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Abstract

We prove some representer theorems for a localised version of a semisupervised, mani-
fold regularised and multiview support vector machine learning problem introduced by
H.Q. Minh, L. Bazzani, and V. Murino, Journal of Machine Learning Research, 17(2016)
1–72, that involves operator valued positive semidefinite kernels and their reproducing
kernel Hilbert spaces. The results concern general cases when convex or nonconvex loss
functions and finite or infinite dimensional underlying Hilbert spaces are considered. We
show that the general framework allows infinite dimensional Hilbert spaces and nonconvex
loss functions for some special cases, in particular in case the loss functions are Gâteaux
differentiable. Detailed calculations are provided for the exponential least squares loss
functions that lead to systems of partially nonlinear equations for which some Newton’s
approximation methods based on the interior point method can be used. Some numerical
experiments are performed on a toy model that illustrate the tractability of the methods
that we propose.

Keywords: operator valued reproducing kernel Hilbert spaces, manifold co-regularised
and multiview learning, support vector machine learning, loss functions, representer theo-
rem

1. Introduction

Representer theorems are of a special interest in machine learning due to the fact that they
reduce the problem of finding a minimiser for the learning map to the vector space spanned
by the kernel functions, or operators, at the labeled and unlabeled input data. For classical
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versions of representer theorem, we recommend the monographs of Schölkopf and Smola
(2002) and Steinwart and Christmann (2008). There is a large literature on generalised
representer theorems but in this article we refer to the unifying framework in vector valued
reproducing kernel Hilbert spaces for semisupervised, manifold regularised and multiview
machine learning, as investigated by Minh et al. (2016) and the vast literature cited there.

The article Minh et al. (2016) has remarkable contributions to the domain of representer
theorems in support vector machine learning, firstly by unifying many variants of these
theorems referring to semisupervised, regularised, manifold regularised, multiview machine
learning and then by considering underlying Hilbert spaces that are infinite dimensional.
Recently, infinite dimensional Hilbert spaces in learning with kernels have been of interest,
e.g. see Lambert (2021). However, although the general representer theorem, Theorem 2 in
Minh et al. (2016), is stated for infinite dimensional spaces, this turns out to be problematic,
as we will see in Remark 10. Also, there is an interest for applications to learning problems
in which loss functions may not be convex, cf. Zhao et al. (2010), or even indefinite, cf.
Kwon and Zou (2023).

In this article we are concerned with questions triggered by the investigations in Minh
et al. (2016) and Zhao et al. (2010), such as: to which extent can one allow the underlying
input spaces be infinite dimensional and to which extent nonconvex loss functions can be
used in the learning process. In this respect, we propose a localisation of the minimisation
of the semisupervised regularised, manifold regularised, and multiview machine learning
problem studied in Minh et al. (2016), in the sense that the output spaces and the loss
functions may be different for each labeled and unlabeled input point. For this approach we
use a generalised version of vector valued reproducing kernel Hilbert spaces with bundles of
spaces and operators. We think that the localised framework offers more flexibility to the
learning problem and it is quite natural, especially when semisupervised multiview learning
is considered, that the output spaces and the loss functions depend locally on the input
points.

There are a few reasons that motivate the localised versions that we consider in this
article. Firstly, for some of the labeled input points, in the multivariable case, some of the
components of the labels (properties) may be missing or some additional components of the
labels may be necessary in order to allow reliable information. This means that the under-
lying vector spaces of labels may have different dimensions and hence, making the vector
spaces of the labels depend on the input points solves this obstruction. Secondly, when
the input set X shows a certain homogeneity, the localised version may not be needed but,
when this set is more heterogeneous, the localised version brings the necessary flexibility.
To be more precise, let us imagine the following scenario. The input set X is a finite union
of sets Xi, i = 1, . . . , N , where each Xi shows homogeneity. By homogeneity we mean that,
for each i, the properties (labels) associated to x ∈ Xi are of the same type, in particular
they live in the same Hilbert space Yi. However, for different i 6= j, where i, j ∈ {1, . . . , N},
the properties (labels) of the points x ∈ Xi when compared to the properties of the points
x ∈ Xj may be different, meaning that the Hilbert spaces of labels Yi and Yj should be
different. For example, if the set X is the collection of all the cells of a body, we can see
X as the union of all its organs Xi, for i = 1, . . . , N , and it is clear that due to special
functions that different organs have in the body, the properties (labels) of cells in different
organs are generally of different type. Moreover, the learning function, which is calculated
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in terms of loss functions, may require different loss functions for different points that have
different types of labels. For example, in the scenario of the body viewed as the union of
its organs, comparison of properties of different cells should be performed differently for
cells belonging to different organs. This justifies the dependence of the loss functions of
the input points as well. As a further research project, the localised version of the machine
learning problem might be used for investigating the process of spreading a malignant tu-
mor (metastasis) in different organs of a body, provided that real data will be available and
appropriate mathematical models will be obtained.

Following Minh et al. (2016), the direction of multiview learning we consider in this
work is coregularisation, see e.g. Brefeld et al. (2006), Sindhwani and Rosenberg (2008),
Rosenberg et al. (2009), and Sun (2011). In this approach, different hypothesis spaces
are used to construct target functions based on different views of the input data, such as
different features or modalities, and a data dependent regularisation term is used to enforce
consistency of output values from different views of the same input example. The resulting
target functions, each corresponding to one view, are then naturally combined together in
a certain fashion to give the final solution.

The direction of semisupervised learning we follow here is manifold regularisation, cf.
Belkin et al. (2006), Brouard et al. (2011), and Minh and Sindwhani (2011), which attempts
to learn the geometry of the input space by exploiting the given unlabeled data. The latter
two papers are recent generalisations of the original scalar version of manifold regularisation
of Belkin et al. (2006) to the vector valued setting. In Brouard et al. (2011), a vector valued
version of the graph Laplacian L is used while in Minh and Sindwhani (2011) L is a general
symmetric, positive operator, including the graph Laplacian. The vector valued setting
allows one to capture possible dependencies between output variables by the use of, for
example, an output graph Laplacian. For a comprehensive discussion on semisupervised
learning and a thorough comparison with supervised and unsupervised learning, see the
collection Chapelle et al. (2006).

Because reproducing kernel Hilbert spaces make an essential ingredient in these repre-
senter type theorems, some historical considerations are in order. The classical article of
Aronszajn (1950) provides an abstract formalisation of scalar reproducing kernel Hilbert
spaces of many previous investigations and applications related to spaces of analytic func-
tions, partial differential equations, and harmonic analysis, as of Mercer (1909), Bergman
(1922), Moore (Part I, 1935, Part II, 1939), Bochner (1941), and Godement (1948). From
the point of view of probability theory, Kolmogorov (1941) investigated linearisations, or
feature spaces, associated to scalar positive semidefinite kernels. An equivalent formulation
of reproducing kernel Hilbert spaces by Hilbert spaces continuously embeded in a quasicom-
plete locally convex space was investigated by Schwartz (1964) while a more group theo-
retical approach was performed in Krein (1949/1963) and Krein (1950/1963). Then, scalar
valued reproducing kernel Hilbert spaces found many applications in machine learning, see
Steinwart and Christmann (2008) and Schölkopf and Smola (2002) for a comprehensive list
of literature in this direction.

Motivated by problems in operator theory and operator algebras, operator valued pos-
itive semidefinite kernels and either their linearisations (Kolmogorov decompositions) or
their reproducing kernel Hilbert spaces have been considered by Sz.-Nagy (1955), Pedrick
(1957), Parthasarathy and Schmidt (1972), Evans and Lewis (1977), and Constantinescu
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(1996), to cite a few. Investigations of operator valued Hermitian kernels that yield Krein
spaces have been performed by Constantinescu and Gheondea (1997), Constantinescu and
Gheondea (2001). More general operator valued positive semidefinite kernels that yield re-
producing kernel VH-spaces have been considered by Gheondea (2012), Ay and Gheondea
(2015), Ay and Gheondea (2017), and Ay and Gheondea (2019). To make things more
precise, recall that a vector space S endowed with a map S 3 s 7→ s∗ ∈ S which is conjugate
linear and involutive, in the sense that (s∗)∗ = s for all s ∈ S, is called a ∗-vector space. If,
in addition, a convex cone S+ on S is specified such that for any s ∈ S+ we have s = s∗, we
call S an ordered ∗-space and, when a complete locally convex topology on S is specified
and which is related in a certain fashion with the convex cone S+, one calls S an admissible
space. The concept of admissible space is a generalisation of the concept of C∗-algebra
which is a mainstream domain in functional analysis, partly due to its strong connections
with quantum theories, e.g. see Davidson (1996) and Blackadar (2006). Admissible spaces
S are then used to consider gramians [·, ·] : X ×X → S, for some vector space X , which are
vector valued inner products and that induce a certain topology on X . If this topology is
complete then we call X a VH-space (Vector Hilbert space). The concept of VH-space is
a generalisation of the concept of Hilbert modules over C∗-algebras, e.g. see Lance (1995),
but it appeared independently and related to problems in probability theory, see Loynes
(1965a), Loynes (1965b), and Loynes (1967). In case we have a positive semidefinite kernel
K : X×X → S, for some admissible space S, one can define a reproducing kernel VH-space
as a generalisation of the classical reproducing kernel Hilbert space. For details and many
examples see, for example, Ay and Gheondea (2017).

During the last twenty years, operator valued positive semidefinite kernels and their
reproducing kernel Hilbert spaces and feature spaces (linearisations, or Kolmogorov decom-
positions) became of interest in the theory of machine learning, see Micchelli and Pontil
(2005), Carmelli et al. (2006), Caponnetto et al. (2008), Minh and Sindwhani (2011), Kadri
et al. (2016), but the investigations have been somehow started from scratch, apparently
unaware of the previous works. More recently, in a sequence of articles, Hashimoto et al.
(2021), Hashimoto et al. (2022), Hashimoto et al. (2023a), Hashimoto et al. (2023b), and
Hashimoto et al. (2024), it is shown that, using the C∗-algebra-valued gramians (vector
valued inner products), one can learn function- and operator-valued maps, one can design
positive definite kernels for structured data using the noncommutative product, one can
use the norm of the ∗-algebra to alleviate the dependency of generalisation error bound
on the output dimension using the generalisation of kernel mean embedding by means of
C∗-algebras, one can analyse positive operator valued measures and spectral measures, one
can continuously combine multiple models and use the tools for functions which can be
applied to ensemble, multitask, and meta-learning (the noncommutative product structures
in C∗-algebras induce interactions among models), and one can construct group equivariant
neural networks using the products in group C∗-algebras.

We briefly describe the contents of this article. In order to introduce the localised
version of the semisupervised, regularised, manifold regularised, and multiview learning
problem, in Subsection 2.1 we firstly consider operator valued positive semidefinite kernels
for which the entries are localised by a bundle of Hilbert spaces. For these kernels, we
show how their reproducing kernel Hilbert spaces are constructed, their relation to the
linearisations (Kolmogorov decompositions, feature spaces) and basic properties. Although
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we have been inspired by the approach in Constantinescu and Gheondea (1997), we provide
in the appendices proofs for all the statements we make since in this form they cannot be
found elsewhere. In Pedrick (1957), reproducing kernel Hilbert spaces are considered for
kernels over bundles of locally convex spaces and this might be a very interesting research
problem in case applications to machine learning theory might be found.

Then, in Subsection 2.2 we present the localised version of the semisupervised, regu-
larised, manifold regularised, and multiview machine learning problem inspired by Minh
et al. (2016). Under rather general assumptions, we prove in Subsection 2.1 the representer
theorem for general loss functions but assuming the input spaces at all input points be finite
dimensional. The finite dimensionality assumption can be relaxed to the condition that the
span of the input kernel operators at the input points is closed, as Proposition 6 shows.
In this section, most of the underlying Hilbert spaces may be complex and only in some
special cases we have to impose the condition that they are real.

Further on, in Subsection 3.2 we consider real underlying Hilbert spaces and loss func-
tions that are Gâteaux differentiable and then, in Theorem 17 we show that, under this
additional assumption, a general representer theorem can be obtained for infinite dimen-
sional input spaces. In Subsection 3.3 we work out the details for the loss functions defined
by the least squares which leads to a linear problem in terms of the unkown coefficients,
as in Minh et al. (2016), while in Subsection 3.4 we work out the details for the loss func-
tions defined by the exponential least squares which lead to a mixed problem, linear and
nonlinear. Finally, in Subsection 3.5 we tackle algorithms to obtain approximations of the
solutions for the latter machine learning problem by damped Newton approximation meth-
ods, as presented in Monteiro and Pang (1999), Byrd et al. (1999), Byrd et al. (2000), Waltz
et al. (2006). Since, in the framework of systems of nonlinear equations, finding solutions is
generally a hot topic in current research, much work remains to be done. Some numerical
experiments are performed on a toy model for the latter case and the algorithm is tested.
We show the robustness of the method on this toy model.

2. A General Semisupervised Regularised and Multiview Machine
Learning Problem

2.1 Operator Valued Kernels.

The aim of this subsection is to introduce kernels that take values in bundles of bounded
linear operators on different Hilbert spaces and which will make the theoretical foundations
for the localised machine learning problem. Actually, we prove that passing from nonlo-
calised to localised machine learning problem has the advantage of being very flexible and
allowing a very large nonhomogeneity of the input data while not bringing new obstructions.
In particular, this shows that, with minimal changes, similar results and algorithms can be
obtained for localised machine learning problems.

Let X be a nonempty set and H = {Hx}x∈X a bundle of Hilbert spaces over the field F,
that is either R or C, with base X, that is, Hx is a Hilbert space over F, for any x ∈ X. In
order to avoid confusion, let us note that the Hilbert spaces Hx are actually tagged Hilbert
spaces, meaning that for x 6= y the spaces Hx and Hy are disjoint. An H-operator valued
kernel K is a mapping defined on X ×X such that K(y, x) ∈ B(Hx,Hy) for all x, y ∈ X.
Here and throughout this article, if H and K are two Hilbert spaces over the same filed F,
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we denote by B(H,K) the Banach space of all linear and bounded operators T : H → K,
endowed with the operator norm. We denote by K(X;H) the collection of all H-operator
valued kernels on X and it is clear that K(X;H) is a vector space over F.

Given K ∈ K(X;H), the adjoint kernel K∗ is defined by K∗(x, y) = K(y, x)∗ for all
x, y ∈ X. Clearly K∗ ∈ K(X;H). The kernel K is called Hermitian or symmetric if
K = K∗. If F = C then any kernel K is a linear combination of two Hermitian kernels,
more precisely, letting

<(K) := (K +K∗)/2, =(K) := (K −K∗)/2i, (2.1)

we have

K = <(K) + i=(K). (2.2)

It is easy to see that K 7→ K∗ is an involution, that is, it is conjugate linear and involutive.
In this way, K(X;H) is a ∗-vector space, that is, K(X;H) is a vector space endowed with
an involution, e.g. see Ay and Gheondea (2015).

Let F(X;H) be the vector space over F of all cross-sections f : X →
⋃
x∈X Hx, that is,

f(x) ∈ Hx for all x ∈ X. Addition and multiplication with scalars in F(X;H) are defined
pointwise. Equivalently, F(X;H) can be naturally identified with the vector space

∏
x∈X
Hx

and then any cross-section f ∈
∏
x∈X
Hx can be written f = {fx}x∈X . For each x ∈ X and

h ∈ Hx we consider the cross-section ĥ ∈ F(X;H), defined by

ĥ(y) =

{
h, if y = x,

0Hy , otherwise.
(2.3)

In particular, since H consists of tagged Hilbert spaces this means that if either h ∈ Hx or
l ∈ Hy are not null and x 6= y then ĥ 6= l̂. However, if h = 0Hx and l = 0Hy with x 6= y,

then ĥ = l̂ = 0F(X;H). Also, for any f ∈ F(X;H) we have

f =
∑
x∈X

f̂x, (2.4)

where fx := f(x) for all x ∈ X. Clearly, for each y ∈ X the sum
∑

x∈X f̂x(y) has at most
one nonnull term and hence the sum in (2.4) converges pointwise.

Let F0(X;H) be the vector subspace consisting of all f ∈ F(X;H) with finite support.
Clearly, any cross-section of type ĥ, for some h ∈ Hx, belongs to F0(X;H) and, for any
f ∈ F0(X;H) there exists uniquely distinct elements x1, . . . , xn ∈ X and hi ∈ Hxi , i =
1, . . . , n, such that

f =

n∑
i=1

ĥi.

An inner product 〈·, ·〉0 : F0(X;H)×F0(X;H)→ F can be defined by

〈f, g〉0 =
∑
x∈X
〈f(x), g(x)〉Hx , f, g ∈ F0(X;H). (2.5)
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In addition, let us observe that the sum in (2.5) makes sense in the more general case when
f, g ∈ F(X;H) and at least one of f or g has finite support, the other can be arbitrary.

Associated to the kernel K ∈ K(X;H) there is a sesquilinear form 〈·, ·〉K : F0(X;H)×
F0(X;H)→ F defined by

〈f, g〉K =
∑
x,y∈X

〈K(y, x)f(x), g(y)〉Hy , f, g ∈ F0(X;H), (2.6)

that is, 〈·, ·〉K is linear in the first variable and conjugate linear in the second variable. Also,
the sesquilinear form 〈·, ·〉K is Hermitian, that is, 〈f, g〉K = 〈g, f〉K for all f, g ∈ K(X;H),
if and only if the kernel K is Hermitian.

A convolution operator CK : F0(X;H)→ F(X;H) can be defined by

(CKf)(y) =
∑
x∈X

K(y, x)f(x), f ∈ F0(X;H), y ∈ X. (2.7)

Clearly CK is a linear operator and, with notation as in (2.5) and (2.6) we have

〈CKf, g〉0 = 〈f, g〉K , f, g ∈ F0(X;H). (2.8)

By definition, the kernel K is positive semidefinite if the sesquilinear form 〈·, ·〉K is
nonnegative, that is, if 〈f, f〉K ≥ 0 for all f ∈ F0(X;H), equivalently, if for all n ∈ N, all
x1, . . . , xn ∈ X, and all h1 ∈ Hx1 , . . . , hn ∈ Hxn , we have

n∑
i,j=1

〈K(xj , xi)hi, hj〉Hxj ≥ 0. (2.9)

An equivalent way of expressing (2.9) is to say that the operator block matrix [K(xj , xi)]
n
i,j=1,

when viewed as a bounded linear operator acting in the orthogonal direct Hilbert sum
Hx1 ⊕ · · · ⊕ Hxn , is a positive semidefinite operator. On the other hand, the kernel K is
positive semidefinite if and only if the convolution operator, as defined in (2.7), is positive
semidefinite when viewed as an operator on the inner product space (F0(X;H); 〈·, ·〉0),
more precisely,

〈CKf, f〉0 ≥ 0, f ∈ F0(X;H). (2.10)

It is easy to see that, if F = C then, if the kernel K is positive semidefinite then it is
Hermitian. If F = R then this is not true and hence, for this case we confine to those
positive semidefinite kernels that are Hermitian, more precisely, in this case, in addition
to the property (2.9), by a positive semidefinite kernel we implicitly understand that it is
Hermitian as well. The collection of all positive semidefinite H-operator valued kernels on
X is denoted by K+(X;H) and it is easy to see that K+(X;H) is a strict convex cone of
the ∗-vector space K(X;H).

Given an arbitrary bundle of Hilbert spaces H = {Hx}x∈X and an H-operator valued
Kernel k, a Hilbert space linearisation, or a Kolmogorov decomposition, or a feature pair of
K is, by definition, a pair (K;V ) subject to the following conditions.

(kd1) K is a Hilbert space over F.
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(kd2) V = {V (x)}x∈X is an operator bundle such that V (x) ∈ B(Hx,K) for all x ∈ X.

(kd3) K(x, y) = V (x)∗V (y) for all x, y ∈ X.

The linearisation (K;V ) is called minimal if

(kd4) K is the closed span of {V (x)Hx | x ∈ X}.

The following theorem is a general version of some classical results, e.g. Kolmogorov
(1941), Parthasarathy and Schmidt (1972), Evans and Lewis (1977). This is also a special
case of Constantinescu and Gheondea (1997). We include its proof in the Appendix A.

Theorem 1 Given an arbitrary bundle of Hilbert spaces H = {Hx}x∈X and an H-operator
valued kernel K, the following assertions are equivalent.

(a) K is positive semidefinite.

(b) K has a Hilbert space linearisation.

In addition, if K is positive semidefinite then a minimal Hilbert space linearisation (K;V )
exists and it is unique, modulo unitary equivalence, that is, for any other minimal Hilbert
space linearisation (K′;V ′) of K there exists a unitary operator U : K′ → K such that
V (x) = UV ′(x), for all x ∈ X.

Due to the uniqueness part in the previous theorem, for any K ∈ K+(X;H), we denote
by (KK ;VK) the minimal Hilbert space linearisation of K, as constructed during the proof
of the implication (a)⇒(b).

Let X be a nonempty set and H = {Hx}x∈X a bundle of Hilbert spaces over F. Given
an H-operator valued kernel K, a reproducing kernel Hilbert space associated to K is, by
definition, a Hilbert space R ⊆ F(X;H) subject to the following conditions.

(rk1) R is a subspace of F(X;H), with all induced algebraic operations.

(rk2) For all x ∈ X and h ∈ Hx, the cross-section Kxh := K(·, x)h belongs to R.

(rk3) For all f ∈ R we have 〈f(x), h〉Hx = 〈f,Kxh〉R, for all x ∈ X and all h ∈ Hx.

Consequently, the following minimality condition holds as well:

(rk4) The span of {Kxh | x ∈ X, h ∈ Hx} is dense in R.

Also, it is worth mentioning that by (rk2), for each x ∈ X, we actually have a bounded
linear operator Kx : Hx → R defined by Kxh := K(·, x)h, for all h ∈ Hx. This operator is
bounded, as proven in (4.1). The following result is a generalisation of Moore-Aronszajn
Theorem, Moore (Part I, 1935, Part II, 1939), Aronszajn (1950), Micchelli and Pontil (2005),
Carmelli et al. (2006), Caponnetto et al. (2008), Minh and Sindwhani (2011), Kadri et al.
(2016). Also, it is a special case of Constantinescu and Gheondea (1997) and it is proven in
the Appendix B. In Appendix C we present a more direct construction of the reproducing
kernel Hilbert space induced by an operator valued positive semidefinite kernel.
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Theorem 2 Given an arbitrary bundle of Hilbert spaces H = {Hx}x∈X and an H-operator
valued kernel K, the following assertions are equivalent.

(a) K is positive semidefinite.

(b) There exists a reproducing kernel Hilbert space R having K its reproducing kernel.

In addition, the reproducing kernel Hilbert space R is uniquely determined by its reproducing
kernel K.

Remark 3 There is a natural bijective transformation between the unitary equivalency
class of minimal linearisations (K;V ) of K and the reproducing kernel Hilbert space R(K).
The transformation from a minimal linearisations (K;V ) to the reproducing kernel Hilbert
space R(K) is described during the proof of the implication (a)⇒(b) of Theorem 2, see
Appendix B. In the following we describe the inverse of this transformation.

Let (R; 〈·, ·〉R) be a reproducing kernel Hilbert space with reproducing kernel K. We
define the operator bundle V = {V (x)}x∈X by

V (x)h = Kxh, x ∈ X, h ∈ Hx, (2.11)

and remark that V (x) : Hx → R for all x ∈ X. By means of the reproducing property (rk3)
of the kernel K, we have

〈V (x)h, V (x)h〉R = 〈Kxh,Kxh〉R = 〈K(x, x)h, h〉Hx ≤ ‖K(x, x)‖‖h‖2Hx , x ∈ X, h ∈ Hx,

hence V (x) ∈ B(Hx,R). Also, using once more the reproducing property (rk3) of K, it
follows that, for all x, y ∈ X, h ∈ Hx, and g ∈ Hy, we have

〈V (y)∗V (x)h, g〉Hy = 〈V (x)h, V (y)g〉R = 〈Kxh,Kyg〉R = 〈K(y, x)h, g〉Hy .

Therefore, K(y, x) = V (y)∗V (x) for all x, y ∈ X and hence, (R;V ) is a linearistion of K. In
addition, using the minimality property (rk3), it is easy to see that the linearisation (R;V )
is minimal as well.

One of the most important property of a reproducing kernel Hilbert space consists in
the fact that, as a function space, its topology makes continuous all evaluation operators,
see the proof in the Appendix D.

Theorem 4 With notation as before, let H be a Hilbert space in the vector space F(X;H).
The following assertions are equivalent.

(a) H is a reproducing kernel space of H-valued maps on X.

(b) For any x ∈ X the linear operator H 3 f 7→ f(x) ∈ Hx is bounded.

In connection to the previous theorem it is worth mentioning that, for a reproducing
kernel Hilbert space HK ⊆ F(X;H) and for arbitrary x ∈ X, the evaluation operator
HK 3 f 7→ f(x) ∈ Hx coincides with K∗x : HK → Hx, where Kx : Hx → HK is the bounded
operator, see the axiom (rk2), defined by Kxh := K(·, x)h, for all h ∈ Hx.
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2.2 Localisation of Semisupervised, Regularised, and Multiview Learning.

Let X be a nonempty set and W = {Wx}x∈X be a bundle of Hilbert spaces on X. In this
section, it is not important whether the Hilbert spaces are complex or real, hence all Hilbert
spaces are considered to be over the field F, that is either C or R. There is a difference
between the complex and the real case consisting in the fact that in the latter case, for
positive semidefiniteness we assume also the symmetry, or Hermitian, property, while in the
complex case, the symmetry property is a consequence of the positive semidefiniteness. If
K is a positive semidefinite W-operator valued kernel, we let HK be its reproducing kernel
Hilbert space, as in the previous subsection. Also, let Y = {Yx}x∈X be a bundle of Hilbert
spaces.

For l, u ∈ N, consider input distinct points x1, . . . , xl+u ∈ X. Here x1, . . . , xl are the
labeled input points while xl+1, . . . , xl+u are the unlabeled input points. More precisely,
there are given y1, . . . , yl output points, such that yj ∈ Yxj for all j = 1, . . . , l. Then, for
the general data let

x := (xj)
l+u
j=1, y := (yj)

l
j=1, z :=

(
(xj)

l+u
j=l+1, (yj)

l
j=1

)
.

The input points x1, . . . , xl+u are randomly selected with respect to an unknown probability
and then, depending on the concrete problem, the labels y1, . . . , yl are produced in a certain
way.

Let W l+u denote the Hilbert space

W l+u =
l+u⊕
j=1

Wxj . (2.12)

For f ∈ HK let
f := (f(x1), . . . , f(xl+u)) ∈W l+u. (2.13)

Also, there is given a (Hermitian, if F = R) positive semidefinite operator M ∈ B(W l+u)
represented as an operator block (l+u)×(l+u)-matrixM = [Mj,k], withMj,k ∈ B(Wxk ,Wxj )
for all j, k = 1, . . . , l + u. Let V = {Vx}x∈X be a bundle of maps, loss functions, where
Vx : Yx × Yx → R is a function, for all x ∈ X. Also, C = {Cx}x∈X is a bundle of bounded
linear operators, where Cx : Wx → Yx for all x ∈ X. The general minimisation problem is

fz,γ = argminf∈HK
1

l

l∑
j=1

Vxj (yj , Cxjf(xj)) + γA‖f‖2HK + γI〈f ,Mf〉W l+u , (2.14)

where γ = (γA, γI) and γA > 0 and γI ≥ 0 are the regularisation parameters.
The optimisation problem (2.14) is a localised version of the general vector valued re-

producing kernel Hilbert space for semisupervised, regularised, manifold regularised and
multiview learning as in Minh et al. (2016). It is also useful to introduce the map to be
minimised

I(f) :=
1

l

l∑
j=1

Vxj (yj , Cxjf(xj)) + γA‖f‖2HK + γI〈f ,Mf〉W l+u

10
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and, since f(x) = K∗xf for all f ∈ HK and all x ∈ X, it equals

=
1

l

l∑
j=1

Vxj (yj , CxjK
∗
xjf) + γA‖f‖2HK + γI〈f ,Mf〉W l+u . (2.15)

In the following we explain the terms in the minimising map (2.15) and their significance
from the point of view of machine learning. Firstly, why labeled and unlabeled data? Tradi-
tionally, in machine learning there are three fundamental approaches: supervised learning,
unsupervised learning, and reinforcement learning, but the last one is out of our concern.
We firstly recall the meaning and limitations of the first two approaches. Supervised learning
means that the training of the machine learning model is using exclusively labeled dataset.
The input points and the labels are selected according to a probability that is usually un-
known or the input points are selected according to an unknown probability and then the
labels are produced in a certain fashion. Basically, this means that a label is a description
showing a model, what it is expected to predict. But supervised learning has some lim-
itations since this process is: slow, because it requires human experts to either manually
label training examples one by one or carefully supervise the procedure, and costly, because,
in order to obtain reliable results, a model should be trained on the large volumes of la-
beled data to provide accurate predictions. Unsupervised learning is that approach when a
model tries to find hidden patterns, differences, and similarities in unlabeled data by itself,
without human supervision. Most of the time, in this approach, data points are grouped
into clusters based on similarities. But, while unsupervised learning is a cheaper way to
perform training tasks, it has other limitations: it has a limited area of applications, mostly
for clustering purposes, and provides less accurate results.

Semisupervised learning combines supervised learning and unsupervised learning tech-
niques to solve some important issues: we train an initial model on a few labeled samples
and then iteratively apply it to a greater number of unlabeled data. Unlike unsupervised
learning, semisupervised learning works for a larger variety of problems: classification, re-
gression, clustering, and association. Unlike supervised learning, the method uses small
amounts of labeled data but large amounts of unlabeled data, with the advantage that it
reduces the costs on human work and the data preparation time, while the accuracy of re-
sults is not altered. Of course, some other issues show up: the unlabeled points should show
certain consistency and for this some regularisation techniques are needed. A comprehensive
discussion on this subject can be found in the collection Chapelle et al. (2006).

Secondly, the reproducing kernel Hilbert space HK is associated to a vector valued
positive semidefinite kernel for several reasons, but mainly because this is related to the
multiview learning, cf. Evgeniou et al. (2005), Micchelli and Pontil (2005), Sindhwani and
Rosenberg (2008), Rosenberg et al. (2009), Minh and Sindwhani (2011), Luo et al. (2013),
Kadri et al. (2016), Minh et al. (2016), Hashimoto et al. (2021), Hashimoto et al. (2022),
Hashimoto et al. (2023a), Hashimoto et al. (2023b). In this article we consider localised
versions of these operator valued reproducing kernel Hilbert spaces that offers flexibility for
a larger class of learning problems, as explained in the Introduction, and does not bring
additional obstructions, as proven in Subsection 2.1.

Further on, the first term in (2.15) controls the distance, estimated by local loss (or
cost) functions at the labeled input points with respect to the labels. More precisely, for

11
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each label point xj , j = 1, . . . , l the label yj ∈ Yxj is compared, through the cost function
Vxj , with f(xj) ∈ Wxj by a combination operator Cxj : Wxj → Yxj , because the Hilbert
spaces Yxj may be different from Wxj .

Example 1 Following Minh et al. (2016), for an input point x ∈ X consider the la-
bel Hilbert space Y and let W = Ym, the orthogonal direct sum of m copies of Y.
With this notation, the kernel K has values in B(W). A multiview f(x) is then an m-
tuple (f1(x), . . . , fm(x))T , with each f i(x) ∈ Y and let the combination operator C =
[C1, . . . , Cm] : W = Ym → Y, that is, Cf(x) = C1f

1(x) + · · ·+ Cmf
m(x) ∈ Y.

In this article, the loss functions are also localised and one strong reason for this is that,
depending on different purposes that this semisupervised learning is used for, there is a very
large pool of choices for loss functions.

Example 2 We list in the following a few loss functions of interest in machine learning, see
Zhao et al. (2010) and Kwon and Zou (2023) for a more comprehensive list and applications.

(1) Least Squares. The least squares loss function is

V (y, z) = (y − z)2, y, z ∈ R.

It is convex, nonnegative, and differentiable.
(2) Sigmoid. The sigmoid loss function is

V (y, z) =
1

1 + exp(z − y)
, y, z ∈ R.

It is nonnegative, differentiable, and nonconvex.
(3) Hinge. The hinge loss function is

V (y, z) = max{0, 1− yz}, y, z ∈ R.

It is nonnegative, continuous, convex, but not differentiable.
(4) Exponential Least Squares. The exponential least squares function is

V (y, z) = 1− exp(−(y − z)2), y, z ∈ R.

It is nonnegative, upper bounded by 1, differentiable, and nonconvex.
(5) Leaky Hockey Stick. The leaky hockey stick loss function is

V (y, z) =

{
− log(zy), yz > 1,

1− yz, yz ≤ 1.

It is upper and lower unbounded, convex, and differentiable.

The second term in (2.15) is the usual regularisation penalty term, following the Tikhonov
regularisation method, cf. Tikhonov (1963). This is used in order to avoid large target func-
tions f and overfitting, that is, optimising functions that match very accurately the labeled
data but perform badly for other data. Because of this, the regularisation parameter γA
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is always positive. In the literature, sometimes the second term is replaced by ϕ(‖f‖HK ),
where ϕ : R+ → R+ is an increasing function so, in our case ϕ(t) = γAt

2.
The third term in (2.15) combines vector valued manifold regularisation, cf. Minh and

Sindwhani (2011), with multiview regularisation, cf. Rosenberg et al. (2009) and Sun (2011).
The parameter γI may be taken 1, without loss of generality, since it can be absorbed in M .
Following Minh et al. (2016), the operator multiview regularisation term γI〈f ,Mf〉W l+u is
decomposed as

γI〈f ,Mf〉W l+u = γB〈f ,MBf〉W l+u + γW 〈f ,MWf〉W l+u , (2.16)

where MB,MW ∈ B(W l+u) are selfadjoint positive operators and γB, γW ≥ 0. As before,
the regularising parameters γB and γW may be taken 1, without loss of generality, because
they can be absorbed in MB and MW , respectively. The first term in (2.16) is the localised
between-view regularisation while the latter term in (2.16) is the localised within-view regu-
larisation. In the next example we show by some concrete situations the constructions of
the operators MB and MW and their significance.

Example 3 This example follows closely the example of between-view regularisation as
in Minh et al. (2016). With notation as in Example 1, let Mm = mIm − 1m1Tm, where
1m = (1, 1, . . . , 1)T . More precisely, Mm is the m×m matrix with all entries equal to m−1
throughout its diagonal and −1 elsewhere. Then, for each a = (a1, . . . , am)T ∈ Rm, we have

aTMma =

m∑
j,k=1, j<k

(aj − ak)2.

Then, for each y = (y1, . . . , ym)T ∈ Ym =W we have

yT (Mm ⊗ IY)y =
∑

j,k=1, j<k

‖yj − yk‖2Y .

So, letting MB = Iu+l ⊗ (Mm ⊗ IY), for each f = (f(x1), . . . , f(xu+l) ∈ Ym(u+l) = Wu+l,
with f(xi) ∈ Ym =W, we have

〈f ,MBf〉Wu+l =
u+l∑
i=1

〈f(xi), (Mm ⊗ IY)f(xi)〉W =
u+l∑
i=1

∑
j,k=1, j<k

‖f j(xi)− fk(xi)‖2Y .

This term is a control on the consistency between different components f i’s which represent
the outputs on different views.

Example 4 This example follows essentially Minh et al. (2016) for a within-view manifold
regularisation via multiview graph Laplacians in support vector machine learning, cf. Sun
(2011). For manifold regularisation, a data adjaceny graph is defined in such a way that
the entries measure the similarity or closeness of pairs of inputs. Given an undirected graph
G = (V, E), where the vertices are V = {1, . . . , n} and edges are simply pairs (j, k), assume
that for each edge (j, k) ∈ E there is a weight wj,k, and to each edge (j, k) 6∈ E we let
wj,k = 0, in such a way that the weight matrix W = [wj,k] is Hermitian and nonnegative
(positive semidefinite).
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For example, when each vertex j is associated to a vector hj ∈ Rd, we can use the
Gaussian weights

wj,k = exp(−‖hj − hk‖2/2σ2). (2.17)

In order to simplify the complexity of calculations, cf. Sun (2011), for most of the edges
(j, k) we take wj,k = 0 and only for neighbouring (j, k), that is, ‖hj − hk‖2 ≤ ε, for some ε,
we define the weights by (2.17).

Further on, letting vj,j =
∑n

k=1wj,k and vj,k = 0 if j 6= k, we make the diagonal matrix
V = [vj,k]. We work under the assumptions that vj,j > 0 for all j = 1, . . . , n. Then the
graph Laplacian matrix is L := V −W , which is positive semidefinite. Sometimes it is useful
to work with the normalised graph Laplacian L̃ := V −1/2LV −1/2.

But, because the learning is from multiviews, this should be performed for each view
and then aggregated in a consistent fashion. From now on we use the same notations and
settings as in Example 1 and Example 3. Assume that, to each view i, 1 ≤ i ≤ m, we
consider the undirected graph Gi = (V i, Ei) where V i = {1, . . . , u + l}, let W i = [wij,k] be

the corresponding weight matrix that is Hermitian and nonnegative, and let Li = [lij,k] be

the corresponding graph Laplacian. Then, for each vector a ∈ Ru+l we have

aTLia =

l+u∑
j,k=1, j<k

wij,k(aj − ak)2.

Now we aggregate the graph Laplacians into the multiview graph Laplacian as a block
matrix L = [Lj,k], where for each j, k = 1, . . . , u+ l we define

Lj,k = diag(l1j,k, . . . , l
m
j,k).

This implies that for each vector a = (a1, . . . , au+l), with aj = (a1j , . . . , a
m
j ) ∈ Rm for each

j = 1, . . . , u+ l, we have

aTLa =

m∑
i=1

l+u∑
j,k=1, j<k

wij,k(a
i
j − aik)2.

Finally, letting MW := L⊗ IY , we have

〈f ,MW f〉Wu+l =
m∑
i=1

l+u∑
j,k=1, j<k

wij,k‖f i(xj)− f i(xk)‖2Y ,

for all f = {f i(xj) | i = 1, . . . ,m, j = 1, . . . , u + l} ∈ Wu+l = Ym(u+l). Each term in the
leftmost sum is a manifold regularisation for the view i and hence the double sum is the
aggregated manifold regularisation for all views. In this fashion, consistency is enforced for
each view.

2.3 A Representer Theorem.

We continue to use the notation as in the previous subsection. Generally speaking, a
representer theorem has the goal to prove that the optimal solution to the problem (2.14)
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should belong to the space

HK,x =
{ l+u∑
i=1

Kxiwi | wi ∈ Wxi

}
. (2.18)

Let HK,x denote its closure in HK and let PHK,x denote the orthogonal projection of HK
onto HK,x. Let the sampling operator Sx : HK →W l+u be defined by

Sxf = (K∗xif)l+ui=1 = (f(xi))
l+u
i=1 = f , f ∈ HK , (2.19)

where x = (x1, . . . , xl+u) and we have taken into account that f(x) = K∗xf for all f ∈ HK
and all x ∈ X. Let also EC,x : HK → Y l, where

Y l :=

l⊕
j=1

Yxj , (2.20)

be defined by

EC,xf =
(
Cx1K

∗
x1f, . . . , CxlK

∗
xl
f
)

= (Cx1f(x1), . . . , Cxlf(xl)) , f ∈ HK . (2.21)

The main technical fact used in this section is a lemma whose proof is inspired by the
proof of Theorem 2 in Minh et al. (2016).

Lemma 5 With notation and assumptions an in Subsection 2.2 and as before, for any
f ∈ HK the following inequality holds.

I(PHK,xf) ≤ I(f).

Proof We have the decomposition

HK = HK,x ⊕H⊥K,x. (2.22)

Let f ∈ H⊥K,x be fixed. Then, for any b ∈ Y l, since C∗xibi ∈ Wxi , for all i = 1, . . . , l + u,
and hence

l∑
i=1

KxiC
∗
xibi ∈ HK,x,

we have

〈EC,xf,b〉Y l =
〈
f,E∗C,xb

〉
HK

=

l∑
i=1

〈
f,KxiC

∗
xibi
〉
HK

= 〈f,
l∑

i=1

KxiC
∗
xibi〉HK = 0.

Consequently,
EC,xf = (Cx1K

∗
x1f, . . . , CxlK

∗
xl
f) = 0. (2.23)

Similarly, by the reproducing property, letting w = (w1, . . . , wl+u) be an arbitrary vector
in W l+u, we have

〈Sxf,w〉W l+u =

l+u∑
i=1

〈f(xi),w〉W l+u =

l+u∑
i=1

〈f,Kxiwi〉HK =

〈
f,

l+u∑
i=1

Kxiwi

〉
HK

= 0,
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hence
f = Sxf = (f(x1), . . . , f(xl+u)) = 0. (2.24)

For arbitrary f ∈ HK , in view of the decomposition (2.22), we have the unique decom-
position f = f0 + f1 with f0 ∈ HK,x and f1 ∈ H⊥K,x, that is, f0 = PHK,xf . Then,

‖f0 + f1‖2HK = ‖f0‖2HK + ‖f1‖2HK ,

and consequently,

I(f) = I(f0 + f1) =
1

l

l∑
i=1

Vxi(yi, CxiK
∗
xif0 + CxiK

∗
xif1) + γA ‖f0‖2HK + γA ‖f1‖2HK

+ γI 〈Sxf0,MSxf0〉W l+u + γI 〈Sxf0,MSxf1〉W l+u

+ γI 〈Sxf1,MSxf0〉W l+u + γI 〈Sxf1,MSxf1〉W l+u . (2.25)

By (2.23) we then see that

Vxi(yi, CxiK
∗
xif0 + CxiK

∗
xif1) = Vxi(yi, CxiK

∗
xif0),

and by (2.24) we see that

〈Sxf0,MSxf1〉W l+u = 〈Sxf0, 0〉W l+u = 0.

So,

〈Sxf0,MSxf1〉W l+u = 〈Sxf1,MSxf0〉W l+u = 〈Sxf1,MSxf1〉W l+u = 0 (2.26)

and hence, by (2.25), we have

I(f) = I(f0 + f1) =
1

l

l∑
i=1

Vxi(yi, CxiK
∗
xif0 + CxiK

∗
xif1) + γA ‖f0‖2HK + γA ‖f1‖2HK

+ γI 〈Sxf0,MSxf0〉W l+u + γI 〈Sxf0,MSxf1〉W l+u +

+ γI 〈Sxf1,MSxf0〉W l+u + γI 〈Sxf1,MSxf1〉W l+u

and then, by (2.23) and (2.26) we get that

I(f) =
1

l

l∑
i=1

Vxi(yi, CxiK
∗
xif0) + γA ‖f0‖2HK + γA ‖f1‖2HK + γI 〈Sxf0,MSxf0〉W l+u

≥ 1

l

l∑
i=1

Vxi(yi, CxiK
∗
xif0) + γA ‖f0‖2HK + γI 〈Sxf0,MSxf0〉W l+u = I(f0), (2.27)

and the proof is finished.

In order to get a conclusion in the spirit of the representer theorem, extra assumptions
are needed.

16



Localisation of Regularised and Multiview Learning

Proposition 6 Assume that the subspace HK,x, see (2.18), is closed. This happens, for
example, if all Hilbert spaces Wx1 , . . . ,Wxl+u have finite dimensions. If the minimisation
problem (2.14) has a solution fz,γ then there exist a1, . . . , al+u, with aj ∈ Wxj for all
j = 1, . . . , l + u, such that

fz,γ =

l+u∑
j=1

Kxjaj .

Proof Since HK,x is closed, we have the decomposition

HK = HK,x ⊕H⊥K,x. (2.28)

If f is a solution to the minimisation problem (2.14), in view of Lemma 5, it follows that
f ∈ HK,z, and the conclusion follows.

The main theorem of this section is a representer theorem under certain general and
natural assumptions.

Theorem 7 Assume that the loss functions Vxj (yj , ·) are bounded from below and continu-
ous, for all j = 1, . . . , l, and that all Hilbert spaces Wx1 , . . . ,Wxl+u have finite dimensions.
Then the minimisation problem (2.14) has a solution fz,γ and, for any such a solution,
there exist a1, . . . , al+u, with aj ∈ Wxj for all j = 1, . . . , l + u, such that

fz,γ =
l+u∑
j=1

Kxjaj .

Proof We first observe that, since all loss functions Vxj (yj , ·), j = 1, . . . , l + u, are lower
bounded and M is positive semidefinite, from (2.15) it follows that I(f) is lower bounded
and hence its infimum exists as a real number. Since all the Hilbert spaces Wx1 , . . . ,Wxl+u

have finite dimensions it follows that the subspace HK,x has finite dimension and hence it
is closed. Then, from Lemma 5 it follows that

−∞ < inf
f∈HK

I(f) = inf
f∈HK,x

I(f).

So, it remains only to show that the latter infimum is attained.
Indeed, since γA > 0 and the loss functions Vxj (yj , ·) are bounded from below for all

j = 1, . . . , l, it follows that
lim

‖f‖HK→∞
I(f) = +∞. (2.29)

Since all loss functions Vxj (yj , ·) are continuous, for j = 1, . . . , l, and the evaluation func-
tionals on HK are continuous as well, see Theorem 4, it follows that I is continuous on HK .
Let f0 ∈ HK,x be arbitrary but fixed. From (2.29), for ε > 0 there exists δ > 0 such that

I(f) ≥ I(f0) + ε for all f ∈ HK,x with ‖f − f0‖HK > δ. (2.30)

We consider now the continuous function I restricted to the closed ball in HK,x

B
HK,x
δ (f0) = {f ∈ HK,x | ‖f − f0‖HK ≤ δ},
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which is compact, since the vector space HK,x is finite dimensional. This implies that the

infimum of I on B
HK,x
δ (f0) is attained. In view of (2.30) it follows that

inf
f∈HK,x

I(f) = inf{I(f) | f ∈ BHK,xδ (f0)},

and the proof is finished.

In view of Proposition 6, if the loss functions Vxi(yi, ·) are convex for all i = 1, 2, . . . , l,
then the assumption on finite dimensionality of the spaces Wxi for i = 1, . . . , l + u, can be
slightly weaker. We first record a result that is known but for which we include a proof,
for the reader’s convenience. To this end, we recall some basic definitions. If V is a vector
space, a subset A ⊆ V is convex if for any x, y ∈ A and λ ∈ (0, 1) we have (1−λ)x+λy ∈ A.
A function f : Dom(f)→ R is convex if Dom(f) is a convex set in V and

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for each x, y ∈ Dom(f) and λ ∈ (0, 1). In addition, f is strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

for each x, y ∈ Dom(f) such that x 6= y and λ ∈ (0, 1).

Lemma 8 (a) Given a vector space V that is endowed with a seminorm ‖·‖, the square of
the seminorm ‖·‖2 : V → R is a convex function on V.

(b) If, in addition, ‖·‖ is a norm associated to an inner product on the real vector space
V, then ‖·‖2 becomes strictly convex.

Proof (a) Let f0, f1 ∈ V, α ∈ (0, 1). Then by triangle inequality we have

‖αf0 + (1− α)f1‖ ≤ ‖αf0‖+ ‖(1− α)f1‖ = α ‖f0‖+ (1− α) ‖f1‖ ,

hence, by squaring both sides we get

‖αf0 + (1− α)f1‖2 ≤ α2 ‖f0‖2 + (1− α)2 ‖f1‖2 + 2α(1− α) ‖f0‖ ‖f1‖ .

Further on, if we add and subtract −α ‖f0‖2 − (1 − α) ‖f1‖2 from the right hand side, we
get

‖αf0 + (1− α)f1‖2 ≤ α2 ‖f0‖2 + (1− α)2 ‖f1‖2 + 2α(1− α) ‖f0‖ ‖f1‖
− α ‖f0‖2 − (1− α) ‖f1‖2 + α ‖f0‖2 + (1− α) ‖f1‖2

= (α2 − α) ‖f0‖2 + ((1− α)2 − (1− α)) ‖f1‖2

+ 2α(1− α) ‖f0‖ ‖f1‖+ α ‖f0‖2 + (1− α) ‖f1‖2

= −α(1− α)(‖f0‖ − ‖f1‖)2 + α ‖f0‖2 + (1− α) ‖f1‖2

≤ α ‖f0‖2 + (1− α) ‖f1‖2 . (2.31)
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This shows that ‖·‖2 is convex.
(b) We assume now that ‖·‖ is a norm associated to an inner product 〈·, ·〉 on a real

vector space V, that f0 6= f1, α ∈ (0, 1), and that

‖αf0 + (1− α)f1‖2 = α ‖f0‖2 + (1− α) ‖f1‖2 , (2.32)

hence, by the last step in (2.31), it follows that ‖f0‖ = ‖f1‖. Then, by (2.32) and since
‖f0‖ = ‖f1‖, we get

‖f0‖2 = ‖αf0 + (1− α)f1‖2 = 〈αf0 + (1− α)f1, αf0 + (1− α)f1〉
= α2 ‖f0‖2 + 2α(1− α)〈f0, f1〉+ (1− α)2 ‖f1‖2 .

Taking into account that ‖f0‖ = ‖f1‖ and that α(1− α) 6= 0, from here it follows that

〈f0, f1〉 = ‖f0‖2 = ‖f1‖2 , (2.33)

hence we have equality in the Schwarz inequality and, consequently, f0 = tf1 for some t ∈ R.
Since ‖f0‖ = ‖f1‖ it follows that t = ±1. But t = 1 is not possible since f0 6= f1, while
f0 = −f1 is not possible because, by (2.33), this would imply f0 = 0 = f1.

Theorem 9 Assume that all the underlying vector spaces are real, that the subspace HK,x
is closed, and that the loss functions Vxi(yi, ·) are convex for all i = 1, 2, . . . , l. Then, the
minimisation problem (2.14) has a unique solution fz,γ and there exist a1, . . . , al+u, with
aj ∈ Wxj for all j = 1, . . . , l + u, such that

fz,γ =

l+u∑
j=1

Kxjaj .

Proof Consider the function V l : Y l × Y l → R defined by

V l(y,y′) :=
l∑

j=1

Vxj (yj , y
′
j), y = (y1, . . . , yl), y

′ = (y′1, . . . , y
′
l), (2.34)

and observe that, for each fixed y ∈ Y , the function V l(y, ·) is convex on Y , since all maps
Vxj are convex in the second argument, j = 1, . . . , l. Consequently, in the definition of I at
(2.15), the first term is a convex function. Since the second term is a norm, it is a strictly
convex function, while the third term is a seminorm, hence a convex function as well, by
Lemma 8. Thus, I is a strictly convex function and hence the minimisation problem (2.14)
has a unique solution. Then the conclusion follows from Proposition 6.

Remark 10 Theorem 9 contains Theorem 2 in Minh et al. (2016) in the case when the
subspace HK,x, see (2.18), is closed. This happens, for example, if the Hilbert space W in
that theorem is finite dimensional. In Minh et al. (2016) the authors claim that the result
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is true even in the case when W is an infinite dimensional space, which is not substantiated
by the proof they provide. More precisely, the gap in that proof is that the subspace HK,x
might not be finite dimensional and hence it might not be closed, which implies that, we
have the decomposition (2.22) and not the decomposition (2.28). Consequently, the only
conclusion that can be drawn is that the minimiser fz,γ belongs to the closure of HK,x, and

hence can only be approximated in the norm of HK by sums of type
∑l+u

j=1Kxjaj , but it
may never equal such a sum.

3. Differentiable Loss Functions

3.1 Preliminary Results on Differentiable Optimisation.

Throughout this section, we assume that all vector spaces are real. The definitions and
proofs of facts recalled in this subsection are from Peypouquet (2014). If X is a normed
space, the directional derivative of a function f : Dom(f)(⊆ X ) → R at an interior point
x ∈ Dom(f) in the direction h ∈ X is given by

f ′(x : h) = lim
t→0

f(x+ th)− f(x)

t
,

provided that the limit exists. A function f : Dom(f)(⊆ X ) → R is Gâteaux differentiable
at an interior point x ∈ Dom(f) if f has directional derivatives for all directions at x and
ϕx(h) := f ′(x : h) is linear and continuous in h. In this case, we denote the Gâteaux
derivative ∇xf ∈ B(X ,R) = X∗ by the gradient notation

(∇xf)h := ϕx(h), h ∈ X .

In general, if X and Y are Banach real spaces and U ⊆ X is open and F : X → Y, then
F has directional derivative for all directions at point x ∈ U if

lim
τ→0

F (x+ τh)− F (x)

τ

exists for any h ∈ X . In this case we define the map ∇xF : X → Y as

(∇xF )h := lim
τ→0

F (x+ τh)− F (x)

τ
, h ∈ X .

In the following we recall some basic facts.

Theorem 11 (Chain Rule for Directional Derivative) Assume that X ,Y,Z are Ba-
nach spaces, F : X → Y, G : Y → Z and there exists U ⊆ X and V ⊆ Y open such that
F (U) ⊆ V, G has directional derivatives for all directions at y ∈ V, and F has directional
derivatives for all directions at x ∈ U . If ∇xF and ∇yG are continuous in x ∈ U and
y ∈ V , respectively, then, for any h ∈ X , we have

∇x(G ◦ F )(h) = ∇F (x)G(∇xF (h)).

Let X be a Banach real space. For any fixed x∗ ∈ X ∗ := B(X ;R) and any y ∈ X we
denote

〈x∗, y〉 := x∗(y) ∈ R. (3.1)
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Remark 12 If H is a real Hilbert space, by Riesz-Fréchet Representation Theorem we have
〈y, x∗〉 = 〈y, fx∗〉H for a unique fx∗ ∈ H. For simplicity we denote fx∗ as x∗.

Let f : Dom(f)(⊆ X )→ R be convex. A point x∗ ∈ X ∗ is a subgradient of f at x if

f(y) ≤ f(x) + 〈x∗, y − x〉

holds for all y in a neighbourhood of x. The set of all subgradients of f at x is the
subdifferential of f at x and is denoted by ∂f(x). If ∂f(x) 6= ∅, we say f is subdifferentiable
at x. The domain of subdifferential is denoted as Dom(∂f) = {x ∈ X | ∂f(x) 6= ∅}. By
definition Dom(∂f) ⊆ Dom(f).

Theorem 13 (Fermat’s Rule) Let f : X → R be convex. Then x̂ is a global minimiser
of f if and only if 0 ∈ ∂f(x̂).

Let A be an open subset of X and T : A→ Y. Then given a point x ∈ A, T is Fréchet
differentiable at x if there exists a bounded linear operator Lx : X → Y such that

lim
h→0

‖T (x+ h)− T (x)− Lxh‖Y
‖h‖X

= 0.

In this case, due to the uniqueness of Lx we define the linear bounded operator Dx T : X → Y
as Dx T := Lx and call it the Fréchet derivative of T at x.

Theorem 14 Let (H, 〈., .〉H) be a Hilbert real space. Then, given ψ ∈ X and F,G : X → H
maps that are Fréchet differentiable at ψ, we have

Dψ 〈F ·, G·〉H (h) = 〈(Dψ F )(h), G(ψ)〉H + 〈F (ψ), (Dψ G)(h)〉H

for any h ∈ H.

Remark 15 In Theorem 14 if we further assume that F,G are bounded linear operators,
then we get

Dψ 〈F ·, G·〉H (h) = 〈Fh,Gψ〉H + 〈Fψ,Gh〉H
for any h ∈ H.

Theorem 16 Let X ,Y be Banach spaces. Consider a nonempty open set U ⊂ X and a
map F : U → Y. If F is Fréchet differentiable at x ∈ U then it is Gâteaux differentiable at
x and ∇xF = Dx F .

3.2 The Representer Theorem for Locally Differentiable Loss Functions.

The notation in this subsection is the same as in Section 2, only that all vector spaces are
over the real field R. In this subsection, we show that, if we add the assumption that for
any i = 1, . . . , l, Vxi(yi, ·) : Yx → R is Gâteaux differentiable, then we can allow Wxi , for
all i = 1, . . . , l, to be infinite dimensional and get the same conclusion as in Proposition 6.
The proof of this theorem is inspired to a certain extent by the proof of Theorem 3 in Minh
et al. (2016), that was proven for the special case of the least squares loss function.
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As in the proof of Lemma 5, let the sampling operator Sx : HK →W l+u be defined as
in (2.19) where x = (x1, . . . , xl+u). Let also EC,x : HK → Y l be defined as in (2.21) and
the Hilbert space Y l be defined as in (2.20). Define the function V l : Y l × Y l → R as in
(2.34) and then denote V l

y : Y l → R as

V l
y(y′) := V l(y,y′), y′ = (y′1, . . . , y

′
l) ∈ Y l, (3.2)

where y = (y1, y2, . . . , yl) ∈ Y l.
In the next theorem, which is the main result of this section, please note that all Hilbert

spacesWx1 , . . . ,Wxl+u are allowed to be infinite dimensional, without any restriction except
that they are real.

Theorem 17 Assume that for any i = 1, . . . , l, the loss function Vxi(yi, ·) is Gâteaux dif-
ferentiable. If the minimisation problem (2.14) has a solution fz,γ ∈ HK then there exist
a1, . . . , al+u, with aj ∈ Wxj for all j = 1, . . . , l + u, such that

fz,γ =

l+u∑
j=1

Kxjaj , (3.3)

where the vectors ai ∈ Wxi, i = 1, . . . , l + u, satisfy the following system

2γAlai + 2γI l
l+u∑
j,k=1

Mi,jK(xi, xj)aj = −C∗xi(∇EC,xfz,γV
l
y)i, if i = 1, . . . , l, (3.4)

γAai + γI

l+u∑
j,k=1

Mi,jK(xi, xj)aj = 0, if i = l + 1, . . . , l + u. (3.5)

Here, for arbitrary y′ ∈ Y l, we abuse some notation and denote ∇y′V l
y both as the original

functional (Gâteaux derivative) and the vector that represents this functional following the
notation as in (3.1).

Proof We can rewrite the map I to be minimised, see (2.15), as

I(f) =
1

l
V l

y(EC,xf) + γA‖f‖2HK + γI〈f ,Mf〉W l+u , f ∈ HK . (3.6)

Assuming that the minimisation problem (2.14) has a solution fz,γ , which is an interior point
in the domain of I and that V l

y is Gâteaux differentiable, by Theorem 11, the Gâteaux
derivative evaluated at f ∈ HK is

∇f (V l
y ◦ EC,x)(h) = ∇EC,xfV

l
y(∇fEC,x(h)), h ∈ HK .

Then, by using the identification as in (3.1) and Theorem 16, for all h ∈ HK we get

∇EC,xfV
l
y(∇fEC,x(h)) =

〈
∇EC,xfV

l
y,Df EC,xh

〉
=
〈
∇EC,xfV

l
y, EC,xh

〉
Y l

=
〈
E∗C,x∇EC,xfV

l
y, h
〉
HK

. (3.7)
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Since ‖f‖2HK = 〈f, f〉HK , by Theorem 14, the map Hk 7→ ‖f‖2HK is Fréchet differentiable
and hence, by Theorem 16, it is Gâteaux differentiable. Thus, by Theorem 14 and since
HK is real we have

γA∇f ‖·‖2HK (h) = 2γA 〈f, h〉HK , h ∈ HK . (3.8)

Again by using Theorem 14 we get

γI∇f 〈Sx·,MSx·〉W l+u (h) = γI 〈Sxf,MSxh〉W l+u + γI 〈Sxh,MSxf〉W l+u

= 2γI 〈S∗xMSxf, h〉HK , h ∈ HK . (3.9)

Summing up (3.7), (3.8) and (3.9) we get

∇fI(h) = l−1
〈
E∗C,x∇EC,xfV

l
y, h
〉
HK

+ 2γA 〈f, h〉HK + 2γI 〈S∗xMSxf, h〉HK

=
〈
l−1E∗C,x∇EC,xfV

l
y + 2γAf + 2γIS

∗
xMSxf, h

〉
HK

, h ∈ HK . (3.10)

Keeping Fermat’s Theorem 13 in mind, since that minimiser is an interior point of the
domain, we should have the minimiser fz,γ ∈ HK such that ∇fz,γI(·) = 0. By (3.10), this
means

∇fz,γI(h) =
〈
l−1E∗C,x∇EC,xfz,γV

l
y + 2γAfz,γ + 2γIS

∗
xMSxfz,γ , h

〉
HK

= 0 (3.11)

for any h ∈ HK . Thus, we get

1

l
E∗C,x∇EC,xfz,γV

l
y + 2γAfz,γ + 2γIS

∗
xMSxfz,γ = 0

and hence

fz,γ =
−1

2γAl
E∗C,x∇EC,xfz,γV

l
y −

γI
γA
S∗xMSxfz,γ .

Then by using the facts that E∗C,x = [Kx1C
∗
x1 Kx2C

∗
x2 . . . KxlC

∗
xl

], see (2.21), and that,

by definition, Sx = [K∗x1 K∗x2 . . . K∗xl+u ]T , see (2.19), we get

fz,γ =
−1

2γAl

l∑
i=1

KxiC
∗
xi(∇EC,xfz,γV

l
y)i −

γI
γA

l+u∑
i=1

Kxi(MSxfz,γ)i.

Thus, we can represent fz,γ as in (3.3), where

ai =


−1

2γAl
C∗xi(∇EC,xfz,γV

l
y)i −

γI
γA

(MSxfz,γ)i, if i = 1, . . . , l

− γI
γA

(MSxfz,γ)i, otherwise.

(3.12)

Since

(MSxfz,γ)i =

l+u∑
k=1

Mi,k

l+u∑
j=1

K(xk, xj)aj , i = 1, . . . , l + u,
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it follows that

ai =



−1

2γAl
C∗xi(∇EC,xfz,γV

l
y)i −

γI
γA

l+u∑
j,k=1

Mi,kK(xk, xj)aj , if i = 1, . . . , l,

− γI
γA

l+u∑
j,k=1

Mi,kK(xk, xj)aj , otherwise,

which is equivalent to the system of equations (3.4) and (3.5).

Remark 18 The system of equations (3.4) and (3.5) can be reformulated by means of
operators; to be compared with Theorem 4 in Minh et al. (2016) that was obtained for the
special case of the least squares function. Let K[x] denote the (l + u) × (l + u) operator
valued matrix whose (i, j) entry is K(xi, xj), and let v = (v1, . . . , vl+u) be the vector with
entries

vi =

{
−C∗xi(∇EC,xfz,γV

l
y)i if i = 1, . . . , l

0, otherwise,

where C∗x : Yx →Wx for any x ∈ X. Then, with notation and assumptions as in Theorem 17
and letting a = (a1, . . . , al+u), a simple algebraic calculation, that we leave to the reader,
shows that the system of equations (3.4) and (3.5) coincides with the operator equation

(2lγIMK[x] + 2lγAI) a = v, (3.13)

where both a and v are considered as column vectors. However, at this level of generality,
from here we cannot get the unknown vector a because it appears in the vector v as well.
From this point of view, the equation (3.13) is more an implicit form.

Corollary 19 With notation and assumptions as in Theorem 17, assume that the loss
functions Vxi are convex for all i = 1, 2, . . . , l. Then the minimisation problem (2.14) has
a unique solution fz,γ and there exist a1, . . . , al+u, with aj ∈ Wxj for all j = 1, . . . , l + u,
such that

fz,γ =

l+u∑
j=1

Kxjaj ,

where the vectors a1, . . . , al+u satisfy the system of equations (3.4) and (3.5).

Proof The argument is the same as in Theorem 9 and then use Theorem 17.

Theorem 17 and its Corollary 19 have a theoretical significance and a less practical
importance because, in the system (3.4) and (3.5), the unknowns a1, . . . , al+u appear also
on the right hand side and hence it is more an implicit form of expressing them and not
an explicit one. Because of that, for specified loss functions V , one should work further on
these expressions in order to obtain explicit or, at least computable, solutions. In the next
two subsections, we work out the details and show how Theorem 17 and its Corollary 19 can
be improved for special loss functions, the least squares functions, similar to the results in
Minh et al. (2016), and the exponential least squares functions, and compare the formulae.
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3.3 The Least Squares Loss Function.

If all the loss functions are the least squares, see Example 2.(1), the minimisation function
(2.15) becomes

I(f) :=
1

l

l∑
j=1

‖yj − Cxjf(xj)‖2Yxj + γA‖f‖2HK + γI〈f ,Mf〉W l+u

=
1

l

l∑
j=1

‖yj − CxjK∗xjf‖
2
Yxj

+ γA‖f‖2HK + γI〈f ,Mf〉W l+u , (3.14)

Since, as functions of f ∈ HK , all the terms are convex and the middle term is strictly con-
vex, see Lemma 8, the minimisation function I(·) is strictly convex and hence the minimi-
sation problem has unique solution. Also, I(·) is Fréchet differentiable, hence Corollary 19
is applicable. According to Fermat’s Theorem, this unique solution f should vanish the
gradient. But, for each h ∈ HK , we have

∇fI(f)h =
2

l
〈E∗C,xEC,xf, h〉HK −

2

l
〈E∗C,xy, h〉HK + 2γA〈f, h〉HK + 2γI〈SxMSxf , h〉HK ,

hence,

E∗C,xEC,xf + lγAf + lγIS
∗
xMSxf − E∗C,xy = 0. (3.15)

Since γA > 0 this is equivalent with

f =
1

lγA
E∗C,xy −

1

lγA
E∗C,xEC,xf −

γI
γA
S∗xMSxf ,

explicitly,

f =

l∑
i=1

Kxi

( 1

lγA
C∗xiyi

)
+

l∑
i=1

Kxi

(
− 1

lγA
C∗xiCxif(xi)

)
+

l+u∑
i=1

Kxi

(
− γI
γA

l+u∑
k=1

Mi,kf(xk)
)
.

(3.16)

In this special case, the representation (3.16) improves Theorem 17 by obtaining the
representation of the optimal solution as f =

∑l+u
i=1Kxiai, where,

ai =
1

lγA
C∗xiyi −

1

lγA
C∗xiCxif(xi)−

γI
γA

l+u∑
k=1

Mi,kf(xk), for all i = 1, . . . , l, (3.17)

and,

ai = − γI
γA

l+u∑
k=1

Mi,kf(xk), for all i = l + 1, . . . , l + u. (3.18)

Then, since for all k = 1, . . . , l + u, we have

f(xk) =
l+u∑
j=1

Kxj (xk)aj =
l+u∑
j=1

K(xk, xj)aj ,

25



A. Gheondea and C. Tilki

and, consequently, from (3.17) and (3.18), we get

ai +
l+u∑
j=1

[ 1

lγA
C∗xiCxiK(xi, xj) +

γI
γA

l+u∑
k=1

Mi,kK(xk, xj)
]
aj =

1

lγA
C∗xiyi, i = 1, . . . , l, (3.19)

ai +
l+u∑
j=1

[ γI
γA

l+u∑
k=1

Mi,kK(xk, xj)
]
aj = 0, i = l + 1, . . . , l + u. (3.20)

Equations (3.19) and (3.20) make a system of linear equations which can be treated very
efficiently by computational techniques, similarly as in Minh et al. (2016) and the literature
cited there. This substantiates our claim that the localised versions offer more flexibility in
modelling learning problems without bringing additional obstructions.

3.4 The Exponential Least Squares Loss Function.

If all the loss functions are the exponential least squares, see Example 2.(4), the minimisation
function (2.15) becomes

I(f) := 1− 1

l

l∑
j=1

exp(−‖yj − Cxjf(xj)‖2Yxj ) + γA‖f‖2HK + γI〈f ,Mf〉W l+u

= 1− 1

l

l∑
j=1

exp(−‖yj − CxjK∗xjf‖
2
Yxj

) + γA‖f‖2HK + γI〈f ,Mf〉W l+u . (3.21)

In this case, since the second term is not, in general, convex, we cannot conclude that the
function I is convex. However, I(f) ≥ 0 for all f ∈ HK and lim‖f‖→∞ I(f) = +∞, hence
the minimisation problem has at least one solution f , but this solution might not be unique.
Anyhow, because any solution f is an interior point in HK , Fermat’s Rule is applicable,
hence ∇fI = 0. Taking advantage of the calculations performed in the previous subsection,
see (3.15), by calculating the gradient of I and then, by Fermat’s Rule, the optimal function
f should satisfy the following equation

exp(−‖yj − Cxjf(xj)‖2Yxj )
(
E∗C,xEC,xf − E∗C,xy

)
+lγAf + lγIS

∗
xMSxf = 0. (3.22)

Since γA > 0 this is equivalent with

f =
exp(−‖yj − Cxjf(xj)‖2Yxj )

lγA

(
E∗C,xy − E∗C,xEC,xf

)
− γI
γA
S∗xMSxf ,

explicitly,

f =
l∑

i=1

Kxi

(exp(−‖yj − Cxjf(xj)‖2Yxj )

lγA

(
C∗xiyi − C

∗
xiCxif(xi)

))

+

l+u∑
i=1

Kxi

(
− γI
γA

l+u∑
k=1

Mi,kf(xk)
)
. (3.23)
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In this special case, (3.23) improves Theorem 17 by obtaining the representation of the
optimal solution as f =

∑l+u
i=1Kxiai, where,

ai =
exp(−‖yj − Cxjf(xj)‖2Yxj )

lγA

(
C∗xiyi − C

∗
xiCxif(xi)

)
, for all i = 1, . . . , l, (3.24)

and,

ai = − γI
γA

l+u∑
k=1

Mi,kf(xk), for all i = l + 1, . . . , l + u. (3.25)

Then, since for all j = 1, . . . , l + u, we have

f(xj) =
l+u∑
k=1

Kxk(xj)aj =
l+u∑
k=1

K(xj , xk)ak,

and, consequently, from (3.24) and (3.25), we get

ai +

l∑
j=1

[exp(−‖yj − Cxj
l+u∑
k=1

K(xj , xk)ak‖2Yxj )

lγA
C∗xiCxiK(xi, xj) +

γI
γA

l+u∑
k=1

Mi,kK(xk, xj)
]
aj

=
1

lγA
C∗xiyi, i = 1, . . . , l, (3.26)

ai +
γI
γA

l+u∑
j=1

l+u∑
k=1

Mi,kK(xk, xj)aj = 0, i = l + 1, . . . , l + u. (3.27)

Equations (3.26) and (3.27) make a system of equations with respect to the unkowns ai for
i = 1, . . . , l+u, which consists of nonlinear equations for the unknowns ai corresponding to
the labeled input points and of linear equations for the unknowns ai corresponding to the
unlabeled input points.

3.5 Available Numerical Methods for the Exponential Least Square Loss
Function.

In this subsection we tackle the question of deriving algorithms to solve the system of
equations defined by (3.26) and (3.27). We use the same notations and assumptions as in
the previous subsection. In addition, we assume that all Hilbert spaces Wxi have finite
dimensions. To be more precise, Wxi is identified with Rdi , for i = 1, . . . , l + u. We first
define the vector

a = (a1, a2, . . . , al+u) ∈ RN , (3.28)

where aj ∈ Wxj = Rdj , for each j = 1, . . . , l + u, and

N =

l+u∑
i=1

dim(Wxi) =

l+u∑
i=1

di.
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Then we consider the function H : RN → RN with

H(a) = (H1(a), H2(a), . . . ,Hl+u(a)), a ∈ RN ,

defined by

Hi(a) = ai +
1

lγA

l∑
j=1

exp
(
−‖yj − Cxj

l+u∑
k=1

K(xj , xk)ak‖2Yxj
)
C∗xiCxiK(xi, xj)aj

+
γI
γA

l+u∑
j=1

l+u∑
k=1

Mi,kK(xk, xj)aj −
1

lγA
C∗xiyi, i = 1, . . . , l, (3.29)

Hi(a) = ai +
γI
γA

l+u∑
j=1

l+u∑
k=1

Mi,kK(xk, xj)aj , i = l + 1, . . . , l + u. (3.30)

In view of the system of equations defined by (3.26) and (3.27) with the unknown vector
solution a ∈ RN as in (3.28), we search for solutions of the equation H(a) = 0. From the
numerical analysis point of view, this problem can be approached by nonlinear optimisation
techniques, more precisely, we search for an algorithm that yields a sequence (an)n≥0 of
vectors in RN with the property that for each ε > 0 there exists an integer n ≥ 0 such that
‖H(an)‖ < ε. One of the classical approaches for this kind of nonlinear problems is in the
class of Newton’s damped approximation methods, see Hazely et al. (2022) for an overview
and advances in second-order approximation methods and machine learning.

There are different methods and algorithms for dealing with constrained nonlinear sys-
tems of differentiable functions. For example, the potential reduction Newton’s method in
Monteiro and Pang (1999) can be used in order to provide an algorithm to approximate
solutions a ∈ RN of the equation H(a) = 0 under the assumption that the Jacobi matrix
∇uH is nonsingular for all u ∈ RN . Other methods based on the interior point methods
are available, for example see Byrd et al. (1999), Byrd et al. (2000), and Waltz et al. (2006).
The latter algorithm is implemented in the fmincon function in MATLAB, that we have
used in our example.

Because the optimisation problem is nonlinear, multiple solutions may show up and
this makes the choice of the initialisation vector a0 very important: for different choices
of the initialisation vector different pools of solutions of the equations H(a) = 0 might be
found. Let us observe that, on the one hand, the components Hi for i = l + 1, . . . , l + u,
corresponding to unlabeled points xi, are linear and homogeneous and hence that 0 is a
solution. On the other hand, the components Hi for i = 1, . . . , l, corresponding to labeled
points xi, are nonlinear and nonhomogeneous and hence that 0 is not a solution. From
here, we can see that, on the one hand, as the learning problem is semisupervised, l is
significantly less than u and hence taking the initialisation vector a0 = 0 might be a good
choice for the beginning. On the other hand, in order to find better minimisers, or even
the global minimiser, some multigrid methods or stochastic methods for the choice of the
initialisation vector a0 might be involved, e.g. see Gower et al. (2024). In our example, we
have used the Latin Hypercube Sampling (LHS), see McKay et al. (1979), to solve this issue.
Similarly to multigrid methods, the LHS divides the domain into small cubes. Without loss
of generality, assume that the domain is [0, 1]d a cube with dimension d. Then for a fixed
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n, split the cube into nd subcubes by splitting each interval [0, 1] into intervals with 1/n
length, that is,

[0, 1] =

n−1⋃
i=0

[
i

n
,
i+ 1

n

]
.

Then we pick points such that any rectangle Ri,j defined below contains only one point

Ri,j = [0, 1]j−1 ×
[
i

n
,
i+ 1

n

]
× [0, 1]d−j , i, j = 1, . . . , n.

This sampling strategy enjoys asymptotic bounds in expectation, see Stein (1987), with few
points, hence it is a good candidate for our purposes.

Because there is no guarantee for uniqueness of solution, the algorithms for approxima-
tion of the solutions of the equation H(a) = 0 should be complemented by further steps
in which the obtained solutions should be tested whether they provide minimisers, of the
learning function (3.45), or not and to which extent from the class of all minimisers one
can get a global minimiser. But the most challenging problem refers to the assumption
that the Jacobi matrix ∇uH is nonsingular for all u ∈ RN . In order to tackle this ques-
tion we explicitly calculate this Jacobi matrix. To this end, we first observe that for each

i, j = 1, . . . , l + u, letting aj = (a
(1)
j , . . . , a

(dj)
j ), we have a partial Jacobi matrix

∂Hi

∂aj
=
( ∂Hi

∂a
(1)
j

, . . . ,
∂Hi

∂a
(dj)
j

)
,

that is, a function matrix of dimension di × dj = dim(Wxi) × dim(Wxj ). Let i = 1, . . . , l
and let Idi denote the identity operator on Wxi identified with Rdi . Then, from (3.29), on
the one hand we get

∂Hi

∂ai
= Idi +

1

lγA
exp
(
−‖yi − Cxj

l+u∑
k=1

K(xj , xk)ak‖2Yxj
)
C∗xiCxiK(xi, xi)

+
1

lγA

l+u∑
j=1

2〈yj − Cxj
l+u∑
k=1

K(xj , xk)ak, CxjK(xj , xi)ai〉Yxi×

× exp
(
−‖yj − Cxj

l+u∑
k=1

K(xj , xk)ak‖2Yxj
)
C∗xiCxiK(xi, xj)

+
γI
γA

l+u∑
k=1

Mi,kK(xk, xi), (3.31)
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and, on the other hand, for each j = 1, . . . , l + u, j 6= i, we get

∂Hi

∂aj
=

1

lγA
exp
(
−‖yj − Cxj

l+u∑
k=1

K(xj , xk)ak‖2Yxj
)
C∗xiCxiK(xi, xj)

+
1

lγA

l+u∑
m=1

2〈ym − Cxm
l+u∑
k=1

K(xm, xk)ak, CxmK(xm, xj)aj〉Yxm×

× exp
(
−‖ym − Cxm

l+u∑
k=1

K(xm, xk)ak‖2Yxm
)
C∗xiCxiK(xi, xm)

+
γI
γA

l+u∑
k=1

Mi,kK(xk, xj). (3.32)

Let now i = l + 1, . . . , l + u. Then, from (3.30), on the one hand we get

∂Hi

∂ai
= Idi +

γI
γA

l+u∑
k=1

Mi,kK(xk, xi), (3.33)

and, on the other hand, for j = 1, . . . , l + u, j 6= i, we get

∂Hi

∂aj
=
γI
γA

l+u∑
k=1

Mi,kK(xk, xj). (3.34)

The partial Jacobi matrices obtained in (3.31) through (3.34) make a complete descrip-
tion of the Jacobi matrix of the Fréchet derivative ∇aH. From these formulae, a few
observations follow. A first observation is that we can write

∇aH = IRN +
1

γA
R, (3.35)

where R is an N ×N matrix that can be calculated explicitly from (3.31) through (3.34).
Then, one can use different extra assumptions on the kernels and data points in order to
assure that ∇aH is a nonsingular matrix. For example, one can take into account the fact
that the labeled points x1, . . . , xl are selected in a supervised manner while the unlabeled
points xl+1, . . . , xl+u can be changed in a convenient manner that assures the Jacobi matrix
∇aH be nonsingular. Another observation is that in a semisupervised learning problem the
number l of labeled points is significantly less than the number u of unlabeled points and
hence the degree of nonlinearity of the system of equations defined by (3.26) and (3.27) is
rather low, which can be used to search for reliable approximations by systems of linear
equations.

Some of the available algorithms for constrained optimisation problems, such as that
described before, depend heavily on the assumption that the Jacobi matrix ∇aH is non-
singular for all a ∈ RN , a situation that may not be easy to get. In general, we can find a
nonempty open set Ω in RN on which the Jacobi matrix ∇aH is nonsingular, for example
we can use (3.35) to show that Ω contains the set of those a ∈ RN with the property that
‖R‖ < γA. In view of (3.31) through (3.34), in the nonlinear terms of these partial Jacobi
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matrices the exponentials with negative exponents tame the growth of ‖R‖ when the vector
a is far from the solution and, consequently, by manipulating the regularisation coefficient
γA we can get very large sets Ω. Then, one can use other techniques to prevent the ap-
proximation sequence to get too close to the boundary of Ω as in the constrained version
of the algorithm proposed in Monteiro and Pang (1999). More recent investigations refer
to either adapting the algorithm in case the Jacobi matrix ∇uH is singular and pseudo-
inverses replace the inverses, see e.g. the analyis of Kaczmarz type algorithms for ill-posed
linear problems in Popa (2018), or using stochastic Bregman-Kaczmarz methods, see Gower
et al. (2024). These allow us to modify correspondingly the algorithm that we presented
here to the general case. We leave the details for a further research project on real data
sets. As a practical approach, the simplest is to use perturbation theory, more precisely, for
those values of a at which the Fréchet derivative is not invertible, a small perturbation of a
changes the point to one for which the Fréchet derivative is invertible and then the stability
of the problem to small perturbations guarantees the convergence of the iteration process.

3.6 A Toy Model.

In this subsection we provide a toy model for the localised version of the regularised machine
learning problem in case the loss function is the exponential least square function as in
Subsection 3.4 and test an algorithm following the discussion of the numerical methods as
in Subsection 3.5. To this end, let X = X1 ∪X2, where

X1 := {(α1, α2) | 0.25 ≤ α1 ≤ 1, 0.25 ≤ α2 ≤ 1}, (3.36)

X2 := {(α1, α2) | −1 ≤ α1 ≤ −0.25, 0.25 ≤ α2 ≤ 1}. (3.37)

In the following we use the notation as in Subsection 2.2. We consider x1 ∈ X1 and x2 ∈ X2

randomly selected and let the labels y1 ∈ Yx1 = R and y2 ∈ Yx2 = R2 be randomly selected.
Also, let x3, x4 ∈ X1 \ {x1}, x3 6= x4, and x5, x6 ∈ X2 \ {x2}, x5 6= x6, randomly selected
as well, be unlabeled points. In particular, l = 2 and u = 4. Let Yx3 = Yx4 = R and
Yx5 = Yx6 = R2. Then we take Wxj = Yxj for all j = 1, . . . , 6, in particular the machine
learning problem is single viewed. With respect to the notation (2.12) we have

W l+u = Yx1 ⊕ Yx2 ⊕ Yx3 ⊕ Yx4 ⊕ Yx5 ⊕ Yx6
= R⊕ R2 ⊕ R⊕ R⊕ R2 ⊕ R2 = R9,

hence dim(W l+u) = 9.
We let the regularisation coefficients γA and γI unspecified and we will test different

choices later. Since the problem is single-view we let Cxi = IYxi for all i = 1, . . . , 6 and
MB = 0, see Example 3. For the within-view operator, see Example 4, we proceed as
follows. Let

wj,k = exp
(
−‖xj − xk‖

2

2σ2
)
, j, k = 1, . . . , 6, (3.38)

and then, consider the 6× 6 matrices W = [wj,k]
6
j,k=1 and V = diag(v1,1, . . . , v6,6), where

vj,j =
6∑

k=1

wj,k, j = 1, . . . , 6, (3.39)
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and the Laplace matrix L = V −W = [lj,k]
6
j,k=1. Taking into account that the labels of

points in X1 have dimension 1 and the labels of points in X2 have dimension 2, the matrix
MW = M looks like this, see Example 4.

M =



l1,1 l1,2 0 l1,3 l1,4 l1,5 0 l1,6 0
l2,1 l2,2 0 l2,3 l2,4 l2,5 0 l2,6 0
0 0 l2,2 0 0 0 0 0 0
l3,1 l3,2 0 l3,3 l3,4 l3,5 0 l3,6 0
l4,1 l4,2 0 l4,3 l4,4 l4,5 0 l4,6 0
l5,1 l5,2 0 l5,3 l5,4 l5,5 0 l5,6 0
0 0 0 0 0 0 l5,5 0 0
l6,1 l6,2 0 l6,3 l6,4 l6,5 0 l6,6 0
0 0 0 0 0 0 0 0 l6,6


. (3.40)

With notation as in Section 2.2 we have M = [Mj,k]
6
j,k=1 with

M1,1 = l1,1, M1,2 =
[
l1,2 0

]
, M1,3 = l1,3, M1,4 = l1,4, M1,5 =

[
l1,5 0

]
, M1,6 =

[
l1,6 0

]
,

M2,1 =

[
l2,1
0

]
, M2,2 =

[
l2,2 0
0 l2,2

]
, M2,3 =

[
l2,3
0

]
, M2,4 =

[
l2,4
0

]
, M2,5 =

[
l2,5 0
0 0

]
, M2,6 =

[
l2,6 0
0 0

]
,

M3,1 = l3,1, M3,2 =
[
l3,2 0

]
, M3,3 = l3,3, M3,4 = l3,4, M3,5 =

[
l3,5 0

]
, M3,6 =

[
l3,6 0

]
,

M4,1 = l4,1, M4,2 =
[
l4,2 0

]
, M4,3 = l4,3, M4,4 = l4,4, M4,5 =

[
l4,5 0

]
, M4,6 =

[
l4,6 0

]
,

M5,1 =

[
l5,1
0

]
, M5,2 =

[
l5,2 0
0 0

]
, M5,3 =

[
l5,3
0

]
, M5,4 =

[
l5,4
0

]
, M5,5 =

[
l5,5 0
0 l5,5

]
, M5,6 =

[
l5,6 0
0 0

]
,

M6,1 =

[
l6,1
0

]
, M6,2 =

[
l6,2 0
0 0

]
, M6,3 =

[
l6,3
0

]
, M6,4 =

[
l6,4
0

]
, M6,5 =

[
l6,5 0
0 0

]
, M6,6 =

[
l6,6 0
0 l6,6

]
.

We consider the kernel K : X ×X →
⋃
z,ζ∈X B(Wζ ,Wz) defined as follows.

K(z, ζ) := exp
(
−‖z − ζ‖

2

σ2
)
, z, ζ ∈ X1, (3.41)

K(z, ζ) :=

[
exp
(
−‖z−ζ‖

2

σ2

)
0

0 exp(−α‖z − ζ‖)

]
, z, ζ ∈ X2, (3.42)

K(z, ζ) :=
[
exp
(
−‖z−ζ‖

2

σ2

)
0
]
, z ∈ X1, ζ ∈ X2, (3.43)

K(z, ζ) :=

[
exp
(
−‖z−ζ‖

2

σ2

)
0

]
, z ∈ X2, ζ ∈ X1. (3.44)

Here the coefficients σ and α remain unspecified for the moment.

With these data we have the system of equations (3.26) and (3.27), where a1, a3, and
a4 are scalars and a2, a5, and a6 are 2-vectors. So, speaking in terms of scalars, we have a
system of nine equations with nine unknowns. Three of these equations are nonlinear and
the rest of six equations are linear.
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In order to find a bounded set on which we can guarantee the existence of the global
solution of the minimisation problem (2.14), we follow the idea of the proof of Theorem 7.
With notation as in that theorem, we search for the minimiser

f =

6∑
j=1

Kxjaj (3.45)

and we let f0 = 0 and hence the corresponding vector a = 0. Then, by (3.21) we have

I(f0) = 1− 1

2

(
exp(−y21) + exp(−‖y2‖2)

)
. (3.46)

We search for δ > 0 such that I(f) ≥ I(f0), with f as in (3.45), for any vector a =
(a1, a2, a3, a4, a5, a6) of dimension 9 with the property that a 6∈ [−δ, δ]9. By the proof of
Theorem 7, the minimisation problem argmin ‖H(a)‖ has the solution in the cube [−δ, δ]9.
Taking into account that

I(f) ≥ γA‖f‖HK ≥ γA〈Kxa,a〉 ≥ γAλKx‖a‖22 ≥ γAλKx‖a‖2∞, (3.47)

where,
Kx = [K(xi, xj)]

6
i,j=1, (3.48)

is a 9×9 matrix and λKx > 0 is the least eigenvalue of the positive matrix Kx. From (3.46)
and (3.47), letting

δ =
1√

γAλKx

√
1− 1

2

(
exp(−y21) + exp(−‖y2‖2)

)
, (3.49)

it follows that in order to find the global minimiser for the problem (2.14), it is sufficient to
search for the solutions a of the minimisation problem argmin ‖H(a)‖ in the cube [−δ, δ]9.

There are two conditions to be verified, in order for δ to be consistent. Firstly, we
work under the assumption that λKx > 0 which can be numerically checked, hence δ <∞.
Secondly, note that if δ = 0 this means that y1 = 0 and y2 = 0, hence f = 0 is the solution
for the global minimiser and hence, in this case, the problem is trivial. So, we work under
the hypothesis that δ > 0.

Since the optimisation problem is sensitive to the choice of initial conditions, we explored
various possibilities. Specifically, we found that generating a Latin Hypercube Sampling
(LHS), see McKay et al. (1979) and the previous section, within the cube [−δ, δ]9 provides
a reliable estimate of the global solution while maintaining a reasonable runtime. Algorithm
1 below summarises the numerical implementation.

Remark 20 In this algorithm, our admissibility criterion at line 7 is 3-fold. We check
whether a0 results in both a smaller loss I(fa0), and a smaller gradient norm ‖H(a0)‖
compared to a. Additionally, we verify that the first-order optimality condition is sufficiently
small to ensure that a0 corresponds to a local extremum. Among all local optima we
select the global one by a careful investigation and using the Latin Hypercube Sampling
implemented in the algorithm and the code run on MATLAB. An essential part of the
algorithm is the use of the function fmincon of MATLAB that uses the method of interior
points for constrained optimisation, see Byrd et al. (1999), Byrd et al. (2000), and Waltz
et al. (2006).
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Algorithm 1 Numerical Implementation

Require: xi ∈ X1 ∪X2 ⊂ R2, σ, α > 0, γI , γA > 0.
1: D ← {x1,x2, . . . ,x6}
2: Construct M in (3.40) and K in (3.48) using data D
3: Compute δ in (3.49)
4: Compute the LHS L on the cube [−δ, δ]9
5: for each element a0 ∈ L do
6: Solve the minimisation problem (3.29) and (3.30) on the cube [−δ, δ]9

with initial condition a0 using the function fmincon.
7: if a0 is admissible in the sense of Remark 20 then
8: a← a0

9: end if
10: end for
11: return a

Example 5 In this example we used γA = 0.25, γI = 10, σ = 0.1 and α = 10, randomly
generated the data x and y and returned the result a.

x =

[
0.5377 0.6342 0.3273 0.3472 0.6724 0.8174
0.3978 −0.4584 0.3923 0.4305 −0.7962 −0.3601

]
y = (1.2108, 1.6636, 4.3843)

a = (0.8433, 1.7226, 1.5475, 0.4395, 0.3944, 0.1926,−0.0055, 1.4116,−0.1589) (3.50)

The implicit optimality tolerance is ε = 10−6. Each time the code produced the mesh of
the solution fbest given by (3.45) for the corresponding coefficients given by the coordinates
of the solution a. In figures 1 and 2 there are the meshes of the optimal solution as in
(3.50), the first one corresponds to the set X1 where the function fbest is scalar valued while
the second one corresponds to the set X2 where the function fbest has 2 dimensional vector
values and there are two meshes, one for each component. The circles are the labeled points.

In figures 1 and 2 we observe that the choice of the parameters avoids overfitting.
Actually, by varying the coefficients γA, γI , and the others, one can obtain different degrees
of overfitting. The code runs efficiently on a Mac laptop, for this example it takes only less
than a minute, but for other combinations of coefficients it may be five or more minutes.

We also plot in Figure 3 the values of the learning function I(fbest) for each choice of
the initial point. In Figure 4 we plot the values of H(a), in order to empirically show that
the optimal solution a is a good approximation of the solution of the equation H(a) = 0,
for each choice of the initial point,

Finally, in Figure 5 we empirically check that the solution fbest, corresponding to the
optimal a as in (3.45), is a good approximation of the minimiser of the learning function
I, given at (3.21), for example by meshing it when we keep the last seven entries fixed as
the last seven entries of the optimal a and let each of the first two entries of a vary in the
interval [−δ, δ]. The point represents the value of the learning function at fbest.

Although the picture in Figure 5 shows a convex surface this is misleading since it
represents only a 2-dimensional section of the general 9-dimensional surface generated by
the learning function I(f), when f is parametrised in terms of the 9-dimensional vector a as
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Figure 1: The plot of fbest over X1 has only one component. The variables α1 and α2

correspond to the notation as in (3.36).

Figure 2: The plot of fbest over X2 has two components. The variables α1 and α2 correspond
to the notation as in (3.37).
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Figure 3: The values of the learning function I(fbest) for each iteration corresponding to
the 45 initial points are very close one to each other.
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Figure 4: The values of H(a) for each iteration corresponding to the 45 initial points are
very close of 0.
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Figure 5: The mesh of the learning function I(fbest) when the parameters a1 and a2 are
varied and the other seven are fixed.

in (3.45). This behaviour of the learning map, as well as other traits, may vary for different
choices of the coefficients γA, γI , σ, and α, as we performed test for different combinations.

In this example, one can observe that in the region that is trusted to contain the global
minimum we actually have uniqueness of the solutions, both for the equation H(a) = 0 and
the minimiser of the learning map I. But, due to the nonlinearity of the system H(a) = 0
and the nonconvexity of the learning map I, this does not mean that there may be no other
solutions when the search is performed in a larger region, that is, local minima. This shows
the importance of Theorem 7 that provides a bounded region where the solutions that are
of interest live.
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Appendix A. Proof of Theorem 1

In the following we use a formalisation of the quotient completion to a Hilbert space of an
F-vector space V with respect to a given nonnegative sesquilinear form V × V 3 (u, v) 7→
q(u, v) ∈ F, as follows. A pair (H; Π) is called a Hilbert space induced by (V; q) if:

(ihs1) H is a Hilbert space.

(ihs2) Π: V → H is a linear operator with dense range.

(ihs3) q(u, v) = 〈Πu,Πv〉H, for all u, v ∈ V.

Such an induced Hilbert space always exists and is unique, up to a unitary operator. More
precisely, we will use the following construction. Consider the vector subspace of V defined
by

Nq := {u ∈ V | q(u, u) = 0} = {u,∈ V | q(u, v) = 0 for all v ∈ V}, (1.1)

where the equality holds due to the Schwarz Inequality for q, and then consider the quotient
vector space V/Nq. Letting

q̃(u+Nq, v +Nq) := q(u, v), u, v ∈ V, (1.2)

we have a pre-Hilbert space (V/Nq; q̃) that can be completed to a Hilbert space (Hq; 〈·, ·〉H).
Letting Πq : V → Hq be defined by

Πqu := u+Nq ∈ V/Nq ⊆ Hq, u ∈ V, (1.3)

it is easy to see that (Hq,Πq) is a Hilbert space induced by (V; q).

(a)⇒(b). Assuming that the H-operator valued kernel K is positive semidefinite, we
consider the vector space F0(X;H) of vector cross-sections with finite support and the
Hermitian sesquilinear form 〈·, ·〉K defined as in (2.6). We consider

NK = {f ∈ F0(X;H) | 〈f, f〉K = 0} (1.4)

= {f ∈ F0(X;H) | 〈f, g〉K = 0 for all g ∈ F0(X;H)},

then consider the induced Hilbert space (HK ; ΠK) associated to (F0(X;H); 〈·, ·〉K), and let
K := HK . For each x ∈ X let V (x) : Hx → K be the operator defined by

V (x)h = ΠK(ĥ) = h+N ∈ K, (1.5)

with notation as in (2.3). Since

〈V (x)h, V (x)h〉K = 〈K(x, x)h, h〉Hx ≤ ‖K(x, x)‖‖h‖2Hx , h ∈ Hx, x ∈ X, (1.6)

it follows that V (x) is bounded for all x ∈ X. Note that, in this way, K is the closed span
of {V (x)Hx | x ∈ X}. On the other hand,

〈K(y, x)h, g〉Hy = 〈h+N , g+N〉K = 〈V (x)h, V (y)g〉K , h ∈ Hx, g ∈ Hy, x, y ∈ X, (1.7)

hence, K(y, x) = V (y)∗V (x) for all x, y ∈ X. We thus proved that (K;V ) is a minimal
Hilbert space linearisation of the H-kernel K.
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In the following we prove that (K;V ) is unique, modulo unitary equivalence. To see
this, let (K′;V ′) be another minimal linearisation of K. Then, for arbitrary f ∈ F0(X;H)
we have

〈
∑
x∈X

V (x)fx,
∑
y∈X

V (y)fy〉0 =
∑
x,y∈X

〈V (y)∗V (x)fx, fy〉0

=
∑
x,y∈X

〈K(y, x)fx, fy〉0

= 〈f, f〉K
= 〈
∑
x∈X

V ′(x)fx,
∑
y∈X

V ′(y)fy〉0,

hence, defining U(
∑

x∈X V
′(x)fx) =

∑
x∈X V (x)fx, for arbitrary f ∈ F0(X;H), it follows

that U is isometric and, taking into account of the minimality conditions, it follows that U
can be uniquely extended to a unitary operator U : K′ → K, such that UV ′(x) = V (x) for
all x ∈ X.

(b)⇒(a). Assuming that (K;V ) is a Hilbert space linearisation of K, we have∑
x,y∈X

〈K(y, x)fx, fy〉Hy =
∑
x,y∈X

〈V (y)∗V (x)fx, fy〉Hy

= ‖
∑
x∈X

V (x)fx‖2K, f ∈ F0(X;H),

hence K is positive semidefinite.

Appendix B. Proof of Theorem 2

(a)⇒(b). If K is positive definite then, by Theorem 1, there exists a minimal linearisation
(K;V ) of K. Define R = {V (·)∗f | f ∈ K}, that is, R consists of all functions X 3 x 7→
V (x)∗f ∈ Hx, with f ∈ K, in particular, V (·)∗f can be viewed as an H-vector bundle, that
is, V (·)∗f ∈ F(X;H) for all f ∈ K. Thus, we can view R as a linear subspace of F(X;H),
with all its algebraic operations.

We now show that the mapping

K 3 f 7→ Uf = V (·)∗f ∈ R (2.1)

is bijective. By definition, this mapping is surjective, hence it remains to prove that it is
injective. To see this, let f, g ∈ K be such that V (·)∗f = V (·)∗g. Then for arbitrary x ∈ X
and h ∈ Hx we have 〈V (x)∗f, h〉Hx = 〈V (x)∗g, h〉Hx , equivalently, 〈f − g, V (x(h〉K = 0.
Taking into account the minimality of the linearisation, it follows that f = g. Thus, U is
bijective.

It is obvious that the bijective mapping U as in (2.1) is linear. On R we introduce an
inner product 〈·, ·〉R defined by

〈Uf,Uf〉R = 〈V (·)∗f, V (·)∗g〉K, f, g ∈ K, (2.2)
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in other words, U is now an isometric isomorphism between the Hilbert space K and the
inner product space R, hence (R; 〈·, ·〉R) is a Hilbert space as well.

We now show that (R; 〈·, ·〉R) is a reproducing kernel Hilbert space with reproducing
kernel K. Indeed, since for all x, y ∈ X and all h ∈ Hx we have Kx(y)h = K(y, x)h =
V (y)∗V (x)h, it follows that Kx ∈ R for all x ∈ X. On the other hand, for arbitrary f ∈ R,
x ∈ X, and h ∈ Hx, we have

〈f,Kxh〉R = 〈V (·)∗g,Kxh〉R = 〈V (·)g, V (·)∗V (x)h〉R
= 〈g, V (x)h〉K = 〈V (x)∗g, h〉Hx ,

where g ∈ H is the unique vector such that V (x)∗g = f . Thus, we proved that K is the
reproducing kernel of R.

(b)⇒(a). Let (R; 〈·, ·〉R) be a reproducing kernel Hilbert space with reproducing kernel
K. Using the reproducing property (rk3), for arbitrary n ∈ N, x1, . . . , xn ∈ X, and h1 ∈
Hx1 , . . . , hn ∈ Hxn , we have

n∑
i,j=1

〈K(xj , xi)hi, hj〉Hxj =
n∑

i,j=1

〈Kxihi,Kxjhj〉R = ‖
n∑
i=1

Kxihi‖2R ≥ 0,

hence K is positive semidefinite.

Due to the uniqueness property of the reproducing kernel Hilbert space associated to a
positive semidefinite H-operator valued kernel K, it is natural to denote this reproducing
kernel Hilbert space by R(K).

Appendix C. A Direct Construction of R(K).

Given an arbitrary bundle of Hilbert spaces H = {Hx}x∈X and an H-operator valued kernel
K, we described the reproducing kernel Hilbert space R(K) through a minimal linearisation
of K, as in the proof of the implication (a)⇒(b) of Theorem 2, while a minimal Kolmogorov
decomposition of K was obtained as in the proof of the implication (a)⇒(b) of Theorem 1.
One of the unpleasant trait of the mentioned construction of the Kolmogorov decomposition,
a GNS type construction in fact, is that, at a certain step, it makes a factorisation and hence,
the obtained Hilbert space consists of equivalence classes of vector cross-sections. On the
other hand, the reproducing kernel Hilbert space H(K) consists solely of vector cross-
sections and, as noted before, it is a Kolmogorov decomposition as well, hence it would be
desirable to have a direct construction of it, independent of the Kolmogorov decomposition.
Such a direct, but longer, construction, that yields simultaneously the reproducing kernel
Hilbert space R(K) and a minimal Kolmogorov decomposition of K, is more illuminating
from certain points of view, and we describe it in the following.

Let R0 be the range of the convolution operator K defined at (2.7), more precisely, with
the definition of the convolution operator CK as in (2.7),

R0 = {f ∈ F(X;H) |f = CKg for some g ∈ F0(X;H)} (3.1)

= {f ∈ F(X;H) |fy =
∑
x∈X

K(y, x)gx for some g ∈ F0(X;H), all y ∈ X}.
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A pairing 〈·, ·〉R0 can be defined on R0 by

〈e, f〉R0 = 〈g, h〉K = 〈CKg, h〉0 =
∑
y∈X
〈e(y), h(y)〉Hy =

∑
x,y∈X

〈K(y, x)g(x), h(y)〉Hy , (3.2)

where f = CKh and e = CKg for some g, h ∈ F0(X;H). We observe that, with the previous
notation,

〈e, f〉R0 =
∑
y∈X
〈e(y), h(y)〉Hy =

∑
x,y∈X

〈K(y, x)g(x), h(y)〉Hy (3.3)

=
∑
x,y∈X

〈g(x),K(x, y)h(y)〉Hx =
∑
x∈X
〈g(x), f(x)〉Hx ,

which shows that the definition in (3.2) is correct, that is, it does not depend on g and h such
that e = CKg and f = CKh. In the following we prove that the pairing 〈·, ·〉R0 is an inner
product. It is easy to verify the linearity in the first argument, conjugate symmetry, and
nonnegativity. Hence, the Schwarz inequality holds as well. In order to verify its positive
definiteness, let f ∈ R0 be such that 〈f, f〉R0 = 0. By the Schwarz inequality, it follows that
〈f, f ′〉R0 = 0 for all f ′ ∈ R0. For arbitrary x ∈ X and h ∈ Hx consider the cross-section

ĥ ∈ F0(X;H) defined as in (2.3). Letting f ′ = CK ĥ ∈ R0, we thus have

0 = 〈f, f ′〉R0 = 〈f, CK ĥ〉0 =
∑
x∈X
〈fy, (ĥ)y〉Hy = 〈fx, h〉Hx ,

hence, since x ∈ X and h ∈ Hx are arbitrary, it follows that f = 0. Thus, (R0; 〈·, ·〉R0) is
an inner product space contained in F(X;H).

For any x ∈ X and h ∈ Hx, we consider the vector cross-section ĥ ∈ F0(X;H) defined
at (2.3) and note that

(CK ĥ)(y) =
∑
z∈X

K(y, z)(ĥ)(z) = K(y, x)h = Kx(y)h, y ∈ X, (3.4)

that is, CK ĥ = Kxh, which shows that Kxh ∈ R0. On the other hand, for any f ∈ R0,
hence f = CKg for some g ∈ F0(X;H), we have

f(y) =
∑
x∈X

K(y, x)g(x) =
∑
x∈X

Kx(y)g(x), y ∈ X, (3.5)

hence R0 = Lin{Kxy | x ∈ X, h ∈ Hx}. In addition,

〈f,Kxh〉R0 = 〈f, CK ĥ〉R0 =
∑
y∈X
〈f(y), (ĥ)(y)〉Hy = 〈f(x), h〉Hx .

Thus, the inner product space (R0; 〈·, ·〉R0) has all properties (rk1)–(rk3), as well as a
modified version of the minimality property (rk4), except the fact that it is a Hilbert space.

By the standard procedure, let (R; 〈·, ·〉R) be an abstract completion of the inner product
space (R0; 〈·, ·〉R) to a Hilbert space. In order to finish this construction, all we have to prove
is that we can always choose R ⊆ F(X;H), in other words, this Hilbert space abstract
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completion can always be realised inside F(X;H). Once this done, after a moment of
thought and taking into account that (R0; 〈·, ·〉R) essentially has all properties (rk1)–(rk4),
we can see that (R; 〈·, ·〉R) is the reproducing kernel Hilbert space with reproducing kernel
K.

Now, in order to prove that the Hilbert space abstract completion of (R0; 〈·, ·〉R0) can
be realised within F(X;H), we can take at least two paths. One way is to use the existence
part of the reproducing kernel Hilbert space associated to K, a consequence of Theorem 2.
A second, more direct way, is to show that any Cauchy sequence, with respect to ‖ · ‖R0 ,
with elements in R0, converges pointwise on X to a vector cross-section in F(X;H) and
that this vector cross-section can be taken as the strong limit of the sequence as well.

Appendix D. Proof of Theorem 4

(a)⇒(b). Let x ∈ X be fixed, but arbitrary. It was already observed in Subsection 2.1
that, if HK is the reproducing kernel Hilbert space in F(X;H) with kernel K, then by the
reproducing property, we have

〈f(x), h〉Hx = 〈f,Kxh〉HK , f ∈ HK , h ∈ Hx,

where Kx : Hx → HK is the linear operator defined by Kxh := K(·, x)h, see the axiom
(rk2). Since, by axiom (rk2), Kxh ∈ HK for all h ∈ Hx, the operator Kx is correctly
defined. It is a bounded operator because

‖Kxh‖2HK = 〈Kxh,Kxh〉HK = 〈(Kxh)(x), h〉Hx = 〈K(x, x)h〉Hx ≤ ‖K(x, x)‖‖h‖Hx , (4.1)

where we have used the reproducing property (rk3).
Finally, again by the reproducing property (rk3), for any f ∈ HK and any h ∈ Hx we

have
〈f(x), h〉Hx = 〈f,Kxh〉HK = 〈K∗xf, h〉Hx ,

hence the evaluation operator HK 3 f 7→ f(x) ∈ Hx coincides with K∗x and hence it is
bounded.

(b)⇒(a). For arbitrary x ∈ X, let Evx : H → Hx be the evaluation operator Evxf :=
f(x), for all f ∈ H. By assumption, Evx is a bounded operator for all x ∈ X. We consider
the H-valued kernel

K(y, x) = EvyEv∗x, x, y ∈ X.

From Theorem 1 it follows that K is a positive semidefinite H-valued kernel and hence,
by Theorem 2, there exists and it is unique, the reproducing kernel Hilbert space HK with
kernel K. In the following we show that H is the reproducing kernel Hilbert space with
kernel K.

The axiom (rk1) holds, by assumption. For the axiom (rk2), let us observe that, for all
x ∈ X and h ∈ Hx, we have

(Kxh)(y) = K(y, x)h = EvyEv∗xh = (Ev∗xh)(y), y ∈ X,

hence Kxh = Ev∗xh ∈ HK . This proves that the axiom (rk2) holds and, in addition, that

K∗x = Evx, x ∈ X.
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Finally, for the axiom (rk3), let f ∈ H, x ∈ X, and h ∈ Hx be arbitrary. Then,

〈f(x), h〉Hx = 〈Evxf, h〉Hx = 〈f,Ev∗xh〉HK = 〈f,Kxh〉HK .

This shows that the axiom (rk3) holds as well.
Finally, by the uniqueness of the reproducing kernel Hilbert space associated to K, it

follows that H = HK .
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