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Abstract

Marginal likelihood, also known as model evidence, is a fundamental quantity in Bayesian
statistics. It is used for model selection using Bayes factors or for empirical Bayes tuning of
prior hyper-parameters. Yet, the calculation of evidence has remained a longstanding open
problem in Gaussian graphical models. Currently, the only feasible solutions that exist are
for special cases such as the Wishart or G-Wishart, in moderate dimensions. We develop
an approach based on a novel telescoping block decomposition of the precision matrix that
allows the estimation of evidence by application of Chib’s technique under a very broad
class of priors under mild requirements. Specifically, the requirements are: (a) the priors
on the diagonal terms on the precision matrix can be written as gamma or scale mixtures
of gamma random variables and (b) those on the off-diagonal terms can be represented as
normal or scale mixtures of normal. This includes structured priors such as the Wishart
or G-Wishart, and more recently introduced element-wise priors, such as the Bayesian
graphical lasso and the graphical horseshoe. Among these, the true marginal is known in an
analytically closed form for Wishart, providing a useful validation of our approach. For the
general setting of the other three, and several more priors satisfying conditions (a) and (b)
above, the calculation of evidence has remained an open question that this article resolves
under a unifying framework.
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1. Introduction

Marginal likelihood, also known as model evidence, is a fundamental quantity in Bayesian
statistics and its calculation is important for a number of reasons (Llorente et al., 2023a). Max-
imizing the marginal likelihood provides one approach for selecting prior hyper-parameters
in empirical Bayes type procedures, dating back to Robbins (1956). But, perhaps more
importantly, marginal likelihood forms the basis of Bayesian model comparison, via Bayes
factors. The lack of a viable expression for evidence often necessitates a more tractable
evidence lower bound (ELBO), and forms the basis of variational Bayes approaches; see Blei
et al. (2017) for a recent review. Despite this fundamental importance, the calculation of
marginal likelihood in Gaussian graphical models (GGMs) is an unresolved problem, except
for very specific conjugate priors on the precision matrix belonging to the Wishart family,
such as the Wishart or G-Wishart (Atay-Kayis and Massam, 2005; Uhler et al., 2018). The
chief difficulty lies with the domain of integration, the space of positive definite matrices,
that is not amenable to direct integration. The main methodological contribution of this
paper is the development of a novel telescoping block decomposition of the precision matrix
that allows the estimation of evidence via an application of Chib’s (1995) method under a
class of priors considerably broader than the Wishart family or its aforementioned variants.
The proposed decomposition draws inspiration from the approach of Wang (2012), developed
in the context of posterior sampling under the non-conjugate Bayesian graphical lasso (BGL)
prior. A key innovation lies in the realization that the approach of Wang (2012) applies to a
broad range of proper priors apart from BGL under mild conditions, and, with appropriate
modifications, it can be used for likelihood evaluation, in addition to sampling. Through
some reverse engineering, it becomes apparent that the main requirements of our approach
are: (a) the priors on the diagonal terms on the precision matrix can be written as gamma
or scale mixtures of gamma random variables and (b) those on the off-diagonal terms can
be represented as normal or scale mixtures of normal. This includes structured priors such
as the Wishart and G-Wishart, and element-wise priors such as the BGL and the graphical
horseshoe (GHS, Li et al., 2019). Among these, the marginal likelihood under the Wishart
model is known in closed form. Consequently, the Wishart case provides a useful validation
of the proposed approach. For BGL, GHS and several other related priors, the calculation of
marginal likelihood has remained an elusive open question. This article provides a resolution
under a single unifying framework.

1.1 Computing Evidence in GGMs: Limitations of Generic Approaches

The calculation of evidence is simple in principle: for generic density f , parameter θ, and
observed data y, it is given by f(y) =

∫
f(y | θ)f(θ)dθ. However, the integral may be

high-dimensional. Moreover, when θ denotes the precision matrix of a GGM, which is of key
interest in this work, the domain of integration must be restricted to the space of positive
definite matrices. This makes a forward integration all but infeasible, unless the model admits
special structures such as decomposability (Dawid and Lauritzen, 1993) or under the case
of G-Wishart (Atay-Kayis and Massam, 2005; Uhler et al., 2018). Current state-of-the-art
methods for general GGMs rely on pseudolikelihood or variational schemes that do not
target the true marginal; see Leppä-Aho et al. (2017) and the references therein. Some of the
main computational approaches for estimating marginal likelihood are: the harmonic mean
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(HM) and modified harmonic mean estimators (Newton and Raftery, 1994; Gelfand and Dey,
1994) with α-stable scaling limits under mild conditions, and hence, potentially unbounded
variance (Wolpert and Schmidler, 2012); bridge and path sampling (Meng and Wong, 1996;
Gelman and Meng, 1998) and their warped versions (Meng and Schilling, 2002); annealed
importance sampling or AIS (Neal, 2001); nested sampling (Skilling, 2006); and the method
of Chib (1995) and Chib and Jeliazkov (2001) based on Markov chain Monte Carlo (MCMC)
samples. More recent and comprehensive reviews are provided by Friel and Wyse (2012)
and Llorente et al. (2023b). Another useful synthesis is by Polson and Scott (2014), who
place bridge, path and nested sampling under a general framework of importance sampling
based approaches that perform poorly if the importance or bridge densities are not carefully
chosen. This directly gets to the heart of the problem in a GGM, in that the selection of a
good importance or bridge density is far from clear under a positive definite restriction on
the precision matrix, to the point that we are not aware of any general recommendations.
This is because the posterior is likely highly multi-modal with other irregular features under
relatively common priors. The difficulties with choosing these densities explain, at least
partially, why the literature on estimating evidence in GGMs is scant, despite no dearth
of generic algorithms (Martino et al., 2023), whose failures are rather conspicuous in our
numerical experiments in the subsequent sections. Another case in point is the existence of
a tailored Monte Carlo method for computing evidence under G-Wishart (but only under
G-Wishart) by Atay-Kayis and Massam (2005), appearing almost a decade after the papers
on generic HM, bridge and path sampling algorithms. The method of Chib (1995), however,
circumvents this difficult tuning of a covering bridge or importance density, since it is solely
based on MCMC posterior draws. This is not to say Chib’s (1995) approach is without
blemish: its Achilles’ heel is finite mixture models where it fails due to label switching
(Neal, 1999). Nevertheless, for continuous mixtures of the type we consider, Chib (1995)
holds considerable appeal while generally avoiding the pitfalls of importance sampling based
approaches, and is our weapon of choice for this paper. This observation echoes that of
Sinharay and Stern (2005), who provide extensive empirical performance comparisons for
various marginal likelihood computation methods for generalized linear mixed models, before
concluding: “Chib’s method does, however, have one advantage over importance and bridge
sampling in that it does not require that a matching or importance sampling density be
selected. If the posterior distribution has features, like an unusually long tail, not addressed
by our warping transformations, then it is possible that the standard deviation of importance
and bridge sampling may be underestimated.”

1.2 An Overview of Chib (1995)

Chib relies on the fundamental Bayesian identity:

f(y) =
f(y | θ)f(θ)

f(θ | y)
,

sometimes also called “Candidate’s formula” with the marginal displayed on the left in this
manner (Besag, 1989). Assume that the likelihood and the prior can be evaluated at some
user-defined θ = θ∗ (say, the posterior mean available from MCMC). If the posterior density
can also be evaluated at the same θ∗, then of course the calculation is trivial. But a closed
form evaluation of the posterior is unavailable apart from the simplest of models. Chib’s
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method relies on a Gibbs sampler to estimate the posterior density at the chosen θ∗ and
then gives the marginal via Candidate’s formula. The key point here is the denominator,
the posterior density, needs to be “evaluated;” simply designing a Gibbs sampler to generate
posterior samples is not enough. This is a fundamental difference with common MCMC
sampling approaches, where it is typically enough to have an un-normalized density. However,
for density evaluation, the constants must be accounted for. Chib does the following: let
θ be the parameter of interest and z be a collection of all other latent variables. Suppose
a Gibbs sampler iteratively samples from f(z | y, θ) and f(θ | z,y). By standard MCMC
theory, under good mixing, eventually the sampler will produce draws from f(z, θ | y) with
correct marginals for (z | y) and (θ | y). Then, Chib’s approximation for the denominator
at θ∗ is the following:

f̂(θ∗ | y) = M−1
M∑
i=1

f(θ∗ | y, z(i)),

where z(i) is a draw from f(z | y) that the Gibbs sampler provides. The main challenge
is that f(θ | y, z) still needs to be “evaluated” and the success of the method depends on
identifying such a conditional posterior. It is nontrivial to identify and overcome this hurdle
in graphical models, and, in this sense, application of Chib’s method is slightly a matter
of art. Candidate’s formula holds for any choice of θ. But for a GGM parameterized by
its precision matrix Ω, the challenge lies in partitioning Ω into the parameter of interest,
θ, and the nuisance parameter, z. However, assuming this hurdle could be overcome, the
advantages of Chib’s (1995) method are also apparent. The procedure is automatic in the
same sense a Gibbs sampler is automatic but an accept–reject sampler requiring a choice of
a proposal density is not: there are no covering densities to tune, unlike in importance or
bridge sampling. Moreover, Chib’s (1995) method can also be viewed as an interesting special
case of bridge sampling with an automatically determined bridge density, a connection made
explicit in Sections 4.2.1 and 4.2.2 of Llorente et al. (2023b).

1.3 Organization of the Article and Summary of Our Contributions

Our main contributions can be summarized as follows.

(i) Construction of a novel telescoping block decomposition of the precision matrix:

We begin by delineating the proposed telescoping block decomposition in Section 2.
This lies at the heart of our Chib type decomposition of Ω into (z, θ). Specifially,
we show that under a GGM, the log marginal likelihood is given by a row or
column-wise telescoping sum involving four terms. The first term is an easily
computable partial likelihood evaluation (a univariate normal), irrespective of
the prior, under a certain Schur complement adjustment of the precision matrix
closely related to the iterative proportional scaling algorithm (Lauritzen, 1996,
pp. 134–135). The second term is problematic and there is no easy way to evaluate
it. However, by construction, this is the telescoping term that is eliminated from
the overall sum, without the need for ever actually having to evaluate it.

(ii) Computation of evidence under a broad class of Gaussian mixture priors:
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Evaluations of the third and fourth terms in the aforementioned telescoping sum
are prior-specific. We show how to compute them for Wishart, two element-wise
priors: BGL and GHS, and G-Wishart in Sections 3, 4, and 5, respectively.
We also provide numerical demonstrations and comparisons with competing
approaches for each. Through the expositions in Section 3–5, it becomes clear
that the requirements for our technique to hold are simply that (a) the prior on
off-diagonal terms of Ω are scale mixtures of normal and (b) the prior on diagonal
terms of Ω are scale mixtures of gamma, a priori, shedding some light on other
types of priors where our method is applicable (see the discussion in Section 7).

(iii) Applications:

Section 6 details some applications of the proposed approach in Bayesian hy-
pothesis testing, in analyzing two real data sets, and in designing a new sampler
for the G-Wishart distribution. Further, in Section 6.4, we demonstrate the
applicability of the proposed technique to Gaussian scale mixture likelihood (e.g.,
the multivariate-t), which broadens the scope of our procedure to include non-
Gaussian likelihoods that admit a multivariate Gaussian mixture representation
for the purpose of evidence computation.

The Supplementary Material contains additional technical details, computational times of
competing approaches and MCMC diagnostics for Chib’s method.

2. A Telescoping Block Decomposition of the Precision Matrix

Let, y ∼ N (0, In ⊗Ω−1p×p), denote an n× p matrix where each row is an i.i.d. sample from a
p-variate normal distribution. Let yi; i = 1, . . . , p denote the ith column of y. We further
use the notation yk:j to denote the n× (j − k + 1) sub-matrix of y formed by concatenating
the corresponding columns for k < j, and trivially y1:p = y. Apply the decomposition:

Ωp×p =

[
Ω(p−1)×(p−1) ω rp

ωTrp ωpp

]
.

Let θp = (ω rp , ωpp) be a vector of length p denoting the last column of Ωp×p and z be
collection of all latent variables. Luckily, Wang (2012) showed for this θp, the conditional
posterior density f(θp | y, z) = f(ω rp , ωpp | y, z) = f(ω rp | y, z)f(ωpp | ω rp , y, z) can be
evaluated as a product of normal and gamma densities under suitable priors on Ωp×p. This
finding, of seemingly tenuous relevance at best to the problem at hand, is what we seek to
exploit. From Bayes theorem:

log f(y1:p) = log f(y1:p | θp) + log f(θp)− log f(θp | y1:p). (1)

The question then becomes how one should handle the integrated likelihood f(y1:p | θp).
Since θp is now a sub-matrix of Ωp×p, this likelihood evaluation is certainly not the same
as evaluating a multivariate normal likelihood using the full Ωp×p. A näıve strategy would
be to draw samples from f

(
Ω(p−1)×(p−1) | θp

)
and then to perform Monte Carlo evaluation

of the integrated likelihood. However, this arithmetic mean estimator of the integrated
likelihood would have large variance under mild conditions, and is unlikely to be effective
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given the dimension of Ω(p−1)×(p−1). We resolve this by evaluating the required densities in
one row or column at a time, and proceeding backwards starting from the pth row, with
appropriate adjustments to Ωp×p at each step via Schur complement. Rewrite Equation (1)
as:

log f(y1:p) = log f(yp | y1:p−1,θp) + log f(y1:p−1 | θp) + log f(θp)− log f(θp | y1:p)

:= Ip + IIp + IIIp − IVp. (2)

We deal with each term individually. First, note that the partial likelihood is:

yp | y1:p−1,θp ∼ N (−y1:p−1ω rp /ωpp, (1/ωpp)In),

which provides a convenient route to evaluating Ip at the chosen θp. We are going to assume
the prior density in IIIp can also be evaluated at θp and will detail an application of Wang’s
(2012) result for evaluating IVp, so that there remains the term IIp to deal with. At first,
the development from Equation (1) to (2) does not seem very encouraging. Apparently, we
have merely replaced one integrated likelihood, f(y1:p | θp), with another, f(y1:p−1 | θp).
However, the term IIp further admits a telescoping decomposition, as follows:

IIp = log f(yp−1 | y1:p−2,θp,θp−1) + log f(y1:p−2 | θp,θp−1) + log f(θp−1 | θp)− log f(θp−1 | y1:p−1,θp)

:= Ip−1 + IIp−1 + IIIp−1 − IVp−1.

In calculating Ip−1 one needs to be slightly careful since the evaluation of
f(yp−1 | y1:p−2,θp,θp−1) is not equal to the evaluation of the univariate normal
N
(
−y1:p−2ω r(p−1) /ω(p−1)(p−1), (1/ω(p−1)(p−1))In

)
; where θp−1 = (ω r(p−1) , ω(p−1)(p−1))

is the last column of Ω(p−1)×(p−1). Since we are not conditioning on yp, we must not
start from the node-conditional likelihood resulting from the full data, instead we need
the likelihood of f(y1:p−1 | θp, Ω(p−1)×(p−1)) as a starting point, a similarity shared with

iterative proportional scaling (Lauritzen, 1996, pp. 134–135). Thus, define Ω̃(p−1)×(p−1) as:

Ω̃(p−1)×(p−1) = Ω(p−1)×(p−1) −
ω rpωTrp
ωpp

:=

[
Ω̃(p−2)×(p−2) ω̃ r(p−1)
ω̃Tr(p−1) ω̃(p−1)(p−1)

]
, (3)

so that (y1:p−1 | θp, Ω(p−1)×(p−1)) is a multivariate normal with precision matrix Ω̃(p−1)×(p−1)

(Appendix C, Lauritzen, 1996). Now, let the (p − 1) dimensional vector θ̃p−1 =

(ω̃ r(p−1), ω̃(p−1)(p−1)) be the last column of Ω̃(p−1)×(p−1). The key is to note that θ̃p−1
depends only on θp and θp−1 and not on the upper left (p−2)× (p−2) block of Ω(p−1)×(p−1).
Hence, evaluation of Ip−1 is possible solely as function of θp and θp−1, and is independent of
θ1, . . . ,θp−2. Specifically,

yp−1 | y1:p−2, θp, θp−1 ∼ N (−y1:p−2ω̃ r(p−1) /ω̃(p−1)(p−1), (1/ω̃(p−1)(p−1))In).

Continuing in this manner, we evaluate Ij as a function of θj , . . . ,θp. Calculations for the
terms III and IV are prior-specific. However, we demonstrate in the next sections that it is
possible to evaluate them for a wide range of commonly used priors. Thus, in each equation,
only the terms I, III and IV are evaluated. The problematic term II is never actually
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��II3 = I2 + ��II2 + III2 − IV2

��II2 = I1 + (II1 = 0) + III1 − IV1

log f(y1:p) =

p∑
j=1

Ij + 0 +

p∑
j=1

IIIj −
p∑
j=1

IVj

Figure 1: (a) Decomposition of Ωp×p. Purple, green and blue blocks denote θp,θp−1 and
finally θ1 = ω11. Red arrow denotes how the algorithm proceeds, fixing one row/column at
a time, and (b) the telescoping sum giving the log-marginal log f(y1:p).

evaluated. Instead, it is eliminated via a telescoping sum (Fig. 1(b)), where the terms IIj
cancel from the sum, with II1 = 0, by definition. The algorithm proceeds backwards starting
from the pth row or column of Ωp×p , fixing one row or column at a time (Fig. 1(a)), and
making appropriate adjustments to the Schur complement.

To summarize, and to formalize our notations, we define for j = 1, . . . , p, the following
terms:

Ij =

{
log f(yj | y1:j−1,θj , . . . ,θp), j = 2, . . . , p,

log f(y1 | θ1, θ2, . . . ,θp), j = 1,
IIj =

{
log f(y1:j−1 | θj , . . . ,θp), j = 2, . . . , p,

0, j = 1,

IIIj =

{
log f(θp), j = p,

log f(θj | θj+1, . . . ,θp), j = 1, . . . , p− 1,
IVj =

{
log f(θp | y1:p), j = p,

log f(θj | y1:j ,θj+1, . . . ,θp), j = 1, . . . , p− 1.

The desired log marginal is then given via Fig. 1(b) as:

log f(y1:p) =

p∑
j=1

Ij + 0 +

p∑
j=1

IIIj −
p∑
j=1

IVj . (4)

Algorithm 1 specifies the details of the calculations for the first term that is procedurally
independent of the prior. Throughout, Ωj×j denotes the upper left (j × j) sub-matrix of Ω
for j = 1, . . . , p− 1. We now proceed to demonstrate the prior-specific calculations of the
third and fourth terms.

3. A Demonstration on Wishart

To avoid notational clutter, we drop the subscripts denoting dimensions when there
is no scope for ambiguity (e.g., by simply using Ω), otherwise we make them ex-
plicit (e.g., by writing Ωp×p). If Ω ∼ Wp(V, α), a Wishart prior with positive defi-
nite scale matrix V and degrees of freedom α > p − 1, the prior density is: f(Ω) =
{2−αp/2|V|−α/2/Γp(α/2)}|Ω|(α−p−1)/2 exp{−(1/2)tr(V−1Ω)}, and the log marginal under a
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Algorithm 1 Computation of Ij .

Input: y1:p,Ωp×p.
Output: I1, . . . , Ip.

for (j=p,. . . , 1) do
if (j==p) then

return Ip = logN (yp | −y1:p−1ω rp /ωpp, (1/ωpp)In).
else

Set vector ω r(j+1) = (ω1,j+1, . . . , ωj,j+1).

Set Γj×j =
ω r(j+1) ω

Tr(j+1)

ωj+1,j+1
.

Update Ωj×j ← Ωj×j − Γj×j .

Set Ω̃j×j = Ωj×j .

Set (ω̃ rj , ω̃jj) as the last column of Ω̃j×j .
if (j==1) then

return I1 = logN (y1 | 0, (1/ω̃11)In).
else

return Ij = logN (yj | −y1:j−1ω̃ rj /ω̃jj , (1/ω̃jj)In) .
end if

end if
end for

multivariate normal model is available in closed form as:

log f(y1:p) = −np
2

log(π) + log Γp

(
α+ n

2

)
− log Γp

(α
2

)
+

(α+ n)

2
log
∣∣∣Ip + V1/2SV1/2

∣∣∣ ,
(5)

where S = yTy, Γp(·) is the multivariate gamma function and Ip is the identity matrix of size
p. Clearly, this expression for the marginal is analytic and one does not need the proposed
procedure. However, this very fact of known marginal under Wishart also provides a useful
oracle to validate our method. We now present the details for calculating III and IV for
Wishart where V = Ip, which is sufficient, since Wishart is a scale family. Specifically, if Ω ∼
Wp(V, α) then V−1/2ΩV−1/2 ∼ Wp(Ip, α) and yV1/2 ∼ N (0, (In⊗V−1/2ΩV−1/2)−1). One
can always re-parameterize W = V−1/2ΩV−1/2 and x = yV1/2 to get x ∼ N (0, In⊗W−1),
where W ∼ Wp(Ip, α), and the log marginals under x and y differ by an easily computed
analytically available term in V.

3.1 Computing IIIp

Following the decomposition of Ω and the properties of Wishart distribution (Theorem 3.3.9,
Gupta and Nagar, 2000), if Ω ∼ Wp(Ip, α) then f(ω rp , ωpp) = f(ω rp | ωpp)f(ωpp), where,

ω rp | ωpp ∼ N (0, ωppIp−1) and ωpp ∼ Gamma(shape = α/2, rate = 1/2). (6)

Thus, evaluation of IIIp is precisely the evaluation of this product of normal and gamma
densities at θp. We denote the chosen value of θp (usually a posterior mean from MCMC)
as θ∗p = (ω∗rp , ω∗pp).
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3.2 Computing IVp

Decompose S analogous to Ω and introduce variables β rp , γpp as:

S = yTy =

[
S(p−1)×(p−1) s rp

sTrp spp

]
, β rp = ω rp , γpp = ωpp − ωTrpΩ−1(p−1)×(p−1)ω rp.

Recall, θp = (ω rp , ωpp). The Jacobian of transformation (ω rp , ωpp) 7→ (β rp , γpp) is

1. Using Schur formula, |Ω| = |Ω(p−1)×(p−1)||ωpp − ωTrpΩ−1(p−1)×(p−1)ω rp|; tr(SΩ) =

2sTrpω rp+sppωpp+tr
(
S(p−1)×(p−1)Ω(p−1)×(p−1)

)
. With this, the posterior density f(Ω | y1:p)

is:

f(Ω | y1:p) ∝ f(y1:p | Ω)f(Ω) ∝ |Ω|n/2 exp{−(1/2)tr(SΩ)}f(Ω)

∝ |ωpp−ωTrpΩ−1(p−1)×(p−1)ω rp|n/2 ∣∣Ω(p−1)×(p−1)
∣∣n/2 exp

(
−1

2

[
2sTrpω rp + sppωpp + tr

(
S(p−1)×(p−1)Ω(p−1)×(p−1)

)])
×|ωpp−ωTrpΩ−1(p−1)×(p−1)ω rp|(α−p−1)/2 ∣∣Ω(p−1)×(p−1)

∣∣(α−p−1)/2 exp

(
−1

2

[
ωpp + tr

(
Ω(p−1)×(p−1)

)])
,

(7)

where the second line in Equation (7) shows the contribution of the likelihood to the posterior
(regardless of the prior on Ω) and the third line that of the prior (specific to Wishart). A
main observation of Wang (2012, Section 2.4) is that the induced conditional posterior on
(β rp, γpp | rest) has a particularly convenient form. Specifically:

f(β rp, γpp | Ω(p−1)×(p−1),y1:p) ∝ exp

(
−1

2

[
2sTrp β rp + (spp + 1)βTrpΩ−1

(p−1)×(p−1)β rp]) γ n+α−p−1
2

pp exp
(
− 1

2
(spp + 1)γpp

)
= N (β rp | −Cs rp , C)×Gamma (γpp | shape =(n+ α− p− 1)/2 + 1, rate =(spp + 1)/2) , (8)

where C = {(spp + 1)Ω−1(p−1)×(p−1)}
−1. An important remark is in order.

Remark 1 Equation (8) can be used to sample from the posterior of (Ωp×p | y1:p) via
a block Gibbs sampler, by cycling over all p columns. This was used by Wang (2012) to
design a clever sampling strategy in the context of the Bayesian graphical lasso prior. Wang
demonstrated that so long as the starting value is positive definite, the posterior samples
of Ω for all subsequent MCMC iterations are also positive definite. However, treating
Ω(p−1)×(p−1) as latent, a Gibbs sampler may also be utilized to evaluate f(β rp, γpp | y1:p),
and consequently, f(ω rp , ωpp | y1:p) = f(θp | y1:p), since the required normalizing constants
of both normal and gamma densities are available in closed form. This is our observation.
That these densities have tractable normalizing constants makes no difference to sampling
following Wang (2012), but is crucial for us.

3.2.1 Approximating f(θp | y1:p)

Operationally speaking, we follow Chib’s (1995) two block strategy. Specifically, suppose we
wish to approximate f(θp | y1:p) = f(ω rp , ωpp | y1:p) at a chosen θ∗p = (ω∗rp , ω∗pp). Write
f(ω∗rp , ω∗pp | y1:p) = f(ω∗rp | y1:p)f(ω∗pp | ω∗rp ,y1:p). Then, Chib’s two block approxima-
tion consists of approximating the two conditional posteriors separately. First note from

9
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Equation (8) that f(ω∗rp | y1:p) can be approximated via MCMC samples as:

f̂(ω∗rp | y1:p) = f̂(β∗rp | y1:p) = M−1
M∑
i=1

f(β∗rp | y1:p,C
(i)) = M−1

M∑
i=1

N (β∗rp | −C(i)s rp , C(i)),

(9)

where C(i) is the ith MCMC sample of C defined in Equation (8), available via the block
Gibbs strategy of Wang (2012), and β∗rp = ω∗rp is a summary statistic (we use the sample
average) based on the same MCMC runs.

Next, a second, “restricted” version of the MCMC sampler is run with ω rp held fixed at
ω∗rp obtained from the first, unrestricted MCMC sampler, one that was used in Equation (9).
Two subtle issues arise: first, one needs to ensure that this restricted sampler, where the non-
diagonal elements in column p are not updated, indeed preserves the positive definiteness of
the entire Ωp×p at every MCMC iteration. Second, one needs to estimate f(ω∗pp | ω∗rp ,y1:p)

using this second sampler. To address these issues, we first sample Ω̃(p−1)×(p−1) as defined in
Equation (3). Using this, we update {Ω(p−1)×(p−1), ωpp} and perform the required density
evaluation. The details are as follows.

Recall the definition of Ω̃(p−1)×(p−1) from Equation (3) and decompose S(p−1)×(p−1) as,

S(p−1)×(p−1) =

[
S(p−2)×(p−2) s r(p−1)

sTr(p−1) s(p−1)(p−1)

]
.

Let β̃ r(p−1) = ω̃ r(p−1) , γ̃(p−1)(p−1) = ω̃(p−1)(p−1) − ω̃Tr(p−1)Ω̃−1(p−2)×(p−2)ω̃ r(p−1) . Then the

conditional posterior of (β̃ r(p−1), γ̃(p−1)(p−1) | rest) can be derived analogous to Equation (8)
as,

f(β̃ r(p−1), γ̃(p−1)(p−1) | Ω̃(p−2)×(p−2), ω
∗rp , ωpp, y1:p) = N (β̃ r(p−1) | −C̃s r(p−1) , C̃)

(10)

×Gamma(γ̃(p−1)(p−1) | (n+ α− p− 1)/2 + 1, (s(p−1)(p−1) + 1)/2),

where C̃ =
{

(s(p−1)(p−1)+1)Ω̃
−1
(p−2)×(p−2)

}−1
. Equation (10) can be used to sample from the

posterior of (Ω̃(p−1)×(p−1) | ω∗rp , y1:p) via a block Gibbs sampler, by holding the pth column
fixed and cycling over the remaining (p− 1) columns. After updating all the (p− 1) columns
of Ω̃(p−1)×(p−1) we generate the jth MCMC sample from f(Ω(p−1)×(p−1), ωpp | ω∗rp , y1:p) as,

Ω
(j)
(p−1)×(p−1) ← Ω̃

(j)

(p−1)×(p−1) + ω∗rpω∗Trp/ω(j−1)
pp ,

ω(j)
pp | ω∗rp , Ω

(j)
(p−1)×(p−1), y1:p ∼ Gamma

(
n+ α− p− 1

2
+ 1,

spp + 1

2

)
+ ω∗Trp (Ω

(j)
(p−1)×(p−1)

)−1
ω∗rp.

10
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Let ω∗pp denote the posterior mean of {ω(j)
pp } obtained from the restricted sampler that has

ω∗rp fixed. Then, by Chib (1995), f(ω∗pp | ω∗rp, y) can be approximated as,

f̂(ω∗pp | ω∗rp , y1:p) =
1

M

M∑
j=1

f
(
ω∗pp | ω∗rp , y1:p, Ω

(j)
(p−1)×(p−1)

)
(11)

=
1

M

M∑
j=1

[
Gamma

((
ω∗pp − ω∗Trp (Ω

(j)
(p−1)×(p−1)

)−1
ω∗rp) ∣∣∣∣ n+ α− p− 1

2
+ 1,

spp + 1

2

)

× 1

{
ω∗pp > ω

∗Trp (Ω
(j)
(p−1)×(p−1)

)−1
ω∗rp}

]
,

which can be recognized as a Monte Carlo average of truncated gamma densities, with terms
not satisfying the indicator constraint contributing zero to the sum, giving a valid density
evaluation. Multiplying the results of Equations (9) and (11) gives the desired approximation
to f(θp | y1:p) at θp = θ∗p.

3.3 Computing IIIp−1, . . . , III1

Recall from Equation (3) that Ω̃(p−1)×(p−1) = Ω(p−1)×(p−1) − ω rpωTrp /ωpp . We have,

y1:(p−1) | Ω(p−1)×(p−1), ω rp , ωpp ∼ N (0, In ⊗ Ω̃
−1
(p−1)×(p−1)

)
,

Ω̃(p−1)×(p−1) ∼ W(Ip−1, α− 1). (12)

Using properties of Wishart as in Equation (6),

ω̃ r(p−1) | ω̃(p−1)(p−1) ∼ N (0, ω̃(p−1)(p−1)Ip−2),

ω̃(p−1)(p−1) ∼ Gamma(shape = (α− 1)/2, rate = 1/2).

Thus, the evaluation of IIIp−1 = f(θp | θp−1) is simply the evaluation of this product of
normal and gamma densities at (ω̃∗r(p−1) , ω̃∗(p−1)(p−1)), which are uniquely determined at

the chosen (θ∗p, θ
∗
p−1). Computations for IIIp−2, . . . , III1 proceed in an identical manner and

use the corresponding Ω̃(p−j)×(p−j) available from Algorithm 1.

3.4 Computing IVp−1, . . . , IV1

On inspecting Equation (12), it is apparent that that we have a smaller problem at hand
with p−1 variables instead of p. Hence one can follow steps analogous to Equations (9) and
(11) in the setting of the model in Equation (12) to compute IVp−1 = f(θp−1 | θp, y1:(p−1)).
Computations for IVp−2, . . . , IV1 proceed in an identical manner and use the corresponding

Ω̃(p−j)×(p−j) available from Algorithm 1.

11
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3.5 Computational Complexity

Computational complexity of the proposed approach is O(Mp5), where M is the number
of MCMC samples. To see this, note that the dominating term in our procedure is the
calculation of f̂(ω∗rp , ω∗pp | y1:p) = f̂(ω∗rp | y1:p)f̂(ω∗pp | ω∗rp ,y1:p) according to Equations
(9) and (11). This requires evaluating a multivariate normal density, with cost O(p3); and
cycling over all p columns, giving a total cost of O(p4). Repeating the procedure to calculate
f̂ for columns p− 1, . . . , 1 yields the final computational cost of O(p5) per MCMC sample.
Although at a first glance the computational complexity appears rather high, we provide
extensive results on both statistical performances and computational times in this and
subsequent sections. The statistical performance of the proposed method is the best across
all the competing approaches in most settings, while being computationally scalable up
to a dimension of p = 125. Further, the computational complexity is still O(Mp5) for the
subsequent sections, under priors other than Wishart, due to an analogous line of reasoning
and we omit the details there.

3.6 Numerical Experiments on Wishart

All numerical results reported in this paper are based on 2.6 GHz Intel Xeon CPUs with
10 cores and 12 GB of RAM. For Wishart, we set V as a block tridiagonal matrix with
entries 1/α on the principal diagonal, 0.25/α on the other two diagonals, and use Equation
(5) to evaluate the truth. We implement the proposed procedure as described above in R,
with computationally intensive parts written in C++. Given a setting of (p, n, α), we draw
25 random permutations of {1, . . . , p}. Denoting a given permutation by {σ(1), . . . , σ(p)},
we estimate the log of marginal likelihood: log f(yσ(1), . . . ,yσ(p)) for each permutation
and present the mean and standard errors of our resultant log marginal estimates. For
numerical experiments in this section, we choose M = 5000 (after a burn-in of 1000 samples).
This value of M is chosen to be approximately the minimum number of MCMC samples
that attains a pre-set upper bound of 5× 10−4 for the absolute value of the coefficient of
variation of the log marginal likelihood estimate, under all settings considered in Table 1.
The implementation of the harmonic mean estimate is straightforward using the MCMC
samples. Further implementation details for annealed importance sampling (AIS) and nested
sampling follow. These competitors are also implemented in Sections 4 and 5 in an identical
manner, and the details are omitted there. Apart from AIS, which requires sampling from
the prior, we have refrained from comparing with generic importance or bridge sampling
approaches, due to a lack of obvious choices for required importance and bridge densities
under a positive definite restriction.

• AIS: Following Equation (3) of Neal (2001), we construct 100 intermediate annealed
importance densities ft(y). These are geometric averages of prior and likelihood,
constructed as ft(y) = f(Ω) (f(y | Ω))t, where t ∈ {0, 0.01, 0.02, . . . , 0.99, 1}. The
respective prior distributions, e.g., Wishart in this case, are used as proposals in all
the intermediate steps. The log marginal is computed as the average of importance
weights using M samples.

• Nested Sampling: We follow the approach outlined in Section 6 of Skilling (2006),
which requires sampling from progressively higher likelihood regions. We start with M

12
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samples from the prior and eliminate those for which the data likelihood is below the
machine precision. We perform M iterations by proposing samples from the prior such
that the data likelihood at the proposed sample is greater than the smallest current
likelihood.

The results in Table 1 indicate the proposed method has both the lowest bias and variance
in all dimensions we consider. Some competitors fail to produce bounded estimates in larger
dimensions.

Dimension and Parameters Truth Proposed AIS Nested HM

(p = 5, n = 10, α = 7) -84.13 -84.13 (0.04) -84.3 (0.68) -84.26 (0.57) -82.12 (0.97)
(p = 10, n = 20, α = 13) -365.11 -365.1 (0.05) -397.64 (6.1) -392.2 (6.04) -345.47 (1.27)
(p = 15, n = 30, α = 20) -837.7 -837.83 (0.26) -1000.45 (13.5) -994.87 (13.7) -782.43 (0.44)
(p = 25, n = 50, α = 33) -2417.65 -2416.83 (1.65) −∞ −∞ -2235.19 (3.92)
(p = 30, n = 60, α = 45) -3278.93 -3278.58 (0.93) −∞ −∞ -3044.25 (5.17)
(p = 40, n = 80, α = 70) -5718.95 -5718.89 (0.85) −∞ −∞ -5328.99 (8.39)
(p = 50, n = 75, α = 100) -6422.96 -6422.87 (0.44) −∞ −∞ -6012.93 (5.54)

(p = 100, n = 150, α = 200) -26046.28 -26044.8 (1.98) −∞ −∞ -24270.98 (12.14)
(p = 125, n = 175, α = 150) -38172.04 -38169.36 (2.13) −∞ −∞ -35433.76 (17.27)

Table 1: Mean (sd) of estimated log marginal for Wishart for the proposed approach, AIS
(Neal, 2001), nested sampling (Skilling, 2006) and HM estimates (Newton and Raftery,
1994), under 25 random permutations of the nodes {1, . . . , p}. Computation times for all
competing procedures is given in Supplementary Table S.1.

4. Evidence under Element-wise Priors

While the demonstration on Wishart is reassuring for verifying the correctness of the proposed
approach, it is also redundant for practical purposes; the marginal under Wishart is available
in closed form. The natural question then is: when can a technique similar to what is
presented in Section 3 be expected to succeed in models that are hitherto intractable? A
closer look at Equation (7) reveals the answer. It is apparent that the contribution of the
likelihood to the posterior does not change, regardless of what the prior is. However, it is the
form of the likelihood that indicates what a conjugate prior is in a given parameterization.
The main advantage of the reparameterization (ω rj , ωjj) 7→ (β rj , γjj) is that the likelihood
decomposes as (normal × gamma), for which the conjugate priors are also normal and
gamma, respectively. Thus, whenever the priors on the off-diagonals ω rj are normal (or
scale mixtures of normal), and the priors on ωjj are gamma (or scale mixtures of gamma)
Chib’s method applies in a manner near identical to Wishart, provided the corresponding
latent mixing variables can be sampled. These requirements are very mild and open the
door to handling a very broad class of priors. We consider two illustrative examples in this
paper: the Bayesian graphical lasso or BGL (Wang, 2012) and the graphical horseshoe or
GHS (Li et al., 2019). Both admit a density of the form:

f(Ω | τ , λ) = C(τ , λ)−1
∏
i<j

f(ωij | τij , λ)

p∏
j=1

f(ωjj | λ)1l(Ω ∈M+
p ),
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f(τ | λ) = C(τ , λ)C−1
∏
i<j

f(τij | λ), (13)

whereM+
p denotes the space of p× p positive definite matrices and τ = {τij} is a symmetric

matrix of latent mixing variables. Unlike Wishart, here the prior on Ω is defined as a product
of element-wise priors on ωij and ωjj , restricting the non-zero prior mass via the indicator
constraint Ω ∈M+

p . The appealing feature of this approach is that one can naturally encode
a prior belief of sparsity in Ω via suitable sparsity-inducing priors on the off-diagonal terms,
without imposing additional structural constraints on the entire Ω. The difficulties with
element-wise priors also lie in the indicator constraint, in that both sampling and likelihood
evaluation become non-trivial. The former difficulty was resolved by Wang (2012), as noted
in Remark 1. We proceed to resolve the latter.

Marginalizing over τij , the prior in Equation (13) can be written in a more compact
form as:

f(Ω | λ) = C−1
∏
i<j

f(ωij | λ)

p∏
j=1

f(ωjj | λ)1l(Ω ∈M+
p ). (14)

The finiteness of C in Equation (14) is easy to establish, so long as the priors on ωij and ωjj
are proper. Another crucial property is C is independent of λ whenever the priors on ωij and
ωjj belong to a scale family and a common scale λ (or a constant multiple thereof) is used for
both. This can be seen via reparameterizing (ωij , ωjj) 7→ (λωij , λωjj), a fact also noted by
Wang (2012, Section 2.5). Thus, even if C is in general intractable, it does not affect common
uses of the marginal likelihood. For example, in calculation of Bayes factors, the absolute
constant C simply cancels from the ratio. For the specific case of BGL, the prior on the
off-diagonal entries of Ω is double exponential with density, f(ωij | λ) = (λ/2) exp(−λ|ωij |).
Using a result of Andrews and Mallows (1974), the normal scale-mixture representation for
this prior can be written as,

fBGL(ωij | τij , λ) =
1√

2πτij
exp

(
−
ω2
ij

2τij

)
, fBGL(τij | λ) =

λ2

2
exp

(
−λ

2

2
τij

)
.

In the case of GHS, the prior on the off-diagonal entries of Ω is horseshoe. Unlike double
exponential, the horseshoe prior does not have a closed form, but it still admits a normal
scale mixture representation with respect to a half Cauchy mixing density (Carvalho et al.,
2010):

fGHS(ωij | τij , λ) =
1√

2πτij
exp

(
−
ω2
ij

2τij

)
, fGHS(τij | λ) =

λ

π
√
τij{1 + λ2τij}

1l(τij > 0).

For the diagonal terms, we use f(ωjj | λ) = (λ/2) exp(−ωjjλ/2), for both BGL and GHS.
Both these priors enjoy excellent empirical performance in high-dimensional problems and
their posterior concentration properties have recently been explored by Sagar et al. (2024).
However, the calculation of evidence, up to an absolute multiplicative constant C, has
remained elusive.
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4.1 Computing III

Unlike Wishart, the term III =
∑p

j=1 IIIj is evaluated at the end of telescoping sum. This
is because, in element-wise priors, the conditional prior densities required to evaluate IIIj
cannot be obtained in closed form, but a joint prior evaluation is easy and III is nothing but
the evaluation of logarithm of prior density f(Ω | λ) at Ω∗. Hence,

∑p
j=1 IIIj in the case of

BGL can be approximated as,

log f̂BGL(Ω∗ | λ) = − logCBGL +
p(p− 1)

2
log λ− λ

∑
1≤i<j≤p

|ω∗ij |+ p log
λ

2
− λ

2

p∑
j=1

ω∗jj ,

whereas for GHS, the evaluation of f(Ω∗ | λ) requires the evaluation of f(ω∗ij | λ). As the
horseshoe density cannot be written in a closed from, it is approximated using Monte Carlo
as,

f̂GHS(ω∗ij | λ) =
1

M

M∑
k=1

1√
2πτ

(k)
ij

exp

(
−

(ω∗ij)
2

2τ
(k)
ij

)
, λ

√
τ
(k)
ij

ind∼ C+(0, 1),

where C+(0, 1) is the standard half Cauchy. Hence,
∑p

j=1 IIIj for GHS can be approximated
as,

log f̂GHS(Ω∗ | λ) = − logCGHS +
∑

1≤i<j≤p
log f̂GHS(ω∗ij | λ) + p log

λ

2
− λ

2

p∑
j=1

ω∗jj .

4.2 Computing IVp, . . . , IV1

Consider the case when Equation (13) admits a normal scale mixture representation for
the off-diagonal terms and the prior on the diagonal terms of Ω is exponential. Thus, the
computation of IVp follows from Equations (7) and (8), conditional of the latent variables
τ = {τij}. We have,

f(β rp, γpp | τ rp , Ω(p−1)×(p−1),y1:p) = N (β rp | −Cs rp , C)×Gamma (γpp | shape =n/2 + 1, rate =(spp + λ)/2) ,

(15)

where C = {diag−1(τ rp) + (spp + λ)Ω−1(p−1)×(p−1)}
−1 and diag−1(·) represents the inverse

of a diagonal matrix whose diagonal entries are τ rp . Thus, using Equation (15), we can
sample Ω from the posterior of (Ωp×p | y1:p, τ ) by cycling over all p columns with the
corresponding scale parameters sampled as described in Wang (2012) and Li et al. (2019) for
BGL and GHS respectively. Following this, f(ω∗rp | y1:p) can be approximated analogous to
Equation (9). As in the case of Wishart, we need a second restricted sampler to approximate

f(ω∗pp | ω∗rp, y1:p). Starting with the conditional posterior of (β̃ r(p−1), γ̃(p−1)(p−1) | rest),

which can be derived analogous to Equation (15), we obtain:

f(β̃ r(p−1), γ̃(p−1)(p−1) | τ r(p−1) , Ω̃(p−2)×(p−2), ω
∗rp , ωpp, y1:p) = N

(
β̃ r(p−1) | −C̃s̃ r(p−1) , C̃

)
×Gamma(γ̃(p−1)(p−1) | n/2 + 1, (s(p−1)(p−1) + λ)/2),

(16)
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where C̃ =
{

diag−1(τ r(p−1)) + (s(p−1)(p−1) + λ)Ω̃
−1
(p−2)×(p−2)

}−1
, s̃ r(p−1) =(

s r(p−1) + τ−1r(p−1)f r(p−1)) and the vector f r(p−1) is the (p − 1)th column (excluding di-

agonal entry) of the matrix ω∗rpω∗Trp/ωpp. The inverse and product operations with respect
to τ r(p−1) and f r(p−1) in calculating s̃ r(p−1) are element-wise. Hence, Equation (16) can

be used to sample from the posterior of (Ω̃(p−1)×(p−1) | τ (p−1)×(p−1), ω
∗rp , y1:p) via a block

Gibbs sampler, by holding the pth column fixed and cycling over the remaining (p − 1)
columns. After updating all the (p− 1) columns of Ω̃(p−1)×(p−1) we generate the jth MCMC
sample from f(Ω(p−1)×(p−1), ωpp | ω∗rp , y1:p) as,

Ω
(j)
(p−1)×(p−1) ← Ω̃

(j)

(p−1)×(p−1) + ω∗rpω∗Trp/ω(j−1)
pp ,

ω(j)
pp | ω∗rp , Ω

(j)
(p−1)×(p−1), y1:p ∼ Gamma

(
n

2
+ 1,

spp + λ

2

)
+ ω∗Trp (Ω

(j)
(p−1)×(p−1)

)−1
ω∗rp.

With the above sampling procedure, f(ω∗pp | ω∗rp, y1:p) can be approximated analogous to
Equation (11). Calculations of terms IVp−1, . . . , IV1 are similar and once again analogous to
the Wishart case, apart from the presence of the mixing variables τ . A detailed description
is omitted.

4.3 Numerical Experiments on the Bayesian Graphical Lasso and Graphical
Horseshoe

The marginal under element-wise priors, f(y | λ) =
∫
f(y | Ω)f(Ω | λ)dΩ, is not available

in a closed form as for Wishart. While this makes the proposed procedure worthwhile, its
validation also becomes more challenging. Nevertheless, when p = 2, a relatively simple
expression for f(y | λ) can be obtained in a closed form for both BGL and GHS via analytic
integration, which allows us to calculate the truth in order to validate our method. The
results are presented in Propositions 2 and 3 for BGL and GHS, with respective proofs in
Supplementary Sections S.1 and S.2.

Proposition 2 When p = 2, the marginal likelihood under the Bayesian graphical lasso
prior is:

C−1BGL

λ3Γ
(
n
2 + 1

)
Γ
(
n+3
2

)
πn−

1
2

[
(λ+ s11)(λ+ s22)− (λ− |s12|)2

](n+3)/2
Et (F (t)) ,

where,

t ∼ Gamma

(
shape =

n+ 3

2
, rate =

(λ+ s11)(λ+ s22)− (λ− |s12|)2

2

)
,

F (t) = Φ

[
λt1/2

(
|s12|
λ
− 1

)]
+ exp (2λ|s12|t) Φ

[
− λt1/2

(
|s12|
λ

+ 1

)]
,

with CBGL =
∫∞
0 x1/2

∫∞
x y−1/2 exp(−y)dydx ≈ 0.67.
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Proposition 3 When p = 2, the marginal likelihood under the graphical horseshoe prior is:

C−1GHS

λΓ
(
n
2 + 1

)
Γ
(
n
2 + 1

)
πn+

1
2

[
(λ+ s11)(λ+ s22)

]n
2
+1

Et (F (t)) ,

where,

t ∼ Gamma

(
shape =

n

2
+ 1, rate =

λ+ s22
2

)
, F (t) =

∫ t
λ+s11

0

exp

(
ms212

2

)
m−1/2

(
m+

t−m(λ+ s11)

λ2t

)−1
dm.

The constant CGHS can be obtained via a Monte Carlo approximation as,

CGHS = E(τ,m)

(√
m

m+ τ2

)
≈ 0.64, where τ ∼ C+(0, 1), m ∼ exp

(
rate =

1

2

)
and τ ⊥ m.

For numerical illustrations, we set the true precision matrix Ω0 by sampling from the
prior. The data y1:p are then generated by drawing n samples from the multivariate normal
N (0,Ω−10 ). The mean and standard error of our our resultant log marginal estimates are
computed as in the case of Wishart (Section 3.6) and we choose M = 5000 (after a burn-in
of 1000 samples). This M is chosen to be approximately the minimum number of MCMC
samples that attains a pre-set upper bound of 5×10−3 for the absolute value of the coefficient
of variation of our estimate for the log marginal. Estimation results in the case of BGL and
GHS are given in the Tables 2 and 3 respectively, with the true marginal likelihood presented
for the p = 2 case. For dimensions p > 2, our results provide marginal likelihoods up to a
constant C independent of λ. Once again, the proposed approach remains numerically stable
in large dimensions where some of the competing methods do not yield finite estimates. The
harmonic mean estimate does have reasonable sample variance in these examples, but it is
known to converge to α-stable scaling limits under mild conditions (Wolpert and Schmidler,
2012), with undefined population variance. It is also well established that the harmonic mean
estimate tends to overestimate the marginal likelihood due to pseudo-bias, and this bias is
larger in complex models (Lenk, 2009). A similar trend is observed in the oracle Wishart
case (Table 1), and in all the simulation results in Tables 2–5. Though some corrections
for the pseudo-bias have been suggested (Lenk, 2009; Pajor and Osiewalski, 2013), they are
beyond the scope of the current work.

5. Evidence under G-Wishart Priors

The G-Wishart family (Roverato, 2002) is a general class of conjugate priors on the precision
matrix Ω for a GGM, where zero restrictions are placed according to a p×p adjacency matrix
G = {gij} without requiring the graph be decomposable, providing a useful generalization
of the hyper Wishart family (Dawid and Lauritzen, 1993). Specifically, gij = 0⇔ ωij = 0
and gij = 1⇔ ωij 6= 0 for i.j ∈ {1, . . . , p}; i 6= j. The prior density on Ω under a G-Wishart
prior, GWG(V, α), given an adjacency matrix G, can be written as,

f(Ω | G) = IG (α,V)−1 |Ω|α exp

(
−1

2
tr(VΩ)

)
1l(Ω ∈M+(G)), (17)
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Dimension and Parameters Truth* Proposed AIS Nested HM

(p = 2, λ = 0.4, n = 4) -12.33 -12.33 (0.00) -12.33 (0.005) -12.34 (0.03) -12.03 (0.43)
(p = 2, λ = 1, n = 5) -18.46 -18.45 (0.00) -18.46 (0.007) -18.46 (0.03) -18.15 (0.35)
(p = 2, λ = 2, n = 10) -40.73 -40.73 (0.02) -40.73 (0.01) -40.73 (0.03) -40.06 (0.28)
(p = 5, λ = 1, n = 10) - -78.00 (0.03) -77.82 (2.48) -76.41 (1.93) -67.14 (1.32)
(p = 10, λ = 2, n = 20) - -312.13 (0.1) -342.72 (11.52) -350.14 (7.37) -278.58 (1.31)
(p = 15, λ = 3, n = 30) - -796.66 (0.63) −∞ −∞ -693.32 (2.01)
(p = 25, λ = 5, n = 50) - -2008.34 (0.41) −∞ −∞ -1778.89 (2.89)
(p = 30, λ = 6, n = 60) - -3070.85 (9.71) −∞ −∞ -2701.71 (5.72)

(p = 40, λ = 175, n = 90) - -11540.13 (4.31) −∞ −∞ -10901.94 (6.38)
(p = 50, λ = 140, n = 130) - -19733.65 (9.81) −∞ −∞ -18658.68 (7.1)

Table 2: Mean (sd) of estimated log marginal under the Bayesian graphical lasso prior
for the proposed approach, AIS (Neal, 2001), nested sampling (Skilling, 2006) and HM
estimates (Newton and Raftery, 1994). Truth* is estimated as described in Proposition 2.
Computation times for all competing procedures is given in Supplementary Table S.2.

Dimension and Parameters Truth* Proposed AIS Nested HM

(p = 2, λ = 0.4, n = 4) -11.16 -11.16 (0.01) -11.38 (0.12) -11.25 (0.02) -10.78 (0.17)
(p = 2, λ = 1, n = 5) -20.11 -20.08 (0.02) -20.38 (0.02) -20.22 (0.03) -19.54 (0.35)
(p = 2, λ = 2, n = 10) -47.19 -47.18 (0.02) -47.83 (0.03) -47.49 (0.05) -45.94 (0.45)
(p = 5, λ = 1, n = 10) - -60.05 (0.22) -54.93 (0.53) -55.27 (0.77) -53.45 (0.42)
(p = 10, λ = 2, n = 20) - -300.85 (0.77) -331.09 (9.06) -321.99 (7.37) -263.76 (1.32)
(p = 15, λ = 3, n = 30) - -672.01 (1.2) −∞ -713.73 (6.36) -598.28 (2.53)
(p = 25, λ = 5, n = 50) - -2228.66 (12.35) −∞ −∞ -1943.06 (3.01)
(p = 30, λ = 6, n = 60) - -3142.74 (7.73) −∞ −∞ -2745.24 (5.43)

(p = 40, λ = 140, n = 90) - -11648.65 (11.65) −∞ −∞ -10928.54 (6.86)
(p = 50, λ = 190, n = 120) - -19851.75 (28.46) −∞ −∞ -18868.73 (10.08)

Table 3: Mean (sd) of estimated log marginal under the graphical horseshoe prior for the
proposed approach, AIS (Neal, 2001), nested sampling (Skilling, 2006) and HM estimates
(Newton and Raftery, 1994). Truth* is estimated as described in Proposition 3. Computation
times for all competing procedures is given in Supplementary Table S.3.

where M+(G) denotes the cone of positive definite matrices satisfying the zero restrictions
according to G. Here α > 0 denotes the degrees of freedom and V is a positive definite scale
matrix. As GWG(V, α) is a conjugate prior on Ω, the posterior density f(Ω | y, G) is also
G-Wishart, GWG(V + S, α+ n/2). The key challenge in computing the marginal likelihood
in this case, is the intractability of the normalizing constant IG(α,V) in Equation (17) when
G is not decomposable. Hence, the log-marginal log f(y), is given as a difference of two
intractable normalizing constants:

log f(y) = −np
2

log(2π) + log IG(α+ n/2,V + S)− log IG(α,V).

Further, unlike Wishart, G-Wishart is not a scale family. Hence we present our method for
computing the log marginal for a general scale matrix V, unlike the Wishart case where it
suffices to consider V = Ip. Decompose V and G analogous to Ω and S as:

V =

[
V(p−1)×(p−1) v rp

vTrp vpp

]
, G =

[
G(p−1)×(p−1) g rp

gTrp gpp

]
.
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We further introduce the following notations, giving a simple illustration in Example 1.

Notation 4 Let nb(j), j ∈ {1, . . . , p}, denote the set of neighbors of node j in the graph
encoded by G. More precisely, nb(j) = {k : k 6= j, gkj = 1}. Let |nb(j)| denote the
cardinality of nb(j). Similarly, let the non-neighbors of node j be denoted by nbc(j), where
nbc(j) = {1, . . . , p} \ nb(j).

Notation 5 For a symmetric matrix A, denote by Anb(j) or [A]nb(j) the symmetric sub-
matrix obtained by selecting the rows and columns of A according to the row and column
indices in nb(j). Similarly for a column vector a, denote by anb(j) or [a]nb(j) as the sub-vector
obtained by selecting the rows according to the indices in nb(j).

Example 1 Suppose G is

1

2 3

4

. Let, A =


a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

. Then, Anb(1) =

[
a22 a23
a23 a33

]
.

Similarly, if a = (a14, a24, a34, a44)
T , then anb(1) = (a24, a34)

T .

Before proceeding further, we present a crucial decomposition of the indicator constraint
in Equation (17) under Schur complement adjustments. We have |Ω| = |ωpp||Ω̃(p−1)×(p−1)|,
and,

1l(Ω ∈M+(G)) = 1l(ωpp > 0)×1l
[
ωnb(p)rp 6= 0

]
×1l
[
Ω̃(p−1)×(p−1)+ω rp ω−1pp ωTrp ∈M+

(
G(p−1)×(p−1)

) ]
.

(18)
In the above display, two further remarks are in order:

Remark 6 The indicator 1l
[
ω
nb(p)rp 6= 0

]
is one if all entries in the vector ω

nb(p)rp are
non-zero.

Remark 7 Here M+
(
G(p−1)×(p−1)

)
is the cone of positive definite matrices, restricted by

G(p−1)×(p−1). This specific indicator function further imposes two conditions on Ω̃(p−1)×(p−1):

(a) entries in Ω̃(p−1)×(p−1) + ω rp ω−1pp ωTrp corresponding to zero entries in G(p−1)×(p−1) ,

are zero and (b) entries in Ω̃(p−1)×(p−1) corresponding to non-zero entries in G(p−1)×(p−1) ,
are free.

5.1 Computing IIIp

With the right hand side of Equation (18), the prior density in Equation (17) can be written
as,

f(Ω | G) ∝ |ωpp|α exp (−vppωpp/2) 1l(ωpp > 0)

× exp

(
−1

2

[
ωTrp V(p−1)×(p−1) ω

−1
pp ω rp + 2vTrpω rp]) 1l

[
ωnb(p)rp 6= 0

]
× |Ω̃(p−1)×(p−1)|α exp

(
−1

2
tr
[
V(p−1)×(p−1)Ω̃(p−1)×(p−1)

])
19



Bhadra et al.

× 1l
[
Ω̃(p−1)×(p−1) + ω rp ω−1pp ωTrp ∈M+

(
G(p−1)×(p−1)

) ]
. (19)

From the above, the conditional prior f
(
ω
nb(p)rp , ωpp | G

)
can be written as,

f
(
ωnb(p)rp , ωpp | G

)
= N

(
ωnb(p)rp ∣∣∣−Uvnb(p)rp , U

)
×Gamma (ωpp | α+ |nb(p)|/2 + 1, vpp/2) ,

(20)

where, U =
[
ω−1pp V

nb(p)
(p−1)×(p−1)

]−1
. Given G, all entries in ω

nbc(p)rp are zero and their

contribution to the conditional prior density is a product of point masses at zero. If
nb(p) = φ, then the normal density in Equation (20) evaluates to 1. It is implicit that
we write ω rp for the sake of completeness while using Schur formula for the prior and
the posterior; whereas, both the prior and the posterior are non-degenerate only for the

parameters ω
nb(p)rp , given G. Thus, evaluation of IIIp is precisely the evaluation of this

product of normal and gamma densities at the chosen
(
ω∗rp nb(p) , ω∗pp).

5.2 Computing IVp

Using Schur formula, |Ω| = |Ω(p−1)×(p−1)||ωpp−ωTrpΩ−1(p−1)×(p−1)ω rp|, and the decomposition

of the matrices S, V, G defined earlier, we write the posterior in the case of G-Wishart
along the lines of Equation (7) as follows:

f(Ω | y, G) ∝ f(y | Ω, G)f(Ω | G) ∝ |Ω|n/2 exp{−(1/2)tr(SΩ)}f(Ω | G)

∝ |ωpp−ωTrpΩ−1(p−1)×(p−1)ω rp|n/2 ∣∣Ω(p−1)×(p−1)
∣∣n/2 exp

(
−1

2

[
2sTrpω rp + sppωpp + tr

(
S(p−1)×(p−1)Ω(p−1)×(p−1)

)])
×|ωpp−ωTrpΩ−1(p−1)×(p−1)ω rp|α ∣∣Ω(p−1)×(p−1)

∣∣α exp

(
−1

2

[
2vTrpω rp + vppωpp + tr

(
V(p−1)×(p−1)Ω(p−1)×(p−1)

)])
×1l
(
Ω(p−1)×(p−1) ∈M+

(
G(p−1)×(p−1)

))
× 1l(ωpp − ωTrpΩ−1(p−1)×(p−1)ω rp > 0). (21)

One can again use the reparemeterization of Wang (2012) as in Section 3.2 for the Wishart
case, except there is now conditioning on G, similar to the calculations for IIIp in Section 5.1.
The detailed calculations are presented in Supplementary Section S.3.

5.3 Computing IIIp−1, . . . , III1 and IVp−1, . . . , IV1

These follow analogously to the Wishart case, conditional on G, with details in Supplementary
Sections S.4 and S.5.

5.4 Numerical Experiments on G-Wishart

We generate a symmetric G with upper-diagonal entries from Bernoulli(0.5) and fix the
scale matrix, V = pIp. For estimating evidence under G-Wishart, there exists a customized
Monte Carlo method by Atay-Kayis and Massam (2005), implemented via the function
gnorm() in the R package BDgraph by Mohammadi and Wit (2019), which is considered
the gold standard. We use this method with 1.2× 104 Monte Carlo samples. Though the
function gnorm() does not perform a maximal clique decomposition, it is sufficiently fast
(see Supplementary Table S.4); and is a reasonable default choice without a prior knowledge
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for the clique structure of the graph. Like in the case of Wishart (Section 3.6), to achieve an
upper bound of 2× 10−3 for the coefficient of variation of our resultant estimate, we draw
M = 104 MCMC samples (after a burn-in of 2000) at every step of the telescoping sum.
We also compare with generic methods for evidence calculations from the previous sections.
Mean (sd) of the resulting estimates are summarized in Table 4. Our method gives results
very close to Atay-Kayis and Massam (2005), with comparable standard errors, although we
note that the method of Atay-Kayis and Massam (2005) failed to yield finite estimates at
p = 100 and 125 under these settings. Of course, the method of Atay-Kayis and Massam
(2005) is specific to G-Wishart and cannot be used, for example, in the case of element-wise
priors, unlike our method. We note here although there exist theoretically exact formulas
for calculating evidence under G-Wishart (Uhler et al., 2018), we have been unable to use
them in any reasonably complicated graphs, and defaulted to using Atay-Kayis and Massam
(2005) as the main competitor.

Dimension and Parameters Proposed AKM AIS Nested HM

(p = 5, α = 2, n = 10) -83 (0.04) -82.97 (0.006) -84.42 (0.13) -83.03 (0.19) -81.23 (0.8)
(p = 10, α = 3, n = 20) -313.68 (0.21) -312.85 (0.04) -313.42 (2.19) -316.76 (1.9) -306.29 (1.27)
(p = 15, α = 5, n = 30) -623.78 (0.57) -621.75 (0.12) -717.57 (3.95) -640.75 (3.24) -605.71 (1.6)
(p = 25, α = 10, n = 50) -1725.67 (0.67) -1723.19 (0.87) −∞ −∞ -1651.93 (3.17)
(p = 30, α = 20, n = 60) -2170.26 (0.21) -2167.51 (0.53) −∞ −∞ -2096.1 (2.77)
(p = 40, α = 25, n = 80) -3951.91 (0.38) -3949.03 (1.37) −∞ −∞ -3807.85 (2.63)
(p = 50, α = 15, n = 100) -7858.41 (1.52) -7895.22 (5.73) −∞ −∞ -7478.16 (8.51)
(p = 100, α = 50, n = 200) -27155.15 (3.01) −∞ −∞ −∞ -25953.92 (22.54)
(p = 125, α = 50, n = 250) -45817.22 (4.83) −∞ −∞ −∞ -43589.67 (20.13)

Table 4: (Non-decomposable G, with gij ∼ Bernoulli(0.5)). Mean (sd) of estimated log
marginal under G-Wishart for the proposed approach, AKM (Atay-Kayis and Massam,
2005), AIS (Neal, 2001), nested sampling (Skilling, 2006) and HM estimates (Newton and
Raftery, 1994). Computation times for all competing procedures is given in Supplementary
Table S.4.

For the sake of completeness, we also provide results for decomposable G, when the
true marginal is known (Equation (45) of Dawid and Lauritzen, 1993), providing another
oracle to validate our results. We work with a tri-diagonal G and set V = pIp. Table 5
summarizes the results. While results from our approach and AKM are competitive in
smaller dimensions, the proposed method results in both lower bias and lower variance than
AKM in larger dimensions of p = 40 and p = 50 for this setting. The AKM approach again
failed to yield finite estimates at p = 100 and 125 under these settings.

6. Applications

6.1 Hyperparameter Tuning via Maximum Marginal Likelihood and Bayes
Factors

Figure 2 presents the log marginal likelihood estimate against the tuning parameter λ under
the BGL and GHS priors of Section 4, up to an additive absolute constant not depending
on λ. Data are generated using λ = λ0 = 2 with p = 10 and n = 150 under both priors. The
maximum marginal likelihood estimate (MMLE) of λ is denoted by λmax. We obtain for
BGL, λmax = 1.91, whereas for GHS, λmax = 2.14. The estimates, along with the curvature
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Dimension and Parameters Truth Proposed AKM AIS Nested HM

(p = 5, α = 2, n = 10) -61.15 -61.23 (0.00) -61.15 (0.002) -62.03 (0.31) -61.14 (0.06) -60.64 (0.21)
(p = 10, α = 3, n = 20) -279.57 -279.75 (0.03) -279.56 (0.02) -311.59 (2.23) -279.99 (1.01) -276.12 (1.12)
(p = 15, α = 5, n = 30) -715.8 -715.89 (0.01) -715.86 (0.14) −∞ -723.33 (2.55) -706.35 (0.97)
(p = 25, α = 10, n = 50) -1913.25 -1913.36 (0.01) -1913.54 (0.32) −∞ −∞ -1897.61 (1.74)
(p = 30, α = 20, n = 60) -2334.17 -2334.23 (0.01) -2334.73 (0.38) −∞ −∞ -2317.71 (2.02)
(p = 40, α = 25, n = 80) -4061.4 -4061.37 (0.05) -4063.61 (1.19) −∞ −∞ -4026.15 (2.59)
(p = 50, α = 15, n = 100) -8226.84 -8226.95 (0.02) -8248.24 (2.09) −∞ −∞ -8163.91 (1.67)
(p = 100, α = 50, n = 200) -28097.74 -28097.85 (0.02) −∞ −∞ −∞ -28029.51 (1.96)
(p = 125, α = 50, n = 250) -47298.44 -47298.5 (0.04) −∞ −∞ −∞ -47178.69 (3.23)

Table 5: (Decomposable banded tri-diagonal G). Mean (sd) of estimated log marginal under
G-Wishart for the proposed approach, AKM (Atay-Kayis and Massam, 2005), AIS (Neal,
2001), nested sampling (Skilling, 2006) and HM estimates (Newton and Raftery, 1994).
Computation times of the competing approaches are similar to as reported in Supplementary
Table S.5.

λ 0.05 1 2 (= λ0) 3 4 5

log BF
BGL 138.84 7.86 0.18 4.98 13.9 24.34
GHS 115.31 7.89 0.12 1.79 3.63 12.83

Table 6: Logarithm of Bayes factors. True λ = λ0 = 2.

of the likelihood surface, indicate this parameter is well identified. This is corroborated
by the log Bayes factors presented in Table 6, indicating departures from true λ in either
direction are sharply penalized. We remark that the optimality properties of the MMLE of
λ under the horseshoe prior has been studied in linear regression models (van der Pas et al.,
2017), but similar results have been hitherto unavailable for the GHS, due to a lack of a
feasible algorithm for computing the MMLE in graphical models.
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Figure 2: Log marginal likelihood vs. λ under (a) BGL and (b) GHS.

6.2 Data Applications

We consider two applications of the proposed method on real data: the first is an inference
on cell signaling network with a classical single cell flow cytometry data with a relatively
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modest dimension of p = 11, and the second is an inference of protein–protein interaction
network using state-of-the-art proteomics data with a larger dimension of p = 50.

6.2.1 Applications to Single Cell Flow Cytometry Data

We use the single cell flow cytometry data of Sachs et al. (2005) on p = 11 proteins for
n = 300 randomly chosen human immune system cells. Using this data, Sachs et al. (2005)
derived a causal cellular signaling network. Friedman et al. (2008) and Wang (2012) used
the data to infer undirected signaling networks using the frequentist and Bayesian graphical
lasso respectively. Some other works that used the data set for graph structure learning
include Peterson et al. (2015); Hauser and Bühlmann (2015) and Castelletti and Consonni
(2019). However, a marginal likelihood estimate under a GGM and the framework of
element-wise priors for this data set has been unavailable so far, which we present. In order
to achieve common grounds with previously developed approaches, we also present out of
sample prediction results.

We split the data into training and test sets, ytrain and ytest, each with 150 data points.
Using the training set, we estimate the precision matrix Ω∗ using (a) the frequentist graphical
lasso implemented in the R-package ‘glasso’ (Friedman et al., 2018) using 5-fold cross
validation (b) using the MMLE estimate of λ on ytrain under the Bayesian graphical lasso and
considering Ω∗ at λmax as the estimate and (c) similarly using MMLE under the graphical
horseshoe.

We use out of sample partial prediction loss: {
∑p

j=1 ||yj +
∑

k∈{1,...,p}\j ykω
∗
jk/ω

∗
jj ||2}1/2 ,

computed on the test data, and fitted likelihood on the training data, to compare the
estimates, where || · ||2 denotes the squared `2 norm and Ω∗ = {ω∗jk}. These results are
presented in Table 7, and indicate much higher likelihood on the training set when λ is tuned
via MMLE, and similar out of sample prediction performances with the frequentist glasso
tuned via cross validation, which is optimized for minimizing prediction loss (Efron, 2004).

Cytometry data glasso BGL GHS

λmax 0.005 0.26 0.23
Prediction loss 20.52 20.63 20.5

log f(ytrain | λmax) NA -949.21 -936.91
log f(ytrain | Ω∗, λmax) -803.09 -769.33 -769.01

Table 7: Comparison of prediction norm on ytest, using Ω∗ obtained via 5-fold cross validation
for the frequentist glasso; and BGL and GHS tuned via MMLE. The log marginal likelihood
at λmax for BGL, GHS and the log of data likelihood at (Ω∗, λmax) for all methods are also
given.

6.2.2 Applications to Proteomics Data

We use proteomics data measured using Reverse Phase Protein Array (RPPA) technology
of a subset of patients with lung squamous cell carcinoma (TCGA, 2012, 2014; Campbell
et al., 2016), which is further streamlined and processed by Ha et al. (2018). We consider
the protein expression data of p = 50 proteins of 250 randomly chosen patients, split into
training and test sets, ytrain and ytest, each with 125 data points. Like in Section 6.2.1,
we estimate the precision matrix Ω∗ using the frequentist graphical lasso and using the
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MMLE estimate of λ under the Bayesian graphical lasso and graphical horseshoe priors. We
compare the resultant estimates in Table 8, in terms of out of sample prediction loss and
the log likelihood of training data at Ω∗. In these results, we observe significantly higher
likelihood on the training set and a smaller prediction loss, when λ is tuned via MMLE.

Proteomics data glasso BGL GHS

λmax 0.006 0.138 0.109
Prediction loss 548.91 46.51 44.22

log f(ytrain | λmax) NA -1782.31 -1988.83
log f(ytrain | Ω∗, λmax) -25090.7 -930.15 -985.67

Table 8: Comparison of prediction norm on ytest, using Ω∗ obtained via 5-fold cross validation
for the frequentist glasso; and BGL and GHS tuned via MMLE. The log marginal likelihood
at λmax for BGL, GHS and the log of data likelihood at (Ω∗, λmax) for all methods are also
given.

6.3 A Fast Column-wise Sampler for G-Wishart

Although our main purpose in Equation (20) is prior evaluation, using the same equation
a column-wise sampler for G-Wishart is possible, which appears to have been unnoticed
in the literature. The main advantage is a maximal clique decomposition is not required,
which is known to be NP hard for a general graph. The details are presented in Algorithm
2. We use W−j,−j to denote the matrix obtained by removing the jth row and column from
the matrix W. Similarly, we denote the jth column of the matrices W and the scale matrix
V as Wj and Vj respectively. Diagonal elements of the scale matrix V and the matrix W
are denoted by vjj and wjj respectively.

Algorithm 2 A column-wise sampler for GWG(V, α)

Input: V, G, α, M .
Output: MCMC samples Ω(1), . . . ,Ω(M).

Initialize W such that W ∈M+(G).
for (i =1,. . . ,M) do

for (j=1,. . . , p) do

Sample W
nb(j)
j ∼ N

(
−CV

nb(j)
j , C

)
, where C−1 = vjj ×

[
W−1
−j,−j

]nb(j)
.

Sample γ ∼ Gamma(α+ 1, vjj/2).
Update wjj = γ + WT

j W−1
−j,−jWj .

end for
Save Ω(i) = W.

end for

To validate the proposed column-wise sampler, we compare the sample mean (Ω∗)
obtained using Algorithm 2 and the direct sampler proposed by Lenkoski (2013), which
remains one of the most popular approaches for sampling from G-Wishart. We use the same
4-cycle graph as Lenkoski (2013), which is the smallest non-decomposable graph. Specifically,
it is an undirected graph with four nodes with the edges (1, 4) and (2, 3) missing. The values
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of α,V and G are as presented in Section 4.1 of Lenkoski (2013). We use 1× 105 MCMC
samples, with a burn-in sample size of 5× 104. Lenkoski (2013) used 10 million iterations
for his direct sampler. The results are:

Ω∗ (Algorithm 2) =


0.7714 0.082 −0.0517 0
0.082 1.1482 0 0.1506
−0.0517 0 0.9042 −0.0857

0 0.1506 −0.0857 0.8932

 , Ω∗ (Lenkoski, 2013) =


0.7788 0.0826 −0.0516 0
0.0826 1.1593 0 0.1527
−0.0516 0 0.9122 −0.0863

0 0.1527 −0.0863 0.9024

 .
We observe the sample means are nearly identical. Similar verification is performed up to
p = 50, with α = 1, V = (2α+ max

j
nb(j))Ip and with upper-diagonal entries of G generated

from Bernoulli(0.5). The implementation in the R package BDgraph by Mohammadi and Wit
(2019) is used to sample Ω according to Lenkoski (2013). The direct sampler of Lenkoski
(2013) includes a tolerance parameter, which at low values demonstrates faster speed, but
quite often leads to non-zero entries in samples of Ω even though the corresponding entry
in G is zero. Though such entries can be truncated to 0 based on the input tolerance, our
proposed procedure requires no such post-hoc adjustment. The computational times to
generate 1 × 105 samples in both the methods and the Frobenius norm of sample mean
differences are given in Table 9. It can be seen that the proposed sampler for G-Wishart in
Algorithm 2 is ∼ 7− 8x faster than the direct sampler at a tolerance of 10−8 and is ∼ 3x
faster at a tolerance of 10−3 at comparable statistical accuracy. Similar comparisons with
banded tri-diagonal G is in Table 10, where the proposed sampler is ∼ 13− 15x faster than
the direct sampler at a tolerance of 10−8 and is ∼ 5x faster at a tolerance of 10−3.

Time (s) ||Ω∗
Alg. 2 −Ω∗

Direct||F
Dimension Algorithm 2 Direct (tol = 10−8) Direct (tol = 10−3) (tol = 10−8) (tol = 10−3)

p = 5 0.46 2.64 2.12 0.02 0.02
p = 10 1.78 8.13 4.15 0.03 0.03
p = 20 6.15 40.47 17.06 0.12 0.12
p = 30 16.05 120.07 41.00 0.21 0.21
p = 50 51.22 465.93 151.82 0.43 0.43

Table 9: Computational times to generate 105 samples of Ω using Algorithm 2 and the
direct sampler (Lenkoski, 2013) with tolerances∈ {10−8, 10−3}, implemented as rgwish()

in the R package BDgraph (Mohammadi and Wit, 2019). Parameter settings: α = 1,
V = (2α + max

j
nb(j))Ip and upper-diagonal entries of G generated from Bernoulli(0.5).

Frobenius norm of the difference of sample means against Lenkoski is also presented.

6.4 Applications to Non-Gaussian Likelihoods that Admit a Gaussian Scale
Mixture Representation

In this section we demonstrate another promising application of the procedure in computing
evidence under non-Gaussian likelihoods that admit a multivariate Gaussian mixture
representation. As an example, consider the multivariate t distribution with ν degrees of
freedom, which has a well known representation as a mixture of multivariate Gaussian, in
that y ∼ tν(0, In⊗Ω−1) is equivalent to y | τ ∼ N (0, τ−1In⊗Ω−1), τ ∼ Gamma(ν/2, ν/2).
Standard calculations show the full conditional posterior of (τ | Ω, y) in this model is
also gamma distributed, and hence τ can be easily sampled in the posterior via a Gibbs
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Time (s) ||Ω∗
Alg. 2 −Ω∗

Direct||F
Dimension Algorithm 2 Direct (tol = 10−8) Direct (tol = 10−3) (tol = 10−8) (tol = 10−3)

p = 5 0.4 2.61 2.11 0.01 0.01
p = 10 1.36 8.45 4.55 0.02 0.01
p = 20 3.7 34.61 14.19 0.03 0.03
p = 30 7.51 90.98 34.63 0.03 0.03
p = 50 24.58 354.71 111.25 0.05 0.05

Table 10: Computational times to generate 105 samples of Ω using the proposed Algorithm 2
and the direct sampler (Lenkoski, 2013) with tolerances∈ {10−8, 10−3}, implemented as
rgwish() in the R package BDgraph (Mohammadi and Wit, 2019). Parameter settings:
α = 1, V = (2α+ max

j
nb(j))Ip and banded tri-diagonal G. Frobenius norm of the difference

of sample means against Lenkoski is also presented.

step. Thus, absorbing the latent τ in the likelihood to the set of already existing mixing
variables in our Chib-type procedure makes it possible to compute the evidence under this
model. We demonstrate the validity by computing the log marginal under the multivariate-t
likelihood with Bayesian graphical lasso and graphical horseshoe priors on the scale matrix
Ω in Table 11. It can be seen from Table 11 that at high values of ν, the estimates are close
to those in Tables 2 and 3 under GGM, although differences exist from GGM estimates
at low ν. This is reasonable as the multivariate t-distribution converges to a multivariate
Gaussian at large ν, but displays substantially different behavior (e.g., polynomial tails) at
low degrees of freedom.

We conclude this section by noting although we choose a multivariate-t model for
demonstration purposes, there is nothing specific to a multivariate-t in the procedure, so
long as a mixture representation with respect to the multivariate Gaussian exists, and the
mixing variable is easy to sample in the posterior. Similar to Gaussian scale mixture priors,
the class of non-Gaussian likelihoods that can be represented as a mixture of multivariate
Gaussian likelihood is very broad. Some specific examples include the nonparanormal (Liu
et al., 2009), the models considered by Bhadra et al. (2018), the Dirichlet and alternative
multivariate-t (Finegold and Drton, 2011, 2014), among others.

7. Concluding Remarks

Our main contribution in this paper is a general procedure based on a novel telescoping
block decomposition of the precision matrix for computing the marginal likelihood under a
fairly wide variety of priors in a GGM. The algorithm, being based on Chib’s procedure,
is automatic in the sense that it does not require an explicit choice for an importance
density, which is notoriously hard to design for GGMs. Empirically, our approach provides
numerically stable results in fairly large dimensions, in contrast to importance sampling based
and harmonic mean approaches that become unstable or badly biased in large dimensions,
sometimes failing to yield finite estimates. Some other competitors, such as bridge sampling,
are unavailable since there are no obvious approaches for choosing the required bridge
densities under a positive definite restriction. Thus, our procedure opens the door to
using marginal likelihood for model comparison and tuning parameter selection purposes,
a problem that has been hitherto considered intractable for GGMs apart from under very
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BGL
Dimension and Parameters ν = 5 ν = 10 ν = 104 Table 2

(p = 2, λ = 1, n = 5) -16.7 (0.02) -16.97 (0.01) -18.4 (0.004) -18.45
(p = 5, λ = 1, n = 10) -112.38 (0.17) -98.84 (0.2) -78.5 (0.02) -78.00
(p = 15, λ = 3, n = 30) -630.93 (1.95) -669.11 (1.55) -790.98 (0.65) -796.66
(p = 30, λ = 6, n = 60) -3273.7 (9.69) -3179.9 (11.02) 3069.5 (11.19) -3070.85

GHS
Dimension and Parameters ν = 5 ν = 10 ν = 104 Table 3

(p = 2, λ = 1, n = 5) -29.89 (0.04) -26.13 (0.02) -20.25 (0.01) -20.08
(p = 5, λ = 1, n = 10) -58.86 (0.5) -58.41 (0.42) -59.88 (0.18) -60.05
(p = 15, λ = 3, n = 30) -866.45 (1.6) -791.67 (1.76) -675.3 (0.98) -672.01
(p = 30, λ = 6, n = 60) -3775.01 (12.49) -3523.6 (14.11) -3153.48 (11.64) -3142.74

Table 11: Mean (sd) of estimated log marginal under the multivariate-t likelihood with the
priors Bayesian graphical lasso (BGL) and Graphical horseshoe (GHS) for the proposed
approach. The columns marked Tables 2 and 3 give the corresponding estimates under
GGM. Computation times for the proposed procedure is similar to the times presented in
Supplementary Table S.2 and Table S.3 for BGL and GHS priors respectively.

specific priors. As we pointed out earlier, the requirements are mild: the off-diagonal terms
in Ω are scale mixtures of normal and the diagonal terms are scale mixtures of gamma. This
includes several priors not considered explicitly in our work. Consider for example a slight
modification of the prior of Wang (2015), given by:

f(Ω) = C−1
∏

1≤i<j≤p
{(1− π)N (ωij | 0, aλ) + πN (ωij | 0, bλ)}

p∏
i=1

Exp(ωii | λ)1l(Ω ∈M+
p ),

for known constants a and b such that a is very close to zero and b� a. The main feature of
this prior is a two component discrete mixture, or the so called spike-and-slab prior, on the
off-diagonal terms to encourage sparsity in Ω. However, this poses no special difficulty for
our framework so long as the corresponding latent mixing variables can be sampled, following
Wang (2015). Other priors involving a two component discrete mixture include Gan et al.
(2019, 2022) and Shen and Deshpande (2022). Application of the technique developed in the
current paper appears feasible in all these instances and should be considered future work.
Similarly, although in Section 6.4 we demonstrate the use of the methodology for a specific
non-Gaussian likelihood that admits a Gaussian mixture representation (the multivariate-t),
application to models such as the nonparanormal (Liu et al., 2009) remains to be explored.
Moreover, combining these approaches suggests new possibilities in evidence computation
with very flexible Gaussian mixture priors in conjunction with very flexible Gaussian mixture
likelihood functions.

Although the main focus of this paper is on the calculation of evidence, as a consequence
of our calculations of the term III for G-Wishart, we have also designed a new sampler
for this distribution, as described in Section 6.3. Notable previous works in this direction
include Lenkoski (2013), who requires a maximal clique decomposition, and Wang and Li
(2012), who provide an edge-wise sampler. Maximal clique decomposition has a worst case
computational complexity that is known to be NP-hard for a general graph, but tends to
work well when there are few but large cliques. On the other extreme, Wang and Li (2012)’s
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sampler requires no clique decomposition and is expected to work well when there are several
isolated nodes or a large number of small cliques. Our algorithm lies somewhere in between:
it is neither clique-wise, nor edge-wise. Instead, it is more aptly termed column-wise. Thus,
we conjecture our method should be roughly agnostic to the connectivity of the graph and
its complexity should scale mainly as a function of the dimension p. However, detailed
investigation of this conjecture and comparing the relative pros and cons with the approaches
of Lenkoski (2013), Wang and Li (2012) or more recent developments such as van den Boom
et al. (2022) are beyond the scope of the current, densely packed article focusing on model
evidence.
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Supplementary Material to
Evidence Estimation in Gaussian Graphical Models Using
a Telescoping Block Decomposition of the Precision Matrix

S.1. Proof of Proposition 2

For p = 2, the only latent parameter is τ12 corresponding to ω12. We denote this by τ for the
sake of brevity. The domain of integration such that Ω ∈M+

2 is set in Equation (S.1) as:

Ω =

[
ω11 ω12

ω12 ω22

]
, such that ω12 ∈ R, ω22 ∈ R+ , ω11 ∈

(
ω2
12

ω22
,∞
)
, τ ∈ R+. (S.1)

The marginal is, f(y | λ) =
∫
f(y | Ω)f(Ω | τ, λ)f(τ | λ) dτ dΩ, where,

f(y | Ω) =

(
ω11ω22 − ω2

12

)n
2

(2π)n
exp

(
−1

2
(s11ω11 + 2s12ω12 + s22ω22)

)
,

f(Ω | τ, λ)f(τ | λ) =
C−1BGL√

2πτ
exp

(
−ω

2
12

2τ

)(
λ

2

)2

exp

(
−λ(ω11 + ω22)

2

)
λ2

2
exp

(
−λ

2τ

2

)
.

Define ω̃11 = (ω11 − ω2
12/ω22). Then,

f(y | λ) =

∫
f(y | Ω)f(Ω | τ, λ)f(τ | λ) dτ dΩ

= C−1BGL

(
1

2π

)n+ 1
2 λ2

4

∫
ω̃
n
2
11√
τ

exp

(
−(λ+ s11)ω̃11

2

)
exp

(
−s12ω12 −

ω2
12

2τ
− (λ+ s11)ω

2
12

2ω22

)
× ω

n
2
22 exp

(
−(λ+ s22)ω22

2

)
f(τ | λ)dω̃11 dω12 dω22 dτ

= C−1BGL

λ2Γ
(
n
2 + 1

)
2
n+3
2 πn+

1
2 (λ+ s11)

n
2
+1

∫
1√
τ

exp

(
−s12ω12 −

ω2
12

2τ
− (λ+ s11)ω

2
12

2ω22

)
× ω

n
2
22 exp

(
−(λ+ s22)ω22

2

)
f(τ | λ)dω12 dω22 dτ

= C−1BGL

λ2Γ
(
n
2 + 1

)
2
n
2
+1πn(λ+ s11)

n
2
+1

∫
ω
n
2
22 exp

(
−(λ+ s22)ω22

2

)
f(τ | λ)

(
1

τ
+
λ+ s11
ω22

)− 1
2

× exp

(
1

2
s212

(
1

τ
+
λ+ s11
ω22

)−1) 1√
τ
dτ dω22

= C−1BGL

λ4Γ
(
n
2 + 1

)
2
n+4
2 πn(λ+ s11)

n
2
+1

∫ ω22
λ+s11

0
z−

3
2 exp

(
ω22

2

[
λ2 + s212
λ+ s11

])
exp

(
−λ

2

2

(
ω22

λ+ s11

)2 1

z
− s212z

2

)

×
∫
ω
n+3
2

22 exp

(
−(λ+ s22)ω22

2

)
dz dω22 (setting

1

τ
+
λ+ s11
ω22

=
1

m
,

ω22

λ+ s11
−m = z)
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= C−1BGL

λ3Γ
(
n
2 + 1

)
2
n+3
2 πn−

1
2

∫ (
ω22

λ+ s11

)n+1
2

exp

−
[
(λ+ s11)(λ+ s22)− (λ− |s12|)2

]
2

(
ω22

λ+ s11

)
× F

(
ω22

λ+ s11

)
1

λ+ s11
dω22 (F (·) is CDF of inverse-Gaussian, evaluated at ω22/(λ+ s11)).

Substituting t = ω22(λ+ s11)
−1 and rearranging the constants, we get the desired marginal

as:

f(y | λ) = C−1BGL

λ3Γ
(
n
2 + 1

)
Γ
(
n+3
2

)
πn−

1
2

[
(λ+ s11)(λ+ s22)− (λ− |s12|)2

](n+3)/2
Et (F (t)) ,

where,

t ∼ Gamma

(
shape =

n+ 3

2
, rate =

(λ+ s11)(λ+ s22)− (λ− |s12|)2

2

)
and,

F (t) = Φ

[
λt1/2

(
|s12|
λ
− 1

)]
+ exp (2λ|s12|t) Φ

[
− λt1/2

(
|s12|
λ

+ 1

)]
.

The constant CBGL is:

CBGL =

∫
1√
2πτ

exp

(
−ω

2
12

2τ

)(
λ

2

)2

exp

(
−λ

2
(ω11 + ω22)

)
f(τ | λ)dω12 dω11 dω22 dτ.

We write ω̃11 = ω11 − ω2
12/ω22 and integrate over ω̃11. Similarly, multiplying and dividing

with (1/τ + λ/ω22)
− 1

2 , we integrate over ω12. We are left to evaluate:

CBGL =

∫
1√
τ

(
1

τ
+

λ

ω22

)−1/2(λ
2

)
exp

(
−λ

2
ω22

)
λ2

2
exp

(
−λ

2τ

2

)
dω22 dτ.

Substituting 1/τ + λ/ω22 = 1/m and ω22/λ−m = z, the above integral reduces to,

CBGL =
λ3/2

22

∫
ω
3/2
22 exp(−λω22/2)

z3/2
exp

(
−ω

2
22

2z

)
exp(λω22/2) dω22 dz.

Finally substituting z−1 = 2y/ω2
22 and λω22/2 = x, yields,

CBGL =

∫ ∞
0

√
x

∫ ∞
x

y−1/2 exp(−y)dydx ≈ 0.67.

S.2. Proof of Proposition 3

As in the proof of Proposition 2, we first derive the marginal, f(y | λ), followed by the
constant CGHS. We use the normal scale mixture representation ωij | τij , λ ∼ N (0, τ2ij/λ

2)
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and τij ∼ C+(0, 1), for the horseshoe prior. For p = 2, we have τ12 as the only latent scale
parameter, and denote it as τ . We use the fact that if τ2 | a ∼ InverseGamma(1/2, 1/a) and
a ∼ InverseGamma(1/2, 1) then marginally τ ∼ C+(0, 1) (Makalic and Schmidt, 2016). The
marginal is f(y | Ω) =

∫
f(y | Ω)f(Ω | τ, λ)f(τ | ν, λ)f(ν | λ) dν dτ dΩ where,

f(y | Ω) =

(
ω11ω22 − ω2

12

)n
2

(2π)n
exp

(
−1

2
(s11ω11 + 2s12ω12 + s22ω22)

)
,

f(Ω | τ, λ) =
λC(τ, λ)−1

τ
√

2π
exp

(
−λ

2ω2
12

2τ2

)(
λ

2

)2

exp

(
−λ(ω11 + ω22)

2

)
,

f(τ | ν, λ)f(ν | λ) =
2C(τ, λ)C−1GHS

τ2
√
πν

exp

(
− 1

ντ2

)
1

ν
√
πν

exp

(
−1

ν

)
.

The domain of integration such that Ω ∈ M+
2 is as mentioned in Equation (S.1). Define

ω̃11 = (ω11 − ω2
12/ω22). Then,

f(y | λ) =

∫
f(y | Ω)f(Ω | τ, λ)f(τ | ν, λ)f(ν | λ) dν dτ dΩ

= C−1GHS

(
1

2π

)n+ 1
2 λ3

4

∫
ω̃
n
2
11

τ
exp

(
−(λ+ s11)ω̃11

2

)
exp

(
−s12ω12 −

λ2ω2
12

2τ2
− (λ+ s11)ω

2
12

2ω22

)
× ω

n
2
22 exp

(
−(λ+ s22)ω22

2

)
f(τ | ν, λ)f(ν | λ) dν dτ dω̃11 dω12 dω22

= C−1GHS

λ3Γ
(
n
2 + 1

)
2
n+3
2 πn+

1
2 (λ+ s11)

n
2
+1

∫
1

τ
exp

(
−s12ω12 −

λ2ω2
12

2τ2
− (λ+ s11)ω

2
12

2ω22

)
× ω

n
2
22 exp

(
−(λ+ s22)ω22

2

)
f(τ | ν, λ)f(ν | λ) dν dτ dω12 dω22

= C−1GHS

λ3Γ
(
n
2 + 1

)
2
n
2
+1πn(λ+ s11)

n
2
+1

∫
ω
n
2
22 exp

(
−(λ+ s22)ω22

2

)
f(τ | ν, λ)

τ

(
λ2

τ2
+
λ+ s11
ω22

)− 1
2

× exp

(
1

2
s212

(
λ2

τ2
+
λ+ s11
ω22

)−1)
f(ν | λ)dτ dν dω22

= C−1GHS

λΓ
(
n
2 + 1

)
2
n
2
+1πn+1(λ+ s11)

n
2
+1

∫ ω22
λ+s11

0
exp

(
ms212

2

)
m−

3
2

∫ ∞
0

1

ν2
exp

(
−1

ν

(
1

mλ2
− λ+ s11

λ2ω22
+ 1

))
×
∫
ω
n
2
22 exp

(
−(λ+ s22)ω22

2

)
dν dmdω22 (setting

λ2

τ2
+
λ+ s11
ω22

=
1

m
)

= C−1GHS

λΓ
(
n
2 + 1

)
2
n
2
+1πn+1(λ+ s11)

n
2
+1

∫ ω22
λ+s11

0
exp

(
ms212

2

)
m−

1
2

(
m+

ω22 −m(λ+ s11)

λ2ω22

)−1
×
∫
ω
n
2
22 exp

(
−(λ+ s22)ω22

2

)
dmdω22.
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Substituting t = ω22 and rearranging the constants, we get the desired marginal as:

f(y | λ) = C−1GHS

λΓ
(
n
2 + 1

)
Γ
(
n
2 + 1

)
πn+

1
2

[
(λ+ s11)(λ+ s22)

]n
2
+1

Et (F (t)) ,

where,

t ∼ Gamma

(
shape =

n

2
+ 1, rate =

λ+ s22
2

)
and,

F (t) =

∫ t
λ+s11

0
exp

(
ms212

2

)
m−1/2

(
m+

t−m(λ+ s11)

λ2t

)−1
dm.

The constant CGHS is:

CGHS =

∫
λ

τ
√

2π
exp

(
−λ

2ω2
12

2τ2

)(
λ

2

)2

exp

(
−λ

2
(ω11 + ω22)

)
f(τ | λ)dω12 dω11 dω22 dτ,

where, f(τ | λ) = (2/π)(1 + τ2)−1. Write ω̃11 = ω11 − ω2
12/ω22 and integrate over ω̃11.

Similarly, multiply and divide by (1/τ + λ/ω22)
− 1

2 , and integrate over ω12. We are left to
evaluate:

CGHS =
1

πλ

∫ √
ω22

ω22 + λτ2

(
1

1 + τ2

)
exp

(
−λω22

2

)
dτ dω22.

Substituting ω22/λ = m, we get:

CGHS = E(τ,m)

(√
m

m+ τ2

)
where τ ∼ C+(0, 1), m ∼ exp(1/2) and τ ⊥ m.

Monte Carlo evaluation of the above expectation gives, CGHS ≈ 0.64.

S.3. Computing IVp for G-Wishart

With change of variables,

βnb(p)rp = ωnb(p)rp and γpp = ωpp−ωTrpΩ−1(p−1)×(p−1)ω rp = ωpp−ωnb(p)rp T
[
Ω−1(p−1)×(p−1)

]nb(p)
ωnb(p)rp ,

the Jacobian of transformation
(
ω
nb(p)rp , ωpp

)
7→
(
β
nb(p)rp , γpp

)
equals 1. Thus, the density

of the induced conditional posterior (β
nb(p)rp , γpp | rest) can be written as,

f
(
βnb(p)rp , γpp | Ω(p−1)×(p−1), y, G

)
= N

(
βnb(p)rp ∣∣∣−C

{
snb(p)rp + vnb(p)rp }

, C
)

×Gamma (γpp | α+ n/2 + 1, (spp + vpp)/2) , (S.2)

where C =

[
(spp + vpp)

[
Ω−1(p−1)×(p−1)

]nb(p)]−1
. Thus, analogous to Equation (8), we have

Equation (S.2) which can be used to sample from the posterior of (Ω | y, G) via a Gibbs
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sampler, by cycling over all p columns and f̂
([
ω∗rp]nb(p) | y, G

)
can be evaluated analogous

to Equation (9) as,

f̂

([
ω∗rp]nb(p) | y, G

)
= M−1

M∑
i=1

N
([
ω∗rp]nb(p) ∣∣∣∣−C(i)

[
snb(p)rp + vnb(p)rp ]

, C(i)

)
, (S.3)

where C(i) is the ith MCMC sample of C defined in Equation (S.2) and
[
ω∗rp]nb(p) is a

summary statistic (we use the sample average) based on the same MCMC runs. As in Wishart,
we need a second restricted sampler which samples entries of Ω, with non-zero entries in

ω rp fixed at
[
ω∗rp]nb(p). This second sampler is used to evaluate f̂

(
ω∗pp

∣∣∣ [ω∗rp]nb(p) , y, G
)

.

Using Schur formula |Ω| = |ωpp||Ω̃(p−1)×(p−1)| and the right hand side in Equation (18), we
can write the induced conditional posterior,

f

(
Ω̃(p−1)×(p−1)

∣∣∣∣ [ω∗rp]nb(p) , ωpp, y, G

)
∝ |Ω̃(p−1)×(p−1)|α+n/2 exp

(
−1

2
tr
([

S(p−1)×(p−1) + V(p−1)×(p−1)

]
Ω̃(p−1)×(p−1)

))
× 1l

[
Ω̃(p−1)×(p−1) +

[
ω∗rp]nb(p) ω−1pp [ω∗rp]nb(p)T ∈M+

(
G(p−1)×(p−1)

) ]
.

Again using the Schur formula,

|Ω̃(p−1)×(p−1)| = |Ω̃(p−2)×(p−2)||ω̃(p−1)(p−1) − ω̃Tr(p−1)Ω̃−1(p−2)×(p−2)ω̃ r(p−1)|,
and letting β̃ r(p−1) = ω̃ r(p−1) , γ̃(p−1)(p−1) = ω̃(p−1)(p−1) − ω̃Tr(p−1)Ω̃−1(p−2)×(p−2)ω̃ r(p−1) , the

conditional posterior of (β̃ r(p−1), γ̃(p−1)(p−1) | rest) can be derived analogous to Equa-

tion (S.2) as,

f(β̃ r(p−1), γ̃(p−1)(p−1) | rest) ∝ |γ̃(p−1)(p−1)|α+n/2

× exp

(
− 1

2

[
2
(
s r(p−1) + v r(p−1) ) β̃ r(p−1) + (s(p−1)(p−1) + v(p−1)(p−1))γ̃(p−1)(p−1)

+ (s(p−1)(p−1) + v(p−1)(p−1))β̃
Tr(p−1)Ω̃−1(p−2)×(p−2)β̃ r(p−1)])

× 1l
(
γ̃(p−1)(p−1) > 0

)
× 1l

(
β̃
nb(p−1)\{p}r(p−1) 6= 0

)
. (S.4)

We pause to make a few important observations.

(i) nb(p− 1)\{p} denotes the set of neighbors of the node (p− 1) excluding the node p,
as encoded by the adjacency matrix G.

(ii) It is implicit that entries in β̃
nbc(p−1)\{p}r(p−1) are fixed. This follows from Remark 7. In

the context of the above density, this yields

β̃
nbc(p−1)\{p}r(p−1) = −

[[
ω∗rp]nb(p) ω−1pp [ω∗rp]nb(p)T

]nbc(p−1)\{p}
r(p−1) .
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(iii) β̃ r(p−1) =
[
β̃
nb(p−1)\{p}r(p−1) , β̃

nbc(p−1)\{p}r(p−1) ]T
and only the entries of β̃

nb(p−1)\{p}r(p−1) are free

to be sampled.

Armed with these observations, the density f
(
β̃
nb(p−1)\{p}r(p−1) , γ̃(p−1)(p−1) | rest

)
from Equa-

tion (S.4) can be written as,

f

(
β̃
nb(p−1)\{p}r(p−1) , γ̃(p−1)(p−1) | rest

)
= N

(
β̃
nb(p−1)\{p}r(p−1) ∣∣∣∣−C̃ µ̃, C̃

)
×Gamma

(
γ̃(p−1)(p−1)

∣∣α+ n/2 + 1, (s(p−1)(p−1) + v(p−1)(p−1))/2
)
,

(S.5)

where,

µ̃ = s
nb(p−1)\{p}r(p−1) + v

nb(p−1)\{p}r(p−1) +
(
s(p−1)(p−1) + v(p−1)(p−1)

) [[
Ω̃
−1
(p−2)×(p−2)

]nbc(p−1)\{p}
× β̃

nbc(p−1)\{p}r(p−1) ]
,

C̃ =

[ (
s(p−1)(p−1) + v(p−1)(p−1)

) [
Ω̃
−1
(p−2)×(p−2)

]nb(p−1)\{p}]−1
.

Equation (S.5) can be used to sample from the posterior of(
Ω̃(p−1)×(p−1) |

[
ω∗rp]nb(p) , ωpp, y, G

)
via a block Gibbs sampler, by holding the

pth column fixed and cycling over the remaining (p − 1) columns. After updating
all the (p − 1) columns of Ω̃(p−1)×(p−1) we generate the jth MCMC sample from

f

(
Ω(p−1)×(p−1), ωpp |

[
ω∗rp]nb(p) , y

)
as,

Ω
(j)
(p−1)×(p−1) ← Ω̃

(j)

(p−1)×(p−1) + ω∗rpω∗Trp/ω(j−1)
pp ,

ω(j)
pp | ω∗rp , Ω

(j)
(p−1)×(p−1), y1:p ∼ Gamma

(
α+ n/2 + 1,

spp + vpp
2

)
+ ω∗Trp (Ω

(j)
(p−1)×(p−1)

)−1
ω∗rp.

Entries corresponding to nbc(p) in ω∗rp are zero (as restricted by G) and the non-zero

entries in ω∗rp are equal to
[
ω∗rp]nb(p). Thus, given G; ω∗rp and

[
ω∗rp]nb(p) can be used inter-

changeably. Hence approximating the value of f
(
ω∗pp |

[
ω∗rp]nb(p) , y, G

)
is straightforward

using Equation (11). With this approximation, along with Equation (S.3), we complete the
evaluation of IVp.

S.4. Computing IIIp−1, . . . , III1 for G-Wishart

Before generalizing about how to evaluate the term IIIj , j < p, we start with IIIp−1
and show that it can be evaluated as a product of a Gaussian and a generalized inverse
Gaussian (GIG) densities (see, e.g. Barndorff-Nielsen, 1977). This holds true for terms
IIIj , j ≤ p− 1 and the term III1 is evaluated as a gamma density. Writing the conditional
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prior f(Ω̃(p−1)×(p−1) | ω rp , ωpp, G) from Equation (19), we obtain:

f(Ω̃(p−1)×(p−1) | ω rp , ωpp, G) ∝ |Ω̃(p−1)×(p−1)|α exp

(
−1

2
tr
[
V(p−1)×(p−1)Ω̃(p−1)×(p−1)

])
×

1l
[
Ω̃(p−1)×(p−1) + ω rp ω−1pp ωTrp ∈M+

(
G(p−1)×(p−1)

) ]
.

Recalling the definition of Ω̃(p−1)×(p−1) from Equation (3) and using the Schur formula,

|Ω̃(p−1)×(p−1)| = |Ω̃(p−2)×(p−2) − ω̃ r(p−1) ω̃−1(p−1)(p−1) ω̃
Tr(p−1)||ω̃(p−1)(p−1)|,

the conditional prior can be written as,

f(Ω̃(p−1×(p−1)) | ω rp , ωpp, G) ∝ |ω̃(p−1)(p−1)|α|Ω̃(p−2)×(p−2) − ω̃ r(p−1) ω̃−1(p−1)(p−1) ω̃
Tr(p−1)|α

× exp

(
− 1

2

(
tr
[
V(p−2)×(p−2)Ω̃(p−2)×(p−2)

]
+ 2ω̃Tr(p−1)v r(p−1) + v(p−1)(p−1)ω̃(p−1)(p−1)

))
× 1l

[
Ω̃(p−1)×(p−1) + ω rp ω−1pp ωTrp ∈M+

(
G(p−1)×(p−1)

) ]
.

Following the update from Algorithm 1, Ω̃(p−2)×(p−2) ← Ω̃(p−2)×(p−2) −
ω̃ r(p−1) ω̃−1(p−1)(p−1) ω̃

Tr(p−1) , the conditional prior density of f(ω̃ r(p−1) , ω̃(p−1)(p−1) | rest)

can be obtained as,

f(ω̃ r(p−1) , ω̃(p−1)(p−1) | rest) ∝ |ω̃(p−1)(p−1)|α| × exp

(
− 1

2

(
2ω̃Tr(p−1)v r(p−1) + v(p−1)(p−1)ω̃(p−1)(p−1)

+ ω̃Tr(p−1) V(p−2)×(p−2) ω̃
−1
(p−1)(p−1) ω̃ r(p−1)))

× 1l
[
ω̃
nb(p−1)\{p}r(p−1) 6= 0

]
× 1l(ω̃(p−1)(p−1) > 0).

We make a few observations analogous to those following Equation (S.4).

(i) It is implicit that entries in ω̃
nbc(p−1)\{p}r(p−1) are fixed. In particular,

ω̃
nbc(p−1)\{p}r(p−1) = −

[
ω rp ω−1pp ω rpT ]nbc(p−1)\{p}r(p−1) .

(ii) ω̃ r(p−1) =
[
ω̃
nb(p−1)\{p}r(p−1) , ω̃

nbc(p−1)\{p}r(p−1) ]T
and to evaluate IIIp−1, we need the density

on the entries of ω̃
nb(p−1)\{p}r(p−1) .

With these, the conditional prior density of f
(
ω̃
nb(p−1)\{p}r(p−1) , ω̃(p−1)(p−1) | rest

)
can be written

as,

f
(
ω̃
nb(p−1)\{p}r(p−1) , ω̃(p−1)(p−1) | rest

)
= N

(
ω̃
nb(p−1)\{p}r(p−1) ∣∣∣−Ũζ̃, Ũ

)
×GIG

(
ω̃(p−1)(p−1) | a, b, q

)
.

(S.6)
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In Equation (S.6), GIG(x | a, b, q) denotes a generalized inverse Gaussian, with density
f(x) = {(a/b)q/2/(2Kq(

√
ab))}xq−1 exp {−(1/2) (ax+ b/x)}, where Kq(·) denotes modified

Bessel function of the second kind and,

Ũ =

[
ω̃−1(p−1)(p−1)V

nb(p−1)\{p}
(p−2)×(p−2)

]−1
, ζ̃ = v

nb(p−1)\{p}r(p−2) + ω̃−1(p−1)(p−1) V
nbc(p−1)\{p}
(p−2)×(p−2) ω̃

nbc(p−1)\{p}r(p−1) ,

a = v(p−1)(p−1), b =

[
ω̃
nbc(p−1)\{p}r(p−1)

]T
ω̃
nbc(p−1)\{p}r(p−1) , q = α+

|nb(p− 1)\{p}|
2

+ 1.

Similarly, terms IIIp−2, . . . , III2 can be evaluated as products of Gaussian and generalized
inverse Gaussian densities. Finally, the conditional prior density of ω̃11 is, f(ω̃11 | rest) ∝
ω̃α11 exp(−v11ω̃11/2), with the definition of ω̃11 available from Algorithm 1. Hence, the
conditional prior density on ω̃11 is Gamma(α+ 1, v11/2).

S.5. Computing IVp−1, . . . , IV1 for G-Wishart

For IVp−1, we need to evaluate,

f

([
ω̃∗r(p−1)] nb(p−1)\{p} , ω̃∗(p−1)(p−1) ∣∣∣∣ [ω∗rp]nb(p), ω∗pp , y1:(p−1)

)
.

Here f

([
ω̃∗r(p−1)] nb(p−1)\{p} ∣∣∣∣ [ω∗rp]nb(p) , ω∗pp , y1:(p−1)

)
can be approximated using the nor-

mal density in Equation (S.5) with two caveats: (a) ωpp is fixed at ω∗pp and is not updated while

sampling Ω̃(p−1)×(p−1), as in the updates following Equation (S.5) and (b) the sample covari-
ance matrix corresponds to that of y1:(p−1). Next, we need a restricted second sampler which

updates Ω̃(p−2)×(p−2) (Algorithm 1) with
[
ω̃ r(p−1)]nb(p−1)\{p} fixed. This restricted sam-

pler is used to approximate f

(
ω̃∗(p−1)(p−1)

∣∣∣∣ [ω̃∗r(p−1)] nb(p−1)\{p} , [ω∗rp]nb(p), ω∗pp , y1:(p−1)

)
.

The details for this, and the calculations for IVp−2, . . . , IV1 are similar to the calculations
for IVp with appropriate adjustments to the Schur complement, and are omitted.

S.6. MCMC Diagnostics for Chib in BGL and GHS

Since success of Chib’s method depends on an underlying valid Gibbs sampler, we provide
representative diagnostic plots for BGL and GHS in Figure S.1, indicating good mixing.
The plots for other dimensions and settings are similar.

S.7. Computation Times for the Competing Procedures

We list the computational times for the competing procedures for the simulation settings
described in Sections 3, 4 and 5 in Supplementary Tables S.1−S.5.
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Figure S.1: Trace plots of log likelihood vs. index of saved posterior samples for Bayesian
graphical lasso (BGL) – top panel and graphical horseshoe (GHS) – bottom panel, when
p = 10, λ = 2 and n = 20. The log likelihood is considered at the first row of the telescoping
sum, when elements in all rows (columns) of Ω are sampled.

Dimension and Parameters Proposed AIS Nested HM

(p = 5, n = 10, α = 7) 0.18 21.15 0.62 2.06
(p = 10, n = 20, α = 13) 0.46 33.19 0.81 3.33
(p = 15, n = 30, α = 20) 1.02 47.87 0.89 4.73
(p = 25, n = 50, α = 33) 3.04 − − 9.87
(p = 30, n = 60, α = 45) 4.81 − − 13.28
(p = 40, n = 80, α = 70) 11.34 − − 26.27
(p = 50, n = 75, α = 100) 21.44 − − 42.92

(p = 100, n = 150, α = 200) 211.7 − − 247.91
(p = 125, n = 175, α = 250) 474.65 − − 485.16

Table S.1: Average computational time of competing approaches, in seconds, for estimation
of the marginal likelihood in Wishart (see Table 1). Computational times for AIS (Neal,
2001) and Nested (Skilling, 2006) are not presented in the cases when the estimate of the
marginal likelihood is −∞.
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Dimension and Parameters Proposed AIS Nested HM

(p = 2, λ = 0.4, n = 4) 0.02 51.02 1.34 0.43
(p = 2, λ = 1, n = 5) 0.02 51.02 1.34 0.43
(p = 2, λ = 2, n = 10) 0.02 51.02 1.34 0.43
(p = 5, λ = 1, n = 10) 0.34 204.55 5.44 2.29
(p = 10, λ = 2, n = 20) 2.57 321.12 8.76 4.45
(p = 15, λ = 3, n = 30) 8.53 − − 7.81
(p = 25, λ = 5, n = 50) 40.72 − − 17.4
(p = 30, λ = 6, n = 60) 71.57 − − 24.1

(p = 40, λ = 175, n = 90) 182.51 − − 41.00
(p = 50, λ = 140, n = 130) 374.18 − − 65.96

Table S.2: Average computational time of competing approaches, in seconds, for estimation
of the marginal likelihood in Bayesian graphical lasso (BGL, see Table 2). Computational
times for AIS (Neal, 2001) and Nested (Skilling, 2006) are not presented in the cases when
the estimate of the marginal likelihood is −∞.

Dimension and Parameters Proposed AIS Nested HM

(p = 2, λ = 0.4, n = 4) 0.02 70.09 2.04 0.61
(p = 2, λ = 1, n = 5) 0.02 70.09 2.04 0.61
(p = 2, λ = 2, n = 10) 0.02 70.09 2.04 0.61
(p = 5, λ = 1, n = 10) 0.31 264.08 8.15 3.16
(p = 10, λ = 2, n = 20) 2.14 474.41 16.08 5.22
(p = 15, λ = 3, n = 30) 6.94 − 51.13 8.58
(p = 25, λ = 5, n = 50) 32.64 − − 16.95
(p = 30, λ = 6, n = 60) 57.33 − − 22.02

(p = 40, λ = 140, n = 90) 147.56 − − 35.38
(p = 50, λ = 190, n = 120) 305.51 − − 55.92

Table S.3: Average computational time of competing approaches, in seconds, for estimation
of the marginal likelihood in graphical horseshoe (GHS, see Table 3). Computational times
for AIS (Neal, 2001) and Nested (Skilling, 2006) are not presented in the cases when the
estimate of the marginal likelihood is −∞.

Dimension and Parameters Proposed AKM AIS Nested HM

(p = 5, α = 2, n = 10) 0.15 0.031 222.63 8.57 3.71
(p = 10, α = 3, n = 20) 1.26 0.094 544.07 8.29 16.86
(p = 15, α = 5, n = 30) 4.37 0.33 865.67 24.16 15.12
(p = 25, α = 10, n = 50) 21.04 1.83 − − 26.57
(p = 30, α = 20, n = 60) 39.66 3.66 − − 34.39
(p = 40, α = 25, n = 80) 96.17 9.86 − − 52.64
(p = 50, α = 15, n = 100) 196.48 25.26 − − 80.72
(p = 100, α = 50, n = 200) 2464.91 − − − 341.23
(p = 125, α = 50, n = 250) 5572.73 − − − 833.19

Table S.4: Average computational time of competing approaches, in seconds, for estimation
of the marginal likelihood in G-Wishart (see Table 4). Computational times for AKM (Atay-
Kayis and Massam, 2005), AIS (Neal, 2001) and Nested (Skilling, 2006) are not presented in
the cases when the estimate of the marginal likelihood is −∞.
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Graphical Evidence

Dimension and Parameters Proposed AKM AIS Nested HM

(p = 5, α = 2, n = 10) 0.21 0.02 102.18 3.84 2.94
(p = 10, α = 3, n = 20) 0.94 0.09 202.69 6.19 5.86
(p = 15, α = 5, n = 30) 2.58 0.24 − 9.03 8.13
(p = 25, α = 10, n = 50) 9.93 1.38 − − 15.56
(p = 30, α = 20, n = 60) 16.8 2.83 − − 20.84
(p = 40, α = 25, n = 80) 41.16 8.96 − − 30.11
(p = 50, α = 15, n = 100) 85.67 21.87 − − 46.05
(p = 100, α = 50, n = 200) 1063.76 − − − 241.96
(p = 125, α = 50, n = 250) 2455.3 − − − 668.67

Table S.5: Average computational time of competing approaches, in seconds, for estimation
of the marginal likelihood in G-Wishart, banded tri-diagonal G (see Table 5). Computational
times for AKM (Atay-Kayis and Massam, 2005), AIS (Neal, 2001) and Nested (Skilling,
2006) are not presented in the cases when the estimate of the marginal likelihood is −∞.
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