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Abstract

We consider nonparametric classification with smooth regression functions, where it is
well known that notions of margin in P(Y = y|X = x) determine fast or slow rates in
both active and passive learning. Here we elucidate a striking distinction—most relevant
in multi-class settings—between active and passive learning. Namely, we show that some
seemingly benign nuances in notions of margin—involving the uniqueness of the Bayes
classes, which have no apparent effect on rates in passive learning—determine whether or
not any active learner can outperform passive learning rates. While a shorter conference
version of this work already alluded to these nuances, it focused on the binary case and
thus failed to be conclusive as to the source of difficulty in the multi-class setting: we show
here that it suffices that the Bayes classifier fails to be unique, as opposed to needing all
classes to be Bayes optimal, for active learning to yield no gain over passive learning.

More precisely, we show that for Tsybakov’s margin condition (allowing general situ-
ations with non-unique Bayes classifiers), no active learner can gain over passive learning
in terms of worst-case rate in commonly studied settings where the marginal on X is near
uniform. Our results thus negate the usual intuition from past literature that active rates
should improve over passive rates in nonparametric classification; as such these nuances
allow to better characterize the actual sources of gain in active over passive learning.

Keywords: active learning, margin conditions, minimax lower bound, multi-class classi-
fication, non-parameteric classification

1. Introduction

Margin conditions, i.e., conditions quantifying the gap between class probabilities, have
been known to determine the hardness of classification both in passive learning, i.e., where
the learner only has access to i.i.d. data (Audibert and Tsybakov (2007); Mammen and
Tsybakov (1999); Massart and Nédélec (2006); Tsybakov (2004)), and in active learning
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where the learner can adaptively query labels Castro and Nowak (2008); Hanneke (2011);
Hanneke and Yang (2015); Koltchinskii (2010); Locatelli et al. (2017, 2018); Minsker (2012);
Wang and Singh (2016); Yan et al. (2016). Naturally, a main concern in active learning is in
guaranteeing savings over passive learning, and here we show that some basic distinctions
between margin conditions—having to do with the uniqueness of the Bayes classes, which
seemingly have gone un-noticed—determine whether savings are possible at all over passive
rates in nonparametric settings.

Here we consider the setting of nonparametric classification with smooth regression
functions, i.e., one where ηy(x)

.
= P(Y = y|X = x) is α-Hölder continuous for every label

y ∈ [L], where [L]
.
= {1, . . . , L}. Two main notions of margin have appeared interchangeably

in passive learning in this setting; assume for now, for simplicity that y = 1 or 2:

(i) P(|η1 − η2| ≤ τ) . τβ, (ii) P(0 < |η1 − η2| ≤ τ) . τβ,

for some margin parameter β > 0. Both definitions are termed Tsybakov’s low noise or
margin condition without distinction in the literature (e.g., Castro and Nowak (2008);
Minsker (2012) for (i), and Audibert and Tsybakov (2007) for (ii)). However, excluding 0
as in (ii) is more natural since any classifier ĥ has the same error as Bayes in those regions
where η1 = η2, i.e., where the Bayes classifier is not unique. On the other hand, (i) implies
uniqueness (up to measure 0) of the Bayes classes, as seen by letting τ → 0. As such,
(ii) admits more general settings with non-unique Bayes classes, and is thus preferred in
the seminal result of Audibert and Tsybakov (2007) on margins in nonparametrics. More
generally, in multi-class, the distinction is whether we view the margin as 0 if the Bayes
classifier is not unique (corresponding to (i)), or consider the margin between unique values
of {ηy}y∈[L] (corresponding to (ii), and which seems more natural).

Interestingly, using (i) or (ii), the minimax risk is the same in passive learning, e.g.,
O(n−α(β+1)/(2α+d)) when PX is uniform, see Audibert and Tsybakov (2007). However, as
we show, a sharp distinction emerges in active learning, where condition (ii) leads to two
regimes in terms of savings:

• Under the common strong density assumption, relaxing uniform PX , no active learner
can achieve a better rate—beyond constants—than the minimax passive rate (Theo-
rem 11). In contrast, as first shown in Minsker (2012), condition (i) always leads to
strictly faster rates than passive. While this was shown for binary classification, this
is also true in multi-class.

• For general PX , active learners always gain over the worst case passive rate under
either conditions (Theorem 23). As it turns out, the active learning rates are the
same under both conditions, matching known rates under (i) in Locatelli et al. (2017)
(when L = 2).

The comparison of worst-case performance for passive and active learners can be summa-
rized as in Table 1.

Previous work in nonparametric active learning invariably adopted condition (i) which
makes sense in light of our results since savings cannot be shown otherwise. Our results
in fact further highlight two sources of savings in active learning, owing to the distinction
between the above two bulleted regimes: a), an active learner can evenly sample the decision
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Margin Condition (i) Margin Condition (ii)

Nearly Uniform PX EA � EP (Theorem 21) EA � EP (Theorem 11)

General PX EA � EP (Theorem 23)

Table 1: Comparison of minimax rates for active learning and passive learning under
different regimes. Here, we define EA

.
= inf ĥ: active learner supPX,Y EPX,Y E(ĥ) and EP

.
=

inf ĥ: passive learner supPX,Y EPX,Y E(ĥ) as the active and passive minimax excess risk rates.

boundary while i.i.d. samples might miss it under general PX , and b), an active learner
can quickly stop sampling in those regions where there is little to gain in excess error over
the Bayes classifier, having discovered some label with sufficiently low excess error. Under
near uniform PX , the first source of saving a) does not apply since even i.i.d. data has good
coverage of the decision boundary, while b) remains, although in a limited form: an active
learner can only significantly benefit from regions where a single label is clearly better, i.e.,
has margin as in (i), while it cannot effectively identify regions where multiple labels are
nearly equivalent (e.g., non-unique Bayes), where it may end up wasting queries while it
should preferably give up; in fact we show in our main Theorem 11 that no active learning
procedure can automatically decide when to give up on such a priori unknown regions,
which forces a label complexity of the same order as in passive learning.

We emphasize that our results do not preclude limited gains in practice under uniform
PX , since minimax rates fail to fully capture constants. In fact, we can refine the margin
conditions to account for regions with non-unique Bayes classes—where an active learner
may still save over passive, and derive a refined upper-bound, under uniform PX , that
highlight such limited gains over passive learning (Theorem 21). Our upper-bounds require
minor modification over past algorithms (e.g., those in Locatelli et al. (2017)), namely
additional book-keeping (Section 3.2), and refined correctness arguments required in the
multi-class setting.

Main Differences from Binary Case. In a preliminary conference version (Kpotufe
et al., 2022), we considered the binary setting (L = 2), and showed that active learning
has no gain (in terms of minimax rate) when both labels are Bayes in parts of the space.
However, it leaves open for the multi-class setting whether it suffices that some but not all
of the classes are Bayes optimal in parts of spaces. In the present work, we will show that
any non-uniqueness in parts of the space can already prevent active learning from gaining
through a refined lower-bound for the general multi-class setting. Here, we emphasize that a
more delicate construction of difficult distributions is required, as the immediate extension
for the binary case as in Kpotufe et al. (2022) would require all of the L labels to be Bayes
equivalent and remains silent about the case more likely in practice where some but not all
of the classes are Bayes optimal in parts of space. As a contrast, our new construction allows
an arbitrary number of Bayes classes in the region where the Bayes classifier is non-unique
and is still able to get the same minimax rate as passive learning.

Furthermore, the more flexible new construction allows us to accurately capture rates
dependence a notion of effective number of classes (c.f., Definition 5 and Remark 22). Such
dependence which appears to be missing in the literature (including our preliminary work
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Kpotufe et al. (2022)). We are thus able to match upper and lower-bounds, in terms of
both sample size n and effective number of classes L∗.

Paper Outline. We start in Section 2 with technical setup, followed by an overview of
the main results in Section 3. The proofs of the main theorems are in Section 4, and a
simulation study is presented in Section 5. Section 6 concludes the paper with some open
questions.

2. Problem Setting

We consider a joint distribution PX,Y on [0, 1]d × [L], where the short notation [L]
.
=

{1, . . . , L} for L ∈ N. Let PX be the marginal for X with Support(PX) ⊂ [0, 1]d. Define
the regression function η(x)

.
= (ηy(x))y∈[L], where ηy(x)

.
= P(Y = y|X = x) for y ∈ [L].

Definition 1. The function η is said to be (λ, α)-Hölder continuous, α ∈ (0, 1], λ > 0, if:

∀x, x′ ∈ Support(PX) ‖η(x)− η(x′)‖∞ ≤ λ‖x− x′‖α∞ ,

where ‖·‖∞ is the maximum element of a vector.

Remark 2. For simplicity of presentation, we assume α ≤ 1. The case of α > 1, can be
handled simply by replacing the averaging in each cell with higher order polynomial regression
(as done e.g. in Locatelli et al. (2017)), but does not add much to the main message despite
the added technicality. As in prior work Locatelli et al. (2017); Minsker (2012), we assume
access to λ or any upper-bound thereof.

Our adaptive active learning algorithm is built on a dyadic partition of the unit cube.

Definition 3. For r = 2−k, k ∈ N, define the partition Cr of [0, 1]d as the collection of
hypercubes of the form

∏
i∈d[(li − 1)r, lir), li ∈ [1/r]. We call Cr a dyadic partition at

level r.

Now, we are ready to define the strong density condition. The following definition is
adapted from other works on active learning (Locatelli et al., 2017; Minsker, 2012).

Definition 4. PX is said to satisfy a strong density condition if there exists some cd > 0
such that ∀r ∈ {2−k : k ∈ N} and C ∈ Cr with PX(C) > 0, we have

PX(C) ≥ cd · rd .

The strong density condition clearly holds for PX = U [0, 1]d, or simply has lower-
bounded density. Note that it allows a disconnected support X , such as in our lower-bound
construction in Section 4.1.1.

Finally, we note that the labels with low probabilities are less relevant to the difficulty
of the classification problem. Thus, we introduce the notion of effective classes that filter
out these low-probability labels.

Definition 5. A class y ∈ [L] is an effective class at x if ηy(x) ≥ maxl∈[L] ηl(x)/2. We let
L∗(x) denote the number of effective classes at x.

The number of effective classes differentiates real multi-class situations and the degen-
erate one where all but two classes have positive probabilities.
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2.1 Active Learning

We consider active learning under a fixed budget n of queries. At each sampling step, the
learner may query the label of any point x ∈ [0, 1]d, and a label Y is returned according to
the conditional PY |X=x. We let S ≡ {(Xi, Yi)}ni=1 denote the resulting sample. A classifier

ĥn = ĥn(S) : [0, 1]d 7→ [L] is then returned.

We evaluate the performance of an active learner by the excess risk of the final classifier
ĥn it outputs. Throughout the paper, we use the notation ĥ for the active learning algorithm,
and ĥn for the final classifier the algorithm ĥ returns.

Definition 6. We consider the 0-1 risk of a classifier h : [0, 1]d 7→ [L], namely R(h)
.
=

P(h(X) 6= Y ), which is minimized by the so-called Bayes classifier h∗(x) ∈ argmaxy P(Y =
y|X = x). The excess risk E(h)

.
= R(h)−R(h∗) is then given by:

E(h) = E [max
y∈[L]

ηy(X)− ηh(X)(X)].

2.2 Margin Assumption

We start with a notion of soft margin.

Definition 7. Let η(1) ≥ · · · ≥ η(L) denote order statistics on ηy, y ∈ [L]. The margin at x
is defined as M(x)

.
= η(1)(x)−maxy:ηy(x)6=η(1)(x) ηy(x). In the case where ∀y ∈ [L], ηy(x) =

1/L, we use the convention that max of empty set is −∞ so that M(x) =∞.

Definition 8. PX,Y satisfies the Tsybakov’s margin condition (TMC) with Cβ > 0,
β ≥ 0, if:

∀τ > 0, PX ({x :M(x) ≤ τ}) ≤ Cβτβ. (1)

The above extends TMC for L = 2 to general L: when L = 2, the margin M(x) =
|η1(x)− η2(x)| when η1(x) 6= η2(x) and M(x) =∞ when η1(x) = η2(x) = 1/2. The above
thus coincides with condition (ii) of the introduction, i.e., admits non-unique Bayes as in
Audibert and Tsybakov (2007), but here we allows general L ≥ 2.

3. Overview of Results

3.1 No Gain under Strong Density Condition

Surprisingly, under TMC, no active learner can gain in excess risk rate over their passive
counterparts when we assume the strong density condition for PX . We start our discussion
by defining the family of distributions for which active learning has no gains.

Definition 9. Let cd, λ, Cβ > 0, α ∈ [0, 1), β ≥ 0, γ ≥ 1, 2 ≤ L∗ ≤ L, and P(cd, λ, α, Cβ, β, L
∗, γ)

denote the family of joint distributions PX,Y on [0, 1]d × [L] where:

(i) PX satisfies a strong density condition with cd;

(ii) the regression function η(x) is (λ, α)-Hölder;
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(iii) PX,Y satisfies TMC with parameter (β,Cβ);

(iv) ∀x ∈ Support(PX), L∗ ≤ L∗(x) ≤ min{L, (L∗)γ};

(v) ∀x ∈ Support(PX), every class y ∈ [L] has a positive probability.

Remark 10. Condition (iv) of Definition 9 implies that: ∀x ∈ Support(PX), the log number
of effective classes at x satisfies: logL∗ ≤ logL∗(x) ≤ γ logL∗. As we will see later in
Theorem 11, 21, and 23, such condition for changing L∗(x) over the space ensures the same
rate, despite a difference in the leading constant.

Theorem 11. Let 2 ≤ L∗ ≤ L, cd ∈ (0, 1], α ∈ (0, 1], λ, β, Cβ > 0 with αβ ≤ d, and
P = P(cd, λ, α, Cβ, β, γ). Suppose that n ≥ λ(1/α−2)(2α+d)(L∗)(α+d)/α logL∗, then ∃C1 > 0,
independent of n,L and L∗, such that

inf
ĥ

sup
PX,Y ∈P

E E(ĥn) ≥ C1

(
logL∗

L∗

)α(β+1)
2α+d

(
1

n

)α(β+1)
2α+d

; (2)

where the infimum is taken over all (potentially active) learners, and the expectation is
taken over the sample distribution, determined by PX,Y and ĥ jointly.

Remark 12. The proof of Theorem 11 requires a more involved construction of difficult
distributions than the binary construction in Kpotufe et al. (2022). Here, we incorporate our
novel concept of effective class in the lower-bound, and try to capture the full dependence on
L∗ that may arise. This means that we cannot use constructions with degenerate multi-class
situations where only two classes have non-zero probabilities for some x ∈ [0, 1]d as previous
work by Reeve and Brown (2017) does. Furthermore, when (L∗)γ < L, our result shows
that active learning has no gain if some but not all classes are Bayes classes in parts of the
space with a positive mass.

Remark 13. As a corollary to the Theorem 11, since ĥ is any learner, including the passive
ones, the rate in (2) is also a lower-bound on passive learning for multi-class classification.
As such we know of no other work that so clearly integrates the number of (effective) classes
into the learning rate.

Remark 14. We will show later in Theorem 21 an upper-bound that matches the rate in
(2) up to logarithmic terms in n and L∗. With other factors (e.g., margin conditions and
smoothness) fixed, the rate in (2) gets faster when L∗ increases (the dependence is of form
logL∗/L∗). This might be counter-intuitive at first, but can be simply explained by the fact
that a larger L∗ will lead to a smaller variance in the estimation of the regression function
ηy(x) (see more in Remark 19 and Lemma 20).

The details of the proof of Theorem 11 are presented in Section 4. Our main arguments
depart from usual lower-bounds arguments in active learning Castro and Nowak (2008);
Minsker (2012); Locatelli et al. (2017). If we followed such information-theoretic construc-
tions where the regions with non-unique Bayes classes are fixed in parts of the space, the
learner would know the location of these regions and can achieve a fast rate by simply giving
up on sampling in such parts of the space. Instead of working directly on constructing a
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X1 X2 X3

ηy(x)

x

η1, η2

η3

≥ τ

η1

η2

η3

η1, η2, η3
< τ

Figure 1: Different types of margin over space. Here, we consider an example with d = 1,
and L = 3. The marginal PX is supported on X = ∪3

i=1Xi (the thick lines on the x-axis).
We have {x :M(x) ≤ τ} = X3, while {x :M′(x) ≤ τ} = X . In particular, RMC is satisfied
with ε0 = PX(X1 ∪ X2), as {M′ = 0} = X1 ∪ X2.

suitable subset of P(cd, λ, α, Cβ, β, L
∗, γ), we move to a larger class Σ with non-empty in-

tersection Σβ with P(cd, λ, α, Cβ, β, L
∗, γ). We then randomize the construction by putting

a suitable measure on Σ that concentrates on Σβ. Importantly, this measure also encodes
regions of [0, 1]d where the Bayes classifier is unique. We show that for any fixed sampling
mechanism of ĥ, the excess error of the classifier ĥn is lower-bounded as in Theorem 11, in
expectation under our measure on Σ, implying the statement of Theorem 11 by concentra-
tion on Σβ. A main difficulty remains in removing dependencies inherent in the observed

sample S: this is done by decoupling the sampling ĥ from the eventual classifier ĥn by a re-
duction to simpler Neyman-Pearson type classifier h∗n—with the same sampling mechanism
as ĥ—whose error can be localized to regions of [0, 1]d and depends just on local Y values,
thanks to our choice of distributions in Σ where little information is leaked across regions
of space.

3.2 Upper-Bounds

Theorem 11 indicates that the classical TMC is not enough to guarantee gains over pas-
sive learning, under strong density. Nonetheless, some gain can be shown under a refined
margin condition that better isolates regions of space with unique Bayes class (Theorem
21). Furthermore, under more general PX , we show in Theorem 23 that a better rate than
passive can always be attained even under classical TMC. Both results are established using
the same procedure proposed in Section 3.2.1. We start with the following definition.

Definition 15. The sharp margin on η is defined as M′(x)
.
= η(1)(x)−η(2)(x), where we

have η(1) = η(2) when the Bayes class is not unique at x.

Definition 16. PX,Y is said to satisfy a refined margin condition (RMC) with ε0 ≥
0, Cβ > 0, β′ ≥ β ≥ 0 if:

∀τ > 0, PX ({x :M(x) ≤ τ}) ≤ Cβτβ; and

∀τ > 0, PX
({
x :M′(x) ≤ τ

})
≤ ε0 + Cβτ

β′ .
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Remark 17. The two conditions in Definition 16 differ only when there are non-unique
Bayes classes in parts of the space with positive mass, i.e., when P(M′ = 0)

.
= ε0 > 0,

otherwiseM =M′, PX-a.s., and we may choose β = β′ and both conditions are equivalent.
See the example of Figure 1 for a detailed illustration.

Next, we define the classes of distributions for upper-bounds.

Definition 18. Let 1 ≤ L∗min ≤ L∗max ≤ L, cd, λ, Cβ > 0, α ∈ [0, 1), β′ ≥ β ≥ 0, ε0 ≥ 0. We
use P1(λ, α,Cβ, β, L

∗
min, L

∗
max) to denote the family of distributions on [0, 1]d × [L] where:

(i) the regression function η(x) is (λ, α)-Hölder;

(ii) PX,Y satisfies TMC with parameter (β,Cβ);

(iii) L∗min ≤ L∗(X) ≤ L∗max holds PX-a.s.;

We use P2(cd, λ, α, ε0, Cβ, β, β
′, L∗min, L

∗
max) to denote the subclass of P1(λ, α,Cβ, β, L

∗
min, L

∗
max)

where the following additional conditions are satisfied:

(iv) PX satisfies a strong density condition with cd;

(v) PX,Y satisfies RMC with parameter (ε0, Cβ, β, β
′).

Remark 19. The parameters L∗min and L∗max control the hardness of the problem. First,
L∗max is an upper bound for the number of effective classes L∗(x) at any x ∈ X , which is
also the number of class probabilities ηy(x) one needs to estimate simultaneously at each x.
Second, as it turns out the magnitude of each ηy(x) also affects how well we may estimate
it. In particular, note that estimating the regression function ηy(x) is essentially estimating
a Bernoulli distribution with variance ηy(x)(1 − ηy(x)) ≤ O(1/L∗min). Therefore, larger
L∗min yields a smaller variance bound, and hence a faster concentration rate for estimating
each ηy(x). More specifically, Lemma 20 below shows that we need a sample size of at least
3 log(2/δ)/(ε2L∗min) to guarantee that one can estimate each ηy(x) within an error of ε with
1− δ for any ε, δ > 0.

Lemma 20. (Mousavi (2010), Chernoff bound with small deviation) Let Z1, Z2, . . . , Zm be
i.i.d random variables taking values 0 or 1, and P (Zi = 1) = p. Then, for any 0 ≤ ε ≤ mp,

P

(∣∣∣∣∣ 1

m

m∑
i=1

Zi − p

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−mε

2

3p

)
.

3.2.1 An Adaptive Procedure

The detailed approach is presented in Algorithm 1, and follows an adaptation strategy
of Locatelli et al. (2017, 2018) for unknown smoothness α. This procedure repeatedly
calls a non-adaptive subroutine, Algorithm 2, for a sequence of increasing values of α, i.e.

{αi}blog(n)c3
i=1 with αi = i/blog(n)c3.

In a departure from the binary case (L = 2) studied in prior work, we require an
additional booking-keeping procedure. In the binary case, once a label is eliminated in a
cell, it is guaranteed that the other label is the Bayes label with high probability. Therefore,
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Algorithm 1 Meta Algorithm

1: Input: n, δ, λ
2: Initialization:
3: • Set α0 = 0, n0 = n

blog(n)c3 , δ0 = δ
blog(n)c3

4: • Set minimum level r0 = 2blog2(n
−1/d
0 )c

5: • Set final candidate labels LC = [L], ∀C ∈ Cr0
6: for i = 1, ..., blog(n)c3 do
7: // Run the non-adaptive subroutine
8: Set αi = i

blog(n)c3
9: Run Algorithm 2 with (n0, δ0, αi, λ, r0)

10: to obtain candidate labels {LαiC }C∈Cr0
11: // Aggregate candidate labels
12: if ∀C ∈ Cr0 ,LC ∩ L

αi
C 6= ∅ then

13: ∀ C ∈ Cr0 , set LC = LC ∩ LαiC
14: end if
15: end for
16: Output: ĥn(x) = minLC for x ∈ C ∈ Cr0

we can quickly stop sampling there by marking this cell “non-active”. However, in the multi-
class case, even after some labels are eliminated, the remaining labels may still contain some
non-Bayes ones. To that end, one needs to keep tracking not only which cells are active,
but also a set of candidate labels for each active cell until all but one labels are eliminated.

The budget is tracked throughout, by sampling nr,α points in each C ∈ Cr, with

nr,α
.
= min

{
1,

1

|LαC |
+ τ2r,α

}
log

(
8|LαC |
δ0rd+1

)/
2(λrα)2 (3)

where τr,α
.
= 6λrα. This sample is used to estimate η in each cell C as

η̂y(C) = n−1
r,α

nr,α∑
i=1

1(Y Ci = y), (4)

and eliminate labels y whenever η̂(1)(C)− η̂y(C) ≥ τr,α, where we define

η̂(1)(C)
.
= max

y∈[L]
η̂y(C) (5)

3.2.2 Rates Under Strong Density Condition.

We first consider the excess risk rate for the adaptive algorithm under the strong density
condition (Defintion 4).
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Algorithm 2 Non-adaptive Algorithm

1: Input: n0, δ0, α, λ, r0

2: Initialization:
3: • Initial level: r = 1/2
4: • Active cells: Ar = Cr
5: • Budget up to level r: mr = |Ar|nr,α (see (3))
6: • Candidate labels: LαC = [L], ∀ C ∈ Cr
7: while (mr ≤ n0) and (|Ar| > 0) do
8: // Eliminate bad labels
9: for each C ∈ Ar do

10: Samples (XCi , Y
C
i )j≤nr,α in cell C and compute {η̂y(C)}y∈[L] by (4)

11: Set LαC = LαC \ {y : η̂(1)(C)− η̂y(C) ≥ τr,α}(5)
12: end for
13: // Pass information to the next level
14: ∀C′ ∈ Cr/2 with C′ ⊂ C, set LαC′ = LαC
15: Set Ar/2 = ∪{C′ ∈ Cr/2 : C′ ⊂ C for some C ∈ Ar with |LαC | ≥ 2}
16: Set r = r/2, mr/2 = mr + |Ar|nr,α // Go to next level and update the budget used
17: end while
18: Set rmin = 2r // The minimum level reached
19: Set LαC = LαC′ , ∀ C ∈ Cr0 with C ⊂ C′ ∈ Crmin

20: Output: {LαC}C∈Cr0

Theorem 21. Let 1 ≤ L∗min ≤ L∗max ≤ L, cd, λ, Cβ > 0, α ∈ [0, 1), β′ ≥ β ≥ 0, ε0 ≥ 0, and

αβ′ ≤ d. Let ĥn denote the classifier returned by Algorithm 1 with input n > 0 , λ > 0
and 0 < δ < 1. Suppose PX,Y ∈ P2(cd, λ, α, ε0, Cβ, β, β

′, L∗min, L
∗
max), then with probability

at least 1− δ,

E
(
ĥn

)
≤ C2

εα(β+1)
2α+d

0

(
logL∗max

L∗min

)α(β+1)
2α+d

λ d
α log3(n) log

(
8λ2n
δ

)
n


α(β+1)
2α+d

+

(
logL∗max

L∗min

) α(β′+1)

2α+d−αβ′

λ d
α log3(n) log

(
8λ2n
δ

)
n


α(β′+1)

2α+d−αβ′


for some constant C2 > 0 independent of n, δ, λ, ε0, L, L
∗
min, L

∗
max.

Remark 22. The upper-bound shown in Theorem 21 depends on ε0, and recovers exist-
ing bounds (for the binary case) when ε0 = 0, namely Õ(n−α(β′+1)/(2α+d−αβ′)) as shown
e.g. in Locatelli et al. (2017); Minsker (2012). This is an improvement over the pas-
sive learners and matches the active lower-bound in Minsker (2012) under the strong den-
sity condition with αβ ≤ d. For ε0 & Õ((nL∗min)−αβ

′/(2α+d−αβ′)), the first term dom-
inates and the upper-bound matches the passive minimax rate. In particular, note that
the distribution class P ≡ P(cd, λ, α, Cβ, β, L

∗, γ) (c.f., Definition 9) is a subset of P2 ≡

10
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P2(cd, λ, α, 1, Cβ, β,∞, L∗, (L∗)γ). The upper-bound here for the class P2 almost matches
the one in Theorem 11 for P, ignoring the polylogarithmic terms.

A main novelty in the analysis is to separately consider parts of space with unique Bayes
classes, determined by ε0 and β′, and those parts of space where the Bayes classes might not
be unique, but which still have margin, determined by β. Furthermore, our consideration of
general multi-class, together with non-unique Bayes, brings in a bit of added technicality due
largely to additional book-keeping. In particular, while in Locatelli et al. (2017); Minsker
(2012), the main correctness argument involved showing that all labeled parts of space (i.e.
cells with a single label left) have 0 excess error w.h.p., we additionally have to show that
in fact, remaining labels in most active cells are close in error to Bayes.

3.3 Rates for General Densities

For general PX , on the other hand, Algorithm 2 has an excess risk rate Õ(n−(α(β+1))/(2α+d)),
which is always faster than the lower minimax rate O(n−(α(β+1))/(2α+d+αβ)) for passive
learning of Audibert and Tsybakov (2007) under the same conditions.

In other words, under TMC, which allows non-unique Bayes classifiers, active learning
guarantees savings over the worst-case rate of passive learning, given the ability to evenly
sample the decision boundary.

Theorem 23. Let 1 ≤ L∗min ≤ L∗max ≤ L, λ,Cβ > 0, α ∈ [0, 1), β ≥ 0, and αβ′ ≤ d. Let

ĥn denote the classifier returned by Algorithm 1 with input n > 0, λ > 0 and 0 < δ < 1.
Suppose that PX,Y ∈ P1(λ, α,Cβ, β, L

∗
min, L

∗
max), then with probability at least 1− δ,

E
(
ĥn

)
≤ C3

(
logL∗max

L∗min

)α(β+1)
2α+d

 log3(n)λ
d
α log

(
8λ2n
δ

)
n


α(β+1)
2α+d

for some constant C3 > 0 that does not depend on n, δ, λ, L, L∗min, L
∗
max.

The proof ideas follow similar outlines as for Theorem 21, though more direct.

4. Analysis

4.1 Proof of Theorem 11

4.1.1 Construction of the Difficult Distributions

We operate over a dyadic partitionCr of the unit cubes [0, 1]d. Let r = (c1 logL∗/(nL∗))
1

2α+d ,
where c1 = 8

9λ2
. Without loss of generality, we assume that − log2 r ∈ N and 2 ≤ L∗ ≤ L−1.

The case where L∗ = L can be done using a similar proving strategy with minor adjust-
ments. Furthermore, we denote the barycenter of any C ∈ Cr as xC .

The marginal distribution PX has the density with respect to the Lebesgue measure:

f(x)
.
=

{
4d if ‖x− xC‖ < r/8 for some C ∈ Cr ;

0 otherwise .
, , ,

11
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where ‖·‖ is the supnorm. Let z = (zC)C∈Cr ∈ {0, 1}|Cr| and σ = (σC)C∈Cr ∈ [L∗ − 1]|Cr|.
Define the regression function ηz,σ(x) =

(
η1
z,σ(x), . . . , ηLz,σ(x)

)
, with

ηyz,σ(x)
.
=

{
κ/L∗ + cη

∑
C∈Cr zC (1(y = σC)− 1(y = L∗))φC(x) for y ∈ [L∗] ,

(1− κ)/(L− L∗) for y ∈ [L]\[L∗] .

where cη = λ/8, max{3L∗/(L+ 2L∗), 1/2} ≤ κ < 1, and

φC(x) = min
{

(2rα − 8rα−1‖x− xC‖)+, r
α
}
.

Here, we adopt the notation v+
.
= max(0, v), ∀v ∈ R.

Note that {ηyz,σ}y∈[L] indeed defines a proper regression function with only the first L∗

classes being effective classes. For all x ∈ [0, 1]d, and n ≥ λ(1/α−2)(2α+d) ·(L∗)(α+d)/α · logL∗,

we have φC(x) ≤ rα =
(
8/(9λ2)

)α
(logL∗/(nL∗))α/(2α+d) ≤ 1/(λL∗), and hence

ηL
∗
z,σ(x) ≥ κ/L∗ − cη/(λL∗) > 3κ/(4L∗); ησCz,σ(x) ≥ κ/L∗ + cη/(λL

∗) < 5κ/(4L∗).

Also, we have by the choice of κ that 0 < (1− κ)/(L− L∗) ≤ κ/(3L∗). Therefore, for any
y∗ ∈ [L∗ − 1]\{σC} and y ∈ [L]\[L∗],

0 < ηyz,σ(x) < ησCz,σ(x)/2 ≤ ηL∗z,σ(x) ≤ ηy∗z,σ(x) ≤ ησCz,σ(x) .

On the other hand, one can easily verify that
∑

y∈[L] η
y
z,σ(x) = 1 for any z,σ and x, by

noticing
∑

y∈[L] 1(y = σC)− 1(y = L∗) = 0.
For each pair (z,σ), one can define a joint probability distribution Pz,σ characterized

by PX and P[Y = y|X = x] = ηyz,σ(x). See Figure 2 for an example of Pz,σ for L∗ = 3,
and d = 2. In particular, PX is uniformly distributed within its support, which is the area
shaded in gray. In a cell C ∈ Cr where zC = 1, there is a small bump in the regression
function ησCz,σ of size cηr

α. By construction, ηz,σ is always a constant in the intersection of
any single cell C and the support of PX .

Let Σ
.
= {Pz,σ : (z,σ) ∈ {0, 1}|Cr| × [L]|Cr|}, and Σβ

.
= {Pz,σ : (z,σ) ∈ Θβ} with

Θβ
.
= {(z,σ) : ∀τ > 0, PX({x :Mz,σ(x) ≤ τ}) ≤ Cβτβ},

whereMz,σ(x) is the margin at x with the regression function being ηz,σ(x). For simplicity,
we use the short notation,

Ξ
.
= (cd, λ, α, Cβ, β, L

∗, γ) ,

to represent all of the parameters for the distribution class from Definition 9.

4.1.2 Establishing the Lower-bound

In this section, we will show that no active learners ĥ has excess risk rate faster than

C ·
(

logL∗

L∗

)α(β+1)
2α+d

·
(

1

n

)α(β+1)
2α+d

,

with respect to n and L∗.

12
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1,2,3

1,2,3

1,2,3

1,2,3

1

1,2,3 2

1

1,2,3

κ/L∗

ηlz,σ(x)

r

cηr
α

Figure 2: The lower-bound construction of Theorem 11, illustrated in dimension d = 2, and
number of effective classes L∗ = 3 ≤ L for simplicity. A key insight is that we require a
further layer of randomization than those in usual constructions. Namely, we randomize
not only the identity of the Bayes label in fixed regions C of space (C is modeled as cells
of a partition Cr), but also whether the Bayes is unique in C. LEFT: Two sources of
randomness z ∈ {0, 1}|Cr|,σ ∈ [L∗−1]|Cr| are carefully introduced in the construction. The
random source z determines the cells in which the Bayes label is unique (highlighted as red
squares), σ within each of those cells one unique Bayes label uniformly from L∗ effective
classes (Bayes labels are indicated in each cell). RIGHT: A typical regression function
ηlz,σ for an effective class l ∈ [L∗]. It takes values from {κ/L∗, κ/L∗± cηrα} and is carefully
designed to satisfy the Hölder condition.

First, we show that Σβ, i.e., the subset of distributions in Σ that satisfies the TMC with
parameters (β,Cβ), is contained in the distribution class P(Ξ) as defined in Definition 9.
In other words, Σβ is the non-empty intersection of Σ and P(Ξ). Therefore, a minimax
lower-bound for the class Σβ is also a minimax lower-bound for the class P(Ξ) as required
in Theorem 11.

Proposition 24. Σβ ⊂ P(Ξ). Consequently,

inf
ĥ

sup
PX,Y ∈P(Ξ)

E E(ĥn) ≥ inf
ĥ

sup
PX,Y ∈Σβ

E E(ĥn).

where the infimum is taken over all active learners.
Proof Let Pz,σ ∈ Σβ. The TMC is satisfied by definition. It can be easily verified that
strong density condition holds for cd = 1. Clearly, only the first L∗ classes are effective
classes, and all classes have positive probabilities. It is left to show that ηz,σ is (λ, α)-
Hölder. In fact, this hold for all Pz,σ ∈ Σβ.

Let x, x′ ∈ [0, 1]d. If they are in a common cell C, then for all y ∈ [L]:

|ηyz,σ(x)− ηyz,σ(x′)| ≤ cη(8rα−1‖x− x′‖)
≤ λ‖x− x′‖α,

where the last inequality is due to the fact r/‖x − x′‖ ≥ 1 and α − 1 < 0. If they are in
different cells, |ηz,σ(x)− ηz,σ(x′)| = 0 if ‖x− x′‖ < r/4. Therefore, for all y ∈ [L]:

|ηyz,σ(x)− ηyz,σ(x′)| ≤ 2cηr
α ≤ λ‖x− x′‖α.

13
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Therefore, ηz,σ is (λ, α)−Hölder and we can conclude the proof.

Next, we “randomize” the distribution class Σ by letting z ∈ {0, 1}|Cr| i.i.d∼ Ber(rαβ), and

σ ∈ [L∗]|Cr|
i.i.d∼ Unif([L∗]), z ⊥⊥ σ. The following proposition shows that Σ concentrates on

Σβ under such randomness. Consequently, the mean risk (w.r.t. the randomness of z,σ)
over the larger distribution class Σ can only be larger than the worst-case risk over the
subclass Σβ by a negligibly small quantity.

Proposition 25. Let ĥ be any active learner. Then,

sup
PX,Y ∈Σβ

E
S|z,σ,ĥ

E(ĥn) ≥ E
z,σ

E
S|z,σ,ĥ

E(ĥn)− exp(−c2r
−(d−αβ)),

for some c2 > 0, where E
S|z,σ,ĥ

(·) is expectation taken over sample S, under the sampling

distribution PS|z,σ,ĥ determined by the data distribution Pz,σ and active sampling strategy

ĥ jointly, and E
z,σ

(·) is the expectation taken over Pz,σ.

Proof By construction,Mz,σ(x) is bounded from below by 2cηr
α almost surely. Thus, we

only need to consider τ = tcηr
α for some t ≥ 2. For given z, PX({x :Mz,σ(X) ≤ tcηrα}) ≤

rd1>z. By Chernoff bound (Lemma B.1),

P
z

(
rd1>z ≤ Cβτβ

)
= P
z

(
rd1>z ≤ Cβ(tcη)

βrαβ
)
≥ 1− exp

(
−c2r

−(d−αβ)
)
,

where c2 = (Cβ(tcη)
β − 1)2/3. Therefore, P

z,σ
((z,σ) ∈ Θβ) ≥ 1− exp(−c2r

−(d−αβ)) and

sup
Pz,σ∈Σβ

E E(ĥn) ≥ E
z,σ

[
E

S|z,σ,ĥ
E(ĥn)

∣∣∣∣∣ (z,σ) ∈ Θβ

]
≥ E
z,σ

E
S|z,σ,ĥ

E(ĥn)− P
z,σ

((z,σ) 6∈ Θβ)

≥ E
z,σ

E
S|z,σ,ĥ

E(ĥn)− exp(−c2r
−(d−αβ)).

Note that the uncertainties in an active classifier are in both its sampling decision
and label prediction. These two types of uncertainties can be de-coupled by considering
one single optimal label prediction rule given any sampling decision, if such an optimal rule
exists. Formally, we introduce a class of learners with a certain labelling rule in Definition 26
and show that they are indeed optimal in Proposition 27.

Definition 26. The conditional Neyman-Pearson learner ĥ∗ is the active learner that
makes the same sampling decision πĥ as ĥ, and labels according to the following rules for
each C ∈ Cr. Conditional on the sample SC = (XCi , Y

C
i )nCi=1 in C,

ĥ∗n(x) = argmax
σ∈[L∗]

nC∏
i=1

PzC=1,σC=σ(Y Ci |XCi ),

14
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for all x ∈ C, where PzC ,σC(Y
C
i |XCi ) is the probability of Y Ci given XCi , zC and σC.

Proposition 27. Let ĥ be any active learner, and ĥ∗ be the corresponding conditional
Neyman-Pearson learner, then

E
z,σ

E
S|z,σ,ĥ

E(ĥn) ≥ E
z,σ

E
S|z,σ,ĥ

E(ĥ∗n).

Proof Let ĥn be the classifier returned by active learner ĥ, we can decompose its excess
risk as:

E(ĥn) =
∑
C∈Cr

EC(ĥn); (6)

with EC(ĥn)
.
=
∫
C∩{ĥn 6=σC}

[
ησCz,σ(x)− ηĥn(x)

z,σ (x)
]
dPX(x). Thus, we only need to show that

for any C ∈ Cr,

E
S|ĥ

E
z,σ|S,ĥ

EC(ĥ∗n) ≤ E
S|ĥ

E
z,σ|S,ĥ

EC(ĥn),

where ES|ĥ is the expectation taken over the distribution of sample S given active sampling

strategy ĥ and Ez,σ|S,ĥ is the taken over the conditional distribution of (z,σ) given S and

ĥ. Note that:

E
z,σ|S,ĥ

[
EC(ĥn)|zC = 0, σC

]
=

(
κrd

L∗
− 1− κ
L− L∗

)
1(ĥn > L∗); and

E
z,σ|S,ĥ

[
EC(ĥn)|zC = 1, σC

]
=

(
κrd

L∗
− 1− κ
L− L∗

+ cηr
α+d

)
1

(
ĥn > L∗

)
+

2cηr
α+d

1

(
ĥn = L∗

)
+ cηr

α+d
1

(
ĥn < L∗, ĥn 6= σC

)
.

Clearly, an optimal learner should never predict labels that are larger than or equal to L∗.
For those learners with ĥn ∈ [L∗ − 1],

E
S|ĥ

E
z,σ|S,ĥ

EC(ĥn) = cηr
α+d E

S|ĥ

[ ∑
σ∈[L∗−1]

1

(
ĥn = σ

)
P(zC = 1, σC 6= σ|S)

]

is minimized if ĥn(x) = σ when

P(zC = 1, σC = σ|S, ĥ)

P(zC = 1, σC = σ′|S, ĥ)
≥ 1,

for any σ′ 6= σ. Finally, notice that

P(zC = 1, σC = σ|S, ĥ)

P(zC = 1, σC = σ′|S, ĥ)
=

dPS|zC=1,σC=σ,ĥ(S)

dPS|zC=1,σC=σ′,ĥ(S)

=

∏nC
i=1 PzC=1,σC=σ(Y Ci |XCi )∏nC
i=1 PzC=1,σC=σ′(Y

C
i |XCi )

.
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The last step is clear from the definition

dPS|zC ,σC ,ĥ(S) =
n∏
i=1

πĥ(Xi|{Xj , Yj}j<i)

· E
z(C),σ(C)

∏
C′∈Cr

nC′∏
i=1

PzC′ ,σC′ (Y
C′
i |XC

′
i )dS

where z(C),σ(C) are the z,σ vectors with zC , σC removed, and πĥ is the sampling distri-

bution according to active learner ĥ. Therefore, the labeling decision of ĥ∗ minimizes
E
z,σ

E
S|z,σ,ĥ

EC(ĥ) for each C, hence also minimizes E
z,σ

E
S|z,σ,ĥ

E(ĥ).

By Proposition 27, a conditional Neyman-Pearson learner always has as small an error
rate as any other active learner with the same sampling rule. Therefore, we can conclude
the proof of Theorem 11 by establishing a lower-bound for the class of all conditional
Neyman-Pearson learners.

Proposition 28. Let ĥ∗ be any conditional Neyman-Pearson learner. Then,

E
z,σ

E
S|z,σ,ĥ∗

E(ĥ∗n) ≥ C1

(
logL∗

nL∗

)α(β+1)
2α+d

.

for some C1 > 0 independent of n,L∗.
Proof Since EC(ĥ) is a function of zC , σC and SC, we have

E
z,σ

E
S|z,σ,ĥ∗

EC(ĥ∗n) = E
zC ,σC

E
SC |zC ,σC ,ĥ

EC(ĥ∗n),

where ESC |zC ,σC ,ĥ is the expectation over the distribution PSC |zC ,σC ,ĥ of SC given zC , σC (where

we have marginalized out the randomness in other cells). Furthermore, one can decompose
PSC |zC ,σC ,ĥ into the sampling location decision P C

X|ĥ and the labeling distribution PY |X,zC ,σC :

dPSC |zC ,σC ,ĥ(Sc) =

nC∏
j=1

dP C
X|ĥ(XCj |{XCi , Y Ci }i<j)PY |X,zC ,σC(Y

C
j |XCj ).

By (6), we have

E
z,σ

E
S|z,σ,ĥ∗

E(ĥ∗n) =
∑
C∈Cr

E
zC ,σC

E
SC |zC ,σC ,ĥ

EC(ĥ∗n).

Let m
.
= 2rdn ≡ (cηr

α)−2 logL∗/(36L∗). By the choice of m, there are at r−d/2 cells in Cr
with less than m labeled samples in them. Next, we will establish a lower-bound of the total
excess risk in these cells. Note that,

E
zC ,σC

E
SC |zC ,σC ,ĥ

EC(ĥ∗n) ≥ E
zC ,σC

m∑
nC=1

E
SC |zC ,σC ,ĥ

[EC(ĥ∗n) | |SC | = nC ] P
SC |zC ,σC ,ĥ

(|SC | = nC)

≥c3r
d+α E

zC ,σC
P

SC |zC ,σC ,ĥ
(zC = 1; |SC | ≤ m) ,
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where the last inequality follows from Lemma 31. Furthermore,∑
C∈Cr

E
zC ,σC

P
SC |zC ,σC ,ĥ

(zC = 1; |SC | ≤ m) =
∑
C∈Cr

P(|SC | ≤ m)P (zC = 1||SC | ≤ m))

≥ rαβ

1 + c4

∑
C∈Cr

P(|SC | ≤ m) ≥ rαβ−d

2(1 + c4)
,

where the second last inequality is due to Lemma 32, and the last inequality is from the
choice of m and a union bound. Finally,

E
z,σ

E
S|z,σ,ĥ

E(ĥ∗n) =
∑
C∈Cr

E
zC ,σC

E
SC |zC ,σC ,ĥ

EC(ĥ∗n)

= (c3r
d+α)

(
rαβ−d

2(1 + c4)

)
≥ C1

(
logL∗

nL∗

)α(β+1)
2α+d

,

where C1 = c3(8λ−2/9)
α(β+1)
2α+d

2(1+c4) > 0.

4.1.3 Supporting lemmas

In this section, we present some technical lemmas that have been used in the proof of
Proposition 28. The following Lemma 29 shows that the labels in a cell C are independently
and identically distributed given zC , σC , i.e., no information leak among the cells.

Lemma 29. Conditional on zC, σC and |SC | = nC, YC = {Y Cj }
nC
j=1 are independently and

identically distributed as PY |X,zC ,σC .

Proof The conditional probability mass of YC is

PYC |zC ,σC ,ĥ(YC)

=

∏nC
j=1 dP

C
X|ĥ(XCj |{XCi , Y Ci }i<j)PY |X,zC ,σC(Y

C
j |XCj )∏nC

j=1 dP
C
X|ĥ

(XCj |{XCi , Y Ci }i<j)

=

nC∏
j=1

PY |X,zC ,σC(Y
C
j |XCj ),

which concludes the proof.

The next lemma Lemma 30 is an anti-concentration inequality for multi-classes. It shows
that the labeling rule of conditional Neyman-Pearson learners fails to identify the Bayes
class in a cell C with a positive probability bounded away from zero, under an insufficient
labelling budget.
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Lemma 30 (Anti-concentration). Let l ∈ [L∗ − 1], Y1, . . . , Ym i.i.d. with

Pl(Y1 = y) =


κ/L∗ + cηr

α if y = l ;
κ/L∗ if y < L∗ and y 6= l ;
κ/L∗ − cηrα if y = L∗ ;
(1− κ)/(L− L∗) if y > L∗ .

where 1/2 ≤ κ ≤ 1. If m ≤ (c−2
η r−2α logL∗)/(36L∗), then

Pl
(
∃l′ 6= l,ml′ > ml

)
≥ c5,

for some absolute constant c5 > 0, where ml
.
=
∑m

i=1 1(Yi = l).
Proof For the case L∗ = 2, we omit the proof as it follows from the same spirit of binary
anti-concentration inequality, e.g., Theorem 2 (ii) of Mousavi (2010). For L∗ > 2, consider
a finite collection of distributions {P0, P1, . . . , PL∗−1} where

P0(Y = y) =

{
κ/L∗ if y ≤ L∗ ;
(1− κ)/(L− L∗) if y > L∗ .

and {Pl}l∈[L∗−1] is as defined in the statement. We first find an upper bound for the KL
divergence between P0 and Pl. Let ε := cηr

α < κ/(8L∗) for the choice of large n. By
definition of KL divergence,

KL(P0|Pl) =
κ

L∗
· log

(
κ/L∗

κ/L∗ + ε

)
+ κ/L∗ · log

(
κ/L∗

κ/L∗ − ε

)
=

κ

L∗
·
(

log

(
1 +

ε

κ/L∗ − ε

)
− log

(
1 +

ε

κ/L∗

))
=

κ

L∗
·
(

ε

κ/L∗ − ε
− ε

κ/L∗

)
+ o(ε2)

=
ε2

κ/L∗ − ε
+ o(ε2)

≤ 2L∗ε = 2L∗c2
ηr

2α.

Therefore, the product measures Pml and Pm0 satisfies KL(Pm0 |Pml ) ≤ 2mL∗c2
ηr

2α, for 1 ≤
l ≤ L∗ − 1. Let P̂m = Pl̂m, with l̂m = argmaxlml being the maximum likelihood estimator
of l. Define the discrete metric d, with d(P, P ′) = 0 if P ≡ P ′ and d(P, P ′) = 1 otherwise.
By Theorem 2.5 of Tsybakov (2009), if m ≤ (c−2

η r−2α logL∗)/(36L∗), then 2mL∗c2
ηr

2α ≤
logL∗/18 ≤ log(L∗ − 1)/10 when L∗ > 2, and we have

inf
P̂

sup
P∈{P1,...,PL∗−1}

P(d(P, P̂ ) = 1) ≥ c5 > 0,

for some c5 > 0. By symmetry, P(d(P, P̂m) = 1) is the same for all the choice of P ∈
{P1, . . . , PL∗−1}. Therefore, for any l ∈ [L∗ − 1],

P
Pl

(d(Pl, P̂m) = 1) ≥ c5.

Hence, the proof is complete by noticing {∃l′,ml′ > ml} = {d(Pl, P̂m) = 1}.
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The following Lemma 31 is an immediate corollary of Lemma 30 which provides the
excess risk in a cell, under an insufficient labelling budget.

Lemma 31. Let nC ≤ m = (c−2
η r−2α logL∗)/(36L∗) and ĥ∗ be a conditional Neyman-

Pearson learner. Then, in cell C, for any combination of (zC , σC),

E
SC |zC ,σC ,ĥ

[EC(ĥ∗n) | |SC | = nC ] ≥ c3r
d+α

1(zC = 1).

for some c3 > 0.

Proof When zC = 0, the inequality holds trivially. When zC = 1, let nσC
.
=
∑nC

j=1 1

(
Y Cj = σ

)
,

then

EC(ĥ∗n) = cηr
d+α

1

(
σC 6= argmax

σ∈[L∗−1]
nσC

)
.

Therefore,

E
SC |zC ,σC ,ĥ

[
EC(ĥ∗n)

∣∣∣|SC | = nC

]
=cηr

d+α P
SC |zC ,σC ,ĥ

(∃σ, nσCC < nσC | |SC | = nC)

≥c3r
d+α.

where the last equality holds by Lemma 29 and 30, with c3 = c5cη.

Finally, Lemma 32 is a technical lemma that shows the distribution of zC , conditioned
on small sample size, is not far from the unconditional distribution.

Lemma 32. Let SC = (XCj , Y
C
j )j be the sample falls in C. Then,∫
|SC |=nC dPSC |zC=0(SC)∫
|SC |=nC dPSC |zC=1(SC)

≤ c4,

for nC ≤ m and some absolute constant c4 > 0. Consequently,

P (zC = 1||SC | ≤ m) ≥ rαβ

1 + c4
.

Proof By definition,

dPSC |zC=0(SC)

/
nC∏
j=1

dP C
X|ĥ

(
XCj |(XCi , Y Ci )i<j

)
=
( κ
L∗

)∑nC
i=1 1(Y Ci ≤L∗)

(
1− κ
L− L∗

)∑nC
i=1 1(Y Ci >L

∗)

dPSC |zC=1(SC)

/
nC∏
j=1

dP C
X|ĥ

(
XCj |(XCi , Y Ci )i<j

)
=

1

L∗ − 1

(
L∗−1∑
σ=1

( κ
L∗

+ cηr
α
)nσC ( κ

L∗
− cηrα

)nL∗C ( κ
L∗

)∑nC
i=1 1(Y Ci <L

∗,Y Ci 6=σ)
(

1− κ
L− L∗

)∑nC
i=1 1(Y Ci >L

∗)
)

19



Gan Yuan, Yunfan Zhao and Samory Kpotufe

For a fixed SC,

dPSC |zC=0(SC)

dPSC |zC=1(SC)
=

L∗ − 1∑L∗−1
σ=1

(
1− L∗cηrα

κ

)nL∗C (
1 +

L∗cηrα

κ

)nσC
≤

(1− L∗cηr
α

κ

)nL∗C (
1 +

L∗cηr
α

κ

)∑L∗−1
σ=1 nσC/(L

∗−1)
−1

where the last step is by Jensen’s inequality. Therefore,∫
|SC |=nC dPSC |zC=0(SC)∫
|SC |=nC dPSC |zC=1(SC)

≤ 2 ·

∫
|SC |=nC ,

∑L∗−1
σ=1 nσC/(L

∗−1)≥nL∗C
dPSC |zC=0(SC)∫

|SC |=nC ,
∑L∗−1
σ=1 nσC/(L

∗−1)≥nL∗C
dPSC |zC=1(SC)

≤ 2

(
1−

(L∗)2c2
ηr

2α

κ2

)−nL∗C
≤ 2

(
1− L∗

9m

)−m/L∗
≤ c4,

for c4 = 2 exp(1/9). Consequently,

P (zC = 1||SC | ≤ m) =
P(zC = 1, |SC | ≤ m)

P(|SC | ≤ m)

=
P(zC = 1, |SC | ≤ m)

P(zC = 1, |SC | ≤ m) + P(zC = 0, |SC | ≤ m)

=
P(|SC | ≤ m|zC = 1)P(zC = 1)

P(|SC | ≤ m|zC = 1)P(zC = 1) + P(|SC | ≤ m|zC = 0)P(zC = 0)

≥ rαβ

1 + c4
.

4.2 Proof of Upper-bounds

4.2.1 Technical lemmas

First, we define some quantities and notions that will be used in the lemmas.

Definition 33. Let A be any measurable subset of [0, 1]d and y ∈ [L]. We define the
regression function in A for label y as ηy(A)

.
=
[∫
A ηy(x)dx

]
/
[∫
A dx

]
.

Given nA independent samples {(XA
j , Y

A
j )}nAj=1 in A, an unbiased estimator of ηy(A) is

η̂y(A)
.
=

1

nA

nA∑
j=1

1(Y A
j = y).
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To get a high probability bound, we focus the discussion on a subset under which the
estimation error of η̂ at each cell is small enough throughout the proof. We consider a
favorable event ξα

.
=
⋂
r∈I
⋂
C∈Cr ξC,r,α, where

I .
= {2−k : k ∈ N},

and
ξC,r,α

.
=
⋂
y∈LαC

{|η̂y(C)− ηy(C)| ≤ λrα}

where LαC is the remaining candidate labels for cell C before elimination as defined in
Algorithm 2. The following lemma shows that ξα is indeed a high probability event.

Lemma 34. P(ξα) ≥ 1− δ0.
Proof First, we show that P(ξCC,r,α) ≤ δ0r

d+1. By union bound and small deviation version
of Chernoff bound (Lemma 20),

P
(
ξCC,r,α

)
≤ |LαC |P(|η̂y(C)− ηy(C)| > λrα)

≤ |LαC | exp[−2nr,α(λrα)2/pmax]

where pmax
.
= min{1, 1/|LαC | + τ2r,α} is an upper bound for maxy∈LαC ηy(C). Hence, by the

choice of nr,α:
P
(
ξCC,r,α

)
≤ 2|LαC | exp(−2nr,α(λrα)2/pmax) ≤ δ0r

d+1.

Another application of union bound yields P(ξα) ≥ 1−
∑

r∈I r
−dδ0r

d+1 ≥ 1− δ0.

Next, we show some desired properties of Algorithm 2 on the favorable event ξα. In
particular, Lemma 35 shows that Algorithm 2 never eliminates Bayes classes; Lemma 36
shows that Algorithm 2 predicts only Bayes classes in the area where the soft margin is
large enough; Lemma 37 shows that the algorithm will at least reach some certain level rmin

of partition.

Lemma 35. On the event ξα, suppose that Algorithm 2 is in the depth that the partition
is of sidelength r. For any x ∈ [0, 1]d, we have ηy(x) < η(1)(x) for any y 6∈ SC, where
x ∈ C ∈ Cr. That is, the algorithm never eliminates Bayes classes.
Proof Let y∗ be a Bayes class and y∗ ∈ LαC before elimination. By definition of ξα and
smoothness assumption, we have

η̂y∗(C) ≥ ηy∗(x)− |ηy∗(x)− ηy∗(C)| − |η̂y∗(C)− ηy∗(C)| ≥ ηy∗(x)− 2λrα ,

Similarly

max
y∈[L]

η̂y(C) ≤ max
y∈[L]

{ηy(x) + |ηy(C)− ηy(x)|+ |η̂y(C)− ηy(C)|} ≤ ηy∗(x) + 2λrα .

Therefore, η̂(1)(x)− η̂y(x) ≥ 6λrα. Therefore, maxy∈[L] η̂y(C)− η̂y∗(C) < τr,α and y∗ will not
be elimiated.
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Lemma 36. On the event ξα, suppose that Algorithm 2 is in the depth that the partition
is of side length r. If η(1)(x) − ηy(x) ≥ ∆r = 10λrα for some x ∈ [0, 1]d and y ∈ [L], then
for the cell C ∈ Cr that contains x, the label y will be eliminated. Consequently, for any
x ∈ [0, 1]d with M(x) > ∆r, LαC contains only Bayes classes.

Proof By smoothness assumption, η(1)(C)− ηy(C) ≥ η(1)(x)− ηy(x)− 2λrα = 8λrα. Let y
be any label in LαC before elimination, we have |ηy(C)− η̂y(C)| ≤ λrα, and hence

η̂(1)(C)− η̂y(C) ≥|η(1)(C)− ηy(C)| − |ηy(C)− η̂y(C)| − |η(1)(C)− η̂(1)(C)|
≥|η(1)(C)− ηy(C)| − 2λrα ≥ 6λrα .

Lemma 37. On the event ξα,

i) If PX,Y ∈ P1(λ, α,Cβ, β, L
∗
min, L

∗
max), then the finest partition Algorithm 2 can reach

satisfies

rmin ≤
(

c6

n0λ2L∗min

log

(
8L∗maxλ

2n0

δ0

))1/(2α+d)

;

for some c6 > 0;

ii) If PX,Y ∈ P2(cd, λ, α, ε0, Cβ, β, β
′, L∗min, L

∗
max), then

rmin ≤ max


c7ε0 log

(
8L∗maxλ

2n0

δ0

)
n0λ2L∗min


1

2α+d

,

c7λ
β′ log

(
8L∗maxλ

2n0

δ0

)
n0λ2L∗min


1

2α+d−αβ′
 ,

for some c7 > 0.

Proof i) Without loss of generality, we assume that n is large enough so that we can at
least reach the level r s.t. 1/(2L) ≥ τr,α = 6λrα. Note that the probability gap between
the Bayes class and any non-effective label is at least 1/(2L), therefore LαC only contains
effective class labels and L∗min ≤ |LαC | ≤ L∗max. Hence,

nr,α ≤
1

L∗min

log

(
8L∗max

δ0rd+1

)/
(λrα)2.
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Suppose rmin is the finest partition the algorithm can reach, i.e., the total budget is not
sufficient for length rmin/2. Then,

n0 ≤
∑

r∈I: r≥rmin /2

|Ar|nr

≤
∑

r∈I: r≥rmin /2

r−d

L∗min

log

(
8L∗max

δ0rd+1

)/
(λrα)2

≤
log
(

8L∗max/(δ0r
d+1
min )

)
λ2L∗min

∑
r∈I: r≥rmin /2

r−(2α+d)

≤
c8 log

(
8L∗max/(δ0r

d+1
min )

)
λ2L∗min

r
−(2α+d)
min

where c8 > 0 is independent of rmin, δ0, L
∗
min, L

∗
max, λ and n0, the last inequality is due

to the geometric growth of the summands as r < 1. We now prove an upper bound for
log(8L∗max/(δ0r

d+1
min )). Use the trivial bound

r−dmin

L∗min

·
log
(

8L∗max/(δ0r
d+1
min )

)
λ2r2α

min

= nrmin,α ≤ n0,

and
r−dmin
L∗min

> 1, 8L∗max/(δ0r
d+1
min ) > 8/δ0 > 1, we have (λ2r2α

min)−1 ≤ n0, which implies rmin ≥(
λ2n0

)−1/2α
, and therefore

log(8L∗max/(δ0r
d+1
min )) ≤ log

(
8L∗max

δ0

(
λ2n0

)(d+1)/2α
)
≤ d+ 1

2α
log

(
8L∗maxλ

2n0

δ0

)
. (7)

where the latter step is due to (d+ 1)/2α > 1. With this upper bound (7), we now proceed
to upper bound rmin. Clearly,

n0 ≤
c6

λ2L∗min

log

(
8L∗maxλ

2n0

δ0

)
r
−(2α+d)
min

where c6 = c8(d+1)
2α . Therefore,

rmin ≤
(

c6

n0λ2L∗min

log

(
8L∗maxλ

2n0

δ0

))1/(2α+d)

.

ii) From the strong density condition and Lemma 36, we have a tighter bound on the number
of active cells:

|Ar| ≤
ε0 + Cβ(6λrα)β

′

cdrd
.
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Using a similar argument as in i), we have

n0 ≤
∑

r∈I:r≥rmin/2

|Ar|nr

≤
∑

r∈I:r≥rmin/2

ε0 + Cβ(6λrα)β
′

cdrd
· r
−d log(8L∗max/(δ0r

d+1))

L∗minλ
2r2α

≤ c7

λ2L∗min

log

(
8L∗maxλ

2n0

δ0

)
max

{
ε0r
−(2α+d)
min , λβ

′
r
−(2α+d−αβ′)
min

}
.

where c7 > 0 is independent of rmin, δ0, L
∗
min, L

∗
max, λ and n0. Therefore,

rmin ≤ max


c7ε0 log

(
8L∗maxλ

2n0

δ0

)
n0λ2L∗min


1

2α+d

,

c7λ
β′ log

(
8L∗maxλ

2n0

δ0

)
n0λ2L∗min


1

2α+d−αβ′
 .

Now we establish an upper-bound for the excess risk rate of the non-adaptive subroutine.

Proposition 38 (Guarantees for Algorithm 2). Let n0 ∈ N and αβ′ ≤ d. Let {SC}C∈r0 be
the outputs of Algorithm 2 with input n0, λ, α and δ0 ∈ (0, 1), and ĥn0,α be any classifier

that satisfies ĥn0,α(x) ∈ SC , ∀x ∈ C ∈ Cr0.

i) Suppose that PX,Y ∈ P1(λ, α,Cβ, β, L
∗
min, L

∗
max). With probability at least 1− δ0,

E
(
ĥn0,α

)
≤ C4

λ d
α log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


α(β+1)
2α+d

ii) Suppose that PX,Y ∈ P2(cd, λ, α, ε0, Cβ, β, β
′, L∗min, L

∗
max). With probability at least

1− δ0,

E
(
ĥn0,α

)
≤ C5

εα(β+1)
2α+d

0

λ d
α log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


α(β+1)
2α+d

+

λ d
α log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


α(β′+1)

2α+d−αβ′


for some constant C4, C5 > 0, which are independent of n0, λ, L, ε0 and δ0.
Proof (Proof of Proposition 38)
i) On the event ξα with probability at least 1− δ0, we have by Part i) of Lemma 37,

∆rmin = 10λrαmin ≤ 10λ

c6λ
−2 log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


α

2α+d

≤ 10

c6λ
d
α log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


α

2α+d

.
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By Lemma 36, the classifier ĥn0,α makes no error at {x :M(x) > ∆rmin}, and thus

E(ĥn0,α) ≤ P(M(X) ≤ ∆rmin) ·∆rmin ≤ Cβ∆β+1
rmin
≤ C4

λ d
α log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


α(β+1)
2α+d

,

where C4 = Cβ10β+1c
α(β+1)
2α+d

6 . ii) On ξα with probability at least 1− δ0, we have by Part ii)
of Lemma 37,

∆rmin ≤ 10 max

ε
α

2α+d

0

c7λ
d
α log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


α

2α+d

,

c7λ
d
α log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


α

2α+d−αβ′


.
= 10 max{Q1, Q2}.

Case 1: Q1 ≤ Q2

Under this case, it is clear that ε0 ≤ c9∆β′
rmin for some c9 > 0. Therefore,

E(ĥn,α) ≤ P(M(X) ≤ ∆rmin)∆rmin

≤ P(M′(X) ≤ ∆rmin)∆rmin

≤ Cβ(ε0 + ∆β′
rmin

)∆rmin

≤ Cβ(c9 + 1)∆β′+1
rmin

≤ C ′5

λ d
α log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


α(β′+1)

2α+d−αβ′

,

where C ′5 = Cβ(c9 + 1)10β
′+1c

α(β′+1)

2α+d−αβ′
7 .

Case 2: Q1 > Q2

Under this case,

E(ĥn0,α) ≤ P(M(x) ≤ ∆rmin)∆rmin ≤ Cβ∆β+1
rmin
≤ C ′′5 ε

α(β+1)
2α+d

0

λ d
α log

(
16λ2n0
pminδ0

)
n0L∗min


α(β+1)
2α+d

,

where C ′′5 = Cβ10β+1c
α(β+1)
2α+d

7 . Finally, set C5 = max{C ′5, C ′′5 } we get the desired result.

4.2.2 Proof of the main theorems

Proof (Proof of Theorem 21 and 23). Due to their similarity, we only prove Theorem 21,
and omit the proof of Theorem 23. The bound is trivial for α < 1

log(n) , since n−α ≥
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n−1/ log(n) ≥ 1
e . Thus, we will consider α ≥ 1

log(n) . Let δ0 = δ/
(
blog(n)c3

)
and αi =

i/blog(n)c3 for i ∈ [blog(n)c3], as defined in Algorithm 2. Let i∗ be the largest integer
i ∈ [blog(n)c3] such that αi ≤ α. By Lemma 34 and 35, on ξαi with probability at least
1− δ0, we have

∀C ∈ Cr0 , ∀x ∈ C, argmax
y

ηy(x) ∈ LαiC

By a union bound, with probability at least 1−blog(n)c3δ0 = 1− δ, above holds jointly
for all i ≤ i∗. Thus, with probability at least 1− δ,

∀C ∈ Cr0 ,∀x ∈ C, argmax
y

ηy(x) ⊆ ∩i≤i∗LαiC ,

and hence ∩i≤i∗LαiC 6= ∅. Therefore, LC ⊂ Lαi∗C for any C ∈ Cr0 . By proposition 38 and the
fact that budget for each αi is n0 = n

blog(n)c3 , we have

E
(
ĥn

)
≤ C5

ε
αi∗ (β+1)

2αi∗+d
0

λ
d
αi∗ log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


αi∗ (β+1)

2αi∗+d

+

λ
d
αi∗ log

(
8L∗maxλ

2n0

δ0

)
n0L∗min


αi∗ (β

′+1)

2αi∗+d−αi∗β
′


It remains to argue that going from αi∗ to α, we add at most a constant multiplicative

factor to the excess risk bound. Notice that

α(1 + β)

2α+ d
− αi∗(1 + β)

2αi∗ + d
≤ 1 + β

2αblog(n)c3
≤ 1 + β

2 log2(n)
· log3(n)

blog(n)c3

where the last step is due to α ≥ 1
log(n) . Similarly,

α(1 + β′)

2α+ d− αβ′
− αi∗(1 + β′)

2αi∗ + d− αi∗β′

≤ (1 + β′)(α− αi∗)(2α+ d)

(2α+ d− αβ′)2
≤ (1 + β′)(2α+ d)

log3(n)(2α+ d− αβ′)2
· log3(n)

blog(n)c3

≤ (1 + β′)(2α+ d)

log3(n)(2α)2
· log3(n)

blog(n)c3
≤ (1 + β′)(2 + d)

4 log3(n)α2
· log3(n)

blog(n)c3
≤ (1 + β′)(2 + d)

4 log(n)
· log3(n)

blog(n)c3

where the last step is due to α ≥ 1
log(n) . Therefore, for n sufficiently large,

 log3(n)λ
d
αi∗ log

(
(8L∗maxλ

2n
δ

)
nL∗min


−α(1+β)

2α+d
+
αi∗ (1+β)
2αi∗+d

≤ 2e
1+β

2 log(n) ,

 log3(n)λ
d
αi∗ log

(
8L∗maxλ

2n
δ

)
nL∗min


− α(1+β′)

2α+d−αβ′+
αi∗ (1+β

′)
2αi∗+d−αi∗β

′

≤ 2e(1+β′)(2+d)/4

and hence Theorem 21 holds with for C2 = 2e(1+β′)(2+d)C5.
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Figure 3: The plot of the regression function. The classification task is relatively easy when
x is near the two endpoints of the [0, 1] interval, where the Bayes class is unique with a
large margin. The task is more challenging when x is around the center of the interval,
where the regression function oscillates rapidly. The Bayes classes are not unique on the
two orange dash-dot intervals, where both Class 1 and 2 are Bayes. The total mass of the
region where Bayes classes are non-unique is controlled by the parameter ε0.

5. Experiments

In this section, we demonstrate through a simulation study how non-unique Bayes classes
affect the gain in active learning over passive learning.

Data Distribution The joint distribution PX,Y is supported on [0, 1]× {1, 2, 3}, charac-
terized by the marginal distribution PX ∼ Unif(0, 1), and the regression function:

η1(x) =



3x/(3− 4ε0), 0 ≤ x ≤ (3− 4ε0)/8

3/8, (3− 4ε0)/8 < x ≤ 3/8

3/8,+ sin(40πx), 3/8 < x ≤ 5/8

3/8, 5/8 < x ≤ (5 + 4ε0)/8

1 + 3(x− 1)/(3− 4ε0), (5 + 4ε0)/8 < x ≤ 1

η2(x) = 3/4 − η1(x) and η3(x) = 1/4. Here, one can easily verify that the parameter
ε0 = PX(η1(X) = η2(X) > η3(X)) is the mass of region where the Bayes classes are
non-unique. See Figure 3 for the plot of the regression function.

Classifiers We compare the performance of the non-adaptive active learner defined as in
Algorithm 2 and its passive counterpart. The passive learner samples uniformly on the [0, 1]
interval, then partitions the interval into n1/(2α+1) sub-intervals and takes majority votes as
its prediction within each partition. The choice of the number of partitions is known to be
optimal, see Györfi et al. (2002); Audibert and Tsybakov (2007). Throughout, we assume
that both the active and passive learners know the smoothness parameters α = 1, λ = 15π.
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Figure 4: The empirical excess risk of the active learner and passive learner versus the
sampling budget, for ε0 = 0 (left) and ε0 = 0.6 (right). Each dot represents the mean
empirical excess risk over 10 replications, and the error bars stand for the standard deviation.

Evaluation and Results The classifiers are trained with different sampling budgets
under multiple levels of ε0. A test dataset of size 100, 000 is generated and reserved for the
evaluation of the classifiers.

Figure 4 shows how the gain of the active learner evolves with changing sampling budgets
under two extreme choices of ε0. When ε0 = 0, we observe a much faster downward trend
for the empirical excess risk of the active learner than that of the passive learner. In this
case, the active learner can quickly decide the Bayes class in those regions with large margin
and use the majority of the budget where the regression function is highly-oscillated. When
ε0 = 0.6, the gain of the active learner is significantly reduced. The active learner cannot
differentiate between the real difficult region and the region where the Bayes classes are
non-unique, and hence fails to save budget as efficiently. Nonetheless, there is still limited
improvement in the small n regime, which agrees with Theorem 21.

Figure 5 presents the effect of ε0 on the gain of the active learner on a finer scale.
For each different value of ε0, ranging from 0 to 0.6, we calculate the ratios of the active
empirical excess risk to the passive one. We observe an upward trend in the ratio with
respect to ε0. From the level around ε0 = 0.5 and above, the active learner has almost no
advantage over the passive learner.

6. Conclusion

In this paper, we show that classic Tsybakov’s margin condition does not guarantee a gain
in active learning over passive learning when the marginal distribution PX is nearly uniform:
in particular, there is no gain in the minimax rate whenever the margin condition allows for
non-unique Bayes classifiers (up to positive measure). We then propose a refined margin
condition that allows for improved active learning rates over passive rates by accounting for
the mass of regions with non-unique Bayes classes.

Our results leave open whether similar nuances in regimes of gain exist in parametric
settings, e.g., under bounded VC classes, where many active learners have been shown
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Figure 5: The performance ratio of the active learner and passive learner versus ε0. Each
dot represent the mean performance ratio over 10 replications, and the error bars stand for
the standard deviation. The horizontal reference line of level 1 represents the case where
the active learner has absolutely no gain over the passive learner.

to gain under the cases with a unique Bayes class throughout the space (Hanneke, 2011;
Koltchinskii, 2010; Wang and Singh, 2016). Also, all of the results of this work hold under
excess 0-1 risk, different findings might emerge under different performance measures.
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