∗
〈Φ>i , β∗ − βt〉2 +

√∑
i∈S∗

Ξ2
i

≤
√

2ss0λt+1 + δ‖β∗ − βt‖2 + 2σ

√
ss0∆

n
.

(29)
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Since the procedure of operator Tλ,s0(·) has two steps, the term
∑

i∈S∗(H
t+1
i )2 in (29) is

upper bounded by 2ss0λ
2
t+1. Combining (28) and (29), we conclude that

‖βt+1 − β∗‖2 ≤ ‖βt+1
(S∗)c‖2 + ‖(βt+1 − β∗)S∗‖2

≤
√

2ss0λt+1 + 2δ‖β∗ − βt‖2 + 2(1 +
√

2)σ

√
ss0∆

n

≤

(
√

2 + 3(1 +
√

2)δ
9
10 +

1 +
√

2

2

)
√
ss0λt+1

≤ 3

2
(1 +

√
2)
√
ss0λt+1,

where the third and the last inequalities follow from δ < 0.11∧κ10. We prove that (7) holds
for t+ 1.

Finally, we have proved that the results in Theorem 4 hold for t+ 1 under the induction
hypothesis. This completes the proof of Theorem 4.

Proof of Theorem 9

Consider the ss0
4 -packing set {β1, . . . , βM}, where M is the shorthand for the packing

number M( ss04 ; Θ̃m,d(s, s0), ‖ · ‖H). We set all the non-zero elements of β ∈ {β1, . . . , βM}
equal to δ, where δ is a parameter that need to be determined below. For any βi 6= βj ,
since each βi has at most ss0 nonzero elements, we have

‖βi − βj‖22 ≤ 2ss0δ
2, ∀i, j ∈ [M ]. (30)

On the other hand, since {β1, . . . , βM} is a ss0
4 -packing set of Θ̃m,d(s, s0), we have

‖βi − βj‖22 ≥
1

4
ss0δ

2, ∀i, j ∈ [M ]. (31)

Given design matrix X, denote yi = Xβi + ξ, ∀i ∈ [M ]. We consider the Kullback-Leibler
divergence between different distribution pairs as

KL
(
yi||yj

)
=

1

2σ2
‖X(βi − βj)‖22

≤ nϑ2
max

2σ2
‖βi − βj‖22,

where the last inequality follows from the eigenvalue value condition of X and βi − βj ∈
Θ̃m,d(2s, 2s0). Denote B as the random vector uniformly distributed over the packing set.
Observe that

I(y;B) ≤ 1(
M
2

)∑
i 6=j

KL(yi||yj) (32)

≤ 1(
M
2

)∑
i 6=j

nϑ2
max

2σ2
‖βi − βj‖22 (33)

≤nϑ
2
max

σ2
ss0δ

2, (34)
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where the last inequality uses (30). Combining the generalized Fano’s Lemma (Cover and
Thomas, 2006) and (32), we have

P (B 6= β̃) ≥ 1− I(y;B) + log 2

logM

≥ 1−
nϑ2

max
σ2 ss0δ

2 + log 2

logM
,

where β̃ takes value in the packing set. To guarantee P (B 6= β̃) ≥ 1
2 , it suffices to choose

δ = 1
2

√
σ2 logM
nϑ2

maxss0
. Substituting it into equation (31) and from Lemma 8, we have

inf
β̂

sup
β∗∈Θm,d(s,s0)

Eβ̂‖β̂ − β
∗‖22

≥ 1

16
ss0δ

2 · inf
B
P
(
B 6= β̃

)
≥ σ2 logM

128nϑ2
max

≥ σ2

512nϑ2
max

(
ss0 log

ed

s0
+ s log

em

s

)
,

which completes the proof of Theorem 9.

Proof of Theorem 10

Using Lemma 23, with probability at least 1− exp {−Css0∆}, we have

σ0 ≥
19

20
σ −
√

1 + δ‖β∗‖2. (35)

With probability at least 1− exp {−Css0∆}, we have

‖MS∗‖2 = ‖ (β∗ + Φβ∗ + Ξ)S∗ ‖2
≥ ‖β∗‖2 − ‖Φβ∗‖2 − ‖ΞS∗‖2

≥ (1− δ)‖β∗‖2 − 2σ

√
ss0∆

n
.

(36)

Note that
√
ss0‖M‖∞ ≥ ‖MS∗‖2. Combining (35) and (36), with probability at least

1− exp {−Css0∆}, we have

√
ss0λ0 ≥

100

9
σ0

√
ss0∆′

n
∨ 19

4

√
ss0‖M‖∞

≥ 9

19
× 100

9
σ0

√
ss0∆′

n
+

10

19
× 19

4
‖MS∗‖2

≥ 100

19

(
19

20
σ −
√

1 + δ‖β∗‖2
)√

ss0∆′

n
+

5

2

(
(1− δ)‖β∗‖2 − 2σ

√
ss0∆

n

)

≥

(
5

2
(1− δ)− 100

19

√
1 + δ

√
ss0∆′

n

)
‖β∗‖2

≥ ‖β∗‖2
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where the fourth inequality uses the fact that ∆′ ≥ ∆, and the last inequality uses the fact
that n > 1052ss0∆′ and δ < 0.11. We complete the proof of Theorem 10.

Proof of Theorem 11

Note that t0 ≤ t∞ holds since ∆′ ≥ ∆. We first claim that t0 ≥ t̄. For any t ≤ t0,
according to the definition of t0, we have

σ

√
∆′

n
≤ 1

12
λt. (37)

From Lemma 23 and Theorem 4, with probability at least 1− exp {−Css0∆}, we have

σt ≤
√

1 + δ‖β∗ − βt‖2 +
21

20
σ

≤
√

1 + δ
3

2
(1 +

√
2)
√
ss0λt +

21

20
σ.

(38)

From (38), it comes out that

8σt

√
∆′

n
≤ 12(1 +

√
2)
√

1 + δλt

√
ss0∆′

n
+

42

5
σ

√
∆′

n

≤ 12(1 +
√

2)
√

1 + δλt

√
ss0∆′

n
+

7

10
λt

≤ λt,

(39)

where the first inequality uses (37), and the second inequality follows from δ < 0.11 and
n > 1052ss0∆′. (39) leads to the fact that t ≤ t̄, which deduces that t0 ≤ t̄ holds with high
probability.

Next, we turn to the proof of t̄ ≤ t∞. Since t0 ≤ t∞, Theorem 4 shows us that

‖βt0 − β∗‖2 ≤ 18(1 +
√

2)σ

√
ss0∆′

n
. (40)

From Lemma 23, for any t0 ≤ t ≤ t∞, it holds with probability at least 1− exp {−Css0∆}
that

|σt − σ| ≤
√

1 + δ‖β∗ − βt‖2 +
1

20
σ

≤ 18(1 +
√

2)
√

1 + δσ

√
ss0∆′

n
+

1

20
σ

≤ (
9

20
+

1

20
)σ =

1

2
σ,

where the second inequality follows from (40), and the last inequality follows from δ < 0.11
and n > 1052ss0∆′. Combining the above inequalities, we have

8σt√
n

√
∆′ ≥ 4σ√

n

√
∆′ ≥ 4σ√

n

√
∆.

This result implies that t̄ ≤ t∞, which completes the proof of Theorem 11.
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Proof of Theorem 13

From Lemma 23 and (40), with probability at least 1− exp{−Css0∆}, we have

|σt̄ − σ| ≤
√

1 + δ‖β t̄ − β∗‖2 +
1

20
σ

≤ σ

(
18(1 +

√
2)
√

1 + δ

√
ss0∆′

n
+

1

20

)
≤ 1

10
σ,

(41)

where the last inequality uses δ < 0.11 and n > 10002ss0∆′.

First, we prove ‖β t̃‖G ≤ 4s by contradiction. Let us assume that ‖β t̃‖G > 4s. According
to the definition of t̃, we have

1

n

∥∥∥y −Xβ t̃∥∥∥2

2
+

1000σ2
t̄Ω(β t̃)

n
≤ 1

n

∥∥y −Xβt∞∥∥2

2
+

1000σ2
t̄Ω(βt∞)

n
. (42)

On one hand, we have

∥∥∥y −Xβ t̃∥∥∥2

2
≥ ‖ξ‖22 +

∥∥∥X(β t̃ − β∗)
∥∥∥2

2
− 2

∣∣∣〈ξ,X(β t̃ − β∗)
〉∣∣∣

≥ ‖ξ‖22 +
∥∥∥X(β t̃ − β∗)

∥∥∥2

2
− 2σ

√
3Ω∗(β t̃)

∥∥∥X(β t̃ − β∗)
∥∥∥

2

≥ ‖ξ‖22 +
∥∥∥X(β t̃ − β∗)

∥∥∥2

2
− 2σ

√
3× 5

4
Ω(β t̃)

∥∥∥X(β t̃ − β∗)
∥∥∥

2

≥ ‖ξ‖2 − 15

4
σ2Ω(β t̃),

where the second inequality follows from Lemma 24, and the third inequality uses the fact
that 5

4Ω(β t̃) ≥ Ω∗(β t̃) when ‖β t̃‖G > 4s. The definition of Ω∗(β) is given at the beginning
of the Appendix. By some simple algebras, it comes out that

1

n

∥∥∥y −Xβ t̃∥∥∥2

2
+

1000σ2
t̄Ω(β t̃)

n
≥‖ξ‖

2
2

n
− 15σ2Ω(β t̃)

4n
+

1000σ2
t̄Ω(β t̃)

n

≥‖ξ‖
2
2

n
+

950σ2
t̄Ω(β t̃)

n
.

(43)

On the other hand, we have

∥∥y −Xβt∞∥∥2

2
≤ ‖ξ‖22 +

∥∥X(βt∞ − β∗)
∥∥2

2
+ 2

∣∣〈ξ,X(βt∞ − β∗)
〉∣∣

≤ ‖ξ‖22 +
∥∥X(βt∞ − β∗)

∥∥2

2
+ 6σ

√
Ω(β∗)

∥∥X(βt∞ − β∗)
∥∥

2

≤ ‖ξ‖22 + 2
∥∥X(βt∞ − β∗)

∥∥2

2
+ 9σ2Ω(β∗),
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where the second inequality follows from (89) in Lemma 24 since βt∞−β∗ is (2s, 3
2s0)-sparse.

By some simple algebras, it comes out that

1

n

∥∥y −Xβt∞∥∥2

2
+

1000σ2
t̄Ω(βt∞)

n
≤‖ξ‖

2
2

n
+

2

n

∥∥X(βt∞ − β∗)
∥∥2

2
+

9σ2Ω(β∗)

n

+
1000σ2

t̄Ω(βt∞)

n

≤‖ξ‖
2
2

n
+ 2(1 + δ)

(
3

2
(1 +

√
2)

)2

× 16σ2ss0∆

n

+
9σ2ss0∆

n
+

1000σ2
t̄

n

(
2s log

em

2s
+ 3ss0 log

ed

s0

)
≤‖ξ‖

2
2

n
+

480σ2ss0∆

n
+

3000σ2
t̄ ss0∆

n

≤‖ξ‖
2
2

n
+

3600σ2
t̄ ss0∆

n
,

(44)

where the third inequality holds for δ < 1
10 and the last inequality follows from (41).

Combining (42)-(44), from the triangle relationship, we have

950Ω(β t̃) ≤ 3600ss0∆.

Recall Ω(β t̃) > 4ss0∆ under the assumption ‖β t̃‖G > 4s. Then, we have

3800ss0∆ < 950Ω(β t̃) ≤ 3600ss0∆.

which contradicts the assumption of ‖β t̃‖G > 4s. Therefore, we must have ‖β t̃‖G ≤ 4s.
Next, we show the upper bounds for the estimation error ‖β t̃−β∗‖. From (42), we have∥∥y −Xβt∞∥∥2

2
+ 1000σ2

t̄Ω(βt∞) ≥
∥∥∥y −Xβ t̃∥∥∥2

2
+ 1000σ2

t̄Ω(β t̃)

≥
∥∥∥y −Xβ t̃∥∥∥2

2

≥‖ξ‖22 +
∥∥∥X(β t̃ − β∗)

∥∥∥2

2
− 2σ

√
3Ω∗(β t̃)

∥∥∥X(β t̃ − β∗)
∥∥∥

2
.

Combining the above inequalities and (44), we have∥∥∥X(β t̃ − β∗)
∥∥∥2

2
− 2σ

√
3Ω∗(β t̃)

∥∥∥X(β t̃ − β∗)
∥∥∥

2
≤ 3600σ2

t̄ ss0∆. (45)

By solving the quadratic inequalities (45), we have∥∥∥X(β t̃ − β∗)
∥∥∥

2
≤ 140σ

√
ss0∆.

Note that β t̃ is (4s, s0)-sparse. Then, we conclude that by DSRIP condition, we have

∥∥∥β t̃ − β∗∥∥∥
2
≤

∥∥∥X(β t̃ − β∗)
∥∥∥

2√
n(1− δ)

≤ 150σ

√
ss0∆

n
,

which completes the proof of Theorem 13.
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Proof of Corollary 14

Note that with probability at least 1− p−C ,

‖M‖∞ ≤‖β∗ + Φβ∗‖∞ + ‖Ξ‖∞
≤‖β∗ + Φβ∗‖2 + ‖Ξ‖∞

≤(1 + δ)‖β∗‖2 + 2σ

√
log ep

n

≤4

(
‖β∗‖2 ∨ σ

√
log ep

n

)
,

(46)

where the last inequality uses δ ≤ 1. Substituting (46) into the definition of λ0, we have

λ0 =
100

9
σ0

√
∆′

n
∨ 19

4
‖M‖∞

≤19

(
‖β∗‖2 ∨ σ

√
log ep

n

)
,

(47)

where the last inequality uses ∆′ ≤ log(ep). Observe that κTλ0 ≤ 4 σt̄√
n

. By some simple

algebras, with probability at least 1− exp{−Css0∆}, we have

T ≤ log

(
λ0
√
n

4σt̄

)
/ log(

1

κ
)

≤ log

(
5λ0
√
n

18σ

)
/ log(

1

κ
)

≤ log

(
6(

√
n‖β∗‖2
σ

∨
√

log ep)

)
/ log(

1

κ
),

where the second inequality follows from 41 and the last inequality uses (47).

Therefore,

sup
S∗∈Sm,d(s,s0)

P

(
T ≥ log

(
6(

√
n‖β∗‖2
σ

∨
√

log ep)

)
/ log(

1

κ
) + 1

)
≤ e−Css0∆.

Proof of Theorem 18

Our technique for tuning s0 is notably distinct and more complex than that of Verzelen
(2012). As discussed in Section 3.2, the theoretical properties differ significantly between
the cases s̄0 > s0 and s̄0 < s0. We can control the sparsity at either the element-wise
or group-wise level, but not both simultaneously. Additionally, as illustrated in Figure 4,
the minimax rates for different values of s̄0 exhibit a“U-shaped” curve, rather than the
monotonically increasing trend observed under element-wise sparsity (Raskutti et al., 2011;
Verzelen, 2012). Therefore, we must separately analyze the cases s̄0 > s0 and s̄0 < s0.
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Basic inequality of Verzelen’s procedure

In this part, we give the basic comparable inequality used in the proof. This part is
similar to Theorem 5.2 in Verzelen (2012). Denote

pen (s̄0) =
K

n

(
Â(s̄0) log ed+ ŝ(s̄0) log

em

ŝ(s̄0)

)
, pen ′ (s̄0) = −1 + exp (pen (s̄0)) .

By the definition of ŝ0, we have

1

n

∥∥∥y −Xβ̂ (ŝ0)
∥∥∥2

2
·
(
1 + pen′(ŝ0)

)
≤ 1

n

∥∥∥y −Xβ̂ (s0)
∥∥∥2

2
·
(
1 + pen ′ (s0)

)
. (48)

For the right-hand side of (48), a strategy similar to (44) leads that

1

n

∥∥∥y −Xβ̂ (s0)
∥∥∥2

2
≤ 1

n
‖ξ‖22 + C1

σ2ss0∆

n
. (49)

Recall that we assume n is large enough so that

pen(s0) ≤ 4K

n
(ss0 log ed+ s log(em/s)) < 0.1,

which implies that 1 + pen′ (s0) = exp {pen (s0)} 6 e. Combining (48) and (49), we have

1

n

∥∥∥y −Xβ̂ (ŝ0)
∥∥∥2

2
·
(
1 + pen ′ (ŝ0)

)
≤ 1

n
‖ξ‖22

(
1 + pen′ (s0)

)
+ C2

σ2ss0∆

n
. (50)

For the left-hand side of (48), a strategy similar to (43) leads that

1

n

∥∥∥y −Xβ̂ (ŝ0)
∥∥∥2

2
≥ 1

n
‖ξ‖22 +

1

n

∥∥∥X (β∗ − β̂ (ŝ0)
)∥∥∥2

2

− 2

n

∥∥∥X (β∗ − β̂ (ŝ0)
)∥∥∥

2
·

∣∣∣∣∣∣
〈
ξ,

X
(
β∗ − β̂ (ŝ0)

)
∥∥∥X (β∗ − β̂ (ŝ0)

)∥∥∥
2

〉∣∣∣∣∣∣ .
(51)

Then, we can also upper bound the inner product by Lemma 24 as∣∣∣∣∣∣
〈
ξ

σ
,

X
(
β∗ − β̂ (ŝ0)

)
∥∥∥X (β∗ − β̂ (ŝ0)

)∥∥∥
2

〉∣∣∣∣∣∣
2

-
(
ss0 + Â(ŝ0)

)
log

ed(s+ ŝ(ŝ0))

ss0 + Â(ŝ0)
+ (s+ ŝ(ŝ0)) log

em

s+ ŝ(ŝ0)

≤
(
ss0 + Â(ŝ0)

)
log ed+ (s+ ŝ(ŝ0)) log

em

s+ ŝ(ŝ0)
.

(52)

Denote L :=
∥∥∥X (β∗ − β̂ (ŝ0)

)∥∥∥
2

and Γ̂ :=
(
ss0 + Â(ŝ0)

)
log ed + (s+ ŝ(ŝ0)) log em

s+ŝ(ŝ0) .

Therefore, by (48)-(52), we obtain

L2 − C ′2σ
√

Γ̂L ≤ pen′(s0)‖ξ‖22 + C2σ
2ss0∆. (53)
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By Lemma 1 of Laurent and Massart (2000), we conclude that 0.9σ2 ≤ 1
n‖ξ‖

2
2 ≤ 1.1σ2

holds with probability at least 1 − exp(−C4n). Besides, by pen(s0) < 0.1, we derive that
pen′(s0) = exp(pen(s0))− 1 ≤ 2 pen(s0), therefore

pen′(s0)‖ξ‖22 + C2σ
2ss0∆ ≤ C3σ

2
(
ss0 log d+ s log(em/s)

)
≤ C3σ

2Γ̂,

which leads to
L2 − C ′2σ

√
Γ̂L ≤ C3σ

2Γ̂. (54)

By solving inequality (54), we obtain the upper bound L2 ≤ C4σ
2Γ̂. Therefore, to get the

optimal upper bound for estimation error, we just need to prove that

Γ̂ - ss0 log ed+ s log(em/s). (55)

By far, based on table 1 we know that Â(ŝ0) ≤ 4ss0 for ŝ0 ≤ s0, and ŝ(ŝ0) ≤ 4s for ŝ0 ≥ s0.
Therefore, with high probability, we conclude that

Γ̂ ≤

5ss0 log ed+ (s+ ŝ(ŝ0)) log em
s+ŝ(ŝ0) , ŝ0 ≤ s0.(

ss0 + Â(ŝ0)
)

log ed+ 5s log em
s , ŝ0 > s0.

(56)

For convenience, we divide the next proof into two cases: ss0 log ed ≤ s log em
s or ss0 log ed ≥

s log em
s .

Assumption A: ss0 log ed ≥ s log em
s .

CASE 1: ŝ0 ≥ s0.
By (56), we need to prove Â(ŝ0) ≤ 9ss0. By using contradiction, we assume Â(ŝ0) > 9ss0

holds at first and obtain:

1 + pen′ (ŝ0)

1 + pen′ (s0)
≥ exp

{
K

n

(
Â(ŝ0) log ed+ ŝ(ŝ0) log

em

ŝ(ŝ0)

)
− 4

K

n

(
ss0 log ed+ s log

em

s

)}
≥ exp

{
K

n
Â(ŝ0) log ed− 4

K

n

(
ss0 log ed+ s log

em

s

)}
≥ exp

{
K

n
Â(ŝ0) log ed− 8

K

n
ss0 log ed

}
≥ exp

{
K

9n
Â(ŝ0) log ed

}
.

(57)

Combining with (49) we have

1

n

∥∥∥y −Xβ̂ (s0)
∥∥∥2

2
≤ 1

n
‖ξ‖22 + C1

σ2ss0∆

n
≤ 1

n
‖ξ‖22 + C6σ

2 Â(ŝ0) log ed

n
. (58)

Besides, by (51), we also have

1

n

∥∥∥y −Xβ̂ (ŝ0)
∥∥∥2

2
≥ 1

n
‖ξ‖22 −

1

n
C7σ

2
(
Â(ŝ0) log ed

)
, (59)
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where we use a2−2ab ≥ −b2, and the inner product term of (51) is upper bounded by (52).
Therefore, combining (48) and (57)-(59), we have(

1

n
‖ξ‖22 −

C7σ
2

n
Â(ŝ0) log ed

)
exp

{
K

9n
Â(ŝ0) log ed

}
≤ 1

n
‖ξ‖22 +

C6σ
2

n
Â(ŝ0) log ed. (60)

Let t = 1
9nÂ(ŝ0) log ed. Note that n is large enough such that t ∈ (0, 1

K ) by Assumption 2.
To establish a contradiction, we need to verify that for t ∈ (0, 1

K ),

F (t) =

(
1− 9C7t

‖ξ‖2n/σ2

)
exp(Kt)−

(
1 +

9C6t

‖ξ‖2n/σ2

)
> 0 (61)

always holds. Note that F (0) = 0 and F ′(t) = exp(Kt)
{
K − 9C7(Kt+1)

‖ξ‖2n/σ2

}
− 9C6
‖ξ‖2n/σ2 . By

0.9σ2 ≤ 1
n‖ξ‖

2
2 ≤ 1.1σ2 and Kt ∈ (0, 1), we could select a sufficiently large K ≥ 10C6+20C7.

Hence, we verify that F ′(t) > 0 for ∀t ∈ (0, 1
K ), which leads to an absurd to (60) with high

probability.
Therefore, we prove Â(ŝ0) ≤ 9ss0 holds with high probability. Then, based on (56) we

derive that
Γ̂ ≤ 10 (ss0 log ed+ s log(em/s)) , ∀ŝ0 ≥ s0, (62)

which proves (55) holds with high probability.
CASE 2: ŝ0 < s0.
We divide this case into two subcases and analyse them respectively.

(a) If 9ss0 log ed > ŝ(ŝ0) log em
ŝ(ŝ0) , we just bound the inner product in (52) by:

∣∣∣∣∣∣
〈
ξ,

X
(
β∗ − β̂ (ŝ0)

)
∥∥∥X (β∗ − β̂ (ŝ0)

)∥∥∥
2

〉∣∣∣∣∣∣
2

≤ 5ss0 log ed+ (s+ ŝ(ŝ0)) log
em

(s+ ŝ(ŝ0))

≤ 5ss0 log ed+ s log(em/s) + 9ss0 log ed

≤ 14 (ss0 log ed+ s log(em/s)) ,

where the first inequality uses Â(ŝ0) < 4ss0 for ŝ0 < s0, and the second inequality uses
ŝ(ŝ0) log em

ŝ(ŝ0) < 9ss0 log ed. By solving (53), we derive an upper bound for L as

L2 -
σ2

n

(
ss0 log ed+ s log

em

s

)
, (63)

therefore by DSRIP condition we prove (14).

(b) If 9ss0 log ed ≤ ŝ(ŝ0) log em
ŝ(ŝ0) . Then, similar to case 1, we will find an absurd with high

probability. First, we obtain

1 + pen′ (ŝ0)

1 + pen′ (s0)
≥ exp

{
K

n
ŝ(ŝ0) log

em

ŝ(ŝ0)
− 8

K

n
ss0 log ed

}
≥ exp

{
K

9n
ŝ(ŝ0) log

em

ŝ(ŝ0)

}
.
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Then, use similar techniques in (58) and (59),we obtain the following inequalities:

1

n

∥∥∥y −Xβ̂ (s0)
∥∥∥2

2
≤ 1

n
‖ξ‖22 + C1

σ2ss0∆

n

≤ 1

n
‖ξ‖22 +

2C1

9n
σ2ŝ(ŝ0) log

em

ŝ(ŝ0)
,

1

n

∥∥∥y −Xβ̂ (ŝ0)
∥∥∥2

2
≥ 1

n
‖ξ‖22 −

3σ2

n

((
s+ ŝ(ŝ0)

)
log

em

s+ ŝ(ŝ0)
+ 4ss0 log ed

)
≥ 1

n
‖ξ‖22 −

14σ2

3n
ŝ(ŝ0) log

em

ŝ(ŝ0)
,

(64)

and thus (
1

n
‖ξ‖22 −

14σ2

3n
ŝ(ŝ0) log

em

ŝ(ŝ0)

)
exp

{
K

9n
ŝ(ŝ0) log

em

ŝ(ŝ0)

}
≤ 1

n
‖ξ‖22 +

2C1

9n
σ2ŝ(ŝ0) log

em

ŝ(ŝ0)
.

(65)

Now let t = 1
9n ŝ(ŝ0) log em

ŝ(ŝ0) , and using the same technique corresponding to (61), with

a sufficiently large K ≥ 20C1+840
9 and we get an absurd. Therefore, we prove that with

high probability, 9ss0 log ed > ŝ(ŝ0) log em
ŝ(ŝ0) holds, which leads to (63) and completes

the proof in case 2.

By far, we have finished the proof in Assumption A: ss0 log ed ≥ s log em
s . When

ss0 log ed < s log em
s , the proof strategy is similar and we just give a proof sketch below.

Assumption B: ss0 log ed < s log em
s .

CASE 3: ŝ0 ≥ s0.
Similar to case 2, we continue to divide this case into two subcases:

(a) If Â(ŝ0) log ed ≤ 9s log(em/s), we obtain

Γ̂ =
(
ss0 + Â(ŝ0)

)
log ed+ (s+ ŝ(ŝ0)) log

em

s+ ŝ(ŝ0)

≤ ss0 log ed+ 9s log(em/s) + 5s log(em/s)

≤ 14
(
ss0 log ed+ s log

em

s

)
.

(66)

Therefore, we prove that (55) holds.

(b) If Â(ŝ0) log ed > 9s log(em/s), we show that

1 + pen′ (ŝ0)

1 + pen′ (s0)
≥ exp

{
K

9n
Â(ŝ0) log ed

}
.

Hence by using a strategy similar to (64) and (65), we show that Â(ŝ0) log ed >
9s log(em/s) can not hold with high probability. Therefore, in case 3, (66) holds with
high probability, which prove that (55) holds.
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CASE 4: ŝ0 < s0.

In this case, we just need to control ŝ(ŝ0). By using a contradiction similar to case 1,
at first, we assume ŝ(ŝ0) ≥ 9s holds, which leads that

1 + pen′ (ŝ0)

1 + pen′ (s0)
≥ exp

{
K

n

(
Â(ŝ0) log ed+ ŝ(ŝ0) log

em

ŝ(ŝ0)

)
− 4

K

n

(
ss0 log ed+ s log

em

s

)}
≥ exp

{
K

9n
ŝ(ŝ0) log

em

ŝ(ŝ0)

}
,

(67)
and by using a strategy similar to (58)-(61) we prove that ŝ(ŝ0) ≥ 9s can not hold with
high probability. Therefore we obtain

Γ̂ =
(
ss0 + Â(ŝ0)

)
log ed+ (s+ ŝ(ŝ0)) log

em

s+ ŝ(ŝ0)

≤ 5ss0 log ed+ 10s log(em/s)

≤ 10
(
ss0 log ed+ s log

em

s

)
, ∀ŝ0 < s0,

(68)

which leads to (55).

Overall, combining these 4 cases, we derive the upper bound for L as

L2 -
σ2
(
ss0 log ed+ s log em

s

)
n

,

and by DSRIP condition, we finally complete the proof of Theorem 18.

Proof of Theorem 20

We use a strategy similar to Theorem 4 to prove these results. For ease to display, we
define Υ(A, β̃t) :=

∑
(i,j)∈A〈Φ>ij , β∗ − β̃t〉2. In specific, if A ∪ supp(β∗ − β̃t) ∈ Sm,d(3s, 5s0

3 ),

by DSRIP(3s, 5
3s0, δ) condition, we have Υ(A, β̃t) ≤ δ2‖β∗ − β̃t‖22. In the proof of Theo-

rem 20 and 21 (and also in Lemma 25-27), we use double index (i, j) to denote the i-th
entry (variable) of the j-th group Gj . Firstly, we provide the probability inequalities used
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frequently in this proof:

P

{
∀S ∈ S(s′, s0), ‖ΞS‖22 >

6σ2s′s0

n
∆(s′, s0)

}
= o(1), where s′ =

s

8∆2
;

P

 ∑
(i,j)∈SG∗

Ξ2
ijI
{
|Ξij | ≥˜̃λ1

}
≥ σ2ss0

n∆

 = o(1);

P

 ∑
(i,j)∈S∗

λ̃2
2 · I
(
|Ξij | >

ε

2
λ̃2

)
≥ σ2ss0

n∆

 = o(1);

P

∑
j∈G∗

s0λ̃
2
2 · I

 ∑
k∈S∗∩SGj

Ξ2
kj >

ε2

4
(sj ∨ s0)λ̃2

2

 ≥ σ2ss0

n∆

 = o(1);

P

(
‖ΞS∗‖22 ≥

2σ2ss0

n

)
= o(1),

(69)

as min{∆, ss0/∆} → ∞. Define ∆(s′, s0) := 1
s0

log em
s′ + log ed

s0
. We provide the proof of the

above inequalities in Appendix B.
Here we prove Theorem 20 by mathematical induction. From the assumption, the initial

estimator β̃0 = β̂ is (2s, 3
2s0)-sparse and minimax optimal. It is easy to check that the three

results in Theorem 20 hold for t = 0. Now for ∀t ≥ 0, assume the conclusions in Theorem 20
hold for the t-th iteration, we will prove these hold for the (t+1)-th iteration by contradiction
and induction.

Step 1 (Control falsely discovered groups).

Assume that more than s groups are falsely discovered in the (t+ 1)-th iteration. Then,
we can always choose arbitrary s falsely discovered groups and construct a (s, s0)-sparse set
S′OG ∈ S̃t+1 ∩ ScG∗ . The details of the selection process can be described as follows:

For any selected group j /∈ G∗, if it has more than s0 falsely discovered entries, then
choose arbitrarily s0 non-zero entries of these falsely discovered entries into S′OG; if it has
less than s0, then we choose all these falsely discovered entries into S′OG. We repeat this
operation s times for any s falsely discovered groups, and we obtain a (s, s0)-sparse set S′OG.

Then, based on the definition of DSIHT operator Ts0,λ̃2
(·), for any falsely discovered

group j selected into set S′OG, we have ‖β̃t+1
Gj∩S′OG

‖22 ≥ s0λ̃
2
2, which yields that

√
ss0λ̃2 ≤

√
Υ
(
S′OG, β̃

t
)

+

√ ∑
(i,j)∈S′OG

Ξ2
ijI
{
Tλ2,s0

(
H̃t+1

)
ij
6= 0
}

(i)

≤ 7

2
δ‖β̃t − β∗‖2 +

√
σ2ss0

n∆
,

(70)

where inequality (i) follows Lemma 25. From the assumption of mathematical induction,

since (17) holds for t-iteration, we have
∥∥∥β̃t − β∗∥∥∥

2
< 16σ

√
ss0∆
n + 16

√
σ2ss0
n . Combining
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with (70), we obtain

√
ss0λ̃2 =

√
32σ2ss0∆

n
< 2.8

√
σ2ss0∆

n
+ 3.8

√
σ2ss0

n
, (71)

which can not hold when ∆ > 2.5. Thus we find the absurd.

We have proved that no more than s groups are falsely discovered in the (t + 1)-th
iteration. Next, we will prove that no more than ss0 entries will be falsely discovered
outside true groups G∗. If not so, we can construct an (s, s0)-sparse set S′′OG ∈ S̃t ∩ ScG∗ .
Then we obtain

√
ss0λ̃2 ≤

√
Υ
(
S′′OG, β̃

t
)

+

√ ∑
(i,j)∈S′′OG

Ξ2
ijI
{
Tλ2,s0

(
H̃t+1

)
ij
6= 0
}

(i)

≤ 7

2
δ‖β̃t − β∗‖2 +

√
σ2ss0

n∆
,

(72)

where inequality (i) follows Lemma 25. This leads to a contradiction as (71).

Step 2 (Control falsely discovered entries in SG∗).

Assume that there are more than ss0 falsely discovered entries within the true groups
G∗. Then, we can construct a (s, s0)-sparse set SIG ∈ SG∗ ∩ S̃t ∩ (S∗)c such that for each
entry in SIG, |β̃t+1

ij | = |Ξij + 〈Φ>ij , β∗ − β̃t〉| ≥ λ̃2 always holds, which yields that

√
ss0λ̃2 ≤

√
Υ
(
SIG, β̃t

)
+

√ ∑
(i,j)∈SIG

Ξ2
ijI
{
|Ξij + 〈Φ>ij , β∗ − β̃t〉| ≥ λ̃2

}
≤δ‖β̃t − β∗‖2 +

√ ∑
(i,j)∈SG∗

Ξ2
ijI
{
|Ξij | ≥ λ̃1

}
+

√ ∑
(i,j)∈SIG

Ξ2
ijI
{
|Ξij | < λ̃1 < |〈Φ>ij , β∗ − β̃t〉|

}
(i)
<2δ‖β̃t − β∗‖2 +

√
σ2ss0

n∆
,

(73)

where inequality (i) follows Lemma 26. Since (17) holds for t-th iteration, it leads to a
contradiction as (71) again.

Step 3 (`2 estimation error of β̃t+1).

Now we have already proved the first two conclusions in Theorem 20 still hold in the
(t+ 1)-th iteration, and then we will prove the third one also holds for (t+ 1)-th iteration.
Note that

β̃t+1
ij − β

∗
ij = −H̃t+1

i · I
(

(i, j) /∈ S̃t+1
)

+ 〈Φ>kj , β∗ − β̃t〉+ Ξij (74)
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We now focus on the estimation error on S∗ and S̃t+1 ∩ (S∗)c respectively. On S∗, we
have

‖β̃t+1
S∗ − β

∗
S∗‖2 ≤

√√√√ ∑
(i,j)∈S∗

(
H̃t+1
ij

)2
I
(

(i, j) /∈ S̃t+1
)

+

√
Υ
(
S∗, β̃t

)
+

√ ∑
(i,j)∈S∗

Ξ2
ij

(i)

≤ 4

ε
δ
∥∥∥β̃t − β∗∥∥∥

2
+ 2

√
σ2ss0

n∆
+

√
Υ
(
S∗, β̃t

)
+

√ ∑
(i,j)∈S∗

Ξ2
ij

(ii)

≤
(

4

ε
+ 1

)
δ
∥∥∥β̃t − β∗∥∥∥

2
+ 2

√
σ2ss0

n∆
+

√
2σ2ss0

n
,

(75)

where inequality (i) uses the result of Lemma 27. Inequality (ii) uses Lemma 3 and Theorem
2.1 in Hsu et al. (2012), that is, for a fixed set S∗ ∈ Sm,d(s, s0) and every t > 0, we have

P
( n
σ2
‖ΞS∗‖22 ≥ ss0 + 2(1 + δ)

√
ss0t+ 2(1 + δ)t

)
≤ e−t. (76)

Let t = ss0
10 . Based on δ < 1

5 , we obtain that P
(
‖ΞS∗‖22 ≥ 2σ2ss0

n

)
≤ exp

(
− ss0

10

)
= o(1) as

ss0 →∞.
On S̃t+1 ∩ (S∗)c, when X satisfies DSRIP(3s, 5

3s0, δ), we have∥∥∥β̃t+1
S̃t+1∩(S∗)c

− β∗
S̃t+1∩(S∗)c

∥∥∥
2

=
∥∥∥β̃t+1

S̃t+1∩(S∗)c

∥∥∥
2

≤
√

Υ
(
S̃t+1 ∩ (S∗)c, β̃t

)
+

√√√√ ∑
(i,j)∈S̃t+1∩(S∗)c

Ξ2
ijI
(
Tλ2,s0

(
H̃t+1

)
ij
6= 0
)

≤δ
∥∥∥β̃t − β∗∥∥∥

2
+

√ ∑
(i,j)∈SOG

Ξ2
ijI
(
Tλ2,s0

(
H̃t+1

)
ij
6= 0
)

+

√ ∑
(i,j)∈SIG

Ξ2
ijI
(
Tλ2,s0

(
H̃t+1

)
ij
6= 0
)

(i)
<

9

2
δ
∥∥∥β̃t − β∗∥∥∥

2
+ 2

√
σ2ss0

n∆
,

(77)
where inequality (i) follows from Lemma 25, (73) and Lemma 26.

Finally, based on (75) and (77), we have∥∥∥β̃t+1 − β∗
∥∥∥

2
≤
∥∥∥β̃t+1

S∗ − β
∗
S∗

∥∥∥
2

+
∥∥∥β̃t+1

S̃t+1∩(S∗)c
− β∗

S̃t+1∩(S∗)c

∥∥∥
2

≤
(

4

ε
+

11

2

)
δ
∥∥∥β̃t − β∗∥∥∥

2
+ 4

√
σ2ss0

n∆
+

√
2σ2ss0

n

(i)
<

(
4

ε
+

11

2

)
δ
∥∥∥β̃t − β∗∥∥∥

2
+ 4

√
σ2ss0

n
,

(78)

where in inequality (i) we assume ∆ > 2.5, which leads 4√
∆

+
√

2 < 4.

Then, based on the initialized inequality
∥∥∥β̃0 − β∗

∥∥∥
2
≤ 16σ

√
ss0∆
n and δ ≤ ε4 ∧ 0.05, we

have δ
(

4
ε + 11

2

)
≤ 3

4 , which leads∥∥∥β̃t+1 − β∗
∥∥∥

2
< 16

(
3

4

)t+1

σ

√
ss0∆

n
+ 16

√
σ2ss0

n
. (79)
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Consequently, we prove that the conclusions in Theorem 20 hold for the (t+1)-th iteration,
which completes the proof.

proof of Theorem 21

Under the conditions of Theorem 20, note that the probability inequalities in (69) still
hold.

Step 1 (Sharp upper bound).

Let t > 2 log (256∆) and we have

16

(
3

4

)t
σ

√
ss0∆

n
<

√
σ2ss0

n
. (80)

From (17), we have

∥∥∥β̃t − β∗∥∥∥
2
<

√
σ2ss0

n
+ 16

√
σ2ss0

n
= 17

√
σ2ss0

n
. (81)

Step 2 (Group-wise almost full recovery).

Note that based on the first conclusion of Theorem 20, no more than s groups are falsely
discovered in the (t+ 1)-th iteration. Denote Gt+1

FD as the falsely discovered group index set
in the (t+ 1)-th iteration, which satisfies

∣∣Gt+1
FD

∣∣ < s. Then, we have

‖η̃t+1
G − η∗G‖0 =

m∑
j=1

|(η̃t+1
G )j − (η∗G)j |

=
∑
j∈G∗

|(η̃t+1
G )j − 1|+

∑
j∈Gt+1

FD

|(η̃t+1
G )j − 0|

=
∑
j∈G∗

I
(
Tλ̃2,s0

(
H̃t+1
Gj

)
= 0

)
+

∑
j∈Gt+1

FD

I
(
Tλ̃2,s0

(
H̃t+1
Gj

)
6= 0

)
.

(82)
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For the first term in (82), based on Lemma 27, we have

∑
j∈G∗

I
(
Tλ̃2,s0

(
H̃t+1
Gj

)
= 0

)

≤
∑
j∈G∗

I

 ∑
k∈SGj

∩S∗

(
H̃t+1
kj

)2
I
(
|H̃t+1

kj | ≥ λ̃2

)
< s0λ̃

2
2


≤
∑
j∈G∗

I

 ∑
k∈SGj

∩S∗

(
H̃t+1
kj

)2
< (s0 + sj)λ̃

2
2


(i)

≤
∑
j∈G∗

I

(
Υ
(
SGj ∩ S∗, β̃t

)
>
ε2

4
(sj ∨ s0)λ̃2

2

)
+
∑
j∈G∗

I

 ∑
k∈SGj

∩S∗
Ξ2
kj >

ε2

4
(sj ∨ s0)λ̃2

2


(ii)

≤
4δ2
∥∥∥β̃t − β∗∥∥∥2

2

ε2s0λ̃2
2

+
σ2s

nλ̃2
2∆

-
s

∆
+

s

∆2

=O
( s

∆

)
, as ∆→∞,

(83)
where inequality (i) follows from (110) and inequality (ii) follows from (114).

For the second term in (82), based on Lemma 25, we have

∑
j∈Gt+1

FD

I
(
Tλ̃2,s0

(
H̃t+1
Gj

)
6= 0

)
≤
∑

j∈Gt+1
FD

I
(
Tλ̃1,s0

(
ΞS̃t+1∩SGj

)
6= 0

)
+

∑
j∈Gt+1

FD

I
(
Tλ̃1,s0

(
ΞS̃t+1∩SGj

)
= 0, Tλ̃2,s0

(
H̃t+1
Gj

)
6= 0

)
(i)

≤ s

8∆2
+

∑
j∈Gt+1

FD

I

 ∑
k∈S̃t+1∩SGj

Ξ2
kjI(|Ξkj | ≥ λ̃1) < s0λ̃

2
1, Tλ̃2,s0

(
H̃t+1
Gj

)
6= 0


(ii)

≤ s

8∆2
+

∑
j∈Gt+1

FD

I
(
s0λ̃

2
1 ≤ 2Υ

(
S̃t+1 ∩ SGj , β̃

t
))

-
s

∆2
+
s

∆
= O

( s
∆

)
, as ∆→∞,

(84)
where inequality (i) follows from a similar contradiction in the proof of the first term in
Lemma 25, and inequality (ii) follows from the result of (99).

Combining (82), (83) and (84) together, we prove that ‖η̃t+1
G − η∗G‖0 = O

(
s
∆

)
.
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Step 3 (Element-wise almost full recovery).

Based on the first two conclusions of Theorem 20, we have

‖η̃t+1 − η∗‖0 =
m∑
j=1

d∑
i=1

|η̃t+1
ij − η

∗
ij |

=
∑

(i,j)∈S∗
|η̃t+1
ij − 1|+

∑
(i,j)∈SG∗∩(S∗)c∩S̃t+1

|η̃t+1
ij − 0|+

∑
(i,j)∈Sc

G∗∩S̃
t+1

|η̃t+1
ij − 0|.

(85)
We can just analyze these three terms respectively. For the first one, note that∑
(i,j)∈S∗

|η̃t+1
ij − 1| =

∑
(i,j)∈S∗

I
(

(i, j) /∈ S̃t+1
)

(i)

≤
∑

(i,j)∈S∗
I
(
|H̃t+1

ij | < λ̃2

)

+
1

λ̃2
2

∑
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(
H̃t+1
ij

)2
I

|H̃t+1
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k∈SGj

∩S∗

(
H̃t+1
kj

)2
< (s0 + sj)λ̃

2
2


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16δ2

∥∥∥β̃t − β∗∥∥∥2

2

ε2λ̃2
2
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4σ2ss0

nλ̃2
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-
ss0

∆
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ss0

∆2

=O
(ss0

∆

)
, as ∆→∞,

(86)
where inequality (i) follows from the first inequality of (106) in Lemma 27, and inequality
(ii) follows from the last inequality of (106), (109) and (115).

For the second term, we obtain∑
(i,j)∈SG∗∩(S∗)c∩S̃t+1

|η̃t+1
ij − 0| ≤

∑
(i,j)∈SG∗∩(S∗)c∩S̃t+1

I
(∣∣∣H̃t+1

ij

∣∣∣ ≥ λ̃2

)
(i)

≤
∑

(i,j)∈SG∗

I
(
|Ξij | ≥ λ̃1

)
+

∑
(i,j)∈SG∗∩(S∗)c∩S̃t+1

I
(
|Ξij | < λ̃1 < |〈Φ>ij , β∗ − β̃t〉|

)
(ii)

≤ σ2ss0

nλ̃2
1∆

+
δ2
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2

λ̃2
1

-
ss0

∆2(s, s0)
+
ss0

∆

=O
(ss0

∆

)
, as ∆→∞,

(87)

where inequality (i) follows from (73) in Theorem 20, inequality (ii) follows from the proba-

bility inequality (104) in Lemma 26 and
∑

(i,j)∈SG∗
λ̃2

1I
{
|Ξij | ≥ λ̃1

}
≤
∑

(i,j)∈SG∗
Ξ2
ijI
{
|Ξij | ≥

λ̃1

}
.
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For the third term, we obtain∑
(i,j)∈Sc

G∗∩S̃
t+1

|η̃t+1
ij − 0| =

∑
(i,j)∈Sc

G∗∩S̃
t+1

I
(
Tλ̃2,s0

(
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)
ij
6= 0
)

(i)

≤
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(i,j)∈Sc
G∗∩S̃

t+1

I
{
Tλ̃1,s0

(
ΞSOG

)
ij
6= 0
}

+
∑

(i,j)∈Sc
G∗∩S̃

t+1

I
{
|Ξij | < λ̃1, |Ξij + 〈Φ>ij , β∗ − β̃t〉| ≥ λ̃2

}

+
1

λ̃2
1
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(i,j)∈Sc

G∗∩S̃
t+1

Ξ2
ijI

|Ξij | ≥ λ̃1,
∑

k∈SGj
∩S̃t+1

Ξ2
kjI(|Ξkj | ≥ λ̃1) < s0λ̃

2
1, Tλ̃2,s0

(
H̃t+1

)
ij
6= 0


(ii)
<s′s0 +

δ2
∥∥∥β̃t − β∗∥∥∥2

2

λ̃2
1

+
2δ2
∥∥∥β̃t − β∗∥∥∥2

2

λ̃2
1

-
ss0

∆2
+
ss0

∆
= O

(ss0

∆

)
, as ∆→∞,

(88)
where inequality (i) follows from (94) in Lemma 25, and inequality (ii) follows from the
framework of the first term in Lemma 25, (99) and (100), and recall s′ = s

8∆2 .

Combining (85), (86), (87) and (88) together, we prove that ‖η̃t+1 − η∗‖0 = O
(
ss0
∆

)
.

Appendix B : Auxiliary lemmas

Lemma 23 Assume that X satisfies DSRIP(2s, 3
2s0,

δ
2). Then, with probability at least

1− exp {−Css0∆}, we have

|σt − σ| ≤
√

1 + δ‖β∗ − βt‖2 +
1

20
σ.

Proof

Denote event A = {|‖ξ‖2σ −
√
n| ≤ 1

20

√
n}. From Hanson-Wright inequality (Rudelson

and Vershynin, 2013), it holds that P (A) ≥ 1− e−Cn ≥ 1− e−Css0∆. Therefore,

|σt − σ| ≤ |σt −
‖ξ‖2√
n
|+ |‖ξ‖2√

n
− σ|

≤ 1√
n

∣∣‖X(β∗ − βt) + ξ‖2 − ‖ξ‖2
∣∣+

1

20
σ

≤
√

1 + δ‖β∗ − βt‖2 +
1

20
σ,

where the second inequality follows from event A, and the last inequality follows from
DSRIP condition.

To control the inner product between ξ and X
(
β̂ − β∗

)
, we provide a useful lemma.
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Lemma 24 Given integers v1, v2 > 0, and assume that β is a (v1, v2/v1)-sparse vector. we
have

P

 sup
β∈Θm,d(v1,

v2
v1

)

∣∣∣∣〈ξ, Xβ

‖Xβ‖2

〉∣∣∣∣2 ≥ 3σ2(v1 log
em

v1
+ v2 log

edv1

v2
)

 ≤ e−C(v1 log em
v1

+v2 log
edv1
v2

)
.

(89)

In specific, if β∗ is a (s, s0)-sparse vector and β̂ ∈ Θm,d(ŝ, Âŝ ), i.e., ‖β̂‖0 ≤ Â and ‖β̂‖0,2 ≤ ŝ,
we have

P

 sup
β̂∈Θm,d(ŝ, Â

ŝ
)

∣∣∣∣∣
〈
ξ,

X(β̂ − β∗)
‖X(β̂ − β∗)‖2

〉∣∣∣∣∣
2

≥ 3σ2Ω∗(β̂)

 ≤ e−CΩ∗(β̂), (90)

where Ω∗(β̂) is defined at the beginning of the Appendix.

Proof For a fixed set S satisfies supp(β) ⊆ S, denote XS as the span space of columns of X
indexed by S, thus we have 〈ξ,Xβ〉 = 〈ξ,XSβS〉. Denote πS = XS(X>S XS)−1X>S ∈ Rn×n,
which is an orthogonal matrix of rank no more than |S|. Therefore, for ∀β ∈ Θm,d(v1,

v2
v1

),
we obtain the following by Cauchy-Schwartz inequality:

∣∣∣∣〈ξ, Xβ

‖Xβ‖2

〉∣∣∣∣ =

∣∣∣∣〈πSξ, XSβS
‖XSβS‖2

〉∣∣∣∣ ≤ ‖πSξ‖2 ≤ sup
S∈Sm,d

(
v1,

v2
v1

) ‖πSξ‖2 , (91)

Note that for ∀S ∈ Sm,d
(
v1,

v2
v1

)
, we have rank

(
πS
)
≤ v2, so that Tr(πS) ≤ rank

(
πS
)
·

‖πS‖2 ≤ v2. Thus by Theorem 2.1 of Hsu et al. (2012), for ∀t > 0, we have

P

(
‖πSξ‖22
σ2

≥ 5

2
t

)
≤ P

(
‖πSξ‖22
σ2

≥ v2 + 2
√
v2t+ 2t

)
≤ e−t, (92)

where the first inequality holds when t� v2.

Similarly to (26), we have
∣∣∣Sm,d (v1,

v2
v1

)∣∣∣ ≤ ( emv1

)v1

×
(
edv1
v2

)v2

, thus by (92) we get a

union bound as:

P

 sup
S∈Sm,d

(
v1,

v2
v1

) ‖πSξ‖22 ≥ 3σ2

(
v1 log

em

v1
+ v2 log

edv1

v2

) ≤ e−C(v1 log em
v1

+v2 log
edv1
v2

)
.

Let t = (1 + C)(v1 log em
v2

+ v1 + log edv1
v2

) for some constant 0 < C < 1
5 , which satisfies

t� v2. We complete (89).

For (90), for any β̂ ∈ Θm,d(ŝ, Âŝ ), combined with β∗ ∈ Θm,d(s, s0), so we have:

β̂ − β∗ ∈ Θm,d

(
ŝ+ s,

ss0 + Â

ŝ+ s

)
.

We let v1 = ŝ+ s and v2 = ss0 + Â, we obtain the (90) directly by (89).
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For ease of display, in the next three lemmas, we use double index (i, j) to denote the
i-th entry (variable) in the j-th group Gj . Besides, we recall the abbreviation Υ(A, β̃t) =∑

(i,j)∈A〈Φ>ij , β∗−β̃t〉2, ∆ = 1
s0

log(em/s)+log(ed/s0) and λ̃a = a

√
8σ2

n

(
log ed

s0
+ 1

s0
log em

s

)
.

Denote SOG := S̃t+1 ∩ ScG∗
Firstly, to bound the `2 norm of the selected entries of Ξ in SOG, we give the following

lemma.

Lemma 25 Assume all the conditions in Theorem 20 hold. For ∀t ≥ 0, as ∆, ss0∆ → ∞,
we have

P

√ ∑
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i I
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Proof Note that√ ∑
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√ ∑
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(
H̃t+1

)
ij
6= 0
}

+

√√√√√ ∑
(i,j)∈SOG

Ξ2
ijI

|Ξij | ≥ λ̃1,
∑

k∈SGj
∩SOG

Ξ2
kjI(|Ξkj | ≥ λ̃1) < s0λ̃2

1, Tλ̃2,s0

(
H̃t+1

)
ij
6= 0


≤
√ ∑

(i,j)∈SOG

Ξ2
ijI
{
Tλ̃1,s0

(
ΞSOG

)
ij
6= 0
}

+

√ ∑
(i,j)∈SOG

Ξ2
ijI
{
|Ξij | < λ̃1, |Ξij + 〈Φ>ij , β∗ − β̃t〉| ≥ λ̃2

}

+

√√√√√ ∑
j∈G̃t+1∩(G∗)c

s0λ̃2
1 · I

 ∑
k∈SGj

∩SOG

Ξ2
kjI(|Ξkj | ≥ λ̃1) < s0λ̃2

1, Tλ̃2,s0

(
H̃t+1

)
Gj
6= 0

.
(94)

Next, we bound the three terms in the last inequality respectively.

First term. Let s′ = s
8∆2 , s′0 = s0. Then, we show that under the event E(s′, s0) in

Lemma 3, only less than s′ groups in ΞSOG
could be discovered by Tλ̃1,s0

. If not so, choose
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any s′ discovered groups and construct an S′ ⊂ SOG and S′ ∈ Sm,d(s′, s0), which satisfies∑
(i,j)∈S′

Ξ2
ij ≥

∑
(i,j)∈S′

Ξ2
ijI
{
Tλ̃1,s0

(
ΞSOG

)
ij
6= 0
}
≥ s′s0λ̃

2
1 ≥

s

8∆2
· s0 ·

8σ2

n
∆ =

ss0σ
2

n∆
.

When ∆ is sufficiently large, we can show that log
(
8∆2

)
< s0

3 ∆, which leads that

∆ < ∆(s′, s0) :=
1

s0
log

em

s′
+ log

ed

s0
<

4

3
∆.

Thus we have∑
(i,j)∈S′

Ξ2
ij ≥

ss0σ
2

n∆
=

8s′s0σ
2∆

n
>

8s′s0σ
2

n
· 3

4
∆(s′, s0) =

6s′s0σ
2∆(s′, s0)

n
,

which contradicts the event E(s′, s0) in Lemma 3 with high probability. Thus we show only
less than s′ groups in ΞSOG

are discovered. Similarly, we can show only less than s′s0 entries
are discovered in ΞSOG

. If not so, take S2 ∈ Sm,d(s′, s0) and S2 ⊂ SOG, whose entries are
all falsely discovered in SOG, which leads∑

(i,j)∈S2

Ξ2
ij ≥ s′s0λ̃

2
1 ≥

ss0σ
2

n∆
≥ 6s′s0σ

2∆(s′, s0)

n
. (95)

Under the event E(s′, s0) in Lemma 3, (95) leads to an absurd again. Thus we can bound
the first term in (94) by∑

(i,j)∈SOG

Ξ2
ijI
{
Tλ̃1,s0

(
ΞSOG

)
ij
6= 0
}
≤ sup

S2∈S(s′,s0)

∑
(i,j)∈S2

Ξ2
ij ≤

6σ2s′s0∆(s′, s0)

n
≤ σ2ss0

n∆
.

(96)
Second term. Note that∑

(i,j)∈SOG

Ξ2
ijI
{
|Ξij | < λ̃1, |Ξij + 〈Φ>ij , β∗ − β̃t〉| ≥ λ̃2

}
≤

∑
(i,j)∈SOG

Ξ2
ijI
{
|Ξij | < λ̃1, |Ξij |+ |〈Φ>ij , β∗ − β̃t〉| ≥ 2λ̃1

}
≤

∑
(i,j)∈SOG

Ξ2
ijI
{
|Ξij | < λ̃1 ≤ |〈Φ>ij , β∗ − β̃t〉|

}
≤

∑
(i,j)∈SOG

〈Φ>(i,j), β
∗ − β̃t〉2 =

∥∥∥ΦSOG

(
β∗ − β̃t

)∥∥∥2

2
.

(97)

Thus we can bound the second term in (94) by√ ∑
(i,j)∈SOG

Ξ2
ijI
{
|Ξij | < λ̃1, |Ξij + 〈Φ>ij , β∗ − β̃t〉| ≥ λ̃2

}
≤
∥∥∥ΦSOG

(
β∗ − β̃t

)∥∥∥
2
≤ δ

∥∥∥β̃t − β∗∥∥∥
2
.

(98)
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Third term. For any group j /∈ G∗ such that
∑

k∈SGj
∩SOG

Ξ2
kjI(|Ξkj | ≥ λ̃1) < s0λ̃

2
1

and Tλ̃2,s0

(
H̃t+1

)
Gj
6= 0 (where the index ranges over SOG), we have

s0λ̃
2
2 ≤

∑
k∈SGj

∩SOG

(
Ξkj + 〈Φ>kj , β∗ − β̃t〉︸ ︷︷ ︸

H̃t+1
kj

)2
I
(
|Ξkj + 〈Φ>kj , β∗ − β̃t〉| ≥ λ̃2

)

≤
∑

k∈SGj
∩SOG

2Ξ2
kjI
(
|H̃t+1

kj | ≥ λ̃2

)
+

∑
k∈SGj

∩SOG

2〈Φ>kj , β∗ − β̃t〉2I
(
|H̃t+1

kj | ≥ λ̃2

)
≤

∑
k∈SGj

∩SOG

2Ξ2
kjI
(
|Ξkj | ≥ λ̃1

)
+

∑
k∈SGj

∩SOG

2Ξ2
kjI
(
|Ξkj | < λ̃1 ≤ |〈Φ>kj , β∗ − β̃t〉|

)
+ 2

∑
k∈SGj

∩SOG

〈Φ>kj , β∗ − β̃t〉2

≤2s0λ̃
2
1 + 4Υ

(
SGj ∩ SOG, β̃t

)
,

(99)

which leads to s0λ̃
2
1 ≤ 2Υ

(
SGj ∩ SOG, β̃t

)
. Thus we can bound the third term in (94) as√√√√ ∑

(i,j)∈SOG

Ξ2
ijI
{
|Ξij | ≥ λ̃1,

∑
k∈SGj

∩SOG

Ξ2
kjI(|Ξkj | ≥ λ̃1) < s0λ̃2

1, Tλ̃2,s0

(
H̃t+1

)
ij
6= 0
}

≤
√√√√ ∑

j∈G̃t+1∩(G∗)c

s0λ̃2
1I
{
s0λ̃2

1 ≤ 2Υ
(
SGj ∩ SOG, β̃t

)}

≤
√

2Υ
(
SOG, β̃t

)
<

3

2
δ
∥∥∥β̃t − β∗∥∥∥

2
.

(100)
Combining these three terms (96), (98) and (100) together, we finally get that

P

√ ∑
(i,j)∈SOG

Ξ2
i I
{
Tλ̃2,s0

(
H̃t+1

)
ij
6= 0
}
<

√
σ2ss0

n∆
+

5

2
δ‖β̃t − β∗‖2

→ 1, (101)

as ∆, ss0∆ →∞.

Similarly, we can bound the `2-norm of the selected entries of Ξ within the true groups
G∗, which can be expressed in the following lemma.

Lemma 26 Assume all the conditions in Theorem 20 hold. As ∆→∞, we have

P

√ ∑
(i,j)∈SG∗

Ξ2
ijI
{
|Ξij | ≥ λ̃1

}
<

√
σ2ss0

n∆

→ 1. (102)

55



Zhang, Li, Liu and Yin

Proof Since for any (i, j) ∈ SG∗ , Ξij is sub-Gaussian with parameter σ2

n , we conclude that

E
(

Ξ2
ijI
{
|Ξij | ≥ λ̃1

})
=

∫ ∞
0

P
(

Ξ2
ijI
{
|Ξij | ≥ λ̃1

}
> u

)
du

=

∫ λ̃2
1

0
P
(
|Ξij | ≥ λ̃1

)
du+

∫ ∞
λ̃2

1

P
(
|Ξij | ≥

√
u
)

du

≤2λ̃2
1 exp

(
−nλ̃

2
1

2σ2

)
+

∫ ∞
λ̃2

1

2 exp
(
− nu

2σ2

)
du

=

(
2λ̃2

1 +
4σ2

n

)
exp

(
−nλ̃

2
1

2σ2

)

≤3λ̃2
1 exp

(
−nλ̃

2
1

2σ2

)
,

(103)

where the last inequality follows from λ̃2
1 = 8σ2

n ∆ ≥ 4σ2

n . Thus, based on Markov inequality
we have

P

 ∑
(i,j)∈SG∗

Ξ2
ijI
{
|Ξij | ≥ λ̃1

}
≥ σ2ss0

n∆

 ≤ n∆

σ2ss0
·E

 ∑
(i,j)∈SG∗

Ξ2
ijI
{
|Ξij | ≥ λ̃1

}
≤3∆ · λ̃

2
1n

σ2
· d
s0
· exp

(
−nλ̃

2
1

2σ2

)

≤3

4

(
nλ̃2

1

σ2

)2

exp

(
−nλ̃

2
1

4σ2

)
=o(1), as ∆→∞,

(104)

where the last inequality uses λ̃2
1 ≥ 4σ2∆

n and d
s0
< exp(∆) ≤ exp

(
nλ̃2

1
4σ2

)
.

Now we turn to analyze the term of the estimation error on S∗. Under proper beta-min

conditions, we can bound
∑

(i,j)∈S∗
(
H̃t+1
ij

)2
I
(

(i, j) /∈ S̃t+1
)

by the following lemma.

Lemma 27 Assume all the conditions in Theorem 20 hold. Then, for any ε > 0, we have

P

√√√√ ∑
(i,j)∈S∗

(
H̃t+1
ij

)2
I
(

(i, j) /∈ S̃t+1
)
<

4

ε
δ
∥∥∥β̃t − β∗∥∥∥

2
+ 2

√
σ2ss0

n∆

→ 1, (105)

as ∆→∞.
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Proof Note that

√√√√ ∑
(i,j)∈S∗

(
H̃t+1
ij

)2
I
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(i, j) /∈ S̃t+1
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2
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(
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)2
I(|H̃t+1

kj | ≥ λ̃2) < s0λ̃2
2



≤
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)
+
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(
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2

.
(106)

Next, we analyze these two terms respectively.

First term. Recall that H̃t+1
ij = β∗ij + 〈Φ>ij , β∗ − β̃t〉 + Ξij and |β∗ij | ≥ (1 + ε)λ̃2 holds

for every support entry. Therefore, we have

√ ∑
(i,j)∈S∗

λ̃2
2 · I

(
|H̃t+1

ij | < λ̃2

)
≤
√ ∑
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)
≤
√ ∑
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(
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√ ∑
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2
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√ ∑
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2
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2

ε

√
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(
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)
+
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2 · I
(
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ε

2
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)
.

(107)
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Under the fixed S∗ and based on Markov inequality, we have

P

 ∑
(i,j)∈S∗

λ̃2
2 · I
(
|Ξij | >

ε

2
λ̃2

)
≥ σ2ss0

n∆
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2 · P

(
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2
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)
≤ 1
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nλ̃2

2

σ2
)2 exp(−ε

2

8
· nλ̃

2
2

σ2
)

=o(1), as ∆→∞,

(108)

where recall that λ̃2 = 2
√

8σ2

n ∆. Thus the first term in (106) is bounded by

√ ∑
(i,j)∈S∗

λ̃2
2 · I

(
|H̃t+1

ij | < λ̃2

)
<

2

ε
δ
∥∥∥β̃t − β∗∥∥∥

2
+

√
σ2ss0

n∆
. (109)

Second term. Let sj = ‖β∗Gj
‖0 for j ∈ G∗. For ∀j ∈ G∗, by element-wise beta-

min condition min
(i,j)∈S∗

|β∗ij | ≥ (
√

2 + ε)λ̃2 and group-wise beta-min condition min
j∈G∗

‖β∗Gj
‖2 ≥

(
√

2 + ε)
√
s0λ̃2, we conclude that
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√
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√
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√
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√
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Therefore, we have
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(110)
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which yields that√√√√√∑
j∈G∗
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 ∑
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(111)

Now, based on Lemma 3 and Theorem 2.1 in Hsu et al. (2012), for every t > 0 and every
support group Gj , we obtain that

P
( n
σ2
‖ΞS∗∩SGj

‖22 ≥ sj + 2(1 + δ)
√
sjt+ 2(1 + δ)t

)
≤ e−t. (112)

Let t =
nε2(sj∨s0)

24σ2 λ̃2
2. We can show t > sj , as ∆→∞. From δ ≤ 1

4 we obtain

sj + 2(1 + δ)
√
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4σ2
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2, (113)

which implies that P
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. Therefore,

by Markov inequality, we have
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(114)
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Combining (111) and (114), we bound the second term by√√√√√∑
j∈G∗

s0λ̃2
2 · I
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k∈S∗∩SGj

(
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kj
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 ≤ 2
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2
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√
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. (115)

Finally, based on (109) and (115), we have

P

√√√√ ∑
(i,j)∈S∗

(
H̃t+1
ij

)2
I
(

(i, j) /∈ S̃t+1
)
<

4

ε
δ
∥∥∥β̃t − β∗∥∥∥

2
+ 2

√
σ2ss0

n∆

→ 1, (116)

as ∆→∞.

Appendix C: Example of sub-Gaussian random design

Assume ζ1, ζ2, · · · , ζn are independent and identically distributed p-dimensional isotropic,
sub-Gaussian random vectors, forming a random matrix Z ∈ Rn×p , whose i-th row Zi is
denoted by ζi. In this paper, we consider a random design matrix X, which is generated as
follows:

X = ZΣ
1
2 , (117)

where Σ is the covariance matrix.

According to the theoretical framework of Zhou (2009) and Mendelson et al. (2008),
given the vector space V ∈ Rp, the key point is to construct the restricted isometric prop-
erties between Xv and Σ

1
2 v for v ∈ V. The empirical process technique plays an important

role, and we define Gaussian complexity first:

Definition 28 (Gaussian complexity) Given a subset V ⊆ Rp, we define the Gaussian
complexity of V as follows:

`∗(V) := Eg sup
θ∈V

∣∣∣∣∣
p∑
i=1

giθi

∣∣∣∣∣ ,
where θi is each component of vector θ, and g1, g2, · · · , gp are independently drawn from
N (0, 1) distributions. In particular, given a non-negative definite matrix Σ, we define

˜̀∗(V) := `∗(Σ
1
2V) = Eg sup

v∈V

∣∣∣〈Σ 1
2 v, g〉

∣∣∣ = Eg sup
v∈V

∣∣∣〈v,Σ 1
2 g〉
∣∣∣ .

According to the homogeneity of the norm, we only need to consider the subset of the unit
ball sphere Sp−1, which is defined as:

Sp−1 := {v ∈ Rp : ‖v‖2 = 1} .

The main technique we use is the following empirical process result:
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Lemma 29 (Theorem 2.1 in Mendelson et al. (2008)) Let 1 ≤ n ≤ p and 0 < δ < 1.
Let ζ ∈ Rp be an isotropic sub-Gaussian random vector with parameter α. Let ζ1, . . . , ζn
be the independent copies of ζ. Define X as the random matrix in (117), and let V satisfy

Σ
1
2 v ∈ Sp−1 for all v ∈ V. If sample size n satisfies n > c′α4δ2 ˜̀∗(V)2, then with probability

of at least 1− exp(−c̄δ2n/α4), for all v ∈ V, we have

1− δ ≤ ‖Xv‖2/
√
n ≤ 1 + δ,

where c′, c̄ > 0 are some absolute constants.

Denote parameter space V := Θm,d(s, s0) ∩ {v : Σ
1
2 v ∈ Sp−1}. Then, given any v ∈ V, we

assume that

ρmin ≤
∥∥Σ1/2v

∥∥
2

‖v‖2
≤ ρmax.

Next, we derive the Gaussian complexity ˜̀∗(V) for the double sparse structure. We denote

U := Θm,d(s, s0) ∩ {v : ‖Σ
1
2 v‖2 ≤ 1}.

Recall that m× d = p. Then, we have

˜̀∗ (V) ≤ ˜̀∗ (U) = Eg sup
t∈U

∣∣∣〈t,Σ1/2g
〉∣∣∣

≤ 3
√

log |Θm,d(s, s0)| sup
t∈U

√
Eg

∣∣〈t,Σ1/2g
〉∣∣2

≤ C
√
ss0 log(ed/s0) + s log(em/s) sup

t∈U

∥∥∥Σ1/2t
∥∥∥

2

≤ C
√
ss0 log(ed/s0) + s log(em/s),

where the first inequality follows from Chapter 3 in Ledoux and Talagrand (1991). Note
that

‖Xv‖2√
n‖v‖2

=
‖Xv‖2
√
n‖Σ

1
2
Sv‖2

·
‖Σ

1
2
Sv‖2
‖v‖2

.

Therefore, by Lemma 29, for n > C ′α4δ2 · (ss0 log(ed/s0) + s log(em/s)), we have

(1− δ)ρmin ≤
‖Xv‖2√
n‖v‖2

≤ (1 + δ)ρmax.

This proves the satisfaction of the DSRIP condition under the sub-Gaussian random design.
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