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Abstract

This paper focuses on parameter estimation and introduces a new method for lower bound-
ing the Bayesian risk. The method allows for the use of virtually any information measure,
including Rényi’s α, φ-divergences, and Sibson’s α-Mutual Information. The approach
considers divergences as functionals of measures and exploits the duality between spaces
of measures and spaces of functions. In particular, we show that one can lower bound the
risk with any information measure by upper bounding its dual via Markov’s inequality. We
are thus able to provide estimator-independent impossibility results thanks to the Data-
Processing Inequalities that divergences satisfy. The results are then applied to settings of
interest involving both discrete and continuous parameters, including the “Hide-and-Seek”
problem, and compared to the state-of-the-art techniques. An important observation is
that the behaviour of the lower bound in the number of samples is influenced by the choice
of the information measure. We leverage this by introducing a new divergence inspired by
the “Hockey-Stick” divergence, which is demonstrated empirically to provide the largest
lower bound across all considered settings. If the observations are subject to privatisation,
stronger impossibility results can be obtained via Strong Data-Processing Inequalities. The
paper also discusses some generalisations and alternative directions.
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1 Introduction

In this work,1 we consider the problem of parameter estimation in a Bayesian setting. In
this problem, an underlying parameter is modelled as a random variable. Noisy observations
are made according to a given conditional probability distribution, conditioned on the reali-
sation of the underlying parameter. Based on these observations, the parameter needs to be
estimated. Estimation quality is assessed through a fidelity criterion, expressed in terms of
a loss function. The average incurred loss is referred to as the Bayesian risk. This problem
has a rich history, dating back to Bayes (1764). Given the characteristics of the observation
process, it is of interest to characterise the performance of the optimal estimator. This is

1. This article was presented in part at the 2021 and 2022 IEEE International Symposia on Information
Theory
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well known to be prohibitive. Short of such a characterisation, it is therefore relevant to
develop fundamental lower bounds on the performance of any estimator. We propose an
approach to lower bounding the Bayesian risk leveraging most information measures present
in the literature. We look at the problem through an information-theoretic lens, similarly
to Xu and Raginsky (2017). We thus treat the parameter to be estimated as a message sent
through a channel. This allows us to include frameworks where, in a distributed fashion, m
processors observe noisy samples of this parameter. The processors will then send a version
of their observations to a central node. The central node will then proceed to estimate the
parameter. We thus shift the focus from the estimation problem to the computation of two
main quantities (which we render as independent of the estimator as possible):

1. an information measure (e.g., Sibsons’s α-Mutual Information, φ-Mutual Information,
etc.);

2. a functional of the probability of some event under independence (e.g., a small-ball
probability (Li and Shao, 2001), like it happens in (Xu and Raginsky, 2017)).

The main tools utilised rely on Legendre-Fenchel duality and they allow us to introduce
bounds involving Rényi’s, φ-divergences and Sibson’s α-Mutual Information. An advantage
of using this type of bounds is that one can render the functional in Item 2 (e.g., the small-
ball probability) independent of the specific estimator. Similarly, the information measure
can also be rendered independent of the estimator via Data-Processing Inequalities. There-
fore, these lower bounds can be applied to any standard estimation framework regardless of
the specific choice of the estimator. More details on the formal framework that we adopted
can be found in Section 1.3.

It is important to notice that, although the problem can be interpreted as a transmission
problem, a fundamental difference is that the size of the quantised messages may not grow
with the number of samples. This might render the reconstruction of the samples impossible
but the estimation of the parameter may remain feasible (Xu and Raginsky, 2017). Our
main focus will not be on asymptotic results but rather on finite number of samples lower
bounds.

1.1 Overview of the document

Following the Introduction, the paper will be broken into four main sections:

• Section 2: Preliminaries, in which we will define the information measures of interest
as well as describe the theoretical framework leveraged to provide the bounds;

• Section 4: Main Bounds, in which (making use of the framework described in Sec-
tion 2) we propose a variety of lower bounds on the Bayesian risk involving a variety
of information-measures, in particular:

– Sibson’s α-Mutual Information and Maximal Leakage (Theorem 8);

– φ-Mutual Information (Theorem 9). In particular:

∗ Hellinger p-divergence (Corollary 11);

∗ Rényi’s α-divergence (Remark 12);
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∗ a generalisation of the “Hockey-Stick” divergence, Eγ (Corollary 14);

• Section 5: Examples, in which we apply the bounds proposed in Section 4 to a variety
of classical and less classical settings:

– estimation of the bias of a Bernoulli random variable (see Section 5.1);

– estimation of the bias of a Bernoulli random variable after injection of additional
noise (e.g., observing privatised samples, see Section 5.2);

– estimation of the mean of a Gaussian random variable (with Gaussian prior,
see Section 5.3);

– lower bound on the minimax risk for the “Hide-and-Seek” problem (Shamir,
2014) (see Section 5.4).

For each of the problems we derive bounds involving a variety of information measures
and we compare said bounds among themselves and with respect to relevant bounds
in the literature as well.

• Throughout the document we also consider further generalisations, in which we pro-
pose a variety of ways of extending/tightening/altering the results we proposed in Sec-
tion 4. In particular, one can provide new bounds:

– conditioning on an additional random variable (see Appendix E.1);

– leveraging the asymmetry of some information measures (see Appendix E.2);

– lower bounding the expected risk directly (i.e., without using Markov’s inequal-
ity, see Appendix E.3).

1.2 Related Work

The problem of parameter estimation has been extensively studied over the years, with
many contributions coming from a variety of fields. Relevant literature, mostly leveraging
the Van Trees Inequality (and the quadratic risk) can be found in Van Trees (2001); Sato and
Akahira (1996); Brown and Gajek (1990); Van Trees and Bell (2007); Brown and Liu (1993).
Moreover, a survey of early work in this area (mainly focusing on asymptotic settings) can
be found in Te Sun Han and Amari (1998). More recent but important advances are
instead due to Zhang et al. (2013); Duchi and Wainwright (2013); Shamir (2014). Closely
connected to this work is Xu and Raginsky (2017). The approach is quite similar, with
the main difference that we employ a family of bounds involving a variety of divergences
while Xu and Raginsky (2017) relies on Mutual Information and on the information density.
Related is also Asoodeh et al. (2021), where the authors use the so-called Eγ-divergence
to provide a lower bound on the Bayesian Risk. A similar approach was also undertaken
in Chen et al. (2016). The authors focused on the notion of φ-informativity (Csiszár, 1972))
and leveraged the Data-Processing inequality similarly to (Esposito et al., 2021a, Theorem
3). A more thorough discussion of the differences between this work and Chen et al. (2016)
can be found in Appendix B.
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1.3 Problem Setting

Let W denote the parameter space and assume that we have access to a prior distribution
over W, PW . Suppose that we observe W ∼ PW through the family of distributions
P = {PX|W=w : w ∈ W}. Given a function ϕ : X → Ŵ, one can then estimate W from

X ∼ PX|W via ϕ(X) = Ŵ . Let us denote with ℓ : W × Ŵ → R+ a loss function, the
Bayesian risk is defined as:

RB = inf
ϕ

PWŴ (ℓ(W,ϕ(X))) = inf
ϕ

PWŴ (ℓ(W, Ŵ )). (1)

Our purpose is to lower bound RB using a variety of information measures. With this drive
and leveraging various tools that stem from Legendre-Fenchel duality, one can connect the
expected value of ℓ under the joint PWŴ to

• the expected value of the same function under the product of the marginals (PWPŴ )
or a “small-ball probability”;

• an information measure (quantifying how “far” the joint is from the product of the
marginals).

This will allow us to render the lower bound as independent as possible from the specific
choice of the estimator ϕ. More precisely, our desideratum will be a lower bound of the
following form:

RB ≥ ϖ

(
dPWŴ

dPWPŴ

)
ϑ(PWPŴ , ℓ), (2)

with, once again, the purpose of then rendering the right-hand side of Equation (2) as inde-
pendent as possible of the estimator ϕ. Let us denote with LW (Ŵ , ρ) = PWPŴ (ℓ(W, Ŵ ) <
ρ), a functional ϑ of particular interest to us is the one that leads to (a function of) the
so-called small-ball probability

LW (ρ) = sup
ŵ∈Ŵ

LW (ŵ, ρ) = sup
ŵ∈Ŵ

PW (ℓ(W, ŵ) < ρ). (3)

More generally, the choice of ϑ will depend on the choice of ϖ and vice versa. The discussion
just above represents a generalisation of the approach undertaken in Xu and Raginsky
(2017). In particular, in Xu and Raginsky (2017) the authors also target a bound similar
to Equation (2). However, the choice of ϖ is essentially made so that the lower bound
involves either Shannon’s Mutual Information (simple or conditional) (Xu and Raginsky,
2017, Theorem 1) or the information density (simple or conditional) (Xu and Raginsky,
2017, Theorem 2). As a consequence, this also fixes the choice of ϑ. Our purpose is to allow
for a wider range of functionals to provide stronger results. In the following sections, we
will explore different choices of said functionals that lead to interesting results in the field.

2 Preliminaries

In this section, we will define the main objects utilised throughout the document and define
the relevant notation. We will mainly adopt a measure-theoretic framework. Given a
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measurable space (X ,F) and two measures µ, ν which render it a measure space, if ν is
absolutely continuous with respect to µ (denoted with ν ≪ µ) then we will represent with
dν
dµ the Radon-Nikodym derivative of ν with respect to µ.
Given a (measurable) function f : X → R and a measure µ, adopting the De Finetti’s
notation, we denote the Lebesgue integral of f with respect to the measure µ as follows

µ(f) = ⟨f, µ⟩ =
∫
f dµ.

Consequently, given the bijection between events and indicators functions, with a slight
abuse of notation, we also denote measures of events as follows

µ(1E) =

∫
1E dµ = µ(E).

The object µ(f) represents a bilinear inner product which will characterise a pairing be-
tween a (properly defined) space of functions and a (properly defined) space of measures.
Once such a pairing is set, one can then proceed to define the Legendre-Fenchel transform
connecting functionals acting on measures to functionals acting on functions. More formally,
let Cb(X ) denote the space of continuous and bounded functions defined on X and M(X )
the set of Radon measures defined on the same space, then one has that M(X ) and Cb(X )
are in separating duality through the bilinear mapping ⟨·, ·⟩ defined above (see Rassoul-
Agha and Seppäläinen (2015)). Thus, given a functional ψ : Cb(X ) → R one can define its
Legendre-Fenchel dual as follows:

ψ⋆(µ) = sup
f∈Cb(X )

⟨f, µ⟩ − ψ(f). (4)

Another connection between the spaces of interest comes from considering a norm on a
space and the corresponding dual norm on the dual space, i.e., given a norm acting on X ,
∥·∥ and a pairing between two spaces (X ,Y), one can construct a norm on Y as follows:

∥h∥⋆ = sup
f :∥f∥≤1

|⟨h, f⟩|. (5)

For this paper, we will essentially interpret the expected value PWŴ (ℓ) as ⟨PWŴ , ℓ⟩. Once
this simple observation is made, these tools will allow us to connect functionals of measure
(e.g., information-measures) to functionals of the loss (e.g., small-ball probabilities). More
details about this connection can be found in Appendix A.

3 Information Measures

In this section, we will introduce information measures and the necessary tools utilised to
provide the main results of this work.

3.1 Rényi’s Information Measures

Introduced by Rényi as a generalization of KL-divergence, α-divergence has found many ap-
plications ranging from hypothesis testing to guessing and several other statistical inference
problems. It can be defined as follows (van Erven and Harremoës, 2014).

5



Esposito, Vandenbroucque, Gastpar

Definition 1. Let (Ω,F ,P), (Ω,F ,Q) be two probability spaces. Let α > 0 be a positive
real number different from 1. Consider a measure µ such that P ≪ µ and Q ≪ µ (such a
measure always exists e.g., µ = (P +Q)/2)) and denote with p, q the densities of P,Q with
respect to µ. The α-divergence of P from Q is defined as follows:

Dα(P∥Q) =
1

α− 1
log

∫
pαq1−α dµ. (6)

The definition can be proved to be independent of the chosen measure µ, see (van Erven
and Harremoës, 2014). Moreover, one has that if α > 1 then Dα(P∥Q) ≥ D(P∥Q), where
D(P∥Q) denotes the Kullback-Leibler divergence between P and Q. Under mild additional

conditions one can also prove that Dα(P∥Q)
α→1−−−→ D(P∥Q). For an extensive treatment of

Rényi’s α-divergences, we refer the reader to (van Erven and Harremoës, 2014). Starting
from Rényi’s divergence, Sibson built the notion of Information Radius (Sibson, 1969). A
deconstructed and generalised version of the Information Radius leads us to the following
definition of a generalisation of Shannon’s Mutual Information (Verdú, 2015):

Definition 2. Let X and Y be two random variables jointly distributed according to PXY ,
and with marginal distributions PX and PY , respectively. For α > 0, the Sibson’s Mutual
Information of order α between X and Y is defined as:

Iα(X,Y ) = min
QY

Dα(PXY ∥PXQY ). (7)

In particular, Equation (7) admits the following closed-form expression:

Iα(X,Y ) =
α

α− 1
log

∥∥∥∥∥
∥∥∥∥ dPXY
dPXPY

∥∥∥∥
Lα(PX)

∥∥∥∥∥
L1(PY )

(8)

Notice that Iα(X,Y ) ̸= Iα(Y,X) i.e., differently from Shannon’s Mutual Information,
Iα is not symmetric in its arguments. Similarly to Rényi’s α-divergences one has that if
α > 1 then Iα(X,Y ) ≥ I(X;Y ), where I(X;Y ) denotes the Shannon’s Mutual Information.

Under mild additional conditions one can also prove that Iα(X,Y )
α→1−−−→ I(X;Y ). Moreover,

the limit of α→ ∞ is also meaningful. Indeed, I∞(X,Y ) has gained independent interest in
Privacy and Security. It goes under the name of Maximal Leakage, is denoted by L (X→Y )
and it has been endowed with an operational meaning (Issa et al., 2020). In particular one
has that:

L (X→Y ) = logPY

(
ess sup

PX

dPXY
dPXPY

)
X,Y discrete

= log
∑
y

max
x

PY |X=x(y). (9)

Maximal Leakage also admits a conditional version that, for discrete random variables
X,Y, Z, has the following form (Issa et al., 2020, Definition 6 & Theorem 6):

L (X→Y |Z) = log max
z:PZ(z)>0

∑
y

max
x:PX|Z(x|z)>0

PY |X,Z(y|x, z), (10)

with an associated chain-rule-like inequality

L (X→(Y,Z)) ≤ L (X→Y ) + L (X→Z|Y ) . (11)

For an extensive treatment of Sibson’s α-Mutual Information we refer the reader to
Verdú (2015) while for Maximal Leakage the reader is referred to Issa et al. (2020).
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3.2 φ-Mutual Information

Another generalisation of the KL-divergence can be obtained by considering a generic convex
function φ : R+ → R, usually with the simple constraint that φ(1) = 0. The constraint can
be ignored as long as φ(1) < +∞ by simply considering a new mapping φ̃(x) = φ(x)−φ(1).

Definition 3. Let (Ω,F ,P), (Ω,F ,Q) be two probability spaces. Let φ : R+ → R be a
convex function. Consider a measure µ such that P ≪ µ and Q ≪ µ. Denoting with p, q
the densities of the measures with respect to µ, the φ-divergence of P from Q is defined as
follows:

Dφ(P∥Q) =

∫
qφ

(
p

q

)
dµ. (12)

It is possible to show that φ-divergences are independent of the dominating mea-
sure (Liese and Vajda, 2006). Indeed, when absolute continuity between P,Q holds i.e.,
P ≪ Q, an assumption we will often use, we retrieve the following (Liese and Vajda, 2006):

Dφ(P∥Q) =

∫
φ

(
dP
dQ

)
dQ. (13)

Examples of divergences included in this generalisation are:

• the Kullback-Leibler divergence by setting φ(t) = t log(t);

• the Total Variation distance with φ(t) = 1
2 |t− 1|;

• the Hellinger distance with φ(t) = (
√
t− 1)2.

Denoting with FX the σ-field generated from the random variable X, (i.e., σ(X)), φ-Mutual
Information is defined as follows:

Definition 4. Let X and Y be two random variables jointly distributed according to PXY
over the measurable space (X ×Y,FXY ). Let (X ,FX ,PX), (Y,FY ,PY ) be the corresponding
probability spaces induced by the marginals. Let φ : R+ → R be a convex function such that
φ(1) = 0. The φ-Mutual Information between X and Y is defined as:

Iφ(X,Y ) = Dφ(PXY ∥PXPY ). (14)

If PXY ≪ PXPY we have that:

Iφ(X,Y ) =

∫
φ

(
dPXY
dPXPY

)
dPXPY . (15)

It is possible to see that, if φ satisfies φ(1) = 0 and it is strictly convex at 1, then
Iφ(X,Y ) = 0 if and only if X and Y are independent (Liese and Vajda, 2006). Notice that,
in general, Iφ(X,Y ) ̸= Iφ(Y,X) i.e., the information measure is not symmetric. Relevant
to this work will be the family of Hellinger divergences (Liese and Vajda, 1987, Definition
2.10), that stem from the parametrised family of functions φp(x) = (xp − 1)/(p − 1) with
p ≥ 1 and denoted in the following way:

Hp(X,Y ) = Iφp(X,Y ). (16)
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Exploiting a bound involving Iφ(X,Y ) for a broad enough set of functions φ allows us to
differently measure the dependence between X and Y . This allows us to provide bounds
that are tailored to the specific problem at hand and, as we will see, to improve over bounds
leveraging Shannon’s Mutual Information.

3.3 Data-Processing Inequality

An important property that φ-divergences share is the Data-Processing Inequality (DPI).
I.e., given two measures µ, ν and a Markov Kernel K, one has that for every convex φ

Dφ(νK∥µK) ≤ Dφ(ν∥µ). (17)

This property holds as well for Rényi’s α-divergences, despite them not being φ-divergences
(van Erven and Harremoës, 2014, Theorem 9). An analogous version also holds for gener-
alisation of Mutual Information and can be formulated as follows: assume that X − Y −Z
forms a Markov chain, then for every convex φ and every α ∈ (0,+∞]:

Iφ(X,Z) ≤ min{Iφ(X,Y ), Iφ(Y, Z)} and Iα(X,Z) ≤ min{Iα(X,Y ), Iα(Y,Z)}. (18)

In many cases, the inequality can be proved to be strict, and a large body of literature has
been devoted to computing or bounding the so-called Strong Data-Processing Inequalities,
see e.g., Cohen et al. (1993); Ahlswede and Gács (1976); Polyanskiy and Wu (2017); Ra-
ginsky (2016); Makur and Zheng (2020). More details on the subject and how it can be
leveraged in an estimation setting can be found in Section 4.1.

3.4 Functional Inequalities and Divergences

One of the key technical and conceptual tools is delineated in Appendix A. The key take-
away is the following: interpreting Dφ(·∥µ) = ψµ(·) as a convex and lower semi-continuous
mapping, it is possible to characterise its variational representation (Theorem 22), allowing
us to link divergences, expected values of functions and a corresponding functional. This
allows us to retrieve Theorem 9. The other main tool that will be utilised is Hölder’s in-
equality. In particular, there is a connection between Rényi’s α-information measure and
Lα-norms of the Radon-Nikodym derivative. Some of the results we are about to provide
are a consequence of one or multiple applications of Hölder’s inequality, in particular, one
can prove the following:

Theorem 5. Let (X ×Y,F ,PXY ), (X ×Y,F ,PXPY ) be two probability spaces, and assume
that PXY ≪ PXPY . Given an F-measurable function f : X × Y → R+, then,

PXY (f) ≤
∥∥∥∥f∥Lβ(PX)

∥∥∥
Lβ′ (PY )

·

∥∥∥∥∥
∥∥∥∥ dPXY
dPXPY

∥∥∥∥
Lα(PX)

∥∥∥∥∥
Lα′ (PY )

(19)

where β, α, β′, α′ are such that 1 = 1
α+

1
β = 1

α′ +
1
β′ . Given a measurable function g, ∥g∥Lα(µ)

denotes the α-Norm of g under µ i.e.,
(∫
gαdµ

) 1
α .

Theorem 5 (and corresponding generalisations including Orlicz and Amemiya norms) has
already appeared in Esposito et al. (2021a) in a slightly less general form, and in Esposito
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(2022) in a variety of forms. It has been re-stated here for ease of reference. Moreover, The-
orem 5 provides multiple degrees of freedom:

• the parameters characterising the norms: α, α′;

• the (positive-valued) function f .

Three choices of the above are meaningful to us:

1. α′ = α, which makes Rényi’s divergence of order α appear on the right-hand side
of Equation (19) (as a norm of the Radon-Nikodym derivative);

2. α′ → 1, which makes Sibson’s Mutual Information of order α appear on the right-hand
side of Equation (19);

3. f = 1E , which allows us to relate the probability of the same event under the joint
and a function of the product of the marginals (and an information measure).

Selecting α′ = α and f = 1E gives rise to Esposito et al. (2021a, Corollary 6), while letting
α′ → 1 and selecting again f = 1E give rise to the following corollary:

Corollary 6 ((Esposito et al., 2021a, Corollary 1)). Given E ∈ F , we have that:

PXY (E) ≤

(
ess sup

Py

PX(EY )

)1/β

· PY
(
P1/α
X

((
dPXY
dPXPY

)α))
(20)

=

(
ess sup

Py

PX(EY )

)1/β

· exp
(
α− 1

α
Iα(X,Y )

)
, (21)

where Iα(X,Y ) is the Sibson Mutual Information of order α, (Verdú, 2015). Moreover, α
and β are such that 1

α + 1
β = 1.

Corollary 6 is pivotal in providing a family of lower bounds on the Bayesian risk i.e., The-
orem 8.

4 Main Results: lower bounds on the Risk

To provide our main results, let us state a fundamental lemma which is a simple consequence
of Markov’s inequality and allows us to provide lower bounds on the expected risk bounding
small-ball probabilities instead:

Lemma 7. Let W and Ŵ be two random variables jointly distributed according to PW,Ŵ
and let ℓ : W × Ŵ → R+. For every ρ > 0 the following holds true:

PWŴ (ℓ(W, Ŵ )) ≥ ρ(1− PWŴ (ℓ(W, Ŵ ) < ρ)). (22)

Proof. One has that for every ρ > 0, due to Markov’s inequality the following steps hold:

PWŴ (ℓ(W, Ŵ )) ≥ ρ · PWŴ (ℓ(W, Ŵ ) ≥ ρ) (23)

= ρ · (1− PWŴ (ℓ(W, Ŵ ) < ρ)). (24)
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An application of Corollary 6 in conjunction with Lemma 7 yields our first main result:

Theorem 8. Consider the Bayesian framework described in Section 1.3. The following
holds for every α > 1 and ρ > 0:

RB ≥ ρ

(
1− exp

(
α− 1

α
(Iα(W,X) + log(LW (ρ)))

))
. (25)

Moreover, taking the limit of α→ ∞ one recovers the following:

RB ≥ sup
ρ>0

ρ (1− exp (L (W→X) + log(LW (ρ)))) . (26)

The proof can be found in Appendix C.1. Two remarks are in order:

• It is important to notice that the behaviour of Equation (25) is fundamentally different
from Xu and Raginsky (2017, Theorem 1). In Xu and Raginsky (2017, Theorem 1)
the dependence is linear with respect to the Mutual Information and logarithmic in
LW (ρ) while in Theorem 8 there is an exponential dependence on Iα and linear in
LW (ρ).

• Theorem 8 introduces a new parameter α > 1 to optimise over. The presence of α
leads to a trade-off between the two quantities for a given ρ, Iα(W,X) and LW (ρ):
α−1
α Iα(W,X) will increase with α whereas LW (ρ)

α−1
α will decrease with α.

An interesting characteristic of Equation (26) is that L (W→X) depends onW only through
the support. This allows us to provide, essentially for free, an even more general lower bound
on the risk. Indeed, ignoring LW (ρ) for a moment, for a fixed family of PX|W , L (W→X)
has the same value regardless of PW (as long as the support of W remains the same). We
can also walk the same path undertaken in Esposito et al. (2021a) and derive a variety of
lower bounds involving a variety of information measures.

Theorem 9. Consider the Bayesian framework described in Section 1.3. Let φ : [0,+∞) →
R be a monotone, strictly convex function and suppose that the generalised inverse, defined
as φ−1(y) = inf{t ≥ 0 : φ(t) > y}, exists. Then for every ρ > 0 and every estimator Ŵ , if
φ is non-decreasing one has the following

PWŴ (ℓ(W, Ŵ )) ≥ ρ

(
1− LW (Ŵ , ρ) · φ−1

(
Iφ(W, Ŵ ) + (1− LW (Ŵ , ρ)) · φ⋆(0)

LW (Ŵ , ρ)

))
, (27)

while if φ is non-increasing one recovers the following:

PWŴ (ℓ(W, Ŵ )) ≥ ρ
(
1− LW (Ŵ , ρ)

)
· φ−1

(
Iφ(W, Ŵ ) + LW (Ŵ , ρ) · φ⋆(0)

1− LW (Ŵ , ρ)

)
. (28)

The proof can be found in Appendix C.2.
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Remark 10 (Recovering Mutual Information). A natural question is whether Theorem 9
also includes Shannon’s Mutual Information (and, consequently, the results in (Xu and
Raginsky, 2017)). Selecting φ(x) = x log x is problematic as the function is non-monotonic
and its inverse would not have a closed-form expression one could leverage in Equation (27)
and (28). However, following the same steps undertaken in Appendix C.2, with φ(x) =
x log(x), but with a different choice of f = −λ̃ℓ − logPWPŴ (exp(−λ̃ℓ)) + 1 and λ̃ =
−1
ρ log

(
PWPŴ ({ℓ < ρ})

)
, Equation (110) does lead to (Xu and Raginsky, 2017, Theorem

1).

Whenever φ⋆(0) ≤ 0, the expressions in Equations (27) and (28) can be respectively
simplified as follows: if φ is non-decreasing, Equation (27) specialises to:

PWŴ (ℓ(W, Ŵ )) ≥ ρ

(
1− LW (Ŵ , ρ) · φ−1

(
Iφ(W, Ŵ )

LW (Ŵ , ρ)

))
, (29)

while if φ is non-increasing, Equation (28) specialises to:

PWŴ (ℓ(W, Ŵ )) ≥ ρ
(
1− LW (Ŵ , ρ)

)
· φ−1

(
Iφ(W, Ŵ )

1− LW (Ŵ , ρ)

)
. (30)

The assumption that φ⋆(0) ≤ 0 holds indeed true in a variety of cases (cf. Corollary 11).

Although Theorem 9 represents a quite general result, in order to apply it to the Bayesian
risk setting (and provide an estimator-independent lower bound) one has to select φ care-
fully. In particular, one has to render the right-hand side of Equation (27) (or Equation (29))
independent of Ŵ = ϕ(X). In order to do that, the following two quantities need to be
rendered independent of Ŵ :

1. The information-measure (e.g., through the data-processing inequality Iφ(W, Ŵ ) ≤
Iφ(W,X));

2. The quantity LW (Ŵ , ρ) (which can be easily upper-bounded in the following way:
LW (Ŵ , ρ) ≤ supŵ LW (ŵ, ρ) = LW (ρ)).

For simplicity, consider Equation (29) and introduce the following object

Gφ(Iφ, LW ) = LW (Ŵ , ρ) · φ−1

(
Iφ(W, Ŵ )

LW (Ŵ , ρ)

)
. (31)

To use the two inequalities just stated in Item 1 and Item 2, one needs that for a given choice
of φ, Gφ(Iφ, LW ) is increasing in Iφ for a given value of LW and increasing in LW for a given
value of Iφ. This allows us to further lower bound Equation (29) and render the quantity
independent of the specific choice of ϕ. Analogously, one can state similar assumptions in
order to apply the same reasoning to Equation (30). Hence, starting from Equation (1) one
can provide a lower bound on the risk RB that is independent of ϕ.
Let us now look at some specific choices of φ such that Gφ satisfies the desired properties
and, thus, for which a bound on the Bayesian risk can be retrieved.

11
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Corollary 11. Consider the Bayesian framework described in Section 1.3. The following
holds for every p > 1 and ρ > 0:

RB ≥ ρ
(
1− LW (ρ)

p−1
p · ((p− 1)Hp(W,X) + 1)

1
p

)
. (32)

The proof of Corollary 11 is in Appendix C.3. Restricting the choice of φ to the family
of polynomials φp that gives rise to the Hellinger divergences (see Equation (16)) one can
thus state the following lower bound on the risk:

RB ≥ sup
ρ>0

sup
p>1

ρ

(
1− LW (ρ)

p−1
p ·

(
(p− 1)Hp(W, Ŵ ) + 1

) 1
p

)
. (33)

Remark 12. Using the one-to-one mapping connecting Hellinger divergences and Rényi’s
α-divergence (Sason and Verdú, 2016, Eq. (80)) one can rewrite Equation (32) for a given
p as follows:

RB ≥ ρ

(
1− LW (ρ)

p−1
p · exp

(
p− 1

p
Dp(PWŴ ∥PWPŴ )

))
. (34)

Moreover, given the definition of Sibson’s α-Mutual Information one has that for a given
α > 1:

exp

(
α− 1

α
Iα(W,X)

)
= exp

(
α− 1

α
inf
QX

Dα(PWX∥PWQX)

)
(35)

≤ exp

(
α− 1

α
Dα(PWX∥PWPX)

)
(36)

= ((α− 1)Hα(W,X) + 1)
1
α . (37)

Consequently, one has that:

RB ≥
(
1− LW (ρ)

α−1
α · exp

(
α− 1

α
Iα(W,X)

))
(38)

≥
(
1− LW (ρ)

α−1
α · ((α− 1)Hα(W,X) + 1)

1
α

)
. (39)

Hence, Equation (25) always improves over Equation (32). However, as we will see, in a
variety of settings, the Hellinger α-divergence can be computed explicitly while Iα cannot.
For this reason, we will often leverage the Hellinger divergence to provide closed-form lower
bounds on the risk even though they do not yield the best lower bound.

Several results can be derived from Theorem 9. Each of them has potentially interesting
applications in specific Bayesian Estimation settings. In this work, we will mostly focus
on Sibson’s α-Mutual Information and Hellinger p-divergences. In the spirit of leverag-
ing the generality of Theorem 9, we also provide a bound involving a novel information
measure Eγ,ζ , strongly inspired by the so-called Eγ-divergence (Sason and Verdú, 2016,
Equation (66)), (Polyanskiy et al., 2010, page 2314), also known in the literature as the
Hockey-stick divergence. Applications of the Hockey-Stick divergence in this framework
have been explored in (Asoodeh et al., 2021). Its definition is the following:

12



Lower Bounds on the Bayesian Risk via Information Measures

Definition 13. Let (Ω,F) be a measurable space and let µ and ν be two probability measures
defined on the space. Denote with φγ,ζ(x) = (ζx−γ)+−(ζ−γ)+ with ζ > 0, γ ≥ 0, and where
(x)+ = max{0, x}. The function φγ,ζ(x) is convex, increasing and is such that φγ,ζ(1) = 0.
Assume that ν ≪ µ, then define the following object:

Eγ,ζ(ν∥µ) = Dφγ,ζ
(ν∥µ). (40)

Moreover, whenever ν = PXY and µ = PXPY we denote (with a slight abuse of notation)
Eγ,ζ(PXY ∥PXY ) with Eγ,ζ(X,Y ). If ζ = 1 then one recovers the usual Eγ-divergence.

Leveraging it, one can provide the following result in this framework:

Corollary 14. Consider the Bayesian framework described in Section 1.3. The following
holds for every ζ > 0, γ ≥ 0, and ρ > 0:

RB ≥ ρ

(
1−

Eγ,ζ(W, Ŵ ) + γLW (ρ) + (ζ − γ)+
ζ

)
. (41)

One can thus retrieve the following lower bound on the risk:

RB ≥ sup
ρ>0

sup
ζ>0,γ≥0

ρ

(
1−

Eγ,ζ(W, Ŵ ) + γLW (ρ) + (ζ − γ)+
ζ

)
. (42)

The proof is in Appendix C.4.

Remark 15. Setting ζ = 1 in Equation (41) one recovers (Asoodeh et al., 2021, Remark
1). In fact, by introducing an additional degree of freedom through the ζ parameter in Equa-
tion (42), the resulting lower bound can only be tighter than (Asoodeh et al., 2021, Remark
1).

Using these results one can provide meaningful lower bounds on the risk in a variety of
settings of interest, as we will see in Section 5. Some natural extensions over the framework
introduced are presented in Appendix E. They consider either a slight change of perspective
or a slight alteration of the observation model. We will now see how our bounds can be
improved if one has more information on the type of noise present in the observation channels
or if the samples used for estimation are privatised.

4.1 Leveraging Strong Data-Processing Inequalities

A key step in the results proved here consists of leveraging the Markov Chain W −X − Ŵ
along with the Data-Processing Inequality as follows: Iφ(W, Ŵ ) ≤ Iφ(W,X). For more
details on DPI see Section 3.3. In case more information is available concerning the kernel
linking X and Ŵ then one can leverage the so-called Strong Data-Processing Inequality
(SDPI), a tightening of the classical DPI. In particular, in many settings of interest, one
can show that Iφ(W, Ŵ ) is strictly smaller than Iφ(W,X) unless Ŵ = X and the charac-
terisation of the ratio between these two quantities for Markov Kernels can be formalised
via SDPIs:
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Definition 16 (Raginsky 2016, Definition 3.1). Given a probability measure µ, a Markov
Kernel K and a convex function φ, we say that K satisfies a φ-type strong data-processing
inequality at µ with constant c ∈ [0, 1) if, for all ν ≪ µ one has that

Dφ(νK∥µK) ≤ c ·Dφ(ν∥µ). (43)

In order to characterise the tightest such constant c, let us define the following objects:

ηφ(µ,K) = sup
ν ̸=µ

Dφ(νK∥µK)

Dφ(ν∥µ)
and ηφ(K) = sup

µ
ηφ(µ,K).

Moreover, under mild condition on φ one can also prove that if U −X−Y forms a Markov
chain then:

sup
PU|X

Iφ(U, Y )

Iφ(U,X)
= ηφ(PY , PY |X). (44)

Said quantities are generally hard to compute for a given Markov Kernel K and func-
tional φ, however, a variety of bounds is present in the literature (see Raginsky (2016)). In
particular, given any convex φ it is possible to show the following result:

Lemma 17 (Del Moral et al. 2003, Proposition 1.1.). Let K : F × Ω → [0, 1] be a Markov
Kernel, and let φ be a convex functional such that φ(1) = 0, one has that

ηφ(K) ≤ ηTV(K) = sup
x,x̂∈Ω

TV(K(·|x),K(·|x̂)), (45)

where TV denotes the Total Variation distance i.e., the φ divergence that stems from φ(t) =
1
2 |t− 1|.

The bound in Equation (45) does not, however, hold for Rényi’s divergences:

Example 1. Let µ = (1/2, 1/2) and K = BSC(λ) with λ < 1
2 . Then ηTV(K) = (1 − 2λ).

Consider now Dα(K(·|0)∥µ) = Dα(δ0K∥µK) = 1
α−1 log(2

1−α(λα + (1 − λ)α)). Moreover,
Dα(δ0∥µ) = − log(2). If λ = 0.2 and α = 6 one has that

ηDα(K) >
Dα(δ0K∥µK)

Dα(δ0∥µ)
= 0.6138 > ϑ(K) = 0.6, (46)

and the gap increases with α.

In the specific context of estimation problems, one can leverage SDPI coefficients in the
following way:

Iφ(W, Ŵ ) ≤ Iφ(W,X)ηφ(PX ,PŴ |X) ≤ Iφ(W,X)ηφ(PŴ |X),

This can potentially provide a refinement of the results presented so far. Moreover, the same
technique can be employed in settings where one does not have direct access to samples but
has rather access to noisy copies or privatised versions. In this case, one can provide lower
bounds tailored to the type of noise that has been injected to privatise the data. Consider
the following setting in which one has access to n independent samples Xn = (X1, . . . , Xn)
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generated from W . Moreover, assume the samples are not directly observed but rather one
has access to a sequence Zn of noisy/privatised version ofXn (obtained through the sequence
of Markov kernels K1, . . . ,Kn, where for every i ≥ 1, Ki : F×X → [0, 1] and PZi = PXiKi).
The goal is to estimate W from the sequence Zn via an estimator ψ : Zn → W. Given a
loss function ℓ : W × Ŵ → R+, the noisy Bayesian risk is thus defined as

Rnoisy
B = inf

ψ
PWZ(ℓ(W,ψ(Z

n))) = inf
ψ

PWŴ (ℓ(W, Ŵ )), (47)

and it can be lower bounded similarly to the non-private/noisy case via Theorem 9. For
simplicity of exposition, we will consider a single kernel K and, consequently, one has that
Zn is obtained from Xn through the tensor-product K⊗n. In this case, one has the Markov
chain W −Xn − Zn − Ŵ and can leverage SDPI twice as follows:

Iφ(W, Ŵ ) ≤ ηφ(PW |Zn)Iφ(W,Z
n) ≤ ηφ(PW |Zn)ηφ(PXn ,K⊗n)Iφ(W,X

n), (48)

and consequently, state the following result:

Corollary 18. Consider the private Bayesian framework considered above. Denote with
Zn the private samples obtained from Xn through the tensor product of a kernel K. Let
φ : [0,+∞) → R be a monotone convex function and suppose that the generalised inverse,
defined as φ−1(y) = inf{t ≥ 0 : φ(t) > y}, exists. Assume as well that the function Gφ
defined in Equation (31) is non-decreasing in both arguments. Then, for every estimator
Ŵ , if φ is non-decreasing one has the following

PWŴ (ℓ(W, Ŵ )) ≥ sup
ρ>0

ρ

(
1− LW (Ŵ , ρ)

· φ−1

(
ηφ(PŴ |Zn)ηφ(PXn ,K⊗n)Iφ(W,X

n) + (1− LW (ρ))φ⋆(0)

LW (ρ)

))
,

(49)

whereas if φ is non-increasing one recovers the following:

PWŴ (ℓ(W, Ŵ )) ≥ sup
ρ>0

ρ
(
1− LW (Ŵ , ρ)

)
· φ−1

(
ηφ(PŴ |Zn)ηφ(PXn ,K⊗n)Iφ(W,X

n) + LW (ρ) · φ⋆(0)
1− LW (ρ)

)
.

(50)

Notice that in case one does not estimate from noisy observations Zn then one can
still consider the same setting as in Corollary 18 with K representing the kernel associated
to the identity mapping i.e., K(y|x) = δx(y). In this case one has that PXn = PZn ,
ηφ(PXn ,K⊗n) = 1 and, consequently, ηφ(PŴ |Zn) = ηφ(PŴ |Xn). Hence, Corollary 18 boils
down to a refinement of Theorem 9 without any additional noise injection.

Remark 19 (Connection to Local-Differential Privacy). In case one is considering Eγ,ζ
with ζ = 1, then the corresponding contraction parameter has been analysed in Asoodeh

15



Esposito, Vandenbroucque, Gastpar

et al. (2021), where contraction has been shown to be equivalent to Local Differential-Privacy
(LDP). I.e., a kernel K is said to be (ϵ, δ) “Locally-Differentially Private” (LDP), if:

max
E∈F ,x,x̂

|K(E|x)− eϵK(E|x̂)| ≤ δ. (51)

In this case, one has that ηφeϵ
(K) ≤ δ. Moreover, due to (Asoodeh et al., 2021, Lemma 2)

one has that if K is (ϵ, δ)-LDP then for every φ one has that ηφ(K) ≤ (1− (1− δ)e−ϵ). It is
unclear, however, whether there are settings in which said upper-bound is more convenient
than others. Indeed, one also has that for every convex function φ

ηφ(K) ≤ ηTV(K) < (1− (1− δ)e−ϵ), (52)

and, for many channels, ηTV(K) is relatively easy to compute. Moreover, even ηTV(K)
tends to be quite larger than the effective contraction coefficient of the divergence at hand:
e.g., if K = BSC(λϵ) with λϵ = 1

1+eϵ then K is (ϵ, 0)-LDP (see (Asoodeh et al., 2021,

Example 1)) and if φ is operator-convex (e.g., φ(x) = x log x or xp−1
p−1 with 1 < p ≤ 2, etc.)

then (Raginsky, 2016, Corollary 3.1):

ηφ(K) =

(
1− 2

1 + eϵ

)2

≪
∣∣∣∣1− 2

1 + eϵ

∣∣∣∣ < (1− e−ϵ). (53)

An important feature of Corollary 18 is that for a subclass of functions φ one can
leverage tensorisation properties of ηφ. Indeed, if φ satisfies the conditions of (Raginsky,
2016, Theorem 3.9) then

ηφ(µ
⊗n,K⊗n) = ηφ(µ,K). (54)

Moreover, if φ is operator convex, then one can say the following:

ηφ(K
⊗n) = ηχ2(K⊗n) ≤ 1− (1− ηφ(K))n. (55)

Both the results are true for instance, for φ(x) = (xp − 1)/(p− 1) with 1 ≤ p ≤ 2 (but the
assumptions of (Raginsky, 2016, Theorem 3.9) are violated if p > 2). This means that one
can leverage Equations (54) to (55) for the Hellinger divergence Hp with 1 ≤ p ≤ 2.

5 Examples of application

In this section, we apply the results presented in the previous section to four estimation
settings. The first three are classical settings, while the fourth comes from a distributed
estimation setting:

• estimation of the mean of a Bernoulli random variable with parameter W , where W
is assumed to be uniform between (0, 1);

• the same setting as above with the difference that one does not observe the samples
Xn directly but rather a noisy/privatised version Zn, where each Zi is assumed to
be the outcome of Xi after being passed through a Binary Symmetric Channel with
parameter λ (BSC(λ));

• estimation of the mean of a Gaussian random variable with Gaussian prior;
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• identification of the biased random variable in a d-dimensional vector in a distributed
fashion (cf., the “Hide-and-seek” problem advanced in Shamir (2014)).

The loss function for the first three cases will be the L1-distance while for the fourth one,
we will consider the 0−1 loss. For the first three cases, the maximisation over ρ in the lower
bounds is carried out analytically (details in Appendix D.1).

5.1 Bernoulli Bias

Example 2. Suppose that W ∼ U([0, 1]) and that for each i ∈ [n], the random variables
Xi|W = w are distributed according to a Ber(w), i.e., P (Xi = 1|W = w) = w and P (Xi =
0|W = w) = 1− w. Also, assume that ℓ(w, ŵ) = |w − ŵ|.

Using the sample mean estimator, i.e., Ŵ = 1
n

∑n
i=1Xi, one has that (see (Xu and

Raginsky, 2017, Equation (20))):

RB ≤ 1√
6n
. (56)

Let us now lower bound the risk in this setting. First, we find that

LW (ρ) = sup
ŵ

PW (|W − ŵ| < ρ) = 2ρ. (57)

To obtain a lower bound involving Maximal Leakage, one can see that (details in Sec-
tion D.2.1)

L (W→Xn) ≤ log

(
2 +

√
πn

2

)
. (58)

Substituting Equation (58) in Equation (26), along with LW (ρ) = 2ρ, provides us with the
following lower bound on the risk:

RB ≥ sup
ρ>0

ρ (1− exp (L (W→Xn))LW (ρ)) (59)

≥ sup
ρ>0

ρ

(
1−

(
2 +

√
πn

2

)
2ρ

)
. (60)

The quantity in Equation (60) is a concave function of ρ and thus we can maximise it. In
particular, the maximiser is ρ̂ = 1

4(2+
√

πn
2 )

and plugging it in Equation (60) one gets the

following:

RB ≥ 1

8
(
2 +

√
πn
2

) , (61)

which, for n large enough (i.e., n ≥ 127/π ≈ 41), can be further lower bounded as follows

RB ≥ 1

5
√
2πn

. (62)

Surprisingly, Maximal Leakage already offers a lower bound that matches the upper bound
up to a constant (see Equation (56)) without any extra machinery. Equation (61) provides a
larger lower bound than the one provided using Mutual Information (see Xu and Raginsky

17



Esposito, Vandenbroucque, Gastpar

(2017, Corollary 2)) for n ≥ 1. Moreover, the proof in Xu and Raginsky (2017) needs a more
complicated setting involving a conditioning with respect to an independent copy of Xn and
can only provide an asymptotic lower bound on the risk of 1/(16

√
2πn) while Equation (61)

holds for every n.
On the contrary, given the closed-form expression, Maximal Leakage can be quite easy to
compute or upper-bound. Moreover, the information measure depends on PW only through
the support. This means that if one has access to an upper-bound on LW (ρ) that does
not employ any knowledge of PW except for the support (e.g., if W were to be discrete,
an upper-bound of 1 over the probability mass function could suffice) the resulting lower
bound on the risk (in this example), would apply to any W whose support is the interval
[0, 1].
One can also provide a more general lower bound involving Iα. Indeed, one has that (details
in Section D.2.2), in this setting:

exp

(
α− 1

α
Iα(W,X

n)

)
=

n∑
k=0

(
n

k

)(
Γ(kα+ 1)Γ((n− k)α+ 1)

Γ(nα+ 2)

) 1
α

. (63)

Plugging Equation (63) in Equation (25) one obtains the following lower bound on the risk:

RB ≥ sup
ρ>0

sup
α>1

ρ

(
1− (2ρ)

α−1
α exp

(
α− 1

α
Iα(W,X

n)

))
. (64)

The lower bound in Equation (64) can clearly only improve the one provided in Equa-
tion (60), as L (W→Xn) = I∞(W,Xn) > Iα(W,X

n) for every α <∞. However, differently
from Equation (60), it does not admit a closed-form expression and needs to be computed
numerically in order to assess how far it is from the upper bound. Similarly, one could try
to employ a lower bound that includes Hellinger−p divergences. The lower bound on the
risk induced by Corollary 11 is given by

RB ≥ sup
ρ>0

sup
p>1

ρ
(
1− (2ρ)

p−1
p · (Hp(W,X

n))
1
p

)
. (65)

Via the argument delineated in Remark 12 one can see that Equation (64) always improves
over Equation (65). However, for some values of p, one can provide a closed-form expression
for the lower bound provided by Equation (65) while this is not possible for Equation (64).
For this reason, we decided to explicitly state both results. Indeed, in general, one has that
(details in Section D.2.3):

((p− 1)Hp(W,X
n) + 1) = (n+ 1)p−1

n∑
k=0

(
n

k

)pΓ(kp+ 1)Γ((n− k)p+ 1)

Γ(np+ 2)
, (66)

Then, with p = 2 one recovers (details in Section D.2.3):

H2(W,X
n) + 1 = χ2(W,Xn) =

n+ 1

2n+ 1
· 4n(

2n
n

) ≤ 16
√
πn

21
. (67)

Hence, specialising Equation (65) to p = 2 leads us to:

RB ≥ sup
ρ>0

ρ
(
1−

√
2ρ(χ2(W,Xn) + 1)

)
. (68)
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Solving then the maximisation over ρ and using Equation (67) one can conclude that:

RB ≥ 2

27
· 1

χ2(W,Xn) + 1
≥ 7

72
√
πn

. (69)

Notice that Equation (69) also matches the upper-bound up to a constant and, similarly to
Maximal Leakage, improves over Xu and Raginsky (2017, Corollary 2) while not requiring

that n → ∞. Stirling’s approximation yields (χ2(W,Xn) + 1) ∼
√
πn
2 when n is large.

This implies that, for n large, one can show that RB ≳ 4
27

√
πn

, thus leading to a slight

improvement over Equation (69). To conclude, one can apply the same steps with the Eγ,ζ-
divergence. The lower bound on the risk one can retrieve via Corollary 14 in this example
can thus be expressed as

RB ≥ sup
ζ,γ

sup
ρ>0

ρ

(
1−

(Eγ,ζ(W,X
n) + 2ργ)

ζ

)
(70)

= sup
ζ,γ

(ζ − Eγ,ζ(W,X
n))2

8γζ
. (71)

The lower bound in Equation (71) can be empirically seen to be the best among the ones
presented so far (thus beating Hellinger, Iα and, consequently, Maximal Leakage and Mutual
Information). A direct comparison between the bounds provided here and those already
present in the literature can be seen in Figure 1a and Figure 1b. The lower bounds are
computed as a function of the number of samples n, which we consider to be in the range
{1, . . . , 50}. The figure shows that all the divergences we considered in this work provide
a larger (and thus, tighter) lower bound on the Bayesian risk when compared with results
that stem from using Shannon’s Mutual Information (see Xu and Raginsky (2017, Corol-
lary 2)). In particular, the lower bound involving the Eγ,ζ-Mutual Information represents
the largest among the ones we consider. Given the lack of a closed-form expression for
Eγ,ζ in this example, the quantity in Equation (71) was computed numerically (see Sec-
tion D.2.4). Moreover, in order to verify whether the behaviour (and ordering) of the lower
bounds in Figure 1a was determined by the specific choices of the parameters p, γ, ζ and
α, in Figure 1b the lower bounds on the risk have also been numerically optimised over
the respective parameters p, γ, ζ, α. As Figure 1b shows, the lower bound provided by Eγ,ζ
remains the best. Notice that the lower bound involving Mutual Information has no param-
eter to optimise over (other than ρ). Maximal Leakage does not provide the best bound,
but it possesses the interesting characteristic of depending on PW only through the support,
thus leading to potential applicability in a variety of settings in which PW is not accessible.
In contrast, Mutual Information, the Hellinger divergence and the Eγ,ζ-divergence all re-
quire to know PW . The lower bounds on the risk in this Example can thus be summarised
as follows:
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(a) The picture shows the behaviour of Equa-
tion (60), Equation (64) with α = 2, Equa-
tion (69), Equation (71) with γ = 3 and ζ = 1.5
and (Xu and Raginsky, 2017, Equation (19))
as a function of n. The values of E3,1.5(W,X

n)
for each n are computed numerically. A solid
line means that the corresponding lower bound
is the largest.
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(b) Comparison between the largest lower
bounds one can retrieve for different information
measures in Example 2: that is between Equa-
tion (64), Equation (65), Equation (70) and
(Xu and Raginsky, 2017, Equation (19)). The
quantities are analytically maximized over ρ
and numerically optimized over, respectively,
α > 1, p > 1, ζ > 0, and γ ≥ 0. A solid line
means that the corresponding lower bound is
the largest.

Figure 1: Comparison of various bounds for Example 2 with and without (numerical)
optimisation of parameters.

Corollary 20. In the setting described in Example 2 one has the following lower bound on
the Bayesian risk:

RB ≥ max

{
max

ζ>0,γ≥0

{
(ζ − Eγ,ζ(W,X

n))2

8γζ

}
,

max
α>1

{(
(2α− 1)

2α
exp

(
α− 1

α
Iα(W,X

n)

))− α
α−1 (α− 1)

(2α− 1)

}}
.

(72)

5.2 Noisy Bernoulli Bias

Assume, like in Section 5.1, that W is uniform on the [0, 1] interval, Xi ∼ Ber(W ). In
line with the discussion above, suppose that one observes noisy copies of Xi’s denoted
with Zi’s, where Zi is the outcome of Xi after being passed through a Binary Symmetric
Channel with parameter λ (K=BSC(λ)). The purpose is to estimate W through a function
of Z1, . . . , Zn i.e., Ŵ = ψ(Zn). One thus has the following Markov Chain W −Xn − Zn −
Ŵ . In order to lower bound the Bayesian risk in this setting, one can use Corollary 18.
In particular, given the additional injection of noise, it is to be expected that one has a
stronger impossibility result with respect to the non-noisy version. This is reflected in the
computations below. Let us restrict ourselves to φ-divergences as one can then leverage the
results in the literature on SDPI constants for the channel considered here. In particular, if
one considers Hellinger p-divergences then the following can be said about their associated
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Figure 2: Comparison of the lower bounds in Equation (69) and Equation (78) for the noisy
Bernoulli bias setting described in Section 5.2 with λ = 0.25. A solid line means that the
corresponding lower bound is the largest.

SDPI-coefficients ηp (Raginsky, 2016, Corollary 3.1), (Cohen et al., 1993):

ηp(K) = (1− 2λ)2 if 1 ≤ p ≤ 2 (73)

ηp(K) ≤ |1− 2λ| if p > 2. (74)

Moreover, if p ≤ 2 then one can leverage tensorisation properties of SDPI-coefficients
(see Raginsky (2016, Section 3.5)) and the following can be said

ηp(PXn ,K⊗n) = ηp(PX ,K) ≤ ηp(K) = (1− 2λ)2 if 1 ≤ p ≤ 2 (75)

In this setting, one has that the Hellinger divergence Hp(W,X
n) is given in Equation (66).

With p = 2 and without making any assumption on PŴ |Zn , one can leverage Corollary 18
and retrieve the following closed-form expression for the risk in this setting:

Rnoisy
B ≥ sup

ρ>0
ρ
(
1−

√
2ρ((1− 2λ)2χ2(W,Xn) + 1)

)
(76)

=
2

27

1

(1− 2λ)2χ2(W,Xn) + 1
(77)

≥ 2

27

1

(1− 2λ)2 16
√
πn

21 + 1
. (78)

Clearly, the denominator in Equation (78) is smaller than the one in Equation (69) thus
yielding a larger lower bound on the risk, this is depicted in Figure 2 for the case λ = 0.25.

5.3 Gaussian prior with Gaussian noise (and absolute error)

Another classical and interesting setting is given by the following example:

Example 3. Assume that W ∼ N(0, σ2W ) and that for i ∈ [n], Xi = W + Zi where
Zi ∼ N(0, σ2). Assume also that the loss is s.t. ℓ(w, ŵ) = |w − ŵ|.

21



Esposito, Vandenbroucque, Gastpar

Using the sample mean estimator one has that:

RB ≤

√
σ2W

1 + nσ2W /σ
2
. (79)

Moreover, given that ℓ(w, ŵ) = |w − ŵ| it is also possible to show that:

LW (ρ) ≤
(
sup
w∈R

PW (w)

)(∫ ρ

−ρ
1 du

)
≤ ρ

√
2

σ2Wπ
. (80)

In this setting, L (W→Xn) is infinite. However, Iα(W,X
n) is finite for every α < +∞. One

can thus provide a lower bound on the risk, resorting to Iα via Equation (25). Given that
the empirical mean is a sufficient statistic for W in this case, one has that (Verdú, 2015,
Example 5):

Iα(W,X
n) = Iα

(
W,

1

n

n∑
i=1

Xi

)
=

1

2
log

(
1 + αn

σ2W
σ2

)
. (81)

These considerations imply that :

RB ≥ sup
α>1

sup
ρ>0

ρ

1− exp

(
α− 1

α
Iα(W,X

n)

)(
ρ

√
2

σ2Wπ

)α−1
α

 (82)

= sup
α>1

sup
ρ>0

ρ

1−

(
ρ

√(
1 + αn

σ2W
σ2

)
2

σ2Wπ

)α−1
α

 (83)

= sup
α>1

1

(β + 1)

(
β

β + 1

)β (√(
1 + αn

σ2W
σ2

)
2

σ2Wπ

)− 1
β

, (84)

remembering that β = α
α−1 .

Stepping away from Sibson’s α-Mutual Information one can look at Hellinger p-divergences
and Eγ,ζ once again. In particular, one has that for p > 1 (details in Section D.3.1):

Hp(W,X) =


(
1 +

σ2
W
σ2

)p
1 + (2− p)p

σ2
W
σ2


1
2

. (85)
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Thus, the family of bounds provided by Corollary 11 can be expressed as follows

R ≥ sup
p>1

sup
ρ>0

ρ

1−

 2ρ√
2πσ2W


p−1
p

H
1
p
p (W,X

n)

 (86)

= sup
p>1

sup
ρ>0

ρ

1−

 2ρ√
2πσ2W


p−1
p


(
1 +

σ2
W
σ2

)p
1 + (2− p)p

σ2
W
σ2


1
2p

 (87)

= sup
p>1

1

q + 1

(
q

q + 1

)q
 2√

2πσ2W


p−1
p


(
1 +

σ2
W
σ2

)p
1 + (2− p)p

σ2
W
σ2


1
2p


− 1

q

, (88)

where q represents the Hölder’s conjugate with respect to p, i.e., q = p
p−1 .

In particular, setting p = 3/2 one obtains:

H3/2(W,X) =

√√√√√(1 + σ2
W
σ2

) 3
2

1 +
3σ2

W
4σ2

, (89)

leading us to a lower bound on the Bayesian risk given by:

RB ≥ 81
√
2π

2048

√√√√ σ2W

1 + n
σ2
W
σ2

. (90)

Similarly to the previous example, one has that Equation (90) matches the upper-bound
up to a constant factor and provides a strengthening of the bounds obtained in (Xu and
Raginsky, 2017, Corollary 1). Repeating the analysis with the Eγ,ζ-divergence, one obtains
the following:

RB ≥ sup
ρ>0

ρ

1−

(
Eγ,ζ(W,X

n) + 2ργ√
2σ2

W π

)
ζ

 (91)

=

√
2σ2Wπ (ζ − Eγ,ζ(W,X

n))2

8γζ
. (92)

Like in Example 2, one can numerically evaluate Equation (92) and compare it with Equa-
tion (84), Equation (90) and Xu and Raginsky (2017, Equation (16)). Figure 3a and Fig-
ure 3b show the resulting lower bounds as a function of the number of samples n. One
can observe similar behaviors when comparing with the results from the previous example:
the bounds retrieved through the Hp- and Eγ,ζ-divergences are both able to improve on
the lower bound relying on Shannon’s Mutual Information. Once again, Eγ,ζ , (cf. Equa-
tion (92)) provides the largest lower bound, while Sibson’s α-Mutual Information is still able
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(a) Setting: Example 3 with σ2
W = 1 and σ2 =

2. The picture shows the behaviour of Equa-
tion (84) with α = 2, Equation (90), Equa-
tion (92) with γ = 2 and ζ = 1.5 and (Xu and
Raginsky, 2017, Equation (16)) as a function of
n. The values of E2,1.5(W,X

n) for each n are
computed numerically. A solid line means that
the corresponding lower bound is the largest.
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(b) Comparison between the largest lower
bounds one can retrieve for different information
measures in Example 3: that is between, Equa-
tion (84), Equation (88), Equation (92) with
ζ = 1.5, and (Xu and Raginsky, 2017, Equa-
tion (16)). The quantities are numerically op-
timised over, respectively, γ ≥ 1, p > 1 and
α > 1. The numerical optimisation over the pa-
rameter ζ is not carried out for computational
reasons. A solid line means that the correspond-
ing lower bound is the largest.

Figure 3: Comparison of various bounds for Example 3 with and without (numerical)
optimisation of parameters.

to provide a stronger result than Equation (88). Similarly to before, one can also numeri-
cally optimise the bounds with respect to the corresponding parameters α > 1, p > 1, ζ > 0
and γ ≥ 0 and the resulting comparison is depicted in Figure 3b.

5.4 “Hide-and-seek” problem

To conclude, let us consider next a d-dimensional distributed estimation problem, known
as the “Hide-and-seek” problem. It was first presented in Shamir (2014) and also studied
in Xu and Raginsky (2017).

Example 4. Consider a family of distributions P = {Pw : w = 1, . . . , d} on {0, 1}d.
Under Pw, the w-th coordinate of the random vector X ∈ {0, 1}d has bias 1

2 + θ while the
other coordinates of X are independently drawn from Ber(1/2). For i = 1, . . . ,m, the i-th
processor observes n samples Xn

i drawn independently from PW , and sends a b-bits message
Yi = φ(Xn

i , Y
i−1) to the estimator. The estimator computes Ŵ = ψ(Y m) from the received

messages. The risk in this example is defined as:

RM = inf
φm,ψ

max
w∈[d]

P[W ̸= Ŵ ]. (93)

A lower bound for RM derived in (Shamir, 2014) is as follows:

RM ≥ 1−

(
3

d
+ 5

√
min

{
10θnmb

d
,mnθ2

})
(94)
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and only holds for 0 ≤ θ ≤ 1/(4n). Additionally, in (Xu and Raginsky, 2017) a quite
different lower bound has been proposed:

RM ≥ 1− 1

log d
min

{[
1−

(
1− 2θ

1 + 2θ

)n]
mb+ 1,min(4mnθ2, log d) + 1

}
, (95)

and it holds for 0 ≤ θ ≤ 1/2. Let us now use a näıve approach with Maximal Leakage. We
have that W −Xn×m − Y m − Ŵ forms a Markov Chain. Thus,

L
(
W→Ŵ

)
≤ min

{
L
(
W→Xn×m) ,L (W→Y m)

}
.

We also have that L (W→Y m) ≤ mb and that:

L(W → Xn×m) ≤ nmL(W → X) (96)

= nm log
∑
x

max
w

PX|W=w(x) (97)

≤ nm log
∑
x

(
1

2

)d−1(1

2
+ θ

)
(98)

= nm log(2d(2−d + 2−d+1θ)) (99)

= nm log(1 + 2θ), (100)

Hence:
L
(
W→Ŵ

)
≤ min(nm log(1 + 2θ), log d,mb). (101)

Using Equation (101) in Equation (26) we get the following:

P({Ŵ ̸=W}) ≥ 1− exp(min{mb, log d, nm log(1 + 2θ)})
d

. (102)

Notice that Equation (102) is such that the right-hand side is always greater or equal
to 0. Indeed, assuming d to be fixed and letting n and m grow, we have that the minimum
is achieved by log d, and in that case, we have P({Ŵ ̸= W}) ≥ 0. Here, the difference
in behaviour of Equation (26) with respect to (Xu and Raginsky, 2017, Theorem 1) is
pivotal. Let us now compare the results in a common setting. The setting chosen in (Xu
and Raginsky, 2017), where d = 512, b = 3d,m = 10 and θ = 1/(4n) does not represent
a choice of parameters where Equation (102) is interesting. Indeed, for large enough n,
nm log(1 + 2θ) = nm log(1 + 1/2n) ≈ m/2 and, as a consequence, the expression will
converge to a constant determined by the minimum between mb, log d,m/2. Furthermore,
both Equation (94) and Equation (95) have a term that depends on mnθ2 which, for θ =
1/(4n), will decay with n. Thus, choosing θ ∼ n−q with q > 1 represents an interesting
setting for the bound in Equation (102), as the plots in Figure 4a and Figure 4b show.

Thanks to the different behaviour of Equation (102) (reaching 1 exponentially fast) we
can see a much sharper jump towards 1 with respect to Equation (95), which instead reaches
a plateau strictly below 1, and with respect to Equation (94) that reaches 1 more slowly.
The growth towards 1 of Equation (102) becomes even sharper with faster q and converges
towards a specific behaviour at q ≈ 2. Increasing q any further does not alter the behaviour
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0 500 1000 1500 2000
Number of samples n

0.85

0.90

0.95

1.00

Lo
we

r B
ou

nd
 o

n 
R M

(d) θ = 0.0001

Figure 4: Setting: Example 4 with various values of θ. Behaviour of Equation (102) and its
comparison with bounds in Equation (95) and Equation (94). A solid line means that the
corresponding lower bound is the largest.
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of the bound meaningfully. As for the behaviour of the bound for fixed θ, if θ = 0.01.
then Equation (102) provides a larger lower bound only for n < 25. If the parameter is
brought down to θ = 0.0001 then Equation (102) is larger than Equation (95) for all n
but only larger than Equation (94) for n < 1850. Regardless of the considerations related
to the specific settings, it is interesting how a very simple application of Equation (26)
can provide a tighter lower bound. Moreover, in Xu and Raginsky (2017), to compute
I(W ;X) an assumption on the distribution of W was necessary, and the choice fell on W
uniform on [d]. In contrast, L (W→X) does not depend on the specific distribution over
W , rendering the bound more general. Other divergences could be explored in this setting
as well. However, one, in general, does not have a chain rule for any other φ-divergence
(or Sibson’s α-Mutual Information with α < +∞) which is a fundamental step in the proof
for Maximal Leakage (see Equation (96)). Moreover, some assumption (or maximisation
over) PW would be necessary. In general, some additional machinery would be required to
employ them in this setting. These approaches will not be explored in this document.

6 Conclusions

Inf. Measure Special case Lower Bound on RB for ρ > 0

Iφ(W,X)

φ non-decreasing ρ
(
1− LW (ρ) · φ−1

(
Iφ(W,X)+(1−LW (ρ))·φ⋆(0)

LW (ρ)

))
φ non-increasing ρ (1− LW (ρ)) · φ−1

(
Iφ(W,X)+LW (ρ)·φ⋆(0)

1−LW (ρ)

)
φ(x) = xp−1

p−1 ρ
(
1− LW (ρ)

p−1
p · ((p− 1)Hp(W,X) + 1)

1
p

)
φ(x) = (ζx− γ)+ − (ζ − γ)+ ρ

(
1− Eγ,ζ(W,X)+γLW (ρ)+(ζ−γ)+

ζ

)
Iα(W,X)

α > 0 ρ
(
1− exp

(
α−1
α (Iα(W,X) + log(LW (ρ)))

))
α→ ∞ ρ (1− exp (L (W→X) + log(LW (ρ))))

Table 1: Summary of the bounds derived in Section 4 and their special cases.

We have introduced a methodological framework to provide lower bounds on the Bayesian
risk leveraging virtually any information measure. The lower bound encapsulates the intu-
ition that if the observations Xn do not share enough “information” with the parameterW ,
then estimation ofW is impossible regardless of the number of observations n. However, “in-
formation” can be measured in a variety of ways: via Sibson’s Mutual Information, Rényi’s
Divergences, or φ-Mutual Information. Different choices yield different lower bounds. One
can thus select the one that provides the best result in a specific setting of interest. The
difficulty in computing the risk is relayed to the computation of an information measure
which depends explicitly on the observation channel. The lower bounds are characterised
by being estimator-independent and by the fact that one can explicitly take into account
the information loss that a specific privacy-enforcing kernel can induce (see Section 4.1 and
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Section 5.2). Given a function φ, all the bounds are characterised by a simple expression
that involves the computation of two objects:

• the functional LW (·, ·) (see Equation (3));

• and an information measure I{·}(W,X
n).

Although no clear algorithm to create the largest lower bound for an estimation problem
via information measures can be provided, we can highlight some observations. Consider
the parametrised families of Sibson’s, Rényi’s, and the Hellinger α-Information, the shape
of the bound is the same and the only difference lies in the information measure. Thus, the
smallest information measure in the group will yield the largest lower bound and one can
give a clear ordering (see Remark 12). For a given α:

1. Iα will provide the best lower bound between the three, however, it may be harder to
calculate to provide a closed-form expression;

2. the Hellinger p-divergence (with p = α) will provide worse lower bounds. It can,
however, lead to closed-form expressions for the bound (that match the upper bound
up to a constant, see Section 5.1).

For a given family of information measures (e.g., Sibson’s α-Mutual Information), compar-
isons between different choices of the free parameters (e.g., α) are also not straightforward:

1. choosing a larger α implies that the information measure will be larger;

2. however, the multiplicative term L
α−1
α

W will be smaller;

3. taking α→ ∞ for Iα (Maximal Leakage L (W→Xn)) is interesting despite item 1.:

(a) the information measure is “easier” to compute as it depends only on the obser-
vation channel;

(b) it leads to results that hold for every W with the same support;

(c) it satisfies a chain rule which allows us to employ in settings like the one described
in Section 5.4.

Bounds induced by information measures not in the Iα family are also useful for other
reasons. For instance, the SDPI constant of Iα has not been characterised yet while there
exist universal upper and lower bounds on the SDPI constant of every divergence Dφ. This
allows us to tighten the bounds, as well as to quantify the information loss that privacy-
enforcing mechanisms induce and how much harder the estimation problem becomes as a
consequence of this (see Sections 4.1 and 5.2). Table 1 summarises the bounds provided in
this work.
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Appendices

A Variational Representations of Divergences

A re-interpretation of the comments stated in Section 2 and tailored to divergences leads us
to the main technical tools that will be used through the document: “variational representa-
tions” and functional inequalities. The main starting point will be looking at divergences as
functionals acting on the first measure i.e., Dφ(·∥µ) = ψµ(·). Once this is established, most
variational representations are instances of Legendre-Fenchel duality as stated in Equa-
tion (4). The most well-known is certainly the Donsker-Varadhan representation of the
Kullback-Leibler divergence, which states the following (Varadhan, 1984):

D(ν∥µ) = sup
f∈B(X )

⟨ν, f⟩ − log (µ(exp(f))) , (103)

where B(X ) denotes the space of bounded and measurable real-valued functions defined on
X . Equation (103) characterises the Kullback-Leibler divergence as the Legendre-Fenchel
dual of the functional log(µ(exp(f))) = ϑµ(f) i.e., D(·∥µ) = ϑ⋆µ(·). Similar variational rep-
resentation can be found for large families of divergences, like Rényi’s divergences (Anan-
tharam, 2018; Birrell et al., 2021) and φ-divergences (Broniatowski and Keziou, 2006). We
will now lay the groundwork to state the variational representation for φ-divergences as
it represents a meaningful tool for the scope of this work. In particular, let F (X ) be an
arbitrary family of real-valued functions defined on X and denote with M1(X ) the space of
probability measures over X . Denote with ⟨F (X )∪B(X )⟩ the linear span of F (X )∪B(X ).
Moreover, denoting with |ν| denotes the total variation of the measure ν, consider the
following sets:

MF
1 (X ) =

{
ν ∈ M1(X ) :

∫
|f | dν <∞ for f ∈ F (X )

}
,

and

MF (X ) =

{
ν ∈ M(X ) :

∫
|f |d|ν| <∞ for f ∈ F (X )

}
.

If F (X ) = B(X ) then MF
1 (X ) = M1(X ) and MF (X ) = M(X ). Denote with τF the

weakest topology on MF (X ) such that all mappings ν → ν(f) are continuous when f ∈
⟨F (X )∪B(X )⟩ and with τM the weakest topology on ⟨F (X )∪B(X )⟩ such that all mappings
f → ν(f) are continuous when ν ∈ MF (X ). One can then show the following result

Proposition 21 ((Broniatowski and Keziou, 2006, Proposition 2.1)). The space of measures
MF (X ) equipped with the τF -topology and the space of functions ⟨F (X ) ∪ B(X )⟩ equipped
with the τM are locally convex topological vector spaces and are the topological dual of each
other.

Dφ(·∥µ) = ψµ(·) is thus a convex and lower semi-continuous mapping with respect to
τF (Broniatowski and Keziou, 2006, Proposition 2.2) and it is possible to characterise its
variational representation, bridging us between the two spaces MF (X ) and ⟨F (X )∪B(X )⟩.
For the additional technical condition required on φ (i.e, guaranteeing the uniqueness of
the dual optimal solution the reader is referred to Broniatowski and Keziou (2006)).
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Theorem 22 (Broniatowski and Keziou 2006, and Theorem 4.3).
Let φ be a strictly convex functional and let µ ∈ M(X ). One has that for every ν ∈ MF (X ):

Dφ(ν∥µ) = sup
f∈⟨F (X )∪B(X )⟩

ν(f)− µ(φ⋆(f)), (104)

where φ⋆ denotes the Legendre-Fenchel dual of φ. Moreover, one has that for a given
f ∈ ⟨F (X ) ∪B(X )⟩:

µ(φ⋆(f)) = sup
ν∈MF (X )

ν(f)−Dφ(ν∥µ). (105)

Through Equation (104), given a measure µ, one can connect the expected value of
any function f ∈ ⟨F (X ) ∪ B(X )⟩ under any measure ν ≪ µ (i.e., ν(f)) to the divergence
Dφ(ν∥µ). The behavior of the third actor in Equation (104), the dual of Dφ(·∥µ), is crucial
in order to obtain bounds. For instance, when f is the indicator function of an event,
one can explicitly compute the dual (and then retrieve a family of Fano-like inequalities
involving arbitrary divergences. For more details see Esposito et al. (2021a) and Esposito
(2022, Chapter 3)). When f is not an indicator function, one cannot typically compute
the dual explicitly and has to upper-bound it leveraging properties of µ and f . In this
work, to provide such an upper bound on the dual, we will make use of Markov’s inequality.
This takes us back to indicator functions for which we can completely characterise the
dual. For technical details see Appendix C.2. This pattern is fundamental whenever one
is trying to relate (via upper or lower bounds) the expected value of a function to some
divergence/entropy (see Esposito (2022, Chapter 2)).

B Comparison with similar approaches

An approach closely connected to the one proposed in here is in Chen et al. (2016). The
authors therein focused on the notion of φ-informativity (Csiszár, 1972) and leveraged the
Data-Processing inequality of the information measure. In particular, φ-informativities can
potentially lead to tighter results than the φ-Mutual Information considered in this work.
Similarly to Sibson’s α-Mutual Information, they are defined as follows:

Îφ(X,Y ) = inf
QY

Dφ(PXY ∥PXQY ) ≤ Iφ(X,Y ). (106)

Given that the minimum-achieving distribution,Q⋆
Y , is guaranteed to exist in Equation (106)

(see (Csiszár, 1972)), one can see that Îφ(X,Y ) = Dφ(PXY ∥PXQ⋆
Y ). Consequently, the

same steps followed in the proof of Theorem 9 can be undertaken in order to reach a similar
result involving Îφ and PXQ⋆

Y rather than Iφ and PXPY . However, except in some spe-
cific settings, the minimum-achieving distribution in Equation (106) does not necessarily
admit a closed-form expression (Csiszár, 1972). As a consequence, the corresponding φ-
Informativity does not admit a closed-form expression. Moreover, another step the authors
leveraged to achieve Chen et al. (2016, Theorem 3.2), is the inversion of the resulting binary
divergence, leading to a bound which can rarely be expressed in closed form and can only
be computed numerically. While a direct comparison between the two approaches would
be hard, some similarities are present and hint at the fact that Chen et al. (2016, Theorem
3.2) is tighter than Theorem 9. Indeed, an alternative proof for Theorem 9 also stems from
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leveraging the DPI of Iφ (see Esposito et al. (2021a, Theorem 3)). However, additional
steps are introduced in order to get a closed-form lower bound. Our analysis is designed
to retrieve a large family of results which are amenable to analysis and interpretable. This
allows us to retrieve lower bounds in closed-form expressions that can be seen to match the
upper bounds, up to a constant, in a variety of settings. From a more conceptual stand-
point, one could see Esposito et al. (2021a, Theorem 3) (and, consequently, Theorem 9) as
a generalisation of Hölder’s2 inequality to arbitrary convex functionals. This generalisation,
which in turn can be seen as a generalisation of Fano’s inequality for φ-Mutual Information,
allows us to also encompass divergences from the Rényi’s family and Sibson’s α-Mutual In-
formation, which are not φ-divergences and are thus excluded from Chen et al. (2016). To
conclude, let us highlight that our approach, which leverages duality, allows us to provide a
single analysis for every type of loss and does not require a separate treatise for 0− 1 losses
and more general losses. Consequently, the two approaches for general losses are different
and hard to compare.

C Proof of Section 4

C.1 Proof of Theorem 8

Proof. We have that

PWŴ (ℓ(W, Ŵ ) < ρ) ≤

(
sup
ŵ∈Ŵ

PW (ℓ(W, ŵ) < ρ)

)α−1
α

exp

(
α− 1

α
Iα(W, Ŵ )

)
(107)

= exp

(
α− 1

α

(
Iα(W, Ŵ ) + log(LW (ρ))

))
(108)

≤ exp

(
α− 1

α
(Iα(W,X) + log(LW (ρ)))

)
. (109)

Equation (107) follows from Corollary 6, Equation (109) follows from the Data-Processing
Inequality for Iα and the Markov Chain W −X−Y −Ŵ . The statement follows from lower
bounding Equation (24) using Equation (109).

C.2 Proof of Theorem 9

Proof. From the variational representation for φ-divergences (see Equation (104)), given
PWŴ , for every function f in the respective space (defined in Theorem 22) one has that:

Iφ(W, Ŵ ) = Dφ(PWŴ ∥PWPŴ ) ≥ PWŴ (f)− PWPŴ (φ⋆(f)). (110)

Equation (110) allows us to relate the expected value of any function f : W × Ŵ under
the joint with Iφ(W, Ŵ ) and the corresponding Legendre-Fenchel dual. Our purpose is to
provide a lower bound on the expected loss ℓ. Hence, we will select f = λ̃(ρ − ℓ) with
ρ, λ̃ > 0. Moreover, given the non-negativity of ℓ one can also see that ℓ ≥ ρ1{ℓ≥ρ} (i.e.,

2. Selecting φ(x) = xp specialises Theorem 9 to Corollary 11 which can also be proven as an application of
Hölder’s inequality followed by Markov’s inequality, cf. (Esposito et al., 2021a, Corollary 6).
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Markov’s Inequality in its functional form). Thus, plugging our choice of f in Equation (110)
the following chain of inequalities follows:

λ̃PWŴ (ℓ) ≥ λ̃ρ− Iφ(W, Ŵ )− PWPŴ (φ⋆(λ̃ρ− λ̃ℓ)) (111)

≥ λ̃ρ− Iφ(W, Ŵ )− PWPŴ (φ⋆(λ̃ρ(1− 1{ℓ≥ρ}))) (112)

= λ̃ρ− Iφ(W, Ŵ )− PWPŴ (φ⋆(λ̃ρ1{ℓ<ρ})) (113)

= λ̃ρ− Iφ(W, Ŵ )− PWPŴ ({ℓ < ρ}) · φ⋆(λ̃ρ)− PWPŴ ({ℓ ≥ ρ}) · φ⋆(0), (114)

where Equation (112) follows by the monotonicity of φ⋆ which can be seen as stemming
from the strict convexity and the monotonicity of φ. Indeed, if φ is strictly convex then
φ⋆′(t) = φ′−1(t) for every t ∈ Im(φ′) (Rockafellar, 1970, Theorem 26.5). Since φ is monotone
non-decreasing on the positive axis, one has that φ′(t) ≥ 0 on [0,+∞]. Accordingly, the
inverse of φ′ will also be non-negative on [0,+∞], which implies the non-negativity of φ⋆′

and, therefore, the monotonicity of φ⋆. A similar argument shows the monotonicity of φ⋆

when φ is monotone non-increasing. Then, dividing both sides by λ̃ and selecting λ̃ = 1
ρλ

with λ > 0 one recovers the following:

PWŴ (ℓ) ≥ sup
λ>0

ρ

(
1−

Iφ(W, Ŵ ) + PWPŴ ({ℓ ≥ ρ}) · φ⋆(0) + PWPŴ ({ℓ < ρ}) · φ⋆(λ)
λ

)
(115)

= ρ

(
1− inf

λ>0

Iφ(W, Ŵ ) + PWPŴ ({ℓ ≥ ρ}) · φ⋆(0) + PWPŴ ({ℓ < ρ}) · φ⋆(λ)
λ

)
(116)

= ρ

1− PWPŴ ({ℓ < ρ}) inf
λ>0

Iφ(W,Ŵ )+PWPŴ ({ℓ≥ρ})·φ⋆(0)

PWPŴ ({ℓ<ρ}) + φ⋆(λ)

λ

 (117)

= ρ

(
1− PWPŴ ({ℓ < ρ})φ−1

(
Iφ(W, Ŵ ) + PWPŴ ({ℓ ≥ ρ}) · φ⋆(0)

PWPŴ ({ℓ < ρ})

))
, (118)

where Equation (118) follows from the same argument as in (Esposito, 2022, Theorem 13).
Equation (112) is the step of the proof which is relevant to the discussion at the end
of Appendix A. In particular, the choice of f , along with the non-decreasability of φ allowed
us to leverage the functional form of Markov’s inequality and, consequently, to upper-bound
the dual of Dφ(·∥PWPŴ ). Upper-bounding the dual is crucial in order to achieve a bound
of the form of Equation (118). In order to prove the result for φ non-increasing one has to
select f = −λ̃ℓ leverage Markov’s inequality and select λ̃ = −1

ρλ with λ < 0. The result
then follows from the same argument as in Esposito (2022, Theorem 13) i.e., from selecting

λ = φ′(φ−1(c)) with c =
Iφ(W,Ŵ )+φ⋆(0)PWPŴ (E)

PWPŴ (Ec) and E = {ℓ < ρ}.
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C.3 Proof of Corollary 11

Proof. The statement follows from Theorem 9 with φp(x) = xp−1
p−1 for p ≥ 1. Hence, for

every estimator Ŵ = ϕ(Xn),

PWŴ (ℓ(W, Ŵ ) ≥ ρ) ≤ LW (Ŵ , ρ) · φ−1
p

(
Iφp(W, Ŵ ) + (1− LW (Ŵ , ρ)) · φ⋆p(0)

LW (Ŵ , ρ)

)
(119)

= LW (Ŵ , ρ)1−1/p((p− 1)Hp(W, Ŵ ) + 1)
1
p (120)

≤ LW (ρ)
p−1
p ((p− 1)Hp(W,X) + 1)

1
p , (121)

where Equation (121) follows from the fact that in this case the functional G (see Equa-
tion (31)) is increasing in LW (Ŵ , ρ) for a given value of Hp(W, Ŵ ) and increasing in
Hp(W, Ŵ ) for a given value of LW (Ŵ , ρ). Hence one can use both these inequalities:
LW (Ŵρ) ≤ LW (ρ) and Hp(W, Ŵ ) ≤ Hp(W,X). One thus retrieves that for every estima-
tor Ŵ

PWŴ (ℓ(W, Ŵ )) ≥ ρ
(
1− LW (ρ)

p−1
p ((p− 1)Hp(W,X) + 1)

1
p

)
. (122)

Since the right-hand side of Equation (122) is independent of Ŵ = ϕ(X) one can use it to
lower bound the risk R.

C.4 Proof of Corollary 14

Proof. Let φ(x) = (ζx − γ)+ − (ζ − γ)+ in Theorem 9, along with the fact that φ−1(y) =
y+(ζ−γ)++γ

ζ for y > 0 and φ⋆(0) = (ζ − γ)+ one has that for every estimator Ŵ = ϕ(Xn),

PWŴ (ℓ(W, Ŵ )) ≥ ρ

(
1−

Eγ,ζ(W, Ŵ ) + γLW (Ŵ , ρ) + (ζ − γ)+
ζ

)
(123)

≥ ρ

(
1−

Eγ,ζ(W,X) + γLW (ρ) + (ζ − γ)+
ζ

)
. (124)

Since Equation (124) is independent of Ŵ = ϕ(X) one can use it to lower bound the risk
R.

D Computations for Section 5

D.1 Maximisation over ρ

The bounds considered in the first three examples have the following form

sup
ρ>0

ρ(1− cρt − b), (125)

for some c, t, b ≥ 0. Letting h(ρ) := ρ(1− cρt − b), the optimal value ρ⋆ is found by setting
h′(ρ⋆) = 0, which yields

1− (t+ 1)cρt⋆ − b = 0 ⇐⇒ ρ⋆ =

(
1− b

(t+ 1)c

) 1
t

. (126)
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Since h′′(ρ⋆) = −t(t+ 1)cρt−1
⋆ ≤ 0, this ensures ρ⋆ is a maximum. Substituting ρ⋆ back in

Equation (125), we can express the lower bound as

sup
ρ>0

ρ(1− cρt − b) =
t

c
1
t

(
1− b

t+ 1

)1+ 1
t

. (127)

D.2 Section 5.1

D.2.1 Maximal Leakage

In this setting one has that

PXn|W=w(x
n) = wk(1− w)n−k

where k =
∑n

i=1 xi is the hamming weight of xn. As per assumption, PW (w) = 1 if
0 ≤ w ≤ 1 and, consequently, one has that

PW |Xn=xn(w) = (n+ 1)

(
n

k

)
(1− w)n−kwk.

One can thus compute Maximal Leakage in this setting:

L (W→Xn) = log
∑
xn

max
w

PXn|W=w(x
n) (128)

= log
n∑
k=0

(
n

k

)
max
w

wk(1− w)n−k (129)

= log
n∑
k=0

(
n

k

)(
k

n

)k (
1− k

n

)n−k
(130)

≤ log

(
2 +

n−1∑
k=1

√
n

2πk(n− k)

)
(131)

≤ log

(
2 +

√
πn

2

)
, (132)

where Equation (131) follows from Stirling’s approximation (see Feller (1968, Page 54)),
while the last bound follows from upper bounding the sum by an integral (and elementary
integration rules).
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D.2.2 Sibson’s α-Mutual Information

For Sibson’s α-Mutual Information with α > 1, one has that:

exp

(
α− 1

α
Iα(W,X

n))

)
= E

[
E

1
α

[(PXn|W

PXn

)α ∣∣∣∣Xn

]]
(133)

=
∑
xn

PXn(xn)

(∫ 1

0
PW (w)

(PW |Xn=xn(w)

PW (w)

)α
dw

) 1
α

(134)

=
∑
xn

PXn(xn)

(∫ 1

0

(
PW |Xn=xn(w)

)α
dw

) 1
α

(135)

=

n∑
k=0

(
n

k

)
1

(n+ 1)
(
n
k

) (∫ 1

0

(
(n+ 1)

(
n

k

)
wk(1− w)n−k

)α
dw

) 1
α

(136)

=
n∑
k=0

(
n

k

)(∫ 1

0

(
wk(1− w)n−k

)α
dw

) 1
α

(137)

=
n∑
k=0

(
n

k

)(
Γ(kα+ 1)Γ((n− k)α+ 1)

Γ(nα+ 2)

) 1
α

, (138)

where Equation (138) uses the identity relating the Beta function with the Gamma function
i.e.,

Beta(x, y) =

∫ 1

0
wx−1(1− w)y−1 dw =

Γ(x)Γ(y)

Γ(x+ y)
, (139)

so that

∫ 1

0
wkα(1− w)(n−k)α dw =

Γ(kα+ 1)Γ((n− k)α+ 1)

Γ(nα+ 2)
. (140)
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D.2.3 Hellinger p-Divergence

For the Hellinger p-divergence with p > 1, one has that:

((p− 1)Hp(W,X
n) + 1) =

∥∥∥∥ dPWXn

dPWPXn

∥∥∥∥p
Lp(PWPXn )

(141)

=
∑
xn

PXn(xn)

∫ 1

0
PW (w)

(PW |Xn=xn(w)

PW (w)

)p
dw (142)

=
∑
xn

PXn(xn)

∫ 1

0

(
PW |Xn=xn(w)

)p
dw (143)

=
n∑
k=0

(
n

k

)
1

(n+ 1)
(
n
k

) ∫ 1

0

(
(n+ 1)

(
n

k

)
wk(1− w)n−k

)p
dw

(144)

= (n+ 1)p−1
n∑
k=0

(
n

k

)p ∫ 1

0

(
wk(1− w)(n−k)

)p
dw (145)

= (n+ 1)p−1
n∑
k=0

(
n

k

)pΓ(kp+ 1)Γ((n− k)p+ 1)

Γ(np+ 2)
, (146)

where Equation (146) follows from Equation (140). For the special case p = 2, we get

χ2(W,Xn) + 1 = (n+ 1)
n∑
k=0

(
n

k

)2 (2k)!(2(n− k))!

(2n+ 1)!
(147)

=
n+ 1

(2n+ 1)

n∑
k=0

(n!)2(2k)!(2(n− k))!

(k!)2((n− k)!)2(2n)!
(148)

=
n+ 1

(2n+ 1)
(
2n
n

) n∑
k=0

(
2k

k

)(
2(n− k)

n− k

)
(149)

=
n+ 1

2n+ 1
· 4n(

2n
n

) , (150)

where in Equation (150) we use the result in (Graham et al., 1989, Eq. (5.39), p.187) stating

that
∑n

k=0

(
2k
k

)(2(n−k)
n−k

)
= 4n.
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D.2.4 Modified Hockey-Stick Divergence Eγ,ζ

For the Eγ,ζ divergence with ζ > 0, γ ≥ 0, one has that:

Eγ,ζ(W,X
n) =

∑
xn

PXn(xn)

∫ 1

0
PW (w)Eγ,ζ(PWXn∥PWPXn) dw (151)

=
∑
xn

PXn(xn)

∫ 1

0
PW (w)

[(
ζ
PW |Xn=xn(w)

PW (w)
− γ

)
+

− (ζ − γ)+

]
dw (152)

=
∑
xn

PXn(xn)

∫ 1

0

[(
ζPW |Xn=xn(w)− γ

)
+
− (ζ − γ)+

]
dw (153)

=
1

n+ 1

n∑
k=0

∫ 1

0

[(
ζ(n+ 1)

(
n

k

)
wk(1− w)n−k − γ

)
+

− (ζ − γ)+

]
dw (154)

=
1

n+ 1

n∑
k=0

∫ 1

0

[(
ζ(n+ 1)

(
n

k

)
wk(1− w)n−k − γ

)
+

]
dw − (ζ − γ)+. (155)

Since there is no closed-form formula for the integral, we compute the integration numeri-
cally in order to evaluate Eγ,ζ(W,X

n) in our experiments.

D.3 Section 5.3

D.3.1 Hellinger p-Divergence

For the Hellinger p-divergence with p > 1, one has that:

((p− 1)Hp(W,X
n) + 1) =

∥∥∥∥ dPWXn

dPWPXn

∥∥∥∥p
Lp(PWPXn )

(156)

=

∫
R

∫
R
PW (w)PX(x)

(PX|W=w(x)

PX(x)

)p
dw dx (157)

=

∫
R
PX(x)1−p

∫
R
PW (w)PX|W=w(x)

p dw dx. (158)

Focusing on the innermost integral (which we denote as Ip(x)), one has

Ip(x) :=

∫
R
PW (w)PX|W=w(x)

p dw (159)

=

(
(2πσ2)−p

2πσ2W

) 1
2
∫
R
e
− w2

2σ2
W

− p(w−x)2

2σ2
dw (160)

=

(
(2πσ2)−p

2πσ2W

) 1
2
∫
R
e
− 1

2σ2

(
px2−2pxw+

(
σ2

σ2
W

+p

)
w2

)
dw (161)

=

(
(2πσ2)−p

2πσ2W

) 1
2

e
−p·x2

2σ2

∫
R
e
− 1

2σ2

(
−2pxw+

(
σ2

σ2
W

+p

)
w2

)
dw. (162)
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Adding and subtracting cx2 with c = −p
(
1 + p

σ2
W
σ2

)−1
in the exponent inside the integral

in Equation (162) leads to

Ip(x) =

(
(2πσ2)−p

2πσ2W

) 1
2

e
cx2

2σ2

∫
R
e

−
σ2

σ2
W

+p

2σ2

w−√
p+c

σ2

σ2
W

+p
x


2

dw (163)

=

(
(2πσ2)−p

2πσ2W

) 1
2

exp

− px2

2σ2
(
1 + p

σ2
W
σ2

)
2π

σ2

σ2

σ2
W

+ p

 1
2

(164)

=
(
2πσ2

)− p
2

(
1 + p

σ2W
σ2

)− 1
2

exp

− px2

2σ2
(
1 + p

σ2
W
σ2

)
 . (165)

Finally, plugging the value of Ip back in (158), we retrieve that:

(p− 1)Hp(W,X) + 1 =

∫
R
PX(x)1−p

1

(2πσ2)
p
2

e
− px2

2(σ2+pσ2
W )
(
1 + p

σ2W
σ2

)− 1
2

dx (166)

=

(
1 +

σ2
W
σ2

) d(p−1)
2

(2πσ2)
1
2

(
1 + p

σ2
W
σ2

) 1
2

∫
R
e

(p−1)x2

2(σ2+σ2
W )

− px2

2(σ2+pσ2
W ) dx (167)

=

(
1 +

σ2
W
σ2

) (p−1)
2

(2πσ2)
1
2

(
1 + p

σ2
W
σ2

) 1
2

∫
R
e
−x2

2

(
1−p

σ2+σ2
W

+ p

σ2+pσ2
W

)
dx (168)

=

(
1 +

σ2
W
σ2

) (p−1)
2

(2πσ2)
1
2

(
1 + p

σ2
W
σ2

) 1
2

 2π
1−p

σ2+σ2
W

+ p
σ2+pσ2

W

 1
2

(169)

=

(
1 +

σ2
W
σ2

) (p−1)
2

(
σ2 + pσ2W

) 1
2

 1
1−p

σ2+σ2
W

+ p
σ2+pσ2

W

 1
2

(170)

=


(
1 +

σ2
W
σ2

)p−1

(1−p)(σ2+pσ2
W )

σ2+σ2
W

+ p


1
2

(171)

=


(
1 +

σ2
W
σ2

)p
1 + (2− p)p

σ2
W
σ2


1
2

. (172)
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E Other approaches

E.1 Conditioning

Following the approach undertaken in Xu and Raginsky (2017), it is also possible to propose
a conditional version of the theorems proposed above. For this to happen one needs a
definition of conditional information measures. For φ–divergences the choice would typically
fall on objects of the following form

Iφ(X,Y |Z) = Dφ(PXY Z∥PZPX|ZPY |Z). (173)

As for Sibson’s Iα, the matter becomes slightly more complicated since one has that
Iα(X,Y ) = minQY

Dα(PXY ∥PXQY ). In the case of three random variables, it is unclear
which factorisation of the joint and which minimisation to consider. Indeed, it has been
shown in Esposito et al. (2021b) that several definitions of conditional Iα can be proposed,
depending on the operational meaning and corresponding probability bound one needs. In
this subsection, we will consider the following conditional version of Iα:

IY |Z
α (X,Y |Z) = min

QY |Z
Dα(PXY Z∥PX|ZQY |ZPZ). (174)

The choice of this specific definition is necessary to provide a conditional version of Theo-
rem 8 and Equation (26) similar to (Xu and Raginsky, 2017, Theorem 1, Eq. (5)). Lever-
aging said definition and the fact that:

IY |Z
α (X,Y |Z) α→∞−−−→ L (X→Y |Z)

one can thus give a conditional version of Theorem 8 and Equation (26), introducing the fol-
lowing notion of conditional small-ball probability, LW |U (U, ρ) = supŵ∈Ŵ PW |U (ℓ(W, ŵ) <
ρ):

Theorem 23. Consider the Bayesian framework described in Section 1.3,

RB ≥ sup
PU|W,X

sup
ρ>0,α≥1

ρ

(
1− exp

(
α− 1

α
(Iα(W,X|U) + log(PU (LW |U (U, ρ)))

))
, (175)

Moreover, taking the limit of α→ ∞ one has:

RB ≥ sup
PU|W,X

sup
ρ>0

ρ
(
1− exp

(
L (W→X|U) + log(PU (LW |U (U, ρ)))

))
. (176)

The proof will follow at the end of this section. The main idea behind using condi-
tional Mutual Information, as presented in Xu and Raginsky (2017), is that by choosing
an appropriate U it is possible to control the growth of I(W ;X|U) and obtain tighter
bounds in some cases. In particular, consider the sequence of n samples Xn. If the family
P = {PX|W=w : w ∈ W} is a subset of a finite-dimensional exponential family and W has

a density supported on a compact subset of Rd, choosing U to be a conditionally indepen-
dent copy X̂n of Xn (given W ) the Mutual Information I(W ;Xn|X̂n) will converge to a
constant as n grows (rather than grow with n, (Xu and Raginsky, 2017)). This property
seems to be specific to Shannon’s Mutual Information. In the examples addressed in this
manuscript, there does not appear to be a suitable U that tightens the bounds further for
the divergences considered. Nonetheless, we stated the result as it may be of interest in
other settings.
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Proof. For the selected choice of conditional Sibson Mutual Information (see Equation (174))
one has that

Iα(W, Ŵ |U) =
α

α− 1
log

∥∥∥∥∥∥∥
∥∥∥∥∥∥
∥∥∥∥∥ dPWŴU

dPUPŴ |UPW |U

∥∥∥∥∥
Lα(PW |U )

∥∥∥∥∥∥
L1(PŴ |U )

∥∥∥∥∥∥∥
Lα(PU )

. (177)

Consequently, one can prove via Hölder’s inequality a result analogous to Theorem 5 (cf. (Es-
posito, 2022, Theorem 17)) which implies then, selecting f = 1{ℓ(W,Ŵ )≤ρ}, the following for
every ρ > 0, α ≥ 1 and every U

PWŴ (ℓ(W, Ŵ ) < ρ) = PWŴU (ℓ(W, Ŵ ) < ρ) (178)

≤ P
α−1
α

U

(
ess sup
PŴ |U

PW |U (ℓ(W, Ŵ ) ≤ ρ)

)
· exp

(
α− 1

α
Iα(W, Ŵ |U)

)
.

(179)

≤ P
α−1
α

U

(
LW |U (U, ρ)

)
· exp

(
α− 1

α
Iα(W,X|U)

)
(180)

= exp

(
α− 1

α

(
Iα(W,X|U) + log(PU (LW |U (U, ρ)))

))
(181)

The statement of the theorem then follows from the same sequence of steps (involving Lemma 7)
that led to Theorem 8. Moreover, starting from Equation (177) and taking the limit of
α→ +∞ one recovers the following:

I∞(W,X|U) = log ess sup
PU

∥∥∥∥∥ess supPW |U

dPWXU

dPUPX|UPW |U

∥∥∥∥∥
L1(PX|U )

, (182)

which can be seen as being equal to L (W→X|U) (see Issa et al. (2020, Section III.E)).

E.2 Inverting the roles

The Sibson’s α-Mutual Information is an asymmetric quantity. A natural question is: can
one provide a result similar to Theorem 8 involving Iα(X,W ) instead? Indeed, by inverting
the roles ofW and Ŵ , such a bound can be given but it will involve the small ball probability
for Ŵ i.e.,

LŴ (ρ) = sup
w

PŴ (ℓ(w, Ŵ ) ≥ ρ). (183)

This quantity hinges on the marginal distribution of Ŵ , which, in turn, depends on the
estimator used. In terms of LŴ (ρ), one can give the following general bound:

Lemma 24. Consider the Bayesian framework described in Section 1.3. The following
holds for every α > 1 and ρ > 0:

RB ≥ ρ

(
1− exp

(
α− 1

α

(
Iα(X,W ) + log(LŴ (ρ))

)))
. (184)
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Moreover, taking the limit of α→ ∞ one has:

RB ≥ ρ
(
1− exp

(
L (X→W ) + log(LŴ (ρ))

))
. (185)

To apply this lemma in concrete cases, one needs to compute or upper bound the small
ball probability LŴ (ρ). Leveraging the basic properties of the estimator, one can sometimes
bound it. For example, if the estimator is a linear function of the noisy observations one can
leverage results related to Lévy’s concentration functions of sums of independent random
variables. E.g., if Y1, . . . , Ym are uncorrelated and have log-concave distributions, then for
every ρ ≥ 0 (Bobkov and Chistyakov, 2015, Theorem 1.1),

L∑m
i Yi(ρ) ≤

2ρ√
Var(

∑m
i=1 Yi) + ρ2/3

=
2ρ√

mVar(Y1) + ρ2/3
. (186)

More general statements can be made, assuming ϕ(Y m) =
∑m

i=1 aiYi under different con-
straints over ai (Nguyen and Vu, 2013). To appreciate the promise of this approach, let
us also discuss the behaviors of Iα(W,X) and Iα(X,W ). More specifically, let us consider
again the “Hide-and-Seek” problem. Assuming, as in Xu and Raginsky (2017, Example 12),
that PW is uniform over [d], one has that

L
(
Xn×m→W

)
= log

d(1/2 + ρ)

(d− 1)(1/2− ρ) + (1/2 + ρ)
= log κ(d, ρ) < log d. (187)

In case ρ and d are constant and the estimator ϕ is a linear combination of the observations,
using Equation (186) in Lemma 24 one gets:

RB ≥ ρ

(
1− κ(d, ρ)2ρ√

mVar(Y1) + ρ2/3

)
. (188)

This lower bound approaches ρ as m grows, rather than providing the trivial lower bound
of 0, as it happens in Equation (102).
The assumptions required, along with the need to specify a prior over W , clearly restrict
the domain of applicability of Lemma 24 with respect to Theorem 8 and Equation (26).
However, this approach can provide results in settings where Theorem 8 and Equation (26)
become vacuous.

E.3 Lower bounding the risk directly

An alternative route can be undertaken that does not use Markov’s inequality as a first step
and can possibly lead to tighter bounds. Since our purpose is to provide lower bounds on
the risk (essentially, an inner-product between the joint measure of the parameter and the
estimation and the loss function, ⟨PWŴ , ℓ⟩) one can also consider the application of reverse
Hölder’s inequality in order to directly lower bound the risk. Consider α < 1, the following
result can be easily proven:

Corollary 25. Consider the Bayesian framework described in Section 1.3. The following
holds for every α, α′ < 1

PWŴ (ℓ) ≥P
1
β′

Ŵ

(
P

β′
β

W

(
ℓβ
))

· P
1
α′

Ŵ

(
P

α′
α
W

((
dPWŴ

dPWPŴ

)α))
, (189)
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where 1
α + 1

β = 1 = 1
α′ +

1
β′ and α, α′ < 1. Moreover, if one takes the limit of α′ → 1−,

which implies β′ → −∞, then one recovers the following with 0 < α < 1:

RB ≥ ess inf
PŴ

(
P

1
β

W

(
ℓ(W, Ŵ )β

))
· exp

(
α− 1

α
Iα(W,X)

)
. (190)

Proof. The proof of Equation (189) follows from the same proof of Theorem 5 (cf. (Esposito,
2022, Theorem 15)) with f = ℓ but using reverse Hölder’s inequality rather than regular
Hölder’s inequality. Considering the limit of α′ → 1− in Equation (189) one recovers the
following:

PWŴ (ℓ(W, Ŵ )) ≥ ess inf
PŴ

(
P

1
β

W

(
ℓ(W, Ŵ )β

))
· exp

(
sign(α) · α− 1

α
Iα(W, Ŵ )

)
(191)

Now, if 0 < α < 1 then 1
β < 0. By the Data-Processing Inequality for Iα with 0 < α < 1

(along with the negativity of 1
β ) one has that

exp

(
sign(α) · α− 1

α
Iα(W, Ŵ )

)
= exp

(
1

β
Iα(W, Ŵ )

)
≥ exp

(
1

β
Iα(W,X)

)
. (192)

The lower bound on the Risk follows by noticing that the right-hand side Equation (191)
can be rendered independent of Ŵ for every α < 1 (i.e., it will only depend on the support
of Ŵ through the ess inf) via Equation (192).

Remark 26 (Extending to α < 0). One could also extend the result to α < 0 (which implies
0 < β < 1), however, this would lead to a notion of Iα for α < 0 (see (Esposito et al., 2022))
which is outside the scope of this work. However, in that case, one would have the following
interesting limiting behavior when α→ −∞:

PWŴ (ℓ(W, Ŵ )) ≥
(
ess inf
PŴ

PW (ℓ(W, ŵ))

)(∫
Ŵ

ess inf
PW

PŴ |W

)
(193)

=

(
ess inf
PŴ

PW (ℓ(W, ŵ))

)
exp

(
−Lc(W→Ŵ )

)
, (194)

where Lc(W→Ŵ ) represents maximal cost-leakage (Issa et al., 2020, Definition 11).

Corollary 25 is different from the results presented in the previous section. While in Sec-
tion 4 the only dependence on ℓ was through the small-ball probability, in Corollary 25 one
is required to have access to the expected value of the β-th moments of ℓ with respect to
PX . Such an object may not be as easy to bound as the small-ball probability.

Remark 27. If W = Ŵ then ℓ(W, Ŵ ) = 0 and Iα(W, Ŵ ) = 0. If 0 < α < 1, given that
β < 0, one recovers the following lower bound on the risk, which matches with our intuition:
PWŴ (ℓ(W, Ŵ )) ≥ 0.
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