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Abstract

Personalized Federated Learning (FL) faces many challenges such as expensive communi-
cation costs, training-time adversarial attacks, and performance unfairness across devices.
Recent developments witness a trade-off between a reference model and local models to
achieve personalization. Following the avenue, we propose a personalized FL method toward
the three goals. When it is time to communicate, our method projects local models into a
shared-and-fixed low-dimensional random subspace and uses infimal convolution to control
the deviation between the reference model and projected local models. We theoretically
show our method converges for both strongly convex and non-convex but smooth objectives
with square regularizers and the convergence dependence on the projection dimension is
mild. We also illustrate the benefits of robustness and fairness on a class of linear problems.
Finally, we conduct a large number of experiments to show the empirical superiority of our
method over several state-of-the-art methods on the three aspects.
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1. Introduction

Federated learning (FL) emerges as a new distributed computing paradigm that would per-
form privately distributed optimization across massive networks of remote clients (McMahan
et al., 2017). In order to safeguard privacy, data are generated locally and preserved in their
original location during training, which incurs a discrepancy among local data distributions.
Furthermore, the nature that FL works as a decentralized system poses greater challenges to
its communication efficiency, robustness against adversarial attacks, and fairness on resource
allocation (Kairouz et al., 2021).

To circumvent the problem of data heterogeneity, one considers personalizing local
models (Kulkarni et al., 2020). A key feature that any personalization method has is
to differentiate local models from the global model. The most straightforward method
of personalization is to train models purely with local data on each device. Chen et al.
(2021) showed that when the degree of data heterogeneity exceeds a certain threshold, pure
local training is minimax optimal; otherwise, the global model is minimax optimal. In
practice, we prefer a method that intervenes between the two extremes. It brings out another
popular approach that interpolates between a reference model and local models (Hanzely
and Richtárik, 2020; Hanzely et al., 2020; Deng et al., 2020; Dinh et al., 2020; Hu et al.,
2022; Wu et al., 2021). Recent research (Li et al., 2021b) raised the possibility of using
personalization not only to improve accuracy but also to accommodate competing criteria
such as robustness and fairness. Inspired by this line of work, we would explore the following
question:

Can we balance different constraints of interest (i.e., communication efficiency, robustness,
and fairness) simultaneously?

In this paper, we give an affirmative answer to the question by proposing a personalized
FL method named lp-proj, whose core consists of Lp-regularization and low-dimensional
random projection. We employ the idea of controlling the dissimilarity between the global
model and local models via a smoothing kernel of infimal convolution. Toward the three
goals, the smoothing kernel is designed to regularize the projection of local models in a
shared low-dimensional random subspace rather than the original space. By means of the
above smoothing kernel, each client only communicates the projected models each time
and the server maintains a low-dimensional reference model for regularization. The random
subspace is generated only once and remains unchanged throughout training. It makes local
models share a similar part in the random subspace and adjust to their local data using
components beyond that.

Theoretically, we give convergence analysis for both convex and non-convex but smooth
objectives with square regularizers and show that the convergence dependence on the pro-
jection dimension is mild. We demonstrate that in terms of Byzantine robustness (Lamport
et al., 2019) and performance fairness (see Definition 1), our proposed method is at least as
good as two SOTA methods (Dinh et al., 2020; Li et al., 2021b) by examining the test losses
and the corresponding variances across the network on a class of federated linear regression
problems.

Empirically, we perform extensive numerical experiments to demonstrate the superiority
of our proposed algorithm in practice. In addition to the accuracy improvement expected
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from personalization, it also promotes fairness since the accuracies across all the clients are
more uniform. Furthermore, it is more resilient to adversarial attacks that occur during
training. More importantly, the communication efficiency is significantly improved due to
the fact that the subspace dimension is often no more than one-hundredth of the original
dimension.

In summary, we propose a personalized FL algorithm and explore its performance
in aspects of communication efficiency, robustness, and fairness. Our results show that
low-dimensional projection brings multiple benefits and is helpful for algorithm design.

The remainder of the paper is organized as follows. Firstly, we start with a literature
review in Section 2. We then derive our algorithm from infimal convolution and subspace
regularization in Section 3. Theoretical properties of the proposed method including
convergence, robustness, and fairness are analyzed in Section 4. In Section 5, we show
comparisons with various state-of-the-art benchmarks through a large number of numerical
experiments. Finally, we generalize the proposed algorithm to make it suitable for large-scale
applications in Section 6.

2. Related Work

In this section, we present related work from four relative aspects, i.e., federated learning
involving personalization, communication efficiency, robustness, and fairness.

2.1 Personalized Federated Learning

There are many works studying personalization, and a survey can be found in Kulkarni
et al. (2020). It has been studied via multi-task learning (Smith et al., 2017; Huang et al.,
2021), meta-learning (Chen et al., 2018; Jiang et al., 2019; Fallah et al., 2020), knowledge
distillation (Li and Wang, 2019; Yu et al., 2020b) and transfer learning (Wang et al., 2019b;
Mansour et al., 2020). Hanzely et al. (2021) provided convergence analysis for a general
personalized framework that requires jointly strongly convex and smooth objectives.

2.2 Communication-Efficient Federated Learning

To reduce the cost of communication in FL with large-scale networks, existing research could
be classified as gradient compression, model compression, and reducing the communication
frequency. Concerning gradient compression, three main directions are investigated: sparsifi-
cation (Ivkin et al., 2019; Lin et al., 2018), quantization (Alistarh et al., 2017) and low-rank
approximation (Azam et al., 2021). On model compression, Liang et al. (2020) suggested
learning local representations and a global model only operates on the local representations,
Li et al. (2021a) extended the lottery ticket hypothesis and used network pruning in the FL
setting. Regarding communication frequency, McMahan et al. (2017) and Karimireddy et al.
(2020) performed multiple local updates to lessen the communication rounds, while Wang
et al. (2019a) used momentum to delay the global aggregation. A survey on recent progress
in communication-efficient FL was given by Shahid et al. (2021). Our proposed method is a
model compression approach. Differing from previous works that compress the model each
time with a different basis, our work focuses on a shared-and-fixed low-dimensional subspace
which is determined at the beginning of training and will not change later on.
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2.3 Robust Federated Learning

Typical adversarial attacks include data poisoning and model update poisoning (Byzantine
attacks). These two attacks impede the training process in different ways: the former injects
abnormal sample points into the training data set (Biggio et al., 2012; Jagielski et al., 2018;
Li et al., 2016; Rubinstein et al., 2009; Suciu et al., 2018; Xiao et al., 2015; Fang et al., 2020),
while the latter manipulates communication messages by sending arbitrary updates to the
server. In this paper, we mainly aim to defend model update poisoning attacks and achieve
Byzantine robustness (Lamport et al., 2019). An extension to a data poisoning attack is also
considered in numerical experiments. Previous research has focused on Byzantine-robust
SGD variants where the server uses robust aggregation rules to mitigate the attack of
Byzantine clients (Chen et al., 2017; Yin et al., 2018; Xie et al., 2018; Blanchard et al.,
2017). Beyond that, Li et al. (2019) considered robustifying the objective function via the
Lp-norm regularizer. Additionally, Li et al. (2021b) incorporated personalization and robust
aggregation rules to achieve robustness and fairness simultaneously. Our work leverages the
ideas from Li et al. (2019) and Li et al. (2021b) but differs from them by embedding the
update process in a low-dimensional fixed random subspace. Theoretical analysis shows that
with commonly used regularization parameters, our method is no worse than two SOTA
methods (Dinh et al., 2020; Li et al., 2021b) (see Figure 1). Extensive experiments manifest
our method of achieving state-of-the-art performance under various types and intensities of
adversarial attacks.

2.4 Fairness in Federated Learning

According to Zhou et al. (2021), there are three types of fairness in FL: performance fairness,
collaboration fairness, and model fairness. With respect to performance fairness, an FL
system usually promotes uniform accuracy distribution across participants, which is closely
related to resource allocation by viewing FL as a collaborative optimization system over a
heterogeneous network.

Li et al. (2021b) provided a formal definition (Definition 1) and some efficient methods
have been proposed towards this goal (Li et al., 2021b; Huang et al., 2020).

Definition 1 (Performance fairness, Li et al., 2021b) A model w1 is more fair than
w2 if the test performance distribution of w1 across the network with N clients is more
uniform than that of w2, i.e. var {Fk(w1)}k∈[N ] < var {Fk(w2)}k∈[N ], where Fk(·) denotes

the test loss of client k ∈ [N ] and var denotes the variance.1

On collaboration fairness, one expects to build a sound incentive mechanism, and hence an
intuition is that each participant would receive a reward that fairly reflects its contribution
to the FL system. Lyu et al. (2020) formalized this idea by giving its definition; Yu et al.
(2020a) and Xu and Lyu (2021) explored this aspect by proposing methods to this end.
Finally, regarding model fairness, one usually concerns ethical issues and seeks to protect
some sensitive attributes (Dwork et al., 2012; Hardt et al., 2016; Kusner et al., 2017). Liang
et al. (2020) suggested learning a fair representation for each client to achieve fairness, Du
et al. (2021) proposed reweighing the objective functions under fairness constraint. In our

1. Equivalently, we can use the standard deviation (std) to measure fairness across the network.
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work, we focus on performance fairness, illustrating the benefits of our method through
theoretical analysis and numerical experiments. An extension to collaboration fairness is
shown in Appendix C.7.3.

Since the submission of this work, several related studies have emerged. Regarding
personalized federated learning, Ye et al. (2023b) introduced a collaboration graph to help
the clients adapt to diverse data heterogeneity levels and model poisoning attacks. Yan
et al. (2024) further explored to find the optimal cooperation network for each client. On
the other hand, regarding communication efficiency, robustness, and fairness, several follow-
up work follows our framework. Wang et al. (2023) proposed a maximum entropy-based
model to concurrently enhance both global model performance and fairness. Zhao et al.
(2024) introduced a two-server aggregation scheme and sparse matrix projection compression
technique to enhance communication efficiency and resist poisoning attacks. Zhu et al.
(2024) employed the Moreau envelope as the regularization function and reparametrized the
objective function so that it could be solved within the ADMM framework, this model could
account for robustness and fairness.

3. Methodology

In this section, we present our method which is based on infimal convolution and subspace
regularization. Conventional FL that trains a single global model to fit the “average
client” suffers from statistical heterogeneity among numerous devices. To enhance accuracy
performance, we hope not only to leverage the global model but also to stylize it to fit the
local data for each client. To this end, we employ infimal convolution, which is originally
proposed to smooth some extended real-valued convex function f with a sufficiently smooth
kernel function g (Moreau, 1965). We apply this technique in FL to bridge local models
and the global model. Here, f is the usual objective function in the vanilla case, and g is
designed to characterize the relationship between local and global models. Given a general
function g as the smoothing kernel, the personalized FL using infimal convolution is then
formulated as a bi-level problem:

min
w∈Rd

F (w) := G {F1(w), . . . , FN (w)} , (1)

where G(·) is the aggregation function on the server side.2 For k ∈ {1, · · · , N},

Fk(w)= {fk ⊗ λg} (w):= min
xk∈Rd

fk(xk) + λg(w − xk)

with fk(xk) = Eξk
[
f̃k(xk; ξk)

]
.

Here, ⊗ denotes the infimal convolution operator, ξk is an independent sample drawn from
the distribution Dk, and f̃k (xk; ξk) is the loss function corresponding to this sample. w and
xk represent the global and local model parameters, respectively. λ is a hyperparameter
controlling the degree of personalization. Problem (1) is pure local training if λ = 0, and is
synchronized training when λ→∞.

The smoothing kernel function g is task-specific. Many previous personalized methods
can be cast into our infimal convolution framework by setting a proper g. For instance,

2. For simplicity, we set G(·) as the simple average 1
N

∑N
k=1 Fk(w), but it can also generalize to other forms.
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Algorithm 1 lp-proj: Projection-based Lp Regularized Personalized Federated Learning

1: Input: Communication rounds T , local update rounds R, client sampling size S,
regularization coefficient λ, lower-level problem accuracy ν, step size η, initial global
model w̃0 ∈ Rdsub , projection matrix P , speedup control parameter β.

2: for t = 0 to T − 1 do
3: Server sends w̃t ∈ Rdsub to all clients.
4: for all k = 1 to N clients do
5: w̃t

k,0 = w̃t ∈ Rdsub .
6: for r = 0 to R− 1 do
7: Independently sample a fresh mini-batch D̃k and minimize the loss function (3)

up to accuracy level ν to get xtk,r ∈ Rd.
8: Update the local model w̃t

k,r+1 ∈ Rdsub by (4).
9: end for

10: end for
11: Server uniformly samples a subset of clients St of size S. Each client sends w̃t

k,R

∈ Rdsub to the server.

12: Server updates the global model via w̃t+1 = (1− β)w̃t + β
∑

k∈St
w̃t
k,R

S .
13: end for

Dinh et al. (2020) and Li et al. (2021b) used Moreau Envelopes as the regularizer, which is
equivalent to setting g(·) = 1

2‖ · ‖
2
2. Li et al. (2019) proposed the Lp-norm regularization

g(·) = ‖ · ‖p instead. Motivated by the fact that high-dimensional data typically has low-
dimensional representation that retains meaningful properties (Van Der Maaten et al., 2009),
and random projection would preserve the similarity of data vectors (Bingham and Mannila,
2001), we propose to regularize the projection of local models in a shared low-dimensional
space, which is equivalent to the following smoothing kernel

g(·) =
1

p
‖P (·)‖pp , (2)

where p ≥ 1 and P are a dsub × d random matrix that is generated initially and will not
vary anymore. dsub is the dimension of the shared-and-fixed random subspace. The choice
for P is flexible as the only requirement in our theory is that all the singular values of P
are bounded from both sides. In this paper, we consider that P is generated with i.i.d.
Gaussian entries and then normalized to have unit L2 norm for each row as suggested by Li
et al. (2018). We comment that with this g, Fk(w) is actually a function of w̃ = Pw since
P (w − xk) = w̃ − Pxk. It implies we can only focus on the low-dimensional parameter
w̃ ∈ Rdsub at the global level for algorithm description and theoretical analysis.3

3.1 The Algorithm

In this subsection, we introduce the algorithm lp-proj (see Algorithm 1) for the bi-level
optimization problem (1) with smoothing kernel g given by Equation (2).

The algorithm lp-proj is essentially an alternative minimization method on bi-level
optimization. Each client k maintains two parameters: their local parameter xtk,r and a

3. Without ambiguity, we term w̃ as the global model.
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copy of the global parameter w̃t
k,r with additional subscript r denoting inner iterations and

superscript t the communication round. At round t, the server broadcasts the latest global
model w̃t to all clients. Then each client initializes their version of global model w̃t

k,0 as w̃t

(line 5) and starts to solve the problem via alternative minimization (lines 6–9).

• (line 7) Given a local version of global model w̃t
k,r, we use gradient descent (GD) to obtain

an approximate solution xtk,r that minimizes h̃k up to accuracy level ν, where

h̃k(xk; D̃k, w̃t
k,r) =

1

|D̃k|

∑
ξk,i∈D̃k

f̃k(xk; ξk,i) + λ
1

p

∥∥w̃t
k,r − Pxk

∥∥p
p
. (3)

Here D̃k is a mini-batch sampled uniformly and ξk,i refers to a sample from D̃k. The GD

iteration is terminated when
∥∥∥∇h̃k(xtk,r; D̃k, w̃t

k,r)
∥∥∥2

2
≤ ν is satisfied.

• (line 8) Given a local parameter xtk,r, the local version of global model w̃t
k,r is updated by

one-step gradient descent:

w̃t
k,r+1 = w̃t

k,r −
ηλ

p
∂w̃t

k,r

∥∥w̃t
k,r−Pxtk,r

∥∥p
p
. (4)

After R steps of the alternative updates, each client has its own version of the global model
w̃t
k,R. Then the server accesses a random set of S clients and produces the next global

model by a linear combination of the latest w̃t and the average of {w̃t
k,R}k∈St . Here, a

hyperparameter β, which could be viewed as a global step size, is introduced to control the
global update process. Our theorem shows a proper β can speed up convergence, but in
practice, we find that the test performance only varies moderately for different choices of β.
For simplicity, we only consider β = 1 in our experiments.

3.2 Multiple Benefits of the Algorithm

In this subsection, we analyze the benefits of our algorithm in terms of communication
efficiency, robustness, and fairness.

3.2.1 Communication Efficiency

In Algorithm 1, we restrict the global model w̃t to lie in a fixed low-dimensional subspace,
in which way only w̃t

k,R of dimension dsub, rather than the full model xtk,r of dimension
d, is transmitted to the server each round. The above nature leads to much fewer bits
for communication compared to vanilla FL. Besides, we remark on the difference between
our method and other existing projection/sketching-based methods. On the one hand,
distributed sketching (Bartan and Pilanci, 2020), which directly projects the data in a
low-dimensional space at the start of training, is “one-shot” rather than iterative, while our
method projects local models every communication round, and the local training proceeds
with the full model. On the other hand, sketched-SGD (Ivkin et al., 2019) compresses
the transmitted messages with different bases every time, while our random subspace is
predetermined at the beginning and would not change after that.
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3.2.2 Robustness and Fairness

For one thing, by applying projection into a low-dimensional subspace, our method only
requires (near) consensus of model parameters of different clients in the low-dimensional
subspace, leaving flexibility for the system towards personalization and better generalization
to the local data distribution, which could improve performance fairness and robustness
when facing adversarial attacks. For the other, by rewriting the objective as a constrained
optimization problem, introducing a Lp-norm regularizer is equivalent to launching an
uncertainty set to the model parameter (e.g., L1-norm is the diamond-shaped uncertainty
and L2-norm is the spherical uncertainty), in which way we can enhance accuracy by
searching for a model adaptive to the local data distribution in the uncertainty set. Formal
analysis on a class of linear problems is provided in Section 4.2.

4. Theoretical Analysis

In this section, we provide theoretical analysis for lp-proj for the case p = 2. We first prove
the convergence of the proposed algorithm in Section 4.1, covering both the strongly convex
case and the non-convex but smooth case. Next, the robustness and fairness properties are
investigated on a class of linear problems in Section 4.2.

4.1 Convergence Analysis

We first give the definition of strong convexity and smoothness.

Definition 2 fk is said to be µ-strongly convex, if for any xk,x
′
k ∈ Rd, we have fk(x

′
k) ≥

fk(xk)+〈∇fk(xk),x′k − xk〉+ µ
2 ‖x

′
k − xk‖22. fk is said to be L-smooth, if for any xk,x

′
k ∈ Rd,

we have ‖∇fk(x′k)−∇fk(xk)‖2 ≤ L ‖x
′
k − xk‖2.

4.1.1 Convergence for the Strongly Convex Case

The analysis for the strongly convex case is based on the following assumptions.

Assumption 1 (Convexity) For a fixed ξk, f̃k(·; ξk) is µ-strongly convex. As a result, fk
is also µ-strongly convex.

Assumption 2 (Bounded variance) The variance of stochastic gradients in each client

is bounded, i.e., Eξk
∥∥∥∇f̃k(xk; ξk)−∇fk(xk)∥∥∥2

2
≤ γ2

f .

Assumptions 1 and 2 are standard for convergence analysis. Since we usually use weight
decay in the training process, when the model is convex, e.g., logistic regression or linear
neural network, Assumption 1 naturally holds.

Assumption 3 (Bounded singular values of the projection matrix) The smallest and
the largest singular values of the random matrix P , denoted as smin(P ) and smax(P ), are
bounded, i.e.,

1− C
√
dsub/d ≤ smin(P ) ≤ smax(P ) ≤ 1 + C

√
dsub/d, (5)

where C, c > 0 are constants.
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Assumption 3 holds with high probability if the rows of the random matrix are indepen-
dent, sub-gaussian, and isotropic with standardized sub-gaussian norms almost surely (see
Vershynin, 2012, Theorem 5.58), which are mild conditions for random matrices. Specifically,
for our generation of P , Assumption 3 is applicable with probability at least 1−2 exp(−cdsub).
For a detailed proof, see Proposition 24 in the appendix.

To establish the convergence, we first rewrite the local update as

w̃t
k.r+1 = w̃t

k,r − η λ(w̃t
k,r − Pxtk,r)︸ ︷︷ ︸

=:gtk,r

, (6)

which implies η
∑R−1

r=0 gtk,r =
∑R−1

r=0 (w̃t
k,r − w̃t

k,r+1) = w̃t
k,0 − w̃t

k,R = w̃t − w̃t
k,R. Then gtk,r

can be considered as a biased estimate of ∇Fk(w̃t
k,r) and the global update rule becomes

w̃t+1 = (1− β)w̃t +
β

S

∑
k∈St

w̃t
k,R = w̃t −

β

S

∑
k∈St

(w̃t − w̃t
k,R)

= w̃t − ηβR︸︷︷︸
=:η̃

1

SR

∑
k∈St

R−1∑
r=0

gtk,r︸ ︷︷ ︸
=:gt

, (7)

where η̃ and gt can be interpreted as the step size and the approximate stochastic gradient
of the global update, respectively.

Recall that we can view Fk as a function of w̃ instead of w, with some abuse of

notation, we write Fk as Fk(w̃) = minxk∈Rd
{
fk(xk) + λ

2 ‖w̃ − Pxk‖22
}
. We first establish

the convexity and smoothness of Fk and give the expression of ∇Fk(w̃).

Proposition 3 Suppose that Assumptions 1 and 3 hold and let s = C
√
dsub/d. We have

Fk is µF -strongly convex and LF -smooth with µF = λµ
(1+s)2λ+µ

and LF = λ. Moreover,

∇Fk(w̃) = λ(w̃ − P x̂k) with x̂k = argminxk∈Rd
{
fk(xk) + λ

2 ‖w̃ − Pxk‖22
}

. If we further

assume fk is L-smooth and s < 1, we can obtain a smaller smoothness parameter LF =
λL

(1−s)2λ+L
.

The next lemma quantifies the error between the exact gradient ∇Fk(w̃t
k,r) and the

approximate gradient gtk,r due to mini-batch sampling and optimization error of the inner
loop.

Lemma 4 Suppose that Assumptions 1, 2 and 3 hold and let s = C
√
dsub/d. We have

1
λ2E

[∥∥∥∇Fk(w̃t
k,r)−gtk,r

∥∥∥2

2

]
≤ δ2

1 := 2(1+s)2

µ2

(
γ2
f

|D̃k|
+ν

)
.

From the expression of δ2
1, we can see that this error has a mild dependence on dsub. A

numerical verification of the mild dependence is shown in Appendix C.7.5.

Moreover, defining the optimal point as w̃∗ = argminw̃∈Rdsub F (w̃), we can also derive
bounded diversity of Fk.
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Lemma 5 Suppose that Assumptions 1 and 3 hold. With σ2
F,1 := 1

N

∑N
k=1 ‖∇Fk(w̃∗)‖

2
2 and

LF = λ, we have

1

N

N∑
k=1

‖∇Fk(w̃)−∇F (w̃)‖22 ≤ 4LF (F (w̃)− F (w̃∗)) + 2σ2
F,1.

Then we focus on the outer loop. Lemma 6 gives the one-step descent of the global
update.

Lemma 6 (Dinh et al. 2020, Lemma 3, one-step global update) Suppose that Fk is
LF -smooth and µF -strongly convex. Then we have

E
[
‖w̃t+1 − w̃∗‖22

]
≤
(

1− η̃µF
2

)
E
[
‖w̃t−w̃∗‖22

]
−η̃(2−6LF η̃)E [F (w̃t)− F (w̃∗)]

+
η̃(3η̃+2/µF )

NR

N∑
k=1

R−1∑
r=0

E
[
‖gk,r−∇Fk(w̃t)‖22

]
+ 3η̃2E

∥∥∥∥∥∥ 1

S

∑
k∈St

∇Fk(w̃t)−∇F (w̃t)

∥∥∥∥∥∥
2

2

 .
(8)

The third term on the right-hand side of (8) is the client drift error due to multiple local
updates and approximation error and can be bounded by Lemma 7. The last term is the
diversity of Fk w.r.t. client sampling and can be bounded by Lemma 8.

Lemma 7 (Bounded client drift error) Suppose that Assumptions 1, 2 and 3 hold. If
η̃ ≤ β

5LF
, LF = λ, and δ2

1 is defined in Lemma 4, then we have

1

NR

N∑
k=1

R−1∑
r=0

E
[∥∥gtk,r−∇Fk(w̃t)

∥∥2

2

]
≤ 2λ2δ2

1 +
4L2

F η̃
2

β2

(
7

N

N∑
k=1

E
[
‖∇Fk(w̃t)‖22

]
+10λ2δ2

1

)
.

Lemma 8 (Dinh et al. 2020, Lemma 4) The diversity of Fk w.r.t. client sampling is
bounded as follows:

ESt

∥∥∥∥∥∥ 1

S

∑
k∈St

∇Fk(w̃t)−∇F (w̃t)

∥∥∥∥∥∥
2

2

≤ N/S − 1

N − 1

N∑
i=1

1

N
‖∇Fk(w̃t)−∇F (w̃t)‖22 .

With these lemmas at hand, we can obtain the convergence result by rearranging (8) and
summing both sides over the index t with appropriate weight. The details and the proof of
auxiliary results above are deferred to Appendices A.2 and A.4.

Theorem 9 Suppose that Assumptions 1, 2 and 3 hold. Let η̂1 = 1
18LF (1+10κF /β) with

LF , µF defined in Proposition 3, κF = LF /µF and β ≥ 1 . If T ≥ 2
η̂1µF

, then there exists

10
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η ≤ η̂1

βR such that

E[F (w̄T )−F (w̃∗)]≤ µF∆0e
−η̂1µFT/2︸ ︷︷ ︸

due to initialization

+ Õ

(
(N/S−1)σ2

F,1

µFTN

)
︸ ︷︷ ︸
due to client sampling

+ Õ

(
(σ2
F,1+λ2δ2

1)κFLF

µ2
Fβ

2T 2

)
+O

(
λ2δ2

1

µF

)
,︸ ︷︷ ︸

client drift with multiple local updates and approximation error

(9)

where ∆0 = ‖w̃0 − w̃∗‖22, c > 0 is a constant, δ2
1 is defined in Lemma 4, σ2

F,1 is defined in

Lemma 5, w̄T =
∑T−1

t=0 αtw̃t/AT with αt = (1 − ηβRµF /2)−(t+1) and AT =
∑T−1

t=0 αt, the
expectation is w.r.t. all the randomness except for P , and Õ hides constants and polyloga-

rithmic factors. Moreover, suppose that xTk is a solution satisfying
∥∥∥∇h̃k(xTk ; D̃k, w̃T )

∥∥∥2

2
≤ ν

and O1 denotes the right-hand side of (9). Then we have

1

N

N∑
k=1

E
[∥∥PxTk − w̃∗

∥∥2

2

]
≤ O1

µF
+O

(
σ2
F,1

λ2
+ δ2

1

)
. (10)

From (9), when there is no client sampling (S = N), choosing β = Θ(NR) leads to a
quadratic speedup Õ

(
1/(TRN)2

)
w.r.t. communication rounds. (10) shows the average of

personalized parameters (after a linear transformation) converges to a ball with center w̃∗

and radius Õ
(
λ2δ2

1

µ2
F

+
σ2
F,1

λ2 + δ2
1

)
. Here λ can be chosen to trade off different terms.

Our Theorem 9 shares the same error bounds as Dinh et al. (2020, Theorem 1), except
that their approximation error δ2

1 is slightly smaller than ours up to constant factors, since

in our case the approximation error is enlarged by projection. The constant term O
(
λ2δ2

1
µF

)
appears in both theorems and is caused by biased gradients, i.e., we only get a biased
estimate of ∇Fk due to inexact inner optimization (non-zero ν) and batch data (small
|D̃k|). Hence, our result is comparable to previous work (Dinh et al., 2020) up to constants
factors, even if we force optimization in a random subspace, which facilitates communication
efficiency.

4.1.2 Convergence for the Smooth Case

The analysis for the smooth case requires the following additional assumptions.

Assumption 4 (Smoothness) For a fixed ξk, f̃k(·; ξk) is L-smooth. As a result, fk is also
L-smooth.

Assumption 5 (Bounded diversity) The variance of local gradients to global gradient
is bounded, i.e., 1

N

∑N
k=1 ‖∇fk(w)−∇f(w)‖22 ≤ σ2

f with f = 1
N

∑N
k=1 fk.

Assumption 6 (Low-dimensional condition) f̃k satisfies that for any yk ∈ Rdsub , ỹk ∈
Rd−dsub, f̃k(P

>yk + Qỹk; ξk) = f̃k(P
>yk; ξk), where Q is chosen such that (P>,Q) is an

11
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invertible matrix and PQ is the zero matrix. As a consequence, the same equality also holds
with f̃k replaced by fk.

Assumptions 4 and 5 are also common in convergence analysis. If Assumption 3 holds with
C
√
dsub/d < 1, then P has full row rank, which implies the matrix Q in Assumption 6

exists. This assumption ensures minxk∈Rd f̃k(xk; ξk) = minxk∈col(P>) f̃k(xk; ξk), where col(A)
denotes the subspace spanned by the column vectors of A. This means we can focus on the
low-dimensional subspace spanned by the row vectors of P . We give an example satisfying
the assumption. Suppose ξk and xk have the same dimensions and f̃k(xk; ξk) = l(ξ>k xk).4 If
ξk ∈ col(P>), then there exists an ak such that ξk = P>ak. Decompose xk = P>yk + Qỹk.
Then l(ξ>k xk) = l(akP (P>yk + Qỹk)) = l(akP

>yk). This implies that for linear models
with data lying in col(P>), Assumption 6 holds.

For the general case, it is not easy to verify Assumption 6 directly. Intuitively, we can
interpret Assumption 6 as that the data concentrate on a low-dimensional subspace. Then
with the total parameters denoted by xk = P>yk + Qỹk, only a low-dimensional linear
combination yk = (PP>)−1Pxk can affect the value of f̃k.

Still viewing Fk as a function of w̃, we have the following result that guarantees the
smoothness of Fk and gives the form of ∇Fk(w̃).

Proposition 10 Suppose Assumptions 3, 4 and 6 hold with 0 < s = C
√
dsub/d < 1/30 and

λ > 4L. Then Fk is LF -smooth with LF = λ. Moreover, ∇Fk(w̃) = λ(w̃ − PP>ŷk), where

ŷk = argminyk∈Rdsub

{
fk(P

>yk) + λ
2

∥∥w̃ − PP>yk
∥∥2

2

}
.

Similar to Lemma 4, Lemma 11 below characterizes the error between the exact gradient
and the approximate gradient. The error also has a mild dependence on dsub.

Lemma 11 Suppose that Assumptions 2, 3, 4 and 6 hold with s = C
√
dsub/d < 1/30 and

λ > 4L. We have 1
λ2E

[∥∥∥∇Fk(w̃t
k,r)− λ(w̃t

k,r − Pxtk,r)
∥∥∥2

2

]
≤ δ2

2 :=
2(1+s)6

(
γ2
f

|D̃k|
+ν

)
[(1−s)4λ−(1+s)2L]2

.

With Assumption 5, the diversity of Fk can also be bounded as follows.

Lemma 12 If Assumptions 3, 4, 5 and 6 hold with 0 < C
√
dsub/d < 1/30 and λ >

√
10L

and define σ2
F,2 :=

λ2σ2
f

λ2−10L2 . Then we have

1

N

N∑
k=1

‖∇Fk(w̃)−∇F (w̃)‖22 ≤
10L2

λ2−10L2
‖∇F (w̃)‖22 + 3σ2

F,2.

With the global update rewritten as (7), the one-step descent can be established as

E [F (w̃t+1)−F (w̃t)] ≤ −
η̃(1−3η̃LF )

2
E
[
‖∇F (w̃t)‖22

]
+
η̃(1+3η̃LF )

2NR

R−1∑
r=0

N∑
k=1

E
[∥∥gtk,r−∇Fk(w̃t)

∥∥2

2

]
+

3η̃2LF
2

E

 1

S

∑
k∈St

∇Fk(w̃t)−∇F (w̃t)

 .
(11)

4. For example, when we fit generalized linear models via the maximum likelihood method, the negative
(log) likelihood function has this form.

12
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Similar to the analysis for the strongly convex case, we can give upper bounds of the second
and last terms on the right-hand side of (11). Then Theorem 13 follows from rearranging
and telescoping. The detailed proof is deferred to Appendix A.3.

Theorem 13 Suppose that Assumptions 2 to 6 hold and dsub/d is sufficiently small. Let
∆F = F (w̃0)−minw̃∈Rdsub F (w̃) and η̂2 = 1

90λ2LF
with λ ≥ max{

√
10L2 + 1, 4L}, LF = λ

and β ≥ 1. If t∗ is uniformly sampled from {0, 1, . . . , T − 1}, then there exists η ≤ η̂2

βR such
that

E
[
‖∇F (w̃t∗)‖22

]
≤ O

(
∆F

η̂2T

)
︸ ︷︷ ︸

due to initialization

+O

(
(∆FLFσ

2
F,2(N/S−1))1/2

√
TN

)
︸ ︷︷ ︸

due to client sampling

+ O

(
(∆FLF )2/3(σ2

F,2+λ2δ2
2)1/3

(βT )2/3

)
+O

(
λ2δ2

2

)
,︸ ︷︷ ︸

client drift with multiple local updates and approximation errors

(12)

where c > 0 is a constant, δ2
2 defined in Lemma 11, σ2

F,2 is defined in Lemma 12, the
expectation is w.r.t. all the randomness except for P , and O hides constants. Moreover,

suppose that xtk is a solution to
∥∥∥∇h̃k(x; D̃k, w̃t)

∥∥∥2

2
≤ ν and O2 denotes the right-hand side

of (12). Then we have

1

N

N∑
k=1

E
[∥∥∥Pxt

∗
k − w̃t∗

∥∥∥2

2

]
≤ O2 +O

(
σ2
F,2

λ2
+ δ2

2

)
.

When there is no client sampling, choosing β = Θ(NR) leads to a sublinear speedup
O
(
1/(TRN)2/3

)
. (12) shows the average over indices k and t of the distance between per-

sonalized parameters (after a linear transformation) and global model parameters converges

to O
(
λ2δ2

2 +
σ2
F,2

λ2 + δ2
2

)
. Here λ can be chosen to trade off different terms.

Our Theorem 13 also shares similar forms as Dinh et al. (2020, Theorem 2). Both
theorems have the constant term O

(
λ2δ2

2

)
which is caused by biased gradients and batch

data.

4.1.3 Refined Convergence under Careful Parameter Tuning

In Theorems 9 and 13, gtk,r is a biased estimate of ∇Fk, where the biasedness comes from

inexact inner optimization (non-zero ν, batch data (small |D̃k|), and projection. These
factors lead that δ1 and δ2 in Lemmas 4 and 11 does not go to zero and the approximation
error in the final convergence is enlarged. However, the problem can be fixed by carefully
tuning parameters and any given accuracy ε can be achieved. To this end, we first suppose
that the mini-batch sampling size Dt, lower-level problem accuracy νt, and step size ηt all
depend on the communication round index t.

When the global model is optimal, we define the optimal personalized parameter as
x∗k = argminxk∈Rd

{
fk(xk) + λ

2 ‖w̃
∗ − Pxk‖22

}
. The following theorem characterizes the

O(1/T ) convergence rate of global parameters and personalized parameters for the strongly
convex case.

13



Han, Li, Lin, and Zhang

Theorem 14 Suppose that Assumptions 1 and 2 hold. Let ηt = 8
βRµF (ζ+t) , νt = 8

µF (ζ+t)

and Dt =
⌈
µF (ζ+t)

D

⌉
, where µF is defined in Proposition 3, ζ = 72κF (1 + 7κF /β) and D is

a positive constant. Then we have E ‖w̃T − w̃∗‖22 ≤ O(1/T ) and E
∥∥xTk − x∗k

∥∥2

2
≤ O(1/T ),

where c is a positive constant, xTk is defined in Theorem 9, the expectation is w.r.t. all the
randomness except for P , and O hides constants.

Moreover, when there is no client sampling, i.e., S = N , let νt = 8
µF β2(ξ+t)2 and

Dt =
⌈
µF β

2(ξ+t)2

D

⌉
with ηt unchanged. Then we have E ‖w̃t − w̃∗‖22 ≤ O(1/(β2T 2)) and

E
∥∥xTk − x∗k

∥∥2

2
≤ O(1/(β2T 2)).

When there is no client sampling, choosing β = Θ(NR) leads to the convergence rate
O
(
1/(TRN)2

)
, which is consistent with the analysis in Theorem 9. Alternatively, since

ν = O(e−c̃R) for some c̃ > 0 under the strong convexity assumption, setting R = Ω (log(1/ε))
and |D̃k| = Ω(1/ε) also leads to the target accuracy.

When the objective is possibly non-convex but smooth, we have the following result that
guarantees our algorithm can find the approximate stationary point.

Theorem 15 Suppose that Assumptions 2 to 6 hold. Define ∆F = F (w̃0)−minw̃∈Rdsub F (w̃),
αt := ηt∑T−1

t=0 ηt
and sample t∗ from {0, 1, . . . , T − 1} with P(t∗ = i) = αt. Let ηt =

1
90βRλ2LF

√
t+1

, νt = 1
90λ2LF

√
t+1

and Dt =
⌈

90λ2LF
√
t+1

D

⌉
where λ ≥ max{

√
10L2 + 1, 4L},

LF = λ, β ≥ 1 and D is a positive constant. We have E
[
‖∇F (w̃t∗)‖22

]
= O(lnT/

√
T ),

where c is a positive constant, the expectation is w.r.t. all the randomness except for P , and
O hides constants.

Moreover, when there is no client sampling, i.e., S = N , let ηt = 1
90β1/3Rλ2LF (t+1)1/3 ,

νt = 1
90λ2LF β2/3(t+1)2/3 and Dt =

⌈
90λ2LF β

2/3(t+1)2/3

D

⌉
. Then we have E

[
‖∇F (w̃t∗)‖22

]
=

O
(
lnT/(β2/3T 2/3)

)
.

When there is no client sampling, choosing β = Θ(NR) leads to the convergence rate
Õ
(
1/(TRN)2/3

)
, which is also consistent with the analysis below Theorem 13.

The proof of Theorem 14 and 15 is also based on the one-step descent results (8) and
(11) with η̃ replaced by η̃t = βRηt. The details are deferred to Appendices A.5 and A.6.

4.2 Robustness and Fairness

In this subsection, we explore the robustness and fairness benefits of lp-proj on a class of
linear problems and compare lp-proj with Ditto (Li et al., 2021b) and pFedMe (Dinh et al.,
2020). For ease of analysis, we assume the rows of P are orthogonal. In practice, we can
directly use the random matrix generated as in Section 3 without explicit orthogonalization,
since high-dimensional random vectors are nearly orthogonal. Numerical comparison shows
that model accuracy would be similar with or without orthogonalization (see Appendix C.7.4).

Our Setting. We focus on a simplified setting where the number of local update steps
is infinite, there is only one round of communication and all clients participate in the
communication. Then it is natural to set β = 1. Suppose that the true parameter
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right corner is better.)

on client k is wk, there are n samples on each client and the covariate on client k is
{ξk,i}ni=1 and fixed. The observations are generated by yk,i = ξ>k,iwk + zk,i where the noises

zk,i
i.i.d.∼ N (0, σ2). For simplicity, we assume

∑n
i=1 ξk,iξ

>
k,i = bnId. Then the test loss on client

k is f te
k (xk) = 1

2n

∑n
i=1(ξ>k,iwk + z′k,i − ξ>k,ixk)2, where z′k,i ∼ N (0, σ2) and are independent

of zk,i.
Three Attacks. We examine three types of Byzantine attacks. Denote the message

delivered by malicious client k as w̃
(ma)
k , then the attacks are listed as follows.

• Same-value attacks: The message sent by a Byzantine client k is set as w̃
(ma)
k = c1dsub

,
where 1dsub

∈ Rdsub is the vector of ones and c ∼ N (0, τ2).

• Sign-flipping attacks: The transmitted messages are sign-flipped and then scaled, i.e.,

a Byzantine client k computes the true value w̃k but sends w̃
(ma)
k = −|c| · w̃k to the server

where c ∼ N (0, τ2).

• Gaussian attacks: The message sent by a Byzantine client k is set as w̃
(ma)
k ∼

N (0dsub
, τ2Idsub

).

The analyses for different attacks are similar, thus we only focus on the same-value
attacks here for illustration. Results for other attacks are deferred to Appendix B.3. Suppose
that the index sets for benign and malicious clients are Ib and Ia respectively with Nb = |Ib|
and Na = |Ia| = N −Nb, and the heterogeneity is uniform in all dimensions in the sense of

Σ1:=
1

dNb

∑
k∈Ib

∥∥∥∥
∑

i∈Ib wi

N
−wk

∥∥∥∥2

2

=
1

dsubNb

∑
k∈Ib

∥∥∥∥
∑

i∈Ib wi,1

N
−wk,1

∥∥∥∥2

2

where Σ1 measures data heterogeneity in a single dimension. Let λ∗1 = (1−1/N)σ2/n

Σ1+Na
N2 (τ2−σ2/(bn))

.

The numerator of λ∗1 approximately equals the variance of noises divided by the number of
samples. The denominator is the sum of one-dimensional data heterogeneity and additional
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variance due to attacks (usually we have τ2 � σ2/n). When λ = λ∗1, pFedMe, Ditto

and lp-proj all achieve their corresponding minimal losses. However, we do not know
factors affecting λ∗1 in advance, implying getting the particular value of λ∗1 is possibly hard.
Therefore, we need to compare the performance of these methods under different values of λ.

Proposition 16 Denote the averaged losses on benign clients of pFedMe, Ditto and lp-proj

by LMe, att1(λ), LDi,att1(λ) and Ll2,att1(λ) respectively. Under the same-value attacks, we
have (i) LMe,att1(λ) = LDi,att1(λ) ∀λ > 0; and (ii) if λ∗1 < b, Ll2, att1(λ) ≤ LMe,att1(λ) if and

only if λ ≥ 2λ∗1
1−λ∗1/b

.

Porposition 16 implies lp-proj outperforms both pFedMe and Ditto once λ is larger than a

threshold value
2λ∗1

1−λ∗1/b
, which is slightly larger than 2λ∗1. The pattern is captured by Figure 1,

where we set n=200, N=100, Na=20, d=100, dsub=10, b=1, σ=1, Σ1=0.1 and τ=100. Then

λ∗1 ≈ 4.9× 10−4 , a pretty small value. Even for λ <
2λ∗1

1−λ∗1/b
, the gap between lp-proj and

pFedMe / Ditto is negligible. Thus, lp-proj has comparable or beter performance for any
λ > 0. The formal statement and proof of Proposition 16 are deferred to Appendix B.3.

Remark 17 To see the relationship between robustness and the dimension dsub of the
random projection subspace, we investigate the test loss function to see the role of dsub.5

Take the same-value attack as an example, at the optimal point λ∗1, L∗l2,att1 (viewed as a
function of dsub) is linear in dsub and the coefficient of dsub is negative, which implies that
as dsub increases, the test loss decreases, and hence the performance of the model would be
better.

On the other hand, for a given λ, the first-order derivative is larger in absolute value
when dsub is larger, which means that when the dimension of the projection subspace is
smaller, the test loss would have less variation with respect to λ, and hence more robust
tuning performance.

Now we turn to the performance fairness defined in Definition 1. For simplicity, we
further assume that the true parameters wk are i.i.d. from N (µw,Σw).

Proposition 18 Denote the variance of test losses on different clients of pFedMe, Ditto
and lp-proj by V Me(λ), V Di(λ) and V l2(λ) respectively. We have for ∀λ > 0, EV l2(λ) ≤
EV Me(λ) = EV Di(λ). More specifically, EV Me(λ) = O(d2) and EV l2(λ) = O(d2

sub), where
the expectation is taken w.r.t. the randomness of the wk.

Proposition 18 shows lp-proj always brings more uniform test losses, no matter what
value λ is. In particular, EV l2(λ) = O(d2

sub) while EV Me(λ) = O(d2). Since it is likely that
dsub � d, the advantage of lp-proj could be much larger. It implies lp-proj is more fair
than pFedMe and Ditto. For the formal theorem and proof, see Appendix B.4.

5. Numerical Experiments

In this section, we demonstrate lp-proj has the desirable properties through numerical
experiments.

5. To be simple, we only provide intuitive interpretation here, the detailed calculations can be found in
Remark 31 in the appendix.
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Figure 3: Personalization performance of lp-proj-1, lp-proj-2 with other methods on
EMNIST and CIFAR.

5.1 Experimental Setup

We test lp-proj as well as other comparable algorithms on six data sets from common
ML and FL benchmarks (Marcel and Rodriguez, 2010; Caldas et al., 2018), including two
synthetic data sets, EMNIST, CIFAR, MNIST and FASHIONMNIST. We consider both convex
and non-convex models, where for the latter, we consider neural networks including both
multilayer perceptron (MLP) and convolutional neural network (CNN). To better model the
statistical heterogeneity, we distribute the data set among clients in a non-iid fashion such
that each client only contains partial classes of the data in multi-classification problems.6 For
each client, the training and testing data are pre-specified as in the ML community, and 20%
of training data is randomly extracted to construct a validation set, keeping the remaining
80% as the training set. The training set is used for model fitting and parameter estimation.
For each competing method, we use the accuracy performance on the validation set as the
tuning criterion and conduct a grid search to choose the best hyper-parameter combination
among a prescribed candidate set. All reported results are evaluated on the test data set.
More details about hyperparameter tuning are provided in Appendix C.2. Furthermore,
to incorporate partial participation (McMahan et al., 2017; Li et al., 2020b), we randomly
select 10% of the clients for aggregation at each communication round. The projection
dimension of the random subspace for each data set is chosen based on the full model size
and communication budget. Source code for the reproduction of numerical results is available
at https://github.com/desternylin/perfed. For clarity, we only show representative
results in the following subsections, whereas the comprehensive numerical results are deferred
to Appendix C.

5.2 Personalization Accuracy Performance

In order to highlight the empirical performance of our proposed method, we compare lp-proj
with several state-of-the-art personalization methods in the literature, i.e., Ditto (Li et al.,
2021b), LG-FedAvg (Liang et al., 2020), Per-fedavg (Fallah et al., 2020), RSA (Li et al., 2019),
and pFedMe (Dinh et al., 2020), together with a global method FedAvg (McMahan et al.,
2017) and a pure local method. Specifically, we consider the case when p = 1 (lp-proj-1)
and p = 2 (lp-proj-2).

6. This type of data heterogeneity is termed label skew (Tan et al., 2022; Ye et al., 2023a).
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Figure 4: Robustness comparison of different methods, i.e., average test accuracy of benign
clients. The dashed black line shows the performance of pure local training. A
line with less than 5 points implies the algorithm collapses because the intensity
of the given attack exceeds the limit the corresponding algorithm could tolerate.

From Figure 3, we see that lp-proj-1 and lp-proj-2 have comparable or even superior
performance than other methods. On EMNIST and CIFAR, the minimum train losses are
achieved by lp-proj-1 and lp-proj-2, respectively. In terms of test accuracy, Ditto

shows the best performance on EMNIST, but lp-proj is also comparable; while on CIFAR,
lp-proj-1 gives the best test accuracy. Furthermore, the training process of lp-proj is
more stable as the loss and accuracy curves have less fluctuation.

5.3 Communication Efficiency

We compare lp-proj with the global baseline FedAvg (McMahan et al., 2017) and five
standard approaches using gradient and model compression, namely Sketch (Ivkin et al.,
2019), LBGM (Azam et al., 2021), QSGD (Alistarh et al., 2017), DGC (Lin et al., 2018) and
LG-FedAvg (Liang et al., 2020). For a fair comparison, we personalize the gradient compres-
sion methods, i.e., Sketch, LBGM, QSGD and DGC, which are not personalization algorithms
in the original literature. We use a simple meta-learning framework (Finn et al., 2017;
Fallah et al., 2020), which uses the collaboratively trained global model as an initialization
and performs gradient updates with respect to the client’s own loss function to obtain its
personalized model. We quantify the communication cost via total bytes written and read by
active clients each round and capture the relation between test accuracy and communicated
bytes.

From Table 1, we can see that given a communication budget of bytes, lp-proj obtains
∼ 26.3% and ∼ 83.5% test accuracy improvement on Synthetic(0, 0) and EMNIST data
sets respectively. On the other hand, given a target test accuracy, our proposed method
needs much fewer bits than the rest and saves the communication cost by 79x and 1320x

on the two data sets compared with the best-competing method. Besides, our method
owns flexibility on the choice of the projection dimension dsub, because the convergence
dependence of our method on dsub is mild as predicted by Lemma 11. The compression rate
of our proposed methods can be 1000x or even higher, while that of sketching or gradient
compression methods typically is no larger than tens.
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Synthetic(0, 0) EMNIST

Method Bytes Budget Test Acc Target Acc Used Bytes Bytes Budget Test Acc Target Acc Used Bytes

FedAvg 328020 0.625 0.6 597800 4236900 ? 0.7 445851400
Sketch 328020 0.456 0.6 ? 4236900 ? 0.7 ?

lp-proj-1 328020 0.885 0.6 4620 4236900 0.906 0.7 174720
lp-proj-2 328020 0.888 0.6 4620 4236900 0.906 0.7 196560
LBGM 328020 0.815 0.6 12200 4236900 ? 0.7 206307624
QSGD 328020 0.115 0.6 923350 4236900 ? 0.7 173663720
DGC 328020 ? 0.6 372000 4236900 ? 0.7 ?

LG-FedAvg \ \ \ \ 4236900 0.071 0.7 230786010

Table 1: Communication performance on Synthetic(0, 0) and EMNIST data sets. Two
aspects are considered: test accuracy on a given byte budget and bytes used to
achieve a target test accuracy. A ? on the column “Test Acc” refers to the situation
that bytes used in the first iteration of the algorithm have exceeded the budget,
and a ? on the column “Used Bytes” means the algorithm could not provide a
solution that reaches the target accuracy.

5.4 Robustness

In addition to the three Byzantine attacks introduced in Section 4.2, we consider a stronger
data poisoning attack in the following experiments.

• Data poisoning attacks: The training samples on malicious clients are poisoned with
uniformly randomly chosen noisy labels. Furthermore, when communicating, these clients
would scale their transmitted messages to dominate the aggregate update.

For the former three Byzantine attacks, the noise variance τ is set as 100, 10, and 100
respectively. The corruption levels, i.e., the fractions of malicious clients, are set as
{0.1, 0.2, 0.5, 0.8}. For the data poisoning attack, the scaling factor is randomly sampled
from N (0, 202), and the corruption levels are from {0.02, 0.05, 0.1, 0.2}. Under different
types of attacks and different levels of corruption, we compare the average test accuracy
performance on benign clients of lp-proj-1 and lp-proj-2 with various defense baselines,
including Ditto, RSA, and global training augmented with different robust aggregation
techniques, such as median and Krum (Blanchard et al., 2017).

From Figure 4, we find that under relatively weak attacks, e.g., same-value and Gaussian
attacks, the test accuracy of lp-proj-1 and lp-proj-2 rarely decays as the fraction of
malicious clients increases, while we observe significant drops on the test accuracy for
other algorithms once malicious clients exist. On the other hand, under strong attacks, e.g.
sign-flipping and data poisoning, an increasing fraction of malicious clients deteriorates the
accuracy performance continuously and even collapses the local model if the attack intensity
is too large. For example, under the sign-flipping attack, when the fraction of malicious
clients exceeds 20%, only lp-proj-1, RSA and Global+Krum work, while all other methods
fail to produce a solution. When the attack intensity further increases to 80%, the only
robust methods that achieve the desired accuracy are lp-proj-1 and RSA.

The numerical results show that our method is resistant to standard malicious attacks,
which is rooted in the combination of projection and L1-norm subspace regularization that
is attributed to the robustness. Consider an extreme example: if the subspace dimension
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is chosen as 0, then the joint optimization is reduced to pure local training. No matter
how serious the adversarial attack is, the local test performance would not be affected.
Therefore, random projection helps alleviate the attacks applied in the original space, while
the L1-norm helps eliminate outliers further (Ke and Kanade, 2005).

5.5 Fairness

To illustrate the accuracy and performance fairness trade-off, we plot the variances of
accuracies across the system against the corresponding test accuracies for lp-proj and several
other different approaches in Figure 2. To examine performance fairness in isolation, the
numerical experiments are performed without adversarial attacks in this part. Furthermore,
for each competing method, we select the optimal achievable test accuracy after the 20th
communication round, and the corresponding variance is picked up.

The results with respect to performance fairness show that lp-proj-1 and lp-proj-2

provide accurate and fair solutions that are comparable to other SOTA methods. In
particular, on CIFAR, lp-proj-1 achieves the highest test accuracy of 79.22% with the
lowest variance of 0.0097 among all the competitors. Although RSA achieves the same
variance as lp-proj-1, its corresponding test accuracy is only 77.68%, which is 1.54% lower
than lp-proj-1. On the other hand, on EMNIST, despite the optimal approach is Ditto,
with a test accuracy of 90.89% and the corresponding variance of 0.0016, our proposed
method shows comparable performance, e.g., lp-proj-2 achieves a test accuracy of 90.70%
with a variance of 0.0016, which is only slightly inferior to the previous method. Theoretical
analysis in Proposition 18 implies that in the case of the linear model, the dependence of the
variance on the projection dimension is of squared order, indicating that low-dimensional
projection helps reduce the variance of test losses among clients. Numerical results suggest
that this conclusion may be generalized to broader settings.

6. Large-Scale Application

In Algorithm 1, the introduction of random projection subspace brings us multiple benefits,
especially communication efficiency, since the bytes needed for message transmission are
greatly reduced. However, when the size of the data set or the implemented model is
extremely large, e.g., ImageNet on deep neural networks, the extra cost for the storage of
the projection matrix and the computation of matrix multiplication may be a burden for
the clients. To address this, we propose a generalization of the vanilla form to facilitate
large-scale applications in the real world.

6.1 Block-Diagonal Projection

In Algorithm 1, the space complexity for the storage of the projection matrix is O(dsubd),
while the computation complexity for projecting the full model parameter xk into the
random subspace is O(dsubd). To save memory and reduce computation complexity, we
consider block-diagonal matrix for random projection. Suppose the projection matrix P is
of dimension dsub × d, using a k-fold block diagonalization, we equally divide the matrix
into k2 blocks, each of dimension dsub

k ×
d
k . Only the blocks in the diagonal are filled with

i.i.d. Gaussian entries which are normalized to have unit L2 norm on each row, all the
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Method Train Loss Test Acc Communication Bytes

pFedMe 2.0284 (0.3778) 0.5009 (0.0130) 2.582× 1011

FedAvg 5.6333 (0.0302) 0.0458 (0.0004) 9.307× 1010

lp-proj-1 0.6167 (0.1247) 0.8403 (0.0071) 1.2× 107

lp-proj-2 0.6725 (0.1040) 0.8274 (0.0058) 1.152 × 107

Table 2: Performance on ImageNet using ResNet34.

off-diagonal blocks are zeroes. In this way, the space and time complexity can be reduced
simultaneously. On one hand, the improvement in the space complexity is proportional to
the square of the number of blocks, i.e., we need O(dsubd

k2 ) space for storage. On the other
hand, the improvement in the computation complexity is proportional to the number of
blocks, which gives O(dsubd

k ) computation time. Here we only discuss the situation that
considers equal division on both dimensions of the projection matrix, which leads to the
maximum reduction in time and space complexity. In practice, there is more flexibility
as we can comprehensively consider the structure of the implemented model, e.g., when
implementing neural networks, we can equip each layer of the network with a projection
matrix, in other words, the projection matrix is divided according to the layer of the neural
network.

6.2 Numerical Performance on ImageNet

We consider large-scale applications on ImageNet, using ResNet34 (He et al., 2016) as the
implemented model, which has over 11 billion parameters. Using a similar fashion of data
generation as in Section 5, we still consider the heterogeneous case, where there are a total
of 100 clients, and each client is assigned to 50 out of 1000 classes of images. FedAvg and
pFedMe are included as benchmarks in the numerical comparison. For our proposed method,
we apply the block-diagonal projection with the number of blocks set as 50. In consideration
of limited training time and computing resources, we restrict the maximum number of
training rounds to 200. The results are shown in Table 2. From the results, we can see that
under data heterogeneity, personalization methods are uniformly better than FedAvg. On
the other hand, random projection greatly reduces the communication costs for lp-proj

compared to pFedMe. Furthermore, block-diagonalization helps save computation and space
complexity, which leaves the great potential of our method in large-scale applications.

7. Conclusion

In this paper, we have proposed a simple yet powerful personalized FL approach based
on infimal convolution and subspace projection that we call lp-proj. Theoretically, we
analyze the convergence of the proposed algorithm for strongly convex and non-convex
but smooth objectives with square regularizers. The inherent benefits of robustness and
fairness of our method are also illustrated in a class of linear problems. Empirically, we
perform a large number of numerical experiments on multiple ML data sets and compare
the proposed approach with various SOTA baselines. The results show that our approach
could significantly save communication costs, improve robustness under various kinds of
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adversarial attacks, and promote performance fairness. An extension of the algorithm to
reduce space and time complexity together with numerical verification indicates that our
algorithm has the potential for large-scale application. In future work, we would be interested
in establishing convergence results for general Lp regularizers and considering additional
constraints, e.g., differential privacy.
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Appendix A. Convergence of lp-proj for p = 2

In this section, we provide the complete proof for the results in Section 4.1. The framework
is adapted from Dinh et al. (2020), with some concrete results specific to our settings.

A.1 Some Useful Results

In this subsection, we provide some existing results useful for our later analysis. We first
introduce more definitions.

Definition 19 (Further definitions) Suppose that fk is a function from Rd to R.

(a) fk is said to be convex, if for any w,w′ ∈ Rd and 0 ≤ α ≤ 1, it holds that

fk(αw + (1− α)w′) ≤ αfk(w) + (1− α)fk(w
′).

If fk is differentiable, the above condition is equivalent to that for any w,w′ ∈ Rd,

fk(w
′) ≥ fk(w) +

〈
∇fk(w),w′ −w

〉
.

(b) fk is said to be µ-strongly convex for some µ > 0, if for any w,w′ ∈ Rd and 0 ≤ α ≤ 1,
it holds that

fk(αw + (1− α)w′) ≤αfk(w) + (1− α)fk(w
′)− µα(1− α)

2

∥∥w −w′
∥∥2

2
.

If fk is differentiable, the above condition is equivalent to that for any w,w′ ∈ Rd,

fk(w
′) ≥ fk(w) +

〈
∇fk(w),w′ −w

〉
+
µ

2

∥∥w′ −w
∥∥2
.

If fk is twice differentiable, the above condition is also equivalent to ∇2fk � µ Id.

Then we have the following property of strongly convex functions.

Proposition 20 (Nesterov 2018, Theorems 2.1.5 and Theorem 2.1.10) If Fk is LF -
smooth, then we have that

1

2LF

∥∥∇Fk(w′)−∇Fk(w)
∥∥2

2
≤ Fk(w′)− Fk(w)−

〈
∇Fk(w),w′ −w

〉
22



A Random Projection Approach to Personalized Federated Learning

for any w,w′ ∈ Rd. If Fk is µF -strongly convex, then we have that∥∥∇Fk(w′)−∇Fk(w)
∥∥

2
≥ µF

∥∥w′ −w
∥∥

2

for any w,w′ ∈ Rd.

Proposition 21 provides two useful inequalities, which can be derived from the Cauchy-
Schwarz Inequality.

Proposition 21 (Cauchy-Schwarz inequality) For any xk ∈ Rd and c > 0, k =
1, 2, . . . ,M , we have∥∥∥∥∥

M∑
k=1

xk

∥∥∥∥∥
2

2

≤M
M∑
k=1

‖xk‖22 and ‖x1 + x2‖22 ≤ (1 + c) ‖x1‖22 + (1 + 1/c) ‖x2‖22 .

Next, we present the relationships between a function and its conjugate function.

Proposition 22 (Hiriart-Urruty and Lemaréchal, 1993) Suppose that f is a convex
function from Rd to R∪{+∞}. Define the conjugate of f as f∗(u) = supx∈Rd{〈u,x〉−f(x)}
and the biconjugate of f as f∗∗ = (f∗)∗. The domain of f is denoted by dom f = {x ∈ Rd :
f(x) ∈ R}. Suppose c is a positive number. Then we have the following results.

(a) If f is convex, then f∗∗ = f .

(b) If f is c-strongly convex, then domf∗ = Rd and f∗ is 1/c-smooth.

(c) If f is convex and c-smooth, then f∗ is 1/c-strongly convex on every convex subset
C ⊂ dom ∂f∗.

(d) If f is convex, then u ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(u).

Proposition 23 guarantees the approximate isometry of a “flat” matrix with independent
rows under certain conditions.

Proposition 23 (Vershynin 2012, Theorem 5.58) Let A be an d×D matrix (d ≤ D)
whose rows a>i are independent sub-gaussian isotropic random vectors in Rd with ‖aj‖2 =

√
D.

Then for every t ≥ 0, the inequality

√
D − C

√
d− t ≤ smin(A) ≤ smax(A) ≤

√
D + C

√
d+ t

holds with probability at least 1−2 exp(−ct2), where smin(A) and smax(A) denote the smallest
and the largest singular values of A, C = C ′K , c = c′K > 0 depend only on the subgaussian
norm K = maxj ‖Aj‖ψ2

of the rows.

For the definitions of sub-gaussian random vectors and the norm ‖·‖ψ2
, see Definition 5.7

and 5.22 in Vershynin (2012). A random vector is said to be isotropic if its covariance matrix
is the identity matrix.

With Proposition 23, we can prove that our projection matrix P is approximately
orthogonal in the sense that all the singular values of P are around 1.
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Proposition 24 With probability at least 1 − 2 exp(−cdsub), we have 1 − C
√
dsub/d ≤

smin(P ) ≤ smax(P ) ≤ 1 +C
√
dsub/d for some C, c > 0, where smin(P ) and smax(P ) denote

the smallest and the largest singular values of P .

Proof For our choice of P , we have P = (a1,a2, . . . ,adsub
)> where the row vectors ai

are independent and uniformly distributed on the unit sphere of Rd. Example 5.21 in
Vershynin (2012) implies that each

√
dai is isotropic. Moreover, by Example 5.25, we have

that
∥∥∥√dai

∥∥∥
ψ2

= C0 for some absolute constant C0 > 0.

Then by Proposition 23, we have that 1 − C
√
dsub/d ≤ smin(P ) ≤ smax(P ) ≤ 1 +

C
√
dsub/d with probability at least 1− 2 exp(−cdsub) for some positive constants C and c.

For brevity, we let s = C
√
dsub/d. If

√
dsub/d is sufficiently small, we have s < 1. Then

Proposition 24 implies that (5), i.e.,

1− s ≤ smin(P ) ≤ smax(P ) ≤ 1 + s, 0 < s < 1

holds with probability at least 1− 2 exp(−cdsub). This implies that rank(P ) = dsub and the
dsub × dsub matrix P>P is invertible.

The next proposition is a straightforward consequence of (5).

Proposition 25 If (5) holds, then we have ‖Px‖22 ≤ (1+s)2 ‖x‖22 for any x ∈ Rd, ‖Px‖22 ≥
(1 − s)2 ‖x‖22 for any x ∈ col(P>) and (1− s)2 ‖y‖22 ≤

∥∥P>y
∥∥2

2
≤ (1 + s)2 ‖y‖22 for any

y ∈ Rdsub. Moreover, if f(·) is an L-smooth function from Rd to R, then f(P>·) is a
(1 + s)2L-smooth function from Rdsub to R.

Proof From (5), it is easy to verify these properties except for the inequality ‖Px‖22 ≥
(1− s)2 ‖x‖22 for any x ∈ col(P>). Suppose the SVD of P is P = UDV > where U is a
dsub × dsub orthogonal matrix, D is a dsub × dsub diagonal matrix whose digonal elements
are between 1− s and 1 + s, and V is a d× dsub matrix with orthogonal column vectors.
For x = P>y, we have

‖Px‖22 =
∥∥∥PP>y

∥∥∥2

2
= y>PP>PP>y = y>PV D2V >P>y.

If y 6= 0dsub
, V >P>y = DU>y 6= 0dsub

. Since D2 � (1− s)2Idsub
. It follows that

‖Px‖22 ≥ (1− s)2y>PV V >P>y = (1− s)2y>UDDU>y

= (1− s)2y>UDV >V DU>y = (1− s)2
∥∥∥P>y

∥∥∥2

2
= (1− s)2 ‖x‖22 .

This completes the proof.
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A.2 Proof of Theorem 9

In this subsection, we give the formal proof of Theorem 9.
Proof [Proof of Theorem 9] Recall that (5) holds with probability at least 1− 2 exp(−cdsub).
For convenience, we assume this inequality holds throughout the proof. Then we assume
η ≤ η̂1

βR . The exact value of η will be determined later. By Lemma 8 and Lemma 5, we have

E

∥∥∥∥∥∥ 1

S

∑
k∈St

∇Fk(w̃t)−∇F (w̃t)

∥∥∥∥∥∥
2

2

≤N/S−1

N−1

N∑
k=1

1

N
E
[
‖∇Fk(w̃t)−∇F (w̃t)‖22

]
≤N/S−1

N−1

(
4LFE [F (w̃t)−F (w̃∗)] +2σ2

F,1

)
. (13)

Recall that η̂1 = 1
18LF (1+10κF /β) , β ≥ 1 and κF = LF /µF ≥ 1. η ≤ η̂1

βR implies that

η̃ = βRη ≤ η̂1 ≤ min
{

2
µF
, β

5LF

}
. Then we have 3η̃+ 2/µF ≤ 8/µF . By Lemma 7, we obtain

η̃(3η̃ + 2/µF )

NR

N∑
k=1

R−1∑
r=0

E
[∥∥gtk,r −∇Fk(w̃t)

∥∥2

2

]
≤ η̃16λ2δ2

1

µF
+
η̃3

β2

32L2
F

µF

N∑
k=1

1

N

(
7E
[
‖∇Fk(w̃t)‖22

]
+ 10λ2δ2

1

)
≤ η̃16λ2δ2

1

µF
+
η̃3

β2

32L2
F

µF

N∑
k=1

1

N

(
14E

[
‖∇Fk(w̃t)−∇Fk(w̃∗)‖22

]
+14E

[
‖∇Fk(w̃∗)‖22

]
+10λ2δ2

1

)
≤ η̃16λ2δ2

1

µF
+
η̃3

β2

32L2
F

µF

(
28LFE [F (w̃t)− F (w̃∗)] + 14σ2

F,1 + 10λ2δ2
1

)
≤ η̃16λ2δ2

1

µF
+ 180

η̃2

β
κFLFE [F (w̃t)− F (w̃∗)] + 32

η̃3

β2
κFLF (14σ2

F,1 + 10λ2δ2
1), (14)

where the second inequality is by Proposition 21, the third inequality is by Proposition 20
and the definition of σ2

F,1, and the last inequality is due to η̃ ≤ β
5LF

. Substituting (13) and
(14) into Lemma 6 yields

E
[
‖w̃t+1 − w̃∗‖22

]
≤
(

1− η̃µF
2

)
E
[
‖w̃t − w̃∗‖22

]
− η̃

[
2− LF η̃

(
6 + 12

N/S − 1

N − 1
+

180κF
β

)]
E [F (w̃t)− F (w̃∗)]

+ η̃
16λ2δ2

1

µF︸ ︷︷ ︸
=:C1

+η̃2
6σ2

F,1(N/S − 1)

N − 1︸ ︷︷ ︸
=:C2

+
η̃3

β2
32κFLF (14σ2

F,1 + 10λ2δ2
1)︸ ︷︷ ︸

=:C3

.

Since N/S−1
N−1 ≤ 1 and η̃ = βRη ≤ 1

18LF (1+10κF /β) , we have

2− LF η̃
(

6 + 12
N/S − 1

N − 1
+

180κF
β

)
≥ 2− LF η̃

(
18 + 180

κF
β

)
≥ 1.
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It follows that

E
[
‖w̃t+1 − w̃∗‖22

]
≤
(

1− η̃µF
2

)
E
[
‖w̃t − w̃∗‖22

]
−η̃E [F (w̃t)− F (w̃∗)]+η̃C1+η̃2C2+

η̃3

β2
C3.

(15)
Let ∆t = ‖w̃t − w̃∗‖22 and α−1 = 1. Then we have (1− η̃µF /2)αt = αt−1 for t ≥ 0.
Rearranging the terms of (15), multiplying both sides by αt

η̃AT
and summing over the index

t, we obtain

T−1∑
t=0

αtE[F (w̃t)]

AT
− F (w̃∗) ≤

T−1∑
t=0

E
[(

1− η̃µF
2

)
αt∆t

η̃AT
− αt∆t+1

η̃AT

]
+
η̃2

β2
C3 + η̃C2 + C1

≤
T−1∑
t=0

E
[
αt−1∆t − αt∆t+1

η̃AT

]
+
η̃2

β2
C3 + η̃C2 + C1

=
∆0

η̃AT
− αT−1E[∆T ]

η̃AT
+
η̃2

β2
C3 + η̃C2 + C1.

Now we bound AT . First, we have

AT =

T−1∑
t=0

αt =

T−1∑
t=0

(
1− η̃µF

2

)−(t+1)

=

(
1− η̃µF

2

)−T T−1∑
t=0

(
1− η̃µF

2

)t

= αT−1

1−
(

1− η̃µF
2

)T
η̃µF /2

≤ 2αT−1

η̃µF
.

On the other hand, setting η̃T ≥ 2/µF yields

AT = αT−1

1−
(

1− η̃µF
2

)T
η̃µF /2

≥ αT−1
1− exp(−η̃µFT/2)

η̃µF /2
≥ αT−1

1− exp(−1)

η̃µF /2
≥ αT−1

η̃µF
.

Then we have 1
η̃AT
≤ µF

αT−1
= µF

(
1− η̃µF

2

)T
≤ µF exp(−η̃µF /2) and

αT−1

η̃AT
≥ µF

2 . It follows

that

T−1∑
t=0

αtE[F (w̃t)]

AT
− F (w̃∗) ≤ µF exp(−η̃µF /2)∆0 −

µF
2
E[∆T ] +

η̃2

β2
C3 + η̃C2 + C1. (16)

Since F is convex and ∆T ≥ 0, this implies

E[F (w̄T )]− F (w̃∗) ≤ µF exp(−η̃µF /2)∆0 +
η̃2

β2
C3 + η̃C2 + C1. (17)

Recall that we need to ensure η ≤ η̂1

βR (i.e., η̃ ≤ η̂1) and T ≥ 2
η̃µF

(i.e., η̃ ≥ 2
µFT

). Now
we use the techniques in Karimireddy et al. (2020). Arjevani et al. (2018), Stich (2019) to
specify the value of T and η̃.
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• If η̂1 ≥
2 ln

(
µ2
F∆0T

2C2

)
µFT

, we choose η̃ = max

2 ln

(
µ2
F∆0T

2C2

)
µFT

, 2
µFT

. Then η̃ ≥ 2
µFT

. Recall

that T ≥ 2
η̂1µF

, which implies 2
µFT

≤ η̂1. It follows that η̃ ≤ η̂1. Moreover, we have

η̃ = Õ
(

1
µFT

)
. With this choice of η̃, the first term on the right-hand side of (17) is

less than the second term. Thus we obtain

E[F (w̄T )]− F (w̃∗) ≤ Õ
(
C2

µFT

)
+ Õ

(
C3

µ2
Fβ

2T 2

)
+ C1.

• If η̂1 <
2 ln

(
µ2
F∆0T

2C2

)
µFT

, we choose η̃ = η̂1. Clearly, we have T = 2
η̃µF

and η̃ ≤ Õ
(

1
µFT

)
.

This implies

E[F (w̄T )]− F (w̃∗) ≤ µF∆0 exp

(
−η̂1µFT

2

)
+ Õ

(
C2

µFT

)
+ Õ

(
C3

µ2
Fβ

2T 2

)
+ C1.

Combining these two cases, we obtain

E[F (w̄T )]− F (w̃∗) ≤ µF∆0 exp

(
−η̂1µFT

2

)
+ Õ

(
(N/S−1)σ2

F,1

µFTN

)

+ Õ

(
(σ2
F,1+λ2δ2

1)κFLF

µ2
Fβ

2T 2

)
+O

(
λ2δ2

1

µF

)
=: O1.

Now we prove the second inequality. Let x̂Tk = argminxk∈Rd
{
fk(xk) + λ

2 ‖w̃T − Pxk‖22
}

.

By Proposition 21, we have

E
[∥∥PxTk − w̃∗

∥∥2

2

]
≤ 3E

[∥∥PxTk − P x̂Tk
∥∥2

2

]
+ 3E

[∥∥P x̂Tk − w̃T

∥∥2

2

]
+ 3E

[
‖w̃T − w̃∗‖22

]
≤ 3δ2

1 +
3

λ2
E
[
‖∇Fk(w̃T )‖22

]
+ 3E

[
‖w̃T − w̃∗‖22

]
≤ 3δ2

1 +
6

λ2
E
[
‖∇Fk(w̃T )−∇Fk(w̃∗)‖22

]
+

6

λ2
E
[
‖∇Fk(w̃∗)‖22

]
+ 3E

[
‖w̃T − w̃∗‖22

]
,

where the second inequality is by Lemma 4 and Proposition 3 and the last inequality is by
Proposition 21. Proposition 3 also implies that Fk is λ-smooth. Then we have

E
[∥∥PxTk − w̃∗

∥∥2

2

]
≤ 3δ2

1 + 9E
[
‖w̃T − w̃∗‖22

]
+

6

λ2
E
[
‖∇Fk(w̃∗)‖22

]
,

Note that the left-hand side of (16) is nonnegative. From the above analysis, with our
choices of η̃ and T , we have

µF
2
E
[
‖w̃T − w̃∗‖22

]
≤ µF exp(−η̃µF /2)∆0 +

η̃2

β2
C3 + η̃C2 + C1 ≤ O1.
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Taking the average over the index k, we obtain

1

N

N∑
k=1

E
[∥∥PxTk − w̃∗

∥∥2

2

]
≤ 9E

[
‖w̃T − w̃∗‖22

]
+

6σ2
F,1

λ2
+ 3δ2

1 ≤
1

µF
O1 +O

(
σ2
F,1

λ2
+ δ2

1

)
.

This completes the proof.

A.3 Proof of Theorem 13

In this subsection, we give the proof of Theorem 13. For the smooth case, Lemma 8 still
holds. And similar to Lemma 7, we have the following lemma that gives an upper bound on
the drift error of the inner loop.

Lemma 26 (Bounded client drift error) Suppose that Assumptions 2, 4, 6 and (5) hold
with 0 < s < 1/30. For η̃ ≤ β

5LF
, we have

1

NR

N∑
k=1

R−1∑
r=0

E
[∥∥gtk,r −∇Fk(w̃t)

∥∥2

2

]
≤ 2λ2δ2

2 +
4L2

F η̃
2

β2

(
7

N

N∑
k=1

E
[
‖∇Fk(w̃t)‖22

]
+ 10λ2δ2

2

)
,

where δ2
2 is defined in Lemma 11.

Proof [Proof of Theorem 13] We first assume η ≤ η̂2

βR . The exact value of η will be determined
later. By Proposition 24, we have (5) holds with probability at least 1− 2 exp(−cdsub) and
0 < s < 1/30 as long as dsub/d is sufficiently small. Throughout the proof, we assume this
inequality holds.

Recall that with η̃ and gt defined in (7), we have w̃t+1 = w̃t − η̃gt. By Proposition 10,
Fk is LF -smooth, then F is also LF -smooth. This implies that

E [F (w̃t+1)− F (w̃t)]

≤ E [〈∇F (w̃t), w̃t+1 − w̃t〉] +
LF
2

E
[
‖w̃t+1 − w̃t‖ |22

]
= −η̃E [〈∇F (w̃t),gt〉] +

η̃2LF
2

E
[
‖gt‖22

]
= −η̃E

[
‖∇F (w̃t)‖22

]
− η̃E [〈∇F (w̃t),gt −∇F (w̃t)〉] +

η̃2LF
2

E
[
‖gt‖22

]
≤ −η̃E

[
‖∇F (w̃t)‖22

]
+
η̃

2
E
[
‖∇F (w̃t)‖22

]
+
η̃

2
E

∥∥∥∥∥ 1

NR

N∑
k=1

R−1∑
r=0

(gtk,r −∇Fk(w̃t))

∥∥∥∥∥
2

2


+
η̃2LF

2
E
[
‖gt‖22

]
, (18)

where gtk,r is defined in (6) and the last inequality is by Cauchy-Schwarz inequality. Next
from the proof of Lemma 3 in Dinh et al. (2020), we have

ESt
[
‖gt‖22

]
≤ 3ESt

1

NR

N∑
k=1

R−1∑
r=0

∥∥gtk,r −∇Fk(w̃t)
∥∥2

2
+ 3ESt

∥∥∥∥∥∥ 1

S

∑
k∈St

∇Fk(w̃t)−∇F (w̃t)

∥∥∥∥∥∥
2

2
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+ 3ESt ‖∇F (w̃t)‖22 . (19)

We defer the proof of (19) to the end of this subsection. Recall that η̂2 = 1
90λ2LF

, β ≥ 1 and

λ ≥ 1. η ≤ η̂2

βR implies that η̃ = βRη ≤ β
5LF

. Substituting (19) into (18) yields

E [F (w̃t+1)− F (w̃t)]

≤ − η̃
2
E
[
‖∇F (w̃t)‖22

]
+

(
η̃

2
+

3η̃2LF
2

)
1

NR

R−1∑
r=0

N∑
k=1

E
[∥∥gtk,r −∇Fk(w̃t)

∥∥2

2

]

+
3η̃2LF

2
E

 1

S

∑
k∈St

∇Fk(w̃t)−∇F (w̃t)

+
3η̃2LF

2
E
[
‖∇F (w̃t)‖22

]

≤ − η̃(1− 3η̃LF )

2
E
[
‖∇F (w̃t)‖22

]
+

3η̃2LF
2

N/S − 1

N − 1

N∑
k=1

1

N
E
[
‖∇Fk(w̃t)−∇F (w̃t)‖22

]
+
η̃(1+3η̃LF )

2

[
2λ2δ2

2+
4L2

F η̃
2

β2

(
7

N

N∑
k=1

E
[
‖∇Fk(w̃t)−∇F (w̃t)‖22

]
+7E

[
‖∇F (w̃t)‖22

]
+10λ2δ2

2

)]

≤ − η̃(1− 3η̃LF )

2
E
[
‖∇F (w̃t)‖22

]
+

3η̃2LF
2

N/S − 1

N − 1

(
3σ2

F,2 +
10L2

λ2 − 10L2
E
[
‖∇F (w̃t)‖22

])
+
η̃(1 + 3η̃LF )

2

[
2λ2δ2

2 +
4L2

F η̃
2

β2

(
21σ2

F,2 +
7λ2

λ2 − 10L2
E
[
‖∇F (w̃t)‖22

]
+ 10λ2δ2

2

)]
= −η̃

[
1

2
− η̃LF

(
3

2
+

15L2

λ2 − 10L2

N/S − 1

N − 1
+

14(1 + 3η̃LF )λ2η̃LF
β2(λ2 − 10L2)

)]
E
[
‖∇F (w̃t)‖22

]
+
η̃3

β2
(1 + 3η̃LF )2L2

F (21σ2
F,2 + 10λ2δ2

2) + η̃2 9

2
LFσ

2
F,2

N/S − 1

N − 1
+ η̃(1 + 3η̃LF )λ2δ2

2 ,

where the second inequality is by Lemmas 7 and 8 and the fact that E[‖X‖22] = E[‖X − E[X]‖22]+
‖E[X]‖22 for a random vector X, and the last inequality is by Lemma 12.

Clearly, we also have η̃ ≤ β
2LF

, which implies that 1 + 3η̃LF ≤ 1 + 3β/2 ≤ 3β. Recall

that λ2 − 10L2 ≥ 1 and N/S−1
N−1 ≤ 1. Then we have

3

2
+

15L2

λ2 − 10L2

N/S − 1

N − 1
+

14(1 + 3η̃LF )λ2η̃LF
β2(λ2 − 10L2)

≤ 3

2
+ 15L2 + 21λ2 ≤ 45

2
λ2.

Since η̃ = βRη ≤ 1
90λ2LF

, then

1

2
− η̃LF

(
3

2
+

15L2

λ2 − 10L2

N/S − 1

N − 1
+

14(1 + 3η̃LF )λ2η̃LF
β2(λ2 − 10L2)

)
≥ 1

2
− 45λ2η̃LF

2
≥ 1

4
,

Moreover, the choice of λ implies λ ≥ 1. Then we have 1 + 3η̃LF ≤ 1 + 1
15λ2 ≤ 2. It follows

that

E [F (w̃t+1)− F (w̃t)] ≤ −
η̃

4
E
[
‖∇F (w̃t)‖22

]
+
η̃3

β2
4L2

F (21σ2
F,2 + 10λ2δ2

2)︸ ︷︷ ︸
=:C4
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+ η̃2 5LFσ
2
F,2

N/S − 1

N − 1︸ ︷︷ ︸
=:C5

+η̃ 2λ2δ2
2︸ ︷︷ ︸

=:C6

.

By rearranging the terms and telescoping, we obtain

1

4T

T−1∑
t=0

E
[
‖∇F (w̃t)‖22

]
≤ E [F (w̃0)− F (w̃T )]

η̃T
+
η̃2

β2
C4 + η̃C5 + C6. (20)

Now we use the techniques in Karimireddy et al. (2020). Arjevani et al. (2018), Stich (2019)
to specify the value of η̃. Recall that we need to ensure η ≤ η̂2

βR (i.e., η̃ ≤ η̂2 ).

• If η̂3
2 ≥

β2∆F
TC4

or η̂2
2 ≥

∆F
TC5

, then the first term on the right-hand side of (20) is no large

than the sum of the second and third terms. We choose η̃ = min

{(
β2∆F
TC4

)1/3
,
(

∆F
TC5

)1/2
}

.

Then we have η̃ ≤ η̂2 and

1

4T

T−1∑
t=0

E
[
‖∇F (w̃t)‖22

]
≤ 2

∆
2/3
F C

1/3
4

(βT )2/3
+ 2

(∆FC5)1/2

√
T

+ C6.

• If η̂3
2 <

β2∆F
TC4

and η̂2
2 <

∆F
TC5

, then the first term on the right-hand side of (20) is larger
than the second and third terms. We choose η̃ = η̂2 and obtain

1

4T

T−1∑
t=0

E
[
‖∇F (w̃t)‖22

]
≤ 3

∆F

η̂2T
+ C6.

Combine the two cases and sampling t∗ uniformly from {0, 1, . . . , T − 1}, we have

E
[
‖∇F (w̃t∗)‖22

]
=

1

T

T−1∑
t=0

E
[
‖∇F (w̃t)‖22

]

≤ O

∆F

η̂2T
+

∆
2/3
F L

2/3
F

(
σ2
F,2 + λ2δ2

2

)1/3

β2/3T 2/3
+

(
∆FLFσ

2
F,2(N/S − 1)

)1/2

√
TN

+ λ2δ2
2

 =: O2.

Now we prove the second inequality. Let ŷtk= argminyk∈Rdsub

{
fk(P

>yk)+
λ
2

∥∥w̃t−PP>yk
∥∥2

2

}
and x̂tk = P>ŷtk. By Proposition 21, we have

1

N

N∑
k=1

E
[∥∥Pxtk − w̃t

∥∥2

2

]
≤ 2

N

N∑
k=1

E
[∥∥Pxtk − P x̂tk

∥∥2

2
+
∥∥P x̂tk − w̃t

∥∥2

2

]

≤ 2δ2
2 +

2

N

N∑
i=1

E
[
‖∇Fk(w̃t)‖22

]
λ2

, (21)
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where the last inequality is by Proposition 10 and Lemma 11. Due to Lemma 12 and the
fact that E[‖X‖22] = E[‖X − E[X]‖22] + ‖E[X]‖22 for a random vector X , we have

1

N

N∑
i=1

E
[
‖∇Fk(w̃t)‖22

]
≤ 1

N

N∑
i=1

E
[
‖∇Fk(w̃t)−∇F (w̃t)‖22 + ‖∇F (w̃t)‖22

]
≤ 3σ2

F,2 +
λ2

λ2 − 10L2
‖∇F (w̃t)‖22 .

(22)

Substituting (22) into (21) and taking the average over the index t, we obtain

1

TN

T−1∑
t=0

N∑
k=1

E
[∥∥Pxtk − w̃t

∥∥2

2

]
≤ 2

λ2 − 10L2

1

T

T−1∑
t=0

E
[
‖∇F (w̃t)‖22

]
+ 2δ2

2 +
6σ2

F,2

λ2

≤ O2 +O

(
δ2

2 +
σ2
F,2

λ2

)
,

where the last inequality is due to λ ≥
√

10L2 + 1. This completes the proof.

Proof [Proof of (19)] By Proposition 21, we have

ESt
[
‖gt‖22

]
≤ 3ESt

∥∥∥∥∥∥ 1

SR

∑
k∈St

R−1∑
r=0

(gtk,r −∇Fk(w̃t))

∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥ 1

S

∑
k∈St

∇Fk(w̃t)−∇F (w̃t)

∥∥∥∥∥∥
2

2

+ ‖∇F (w̃t)‖22


≤ 3ESt

 1

SR

∑
k∈St

R−1∑
r=0

∥∥gtk,r −∇Fk(w̃t)
∥∥2

2
+

∥∥∥∥∥∥ 1

S

∑
k∈St

∇Fk(w̃t)−∇F (w̃t)

∥∥∥∥∥∥
2

2

+ ‖∇F (w̃t)‖22

 .
If we only consider the randomness from the sampling of St, gtk,r and ∇Fk(w̃t) become
constant vectors. Use 1A to denote the indicator function of an event A. Uniform sampling
implies ESt [1k∈St ] = S

N . Then we have

1

SR
ESt

∑
k∈St

R−1∑
r=0

∥∥gtk,r −∇Fk(w̃t)
∥∥2

2

 =
1

SR

N∑
k=1

R−1∑
r=0

∥∥gtk,r −∇Fk(w̃t)
∥∥2

2
ESt [1k∈St ]

=
1

NR

N∑
k=1

R−1∑
r=0

∥∥gtk,r −∇Fk(w̃t)
∥∥2

2
,

This completes the proof.

A.4 Proof of Auxiliary Results

Proof [Proof of Proposition 3] From the discussion at the end of Section IV.2.4 in Hiriart-
Urruty and Lemaréchal (1993), we know that Fk is convex. By Proposition 22, we have
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domf∗k = Rd and F ∗∗k = Fk. Then domF ∗k = Rdsub . It suffices to prove F ∗k is 1
LF

-strongly

convex and 1
µF

-smooth. By the definition of conjugate function, we can compute F ∗k as

F ∗k (u) = sup
w̃∈Rdsub

{
〈u, w̃〉 − inf

x∈Rd

[
fk(x) +

λ

2
‖w̃ − Px‖22

]}
= sup

w̃∈Rdsub ,x∈Rd

{
〈u, w̃〉 − fk(x)− λ

2
‖w̃ − Px‖22

}

= sup
x∈Rd

{
〈u,Px〉 − fk(x) + sup

w̃∈Rdsub

[
〈u, w̃ − Px〉 − λ

2
‖w̃ − Px‖22

]}
= sup

x∈Rd

[〈
P>u,x

〉
− fk(x)

]
+

1

2λ
‖u‖22

= f∗k (P>u) +
1

2λ
‖u‖22 .

By Proposition 22, we have the following results.

(a) F ∗k is 1/λ-strongly convex, then Fk is λ-smooth.

(b) f∗k is 1/µ-smooth. By Proposition 25, f∗k (P>·) is (1 + s)2/µ-smooth. Then F ∗k is(
(1 + s)2/µ+ 1/λ

)
-smooth. It follows that Fk is λµ

(1+s)2λ+µ
-strongly convex.

Moreover, by Proposition 16.59 in Bauschke and Combettes (2011), we have ∇Fk(w̃) =
λ(w̃ − P x̂k).

Finally, we give the proof of the last claim. If fk is L-smooth, then by Proposition 22,
f?k is 1/L-strongly convex. Then Proposition 20 implies that for any u1,u2 and 0 ≤ α ≤ 1,
we have

αf?k (P>u1)+(1−α)f?k (P>u2) ≥ f
(
P>(αu1 + (1− α)u2)

)
+α(1−α)

1

2L

∥∥∥P>(u1 − u2)
∥∥∥2

2
.

By Proposition 25, we have

αf?k (P>u1)+(1−α)f?k (P>u2) ≥ f
(
P>(αu1 + (1−α)u2)

)
+α(1−α)

(1−s)2

2L

∥∥∥P>(u1−u2)
∥∥∥2

2
.

This implies that f?k (P>·) is (1−s)2/L-strongly convex. It follows that F ?k is ((1−s)2/L+1/λ)-
strongly convex and then Fk is λL

(1−s)2λ+L
-smooth.

Proof [Proof of Lemma 4] By Proposition 3 and (5), we have
∥∥∥∇Fk(w̃t

k,r)−λ(w̃t
k,r−Pxtk,r)

∥∥∥
2

=

λ
∥∥∥P (x̂tk,r − xtk,r)

∥∥∥
2
≤ λ(1 + s)

∥∥∥x̂tk,r − xtk,r

∥∥∥
2
. Then we focus on the distance between x̂tk,r

and xtk,r.

For convenience, let hk(xk; w̃
t
k,r) = fk(xk) + λ

2

∥∥∥w̃t
k,r − Pxk

∥∥∥2

2
. Recall the definition of

h̃k in Eqn. (3). Clearly, h̃k is µ-strongly convex and ∇hk(x̂tk,r; w̃
t
k,r) = 0. By Proposition 20

and 21, we have

ED̃k
∥∥x̂tk,r − xtk,r

∥∥2

2
≤ 1

µ2
ED̃k

∥∥∥∇h̃k(x̂tk,r; D̃k, w̃t
k,r)−∇h̃k(xtk,r; D̃k, w̃t

k,r)
∥∥∥2

2
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≤ 2

µ2

(
ED̃k

∥∥∥∇h̃k(x̂tk,r; D̃k, w̃t
k,r)−∇hk(x̂tk,r; w̃t

k,r)
∥∥∥2

2
+ ED̃k

∥∥∥∇h̃k(xtk,r; D̃k, w̃t
k,r)
∥∥∥2

2

)

≤ 2

µ2

ED̃k

∥∥∥∥∥∥ 1

|D̃k|

∑
ξk,i∈D̃k

∇f̃k(x̂tk,r; ξk,i)−∇fk(x̂tk,r)

∥∥∥∥∥∥
2

2

+ ν


≤ 2

µ2

 1

|D̃k|2
∑

ξk,i∈D̃k

Eξk,i
∥∥∥∇f̃k(x̂tk,r; ξk,i)−∇fk(x̂tk,r)∥∥∥2

2
+ ν


≤ 2

µ2

(
γ2
f

|D̃k|
+ ν

)
,

where the fourth inequality is due to ξk,i are independent and Eξk,i∇f̃k(x̂tk,r; ξk,i) = fk(x̂tk,r)
and the last inequality is by Assumption 2. This completes the proof.

Proof [Proof of Lemma 5] By Proposition 3, Fk is LF -smooth with LF = λ. Then by
Proposition 21 and 20, we have

1

N

N∑
k=1

‖∇Fk(w̃)‖22 ≤
2

N

N∑
k=1

‖∇Fk(w̃)−∇Fk(w̃∗)‖22 +
2

N

N∑
k=1

‖∇Fk(w̃∗)‖22

≤ 4LF (F (w̃)− F (w̃∗)) +
2

N

N∑
k=1

‖∇Fk(w̃∗)‖22 .

Note that ∇F (w̃) = 1
N

∑N
k=1∇Fk(w̃). Since E ‖X − EX‖22 ≤ E ‖X‖2 for any random vector

X, we have 1
N

∑N
k=1 ‖∇Fk(w̃)−∇F (w̃)‖22 ≤

1
N

∑N
k=1 ‖∇Fk(w̃)‖22. This completes the proof.

Proof [Proof of Lemma 7] Recall that gtk,r = λ(w̃t
k,r − Pxtk,r) and ∇Fk(w̃t

k,r) = λ(w̃t
k,r −

P x̂tk,r). Then we have

E
[∥∥gtk,r −∇Fk(w̃t)

∥∥2

2

]
≤ 2E

[∥∥gtk,r −∇Fk(w̃t
k,r)
∥∥2

2

]
+ 2E

[∥∥∇Fk(w̃t
k,r)−∇Fk(w̃t)

∥∥2

2

]
≤ 2E

[∥∥gtk,r −∇Fk(w̃t
k,r)
∥∥2

2

]
+ 2L2

FE
[∥∥w̃t

k,r − w̃t

∥∥2

2

]
≤ 2λ2δ2

1 + 2L2
FE
[∥∥w̃t

k,r − w̃t

∥∥2

2

]
, (23)

where the first inequality is by Proposition 21, the second inequality is by Proposition 3,

and the last inequality is by Lemma 4. Next, we bound the second term
∥∥∥w̃t

k,r − w̃t

∥∥∥2

2
. By

Proposition 21, for r ≥ 1, we have

E
[∥∥w̃t

k,r − w̃t

∥∥2

2

]
= E

[∥∥w̃t
k,r−1 − w̃t − ηgtk,r−1

∥∥2

2

]
≤
(

1 +
1

4R

)
E
[∥∥w̃t

k,r−1 − w̃t − η∇Fk(w̃t)
∥∥2

2

]
+ (1 + 4R)η2E

[∥∥gtk,r−1 −∇Fk(w̃t)
∥∥2

2

]
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≤
(

1 +
1

4R

)2

E
[∥∥w̃t

k,r−1 − w̃t

∥∥2

2

]
+

(
1 +

1

4R

)
(1 + 4R)η2E

[
‖∇Fk(w̃t)‖22

]
+ (1 + 4R)η2E

[∥∥gtk,r−1 −∇Fk(w̃t)
∥∥2

2

]
. (24)

Recall that η̃ = ηβR ≤ β
5LF

and R ≥ 1. Then we have
(
1 + 1

4R

)2 ≤ 1 + 9
16R ,

(
1 + 1

4R

)
(1 +

4R) ≤ 25
4 R and (1 + 4R)η2 ≤ 5Rη2 ≤ 5R 1

25R2L2
F

= 1
5RL2

F
. Substituting these inequalities

and (23) into (24) yields

E
[∥∥w̃t

k,r − w̃t

∥∥2

2

]
≤
(

1 +
9

16R

)
E
[∥∥w̃t

k,r−1 − w̃t

∥∥2

2

]
+

25

4
Rη2E

[
‖∇Fk(w̃t)‖22

]
+ 10Rη2λ2δ2

1 +
2

5R
E
[∥∥w̃t

k,r−1 − w̃t

∥∥2

2

]
≤
(

1 +
1

R

)
E
[∥∥w̃t

k,r−1 − w̃t

∥∥2

2

]
+ 7Rη2E

[
‖∇Fk(w̃t)‖22

]
+ 10Rη2λ2δ2

1 .

(25)

Note that (25) holds for any 1 ≤ r ≤ R and w̃t
k,0 = w̃t. Applying (25) recursively, we obtain

E
[∥∥w̃t

k,r − w̃t

∥∥2

2

]
≤
(

7Rη2E
[
‖∇Fk(w̃t)‖22

]
+ 10Rη2λ2δ2

1

)R−1∑
i=0

(
1 +

1

R

)i
.

Since (1 + x/n)n ≤ ex for any x ∈ R, we have
∑R−1

i=0 (1 + 1/R)i = (1+1/R)R−1
1/R ≤ e−1

1/R ≤ 2R.
This implies

E
[∥∥w̃t

k,r − w̃t

∥∥2

2

]
≤ 14η̃2

β2
E
[
‖∇Fk(w̃t)‖22

]
+

20η̃2λ2δ2
1

β2
(26)

Substituting (26) into (23) yields

E
[∥∥gtk,r −∇Fk(w̃t)

∥∥2

2

]
≤ 2λ2δ2

1 +
4L2

F η̃
2

β2

(
7E
[
‖∇Fk(w̃t)‖22

]
+ 10λ2δ2

1

)
.

Taking the average over the indices k and r, we obtain the desired result.

Proof [Proof of Proposition 10] This proof is adapted from Hoheisel et al. (2020).

Let ϕλ(y) = fk(P
>y) + λ

2

∥∥PP>y
∥∥2

2
. By (5), we have that the smallest eigenvalue

of PP>PP> is no less than (1 − s)4. Since λ > 4L and 0 < s < 1/30, ϕλ(y) is(
(1− s)4λ− (1 + s)2L

)
-strongly convex. Similarly, the function fk(P>y)+λ

2

∥∥w̃ − PP>y
∥∥2

2

is also
(
(1− s)4λ− (1 + s)2L

)
-strongly convex. Such an ŷk exists and is unique. By Propo-

sition 22, ϕ∗λ is a continuously differentiable function defined on Rdsub and ∇ϕ∗λ = (∇ϕλ)−1.
Then we have

Fk(w) = min
xk∈Rd

{
fk(xk) +

λ

2
‖w̃ − Pxk‖22

}
= min

y∈Rdsub

{
fk(P

>y) +
λ

2

∥∥∥w̃ − PP>y
∥∥∥2

2

}
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=
λ

2
‖w̃‖22 − sup

y∈Rdsub

{
λ
〈
w̃,PP>y

〉
− fk(P>y)− λ

2

∥∥∥PP>y
∥∥∥2

2

}
=
λ

2
‖w̃‖22 − ϕ

∗
λ(λPP>w̃),

where the second equality is by Assumption 6. Then ∇Fk(w) = λw̃−λPP>∇ϕ∗λ(λPP>w̃).
On the other hand, we have

ŷk = argmin
y∈Rdsub

{
fk(P

>y) +
λ

2

∥∥∥w̃ − PP>y
∥∥∥2

2

}
= argmin

y∈Rdsub

{
ϕλ(y)− λ

〈
w̃,PP>y

〉}
.

The first-order condition implies ∇ϕλ(ŷk) = λPP>w̃. It follows that ŷk = ∇ϕ∗λ(λPP>w̃).
Finally, we obtain ∇Fk(w̃) = λw̃ − λPP>ŷk.

Now we prove the Lipschitz continuity of ∇Fk. Let ψλ(x) = fk(x) + λ
2 ‖Px‖22 and

x̂k = P>ŷk. By Assumption 6, we have

x̂k ∈ argmin
x∈Rd

{
fk(x) +

λ

2
‖w̃ − Px‖22

}
= argmin

x∈Rd
{ψλ(x)− λ 〈w̃,Px〉} .

The first-order condition implies∇ψλ(x̂k) = λP>w̃. By Proposition 25, ψλ is
(
(1− s)2λ− L

)
-

strongly convex on col(P>). Then we have that for any x ∈ col(P>), it holds that

ψλ(x̂k) ≤ ψλ(x) + λ
〈
P>w̃, x̂k − x

〉
− 1

2

(
(1− s)2λ− L

)
‖x− x̂k‖22 .

Recalling the definition of ψλ, we obtain

fk(x̂k) +
λ

2
‖P x̂k‖22 −

λ

2
‖Px‖22 − λ

〈
P>w̃, x̂k − x

〉
+
λ

2
‖P x̂k − Px‖22

≤ fk(x) +

(
L

2
− (1− s)2λ

2

)
‖x− x̂k‖22 +

λ

2
‖P x̂k − Px‖22 .

By Proposition 25, we have ‖P x̂k − Px‖22 ≤ (1 + s)2 ‖x̂k − x‖22. It follows that

fk(x̂k) +
λ

2
‖P x̂k‖22 −

λ

2
‖Px‖22 − λ

〈
P>w̃, x̂k − x

〉
+
λ

2
‖P x̂k − Px‖22

≤ fk(x) +

(
L

2
+ 2sλ

)
‖x− x̂k‖22 ,

which is equivalent to

fk(x̂k) + λ
〈
P>P x̂k − P>w̃, x̂k − x

〉
≤ fk(x) +

(
L

2
+ 2sλ

)
‖x− x̂k‖22 . (27)

For a w̃′ 6= w̃, let ŷ′k = argminy∈Rdsub

{
fk(P

>y) + λ
2

∥∥w̃′ − PP>y
∥∥2

2

}
and x̂′k = P>ŷ′k.

Then we also have x̂′k ∈ col(P>). Replacing x by x̂′k in (27) gives

fk(x̂k) + λ
〈
P>P x̂k − P>w̃, x̂k − x̂′k

〉
≤ fk(x̂′k) +

(
L

2
+ 2sλ

)∥∥x̂′k − x̂k
∥∥2

2
.
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Changing the orders of x̂k and x̂′k leads to

fk(x̂
′
k) + λ

〈
P>P x̂′k − P>w̃′, x̂′k − x̂k

〉
≤ fk(x̂k) +

(
L

2
+ 2sλ

)∥∥x̂′k − x̂k
∥∥2

2
.

Adding the above two inequalities and rearranging terms yields

λ
〈
P>P (x̂k − x̂′k), x̂k − x̂′k

〉
− (L+ 4sλ)

∥∥x̂′k − x̂k
∥∥2

2
≤ λ

〈
P>(w̃ − w̃′), x̂k − x̂′k

〉
.

By Proposition 25,
〈
P>P (x̂k − x̂′k), x̂k − x̂′k

〉
= ‖P (x̂k − x̂′k)‖

2
2 ≥ (1−s)2 ‖x̂k − x̂′k‖

2
2. Then

we have (
(1− 6s− s2)λ− L

) ∥∥x̂′k − x̂k
∥∥2

2
≤ λ

〈
P>(w̃ − w̃′), x̂k − x̂′k

〉
.

Since s < 1/30 and λ > 4L, we have (1 − 6s − s2)λ − L > 0. Dividing both sides by
(1− 6s− s2)λ− L− L gives∥∥x̂′k − x̂k

∥∥2

2
≤ 1

1− 6s− s2 − L/λ

〈
P>(w̃ − w̃′), x̂k − x̂′k

〉
. (28)

Then we have

1

λ2

∥∥∇Fk(w̃)−∇Fk(w̃′)
∥∥2

2
=
∥∥w̃ − w̃′ − P (x̂k − x̂′k)

∥∥2

2

=
∥∥w̃ − w̃′

∥∥2

2
− 2

〈
w̃ − w̃′,P (x̂k − x̂′k)

〉
+
∥∥P (x̂k − x̂′k)

∥∥2

2

≤
∥∥w̃ − w̃′

∥∥2

2
− 2

〈
w̃ − w̃′,P (x̂k − x̂′k)

〉
+ (1 + s)2

∥∥x̂k − x̂′k
∥∥2

2

≤
∥∥w̃ − w̃′

∥∥2

2
+

(
(1 + s)2

1− 6s− s2 − L/λ
− 2

)〈
w̃ − w̃′,P (x̂k − x̂′k)

〉
,

where the first inequality is due to Proposition 25 and the second one is due to (28). Since

λ > 4L and s < 1/30, we have (1+s)2

1−6s−s2−L/λ − 2 < 0. As a result, ‖∇Fk(w̃)−∇Fk(w̃′)‖22 ≤
λ2 ‖w̃ − w̃′‖22.

Proof [Proof of Lemma 11] Let xtk,r = P>ytk,r + Qỹtk,r. Recall that we have PQ =

0dsub×(d−dsub). Then by Proposition 10 and (5), we have
∥∥∥∇Fk(w̃t

k,r)− λ(w̃t
k,r − Pxtk,r)

∥∥∥
2

=

λ
∥∥∥PP>(ŷtk,r − ytk,r)

∥∥∥
2
≤ (1 + s)2λ

∥∥∥ŷtk,r − ytk,r

∥∥∥
2
, where the minimizer ŷtk,r is defined as

ŷtk,r = argminyk∈Rdsub

{
fk(P

>yk) + λ
2

∥∥∥w̃t
k,r − PP>yk

∥∥∥2

2

}
. Then we focus on the distance

between ŷtk,r and ytk,r.

Recall the definition of h̃k in (3). Throughout this proof, w̃t
k,r and D̃k are fixed, so we

omit the dependence of h̃k on these parameters for brevity. For any xk = (P>,Q)

(
yk
ỹk

)
,

we have

(
∂yk h̃k
∂ỹk h̃k

)
=

(
P
Q>

)
∇xk h̃k. By Assumption 6, we have ∂ỹk h̃k = 0. Then with some
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abuse of notation, we can view h̃k as a function of yk:

h̃k(yk) =
1

|D̃k|

∑
ξk,i∈D̃k

f̃k(P
>yk; ξk,i) +

λ

2

∥∥∥w̃t
k,r − PP>yk

∥∥∥2

2
,

and it holds that ∇yk h̃k = P ∇xk h̃k.

For convenience, let hk(xk) = fk(xk) + λ
2

∥∥∥w̃t
k,r − Pxk

∥∥∥2

2
and x̂tk,r = P>ŷtk,r. By

Proposition 25, h̃k is
(
(1− s)4λ− (1 + s)2L

)
-strongly convex in yk and ∇ykhk(ŷ

t
k,r) = 0.

Then by (5) and Propositions 20 and 21, we have

ED̃k
∥∥ŷtk,r − ytk,r

∥∥2

2

≤ 1

((1− s)4λ− (1 + s)2L)2ED̃k
∥∥∥∇yk h̃k(ŷ

t
k,r)−∇yk h̃k(y

t
k,r)
∥∥∥2

2

≤ (1 + s)2

((1− s)4λ− (1 + s)2L)2ED̃k
∥∥∥∇xk h̃k(x̂

t
k,r)−∇xk h̃k(x

t
k,r)
∥∥∥2

2

≤ 2(1 + s)2

((1− s)4λ− (1 + s)2L)2

(
ED̃k

∥∥∥∇xk h̃k(x̂
t
k,r)−∇hk(x̂tk,r)

∥∥∥2

2
+ ED̃k

∥∥∥∇xk h̃k(x
t
k,r)
∥∥∥2

2

)

≤ 2(1 + s)2

((1− s)4λ− (1 + s)2L)2

ED̃k

∥∥∥∥∥∥ 1

|D̃k|

∑
ξk,i∈D̃k

∇f̃k(x̂tk,r; ξk,i)−∇fk(x̂tk,r)

∥∥∥∥∥∥
2

2

+ ν


≤ 2(1 + s)2

((1− s)4λ− (1 + s)2L)2

 1

|D̃k|2
∑

ξk,i∈D̃k

Eξk,i
∥∥∥∇f̃k(x̂tk,r; ξk,i)−∇fk(x̂tk,r)∥∥∥2

2
+ ν


≤ 2(1 + s)2

((1− s)4λ− (1 + s)2L)2

(
γ2
f

|D̃k|
+ ν

)
,

where the fourth inequality is due to ξk,i are independent and Eξk,i∇f̃k(x̂tk,r; ξk,i)=fk(x̂tk,r)
and the last inequality is by Assumption 2. Then by Proposition 10 and (5), we have

1

λ2
E
[∥∥∇Fk(w̃t

k,r)− λ(w̃t
k,r − Pxtk,r)

∥∥2

2

]
≤ 2(1 + s)6

((1− s)4λ− (1 + s)2L)2

(
γ2
f

|D̃k|
+ ν

)
.

Proof [Proof of Lemma 12] If fk is L-smooth, by Proposition 10, we have

‖∇Fk(w̃)−∇F (w̃)‖22 =

∥∥∥∥∥λ(w̃ − P x̂k)−
1

N

N∑
i=1

λ(w̃ − P x̂i)

∥∥∥∥∥
2

2

,

where x̂k = P>ŷk with ŷk = argminyk∈Rdsub

{
fk(P

>yk) + λ
2

∥∥w̃ − PP>yk
∥∥2

2

}
.
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The first-order condition implies P ∇fk(P>ŷk) = λPP>(w̃ − PP>ŷk), which implies
P ∇fk(x̂k) = λPP>(w̃ − P x̂k). By (5), it is easy to verify

∥∥(PP>)−1P
∥∥

2
≤ (1 − s)−1

through SVD. Then we have

‖∇Fk(w̃)−∇F (w̃)‖22 =

∥∥∥∥∥(PP>)−1P

(
∇fk(x̂k)−

1

N

N∑
i=1

∇fi(x̂i)

)∥∥∥∥∥
2

2

≤ (1− s)−2

∥∥∥∥∥
(
∇fk(x̂k)−

1

N

N∑
i=1

∇fi(x̂i)

)∥∥∥∥∥
2

2

≤ 2(1− s)−2

∥∥∥∥∥
(
∇fk(x̂k)−

1

N

N∑
i=1

∇fi(x̂k)

)∥∥∥∥∥
2

2

+ 2(1− s)−2

∥∥∥∥∥
(

1

N

N∑
i=1

∇fi(x̂k)−
1

N

N∑
i=1

∇fi(x̂i)

)∥∥∥∥∥
2

2

,

where the last inequality is by Proposition 21.
Taking the average over the devices, we obtain that

1

N

N∑
k=1

‖∇Fk(w̃)−∇F (w̃)‖22

≤2(1− s)−2
N∑
k=1

‖(∇fk(x̂k)−∇f(x̂k))‖22 + 2(1− s)−2
N∑
k=1

∥∥∥∥∥ 1

N

N∑
i=1

(∇fi(x̂k)−∇fi(x̂i))

∥∥∥∥∥
2

2

≤2(1− s)−2σ2
f +

2(1− s)−2

N2

N∑
k=1

N∑
i=1

‖∇fi(x̂k)−∇fi(x̂i)‖22 , (29)

where the last inequality is by Assumption 5 and Proposition 21. By the smoothness of fi,
we have

‖∇fi(x̂k)−∇fi(x̂i)‖22 ≤ L
2 ‖x̂k − x̂i‖22 = L2

∥∥∥P>(ŷk − ŷi)
∥∥∥2

2

= L2
∥∥∥P>(PP>)−1PP>(ŷk − ŷi)

∥∥∥2

2

≤ (1− s)−2L2
∥∥∥PP>(ŷk − ŷi)

∥∥∥2

2

= (1− s)−2L2 ‖P x̂k − P x̂i‖22
≤ 2(1− s)−2L2

(
‖P x̂k − w̃‖22 + ‖P x̂i − w̃‖22

)
=

2(1− s)−2L2

λ2

(
‖∇Fk(w̃)‖22 + ‖∇Fi(w̃)‖22

)
, (30)

where the third inequality is by Proposition 21 and the last equality is by Proposition 10.
Substituting (30) into (29) gives

1

N

N∑
k=1

‖∇Fk(w̃)−∇F (w̃)‖22 ≤ 2(1− s)−2σ2
f +

8(1− s)−4L2

λ2

1

N

N∑
k=1

‖∇Fk(w̃)‖22
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≤ 3σ2
f +

10L2

λ2

1

N

N∑
k=1

‖∇Fk(w̃)‖22

= 3σ2
f +

10L2

λ2

(
1

N

N∑
k=1

‖∇Fk(w̃)−∇F (w̃)‖22 + ‖∇F (w̃)‖22

)
,

where the second inequality follows from s < 1/30 and the last equality is due to the fact
that E[‖X‖22] = E[‖X − E[X]‖22] + ‖E[X]‖22 for a random vector X. Finally, rearranging the
terms yields

1

N

N∑
k=1

‖∇Fk(w̃)−∇F (w̃)‖22 ≤
3λ2

λ2 − 10L2
σ2
f +

10L2

λ2 − 10L2
‖∇F (w̃)‖22 .

A.5 Proof of Theorem 14

In this subsection, we give the proof of Theorem 14. We first give the formal statement of
Theorem 14.

Theorem 27 (Formal version of Theorem 14) Suppose that Assumptions 1 and 2 hold.

Let ηt = 8
βRµF (ζ+t) , νt = 8

µF (ζ+t) and Dt =
⌈
µF (ζ+t)

D

⌉
, where ζ = 72κF (1 + 7κF /β) and D

is a positive constant. Then with probability at least 1− 2 exp(−cdsub), we have

E ‖w̃t − w̃∗‖22 ≤ O

(
∆0

T 4
+
λ2(1 + γ2

f )

µ2µ3
FT

(
1 +

κ2
F

β2T 2

)
+

(N/S − 1)σ2
F,1

µ2
FNT

+
κ2
Fσ

2
F,1

µ2
Fβ

2T 2

)
,

E
∥∥xTk − x∗k

∥∥2

2
≤ O

(
1 + γ2

f

µ2µFT
+
λ2

µ2
E ‖w̃T − w̃∗‖22

)
,

where c is a positive constant, σ2
F,1 = 1

N

∑N
k=1 ‖∇Fk(w̃∗)‖

2
2 and the expectation is w.r.t. all

the randomness except for P . Moreover, when there is no client sampling (S = N), let

νt = 8
µF β2(ξ+t)2 and Dt =

⌈
µF β

2(ξ+t)2

D

⌉
. Then with probability at least 1− 2 exp(−cdsub), we

have

E ‖w̃t − w̃∗‖22 ≤ O

(
∆0

T 4
+
λ2(1 + γ2

f )

µ3
Fβ

2T 2

(
1 +

κF
µ2β2T

)
+

κ2
Fσ

2
F,1

µ2
Fβ

2T 2

)
,

E
∥∥xTk − x∗k

∥∥2

2
≤ O

(
1 + γ2

f

µ2µFβ2T 2
+
λ2

µ2
E ‖w̃T − w̃∗‖22

)
,

Note that there are four terms on the right-hand side. The first term is due to initialization
and is negligible compared to other terms. The second term is from approximation error
and mini-batch sampling in each client and is the leading term of order O(1/T ). The third
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term is caused by client sampling. And the last term reflects the client drift with multiple
local updates because of the diversity across clients. Note that a larger β leads to a smaller
step size and consequently lightens the client drift.
Proof Recall that by Proposition 24, we have (5) holds with probability at least 1 −
2 exp(−cdsub) and s = O(1). Throughout the proof, we assume this inequality holds. In this
case, Lemma 4 becomes that for a fixed w̃t

k,r, we have

1

λ2
E
[∥∥∇Fk(w̃t

k,r)− λ(w̃t
k,r − Pxtk,r)

∥∥2

2

]
≤ δ2

t :=
2(1 + s)2

µ2

(
γ2
f

Dt
+ νt

)
.

With our choice of Dt and νt, we have δ2
t ≤

2(1+s)2

µ2µF (ζ+t)
(8 +Dγ2

f ).

Similar to the proof of Theorem 9, we first rewrite the local update as

w̃t
k.r+1 = w̃t

k,r − ηt λ(w̃t
k,r − Pxtk,r)︸ ︷︷ ︸

=:gtk,r

,

which implies

ηt

R−1∑
r=0

gtk,r =

R−1∑
r=0

(w̃t
k,r − w̃t

k,r+1) = w̃t
k,0 − w̃t

k,R = w̃t − w̃t
k,R.

Then gtk,r can be considered as a biased estimate of ∇Fk(w̃t
k,r) and the global update rule

becomes

w̃t+1 = (1− β)w̃t +
β

S

∑
k∈St

w̃t
k,R = w̃t −

β

S

∑
k∈St

(w̃t − w̃t
k,R) = w̃t − ηtβR︸ ︷︷ ︸

=:η̃t

1

SR

∑
k∈St

R−1∑
r=0

gtk,r︸ ︷︷ ︸
=:gt

,

where η̃t and gt can be interpreted as the step size and the approximate stochastic gradient
of the global update, respectively.

Similar to Lemma 6, we have the following inequality.

E
[
‖w̃t+1 − w̃∗‖22

]
≤
(

1− η̃tµF
2

)
E
[
‖w̃t − w̃∗‖22

]
− η̃t(2− 6LF η̃t)E [F (w̃t)− F (w̃∗)]

+
η̃t(3η̃t + 2/µF )

NR

N∑
k=1

R−1∑
r=0

E
[
‖gt,r −∇Fk(w̃t)‖22

]

+ 3η̃2
tE

∥∥∥∥∥∥ 1

S

∑
k∈St

∇Fk(w̃t)−∇F (w̃t)

∥∥∥∥∥∥
2

2


(31)

For the last term on the right-hand side of (31), Lemmas 5 and 8 imply

E

∥∥∥∥∥∥ 1

S

∑
k∈St

∇Fk(w̄t
r)−∇F (w̄t

r)

∥∥∥∥∥∥
2

2

≤ N/S−1

N−1

N∑
k=1

1

N
E
∥∥∇Fk(w̄t

r)−∇F (w̄t
r)
∥∥2

2
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≤ N/S−1

N−1

(
4LFE

[
F (w̄t

r)−F (w̃∗)
]

+ 2σ2
F,1

)
.

For the third term on the right-hand side of (31), we can resort to Lemma 7. For η̃t ≤ β
5LF

,
we have

1

NR

N∑
k=1

R−1∑
r=0

E
[∥∥gtk,r −∇Fk(w̃t)

∥∥2

2

]
≤ 2λ2δ2

t +
4L2

F η̃
2
t

β2

(
7

N

N∑
k=1

E ‖∇Fk(w̃t)‖22 + 10λ2δ2
t

)

≤ 2λ2δ2
t +

4L2
F η̃

2
t

β2

(
14

N

N∑
k=1

E ‖∇Fk(w̃t)−∇Fk(w̃∗)‖22 +
14

N

N∑
k=1

E ‖∇Fk(w̃∗)‖22 + 10λ2δ2
t

)

≤ 2λ2δ2
t +

8L2
F η̃

2
t

β2

(
14LFE[F (w̃t)− F (w̃∗)] + 7σ2

F,1 + 5λ2δ2
t

)
,

where the second inequality is by Proposition 21 and the last inequality is due to Proposition
20. Since ηt = 8

βRµF (ζ+t) with ζ = 72κF (1 + 7κF /β), we have η̃t = βRηt ≤ 8
µF (ζ+t) ≤

min
{

1
µF
, β

5LF

}
. As a result, we have

η̃t(3η̃t + 2/µF )

NR

N∑
k=1

R−1∑
r=0

E
[∥∥gtk,r −∇Fk(w̃t)

∥∥2

2

]
≤ η̃t

10λ2δ2
t

µF
+
η̃3
t

β2

40L2
F

µF

(
14LFE [F (w̃t)− F (w̃∗)] + 7σ2

F,1 + 5λ2δ2
t

)
≤ η̃t

10λ2δ2
t

µF
+ 112

η̃2
t

β
κFLFE [F (w̃t)− F (w̃∗)] + 280

η̃3
t

β2
κFLFσ

2
F,1 + 200

η̃3
t

β2
κFLFλ

2δ2
t

Substituting these inequalities into (31) yields

E
[
‖w̃t+1 − w̃∗‖22

]
≤
(

1− η̃tµF
2

)
E
[
‖w̃t−w̃∗‖22

]
−η̃t

[
2−LF η̃t

(
6+12

N/S − 1

N − 1
+

112κF
β

)]
E [F (w̃t)−F (w̃∗)]

+ η̃tδ
2
t

10λ2

µF︸ ︷︷ ︸
=:C1

+η̃2
t

6σ2
F,1(N/S − 1)

N − 1︸ ︷︷ ︸
=:C2

+
η̃3
t

β2
280κFLFσ

2
F,1︸ ︷︷ ︸

=:C3

+
η̃3
t

β2
δ2
t 200κFLFλ

2︸ ︷︷ ︸
=:C4

.

Since N/S−1
N−1 ≤ 1 and η̃t = βRηt ≤ 8

µF (ζ+t) ≤
1

9LF (1+7κF /β) , we have

2− LF η̃t
(

6 + 12
N/S − 1

N − 1
+

112κF
β

)
≥ 2− LF η̃t

(
18 + 112

κF
β

)
≥ 0.

It follows that

E∆t+1 ≤
(

1− µF η̃t
2

)
E∆t + η̃tδ

2
tC1 + η̃2

tC2 +
η̃3
t

β2
C3 +

η̃3
t

β2
δ2
tC4,
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where ∆t := ‖w̃t − w̃∗‖22. Recall that δ2
t ≤

2(1+s)2(8+Dγ2
f )

µ2µF (ζ+t)
= C0η̃t with the constant

C0 := 2(1+s)2

µ2

(
1+

Dγ2
f

8

)
= O

(
1+γ2

f

µ2

)
. Then we have

E∆t+1 ≤
(

1− µF η̃t
2

)
E∆t + η̃2

t (C0C1 + C2) +
η̃3
t

β2
C3 +

η̃4
t

β2
C0C4. (32)

Applying (32) T − 1 times yields

E∆T ≤
T−1∏
t=0

(
1− µF η̃t

2

)
E∆0 + (C0C1 + C2)

T−1∑
t=0

η̃2
t

T−1∏
s=t+1

(
1− µF η̃s

2

)

+
C3

β2

T−1∑
t=0

η̃3
t

T−1∏
s=t+1

(
1− µF η̃s

2

)
+
C0C4

β2

T−1∑
t=0

η̃4
t

T−1∏
s=t+1

(
1− µF η̃s

2

)
.

Since η̃t = 8
µF (ζ+t) , we have

T−1∏
t=0

(
1− µF η̃t

2

)
≤ exp

(
−µF

2

T−1∑
t=0

η̃t

)
≤ exp (−4 ln(ζ + T ) + 4 ln ζ) .

Moreover, for t ≤ T − 1, we have

T−1∏
s=t+1

(
1− µF η̃s

2

)
=

T−1∏
s=t+1

ζ + s− 4

ζ + s
=

(ζ + t)(ζ + t− 1)(ζ + t− 2)(ζ + t− 3)

(ζ + T − 1)(ζ + T − 2)(ζ + T − 3)(ζ + T − 4)
.

It follows that

T−1∑
t=0

η̃2
t

T−1∏
s=t+1

(
1− µF η̃s

2

)
≤

16
∑T−1

t=0 (ζ + t− 2)(ζ + t− 3)

µ2
F (ζ + T − 1)(ζ + T − 2)(ζ + T − 3)(ζ + T − 4)

≤ 16

3µ2
F (ζ + T − 1)

,

T−1∑
t=0

η̃3
t

T−1∏
s=t+1

(
1− µF η̃s

2

)
≤

64
∑T−1

t=0 (ζ + t− 3)

µ3
F (ζ + T − 1)(ζ + T − 2)(ζ + T − 3)(ζ + T − 4)

≤ 32

µ3
F (ζ + T − 1)(ζ + T − 2)

,

T−1∑
t=0

η̃4
t

T−1∏
s=t+1

(
1− µF η̃s

2

)
≤ 256T

µ4
F (ζ + T − 1)(ζ + T − 2)(ζ + T − 3)(ζ + T − 4)

.

Combining all the inequalities, we obtain that

E∆T ≤ O
(

∆0

T 4
+
C0C1+C2

µ2
FT

+
C3

µ3
Fβ

2T 2
+

C0C4

µ4
Fβ

2T 3

)
= O

(
∆0

T 4
+
λ2(1+γ2

f )

µ2µ3
FT

+
(N/S−1)σ2

F

µ2
FNT

+
κ2
Fσ

2
F,1

µ2
Fβ

2T 2
+
κ2
Fλ

2(1+γ2
f )

µ2µ3
Fβ

2T 3

)
.
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For personalized parameters, suppose the optimal personalized parameter is x̂Tk when the

global parameter is w̃T , that is, x̂Tk = argminxk∈Rd
{
fk(xk) + λ

2 ‖w̃T − Pxk‖22
}

. Then by

Proposition 21, we have∥∥xTk − x∗k
∥∥2

2
≤ 2

∥∥xTk − x̂Tk
∥∥2

2
+ 2

∥∥x̂Tk − x∗k
∥∥2

2
.

Similar to the proof of Lemma 4, we can prove that

E
∥∥xTk − x̂Tk

∥∥2

2
≤ 2

µ2

(
γ2
f

DT
+ νT

)
.

It remains to bound
∥∥x̂Tk − x∗k

∥∥
2
. With hk(xk; w̃) = fk(xk) + λ

2 ‖w̃ − Pxk‖22, we have

∇hk(x̂Tk ; w̃T ) = ∇hk(x∗k; w̃∗) = 0. Clearly, hk(xk; w̃
∗) is µ-strongly convex. By Proposition

20, we have ∥∥x̂Tk − x∗k
∥∥

2
≤ 1

µ

∥∥∇hk(x̂Tk ; w̃∗)−∇hk(x∗k; w̃∗)
∥∥

2

=
1

µ

∥∥∇hk(x̂Tk ; w̃∗)−∇hk(x̂Tk ; w̃T )
∥∥

2

=
λ

µ

∥∥∥P>(w̃T − w̃∗)
∥∥∥

2

≤ λ(1 + s)

µ
‖w̃T − w̃∗‖2 .

As a result,

E
∥∥xTk − x∗k

∥∥2

2
≤ 4

µ2

(
γ2
f

DT
+ νT

)
+

2λ2(1 + s)2

µ2
E ‖w̃T − w̃∗‖22

≤ O

(
1 + γ2

f

µ2µFT
+
λ2

µ2
E ‖w̃T − w̃∗‖22

)
.

When S = N , we choose νt = 8
µF β2(ξ+t)2 , Dt =

⌈
µF β

2(ξ+t)2

D

⌉
and ηt = 8

βRµF (ξ+t) (η̃t =

8
µF (ξ+t)). Then we have δ2

t ≤
2(1+s)2

µ2µF β2(ζ+t)2 (8+Dγ2
f ) = C̃0

η̃2
t
β2 with C̃0 := (1+s)2µF

4µ2

(
1 +

Dγ2
f

8

)
=

O
(
µF (1+γ2

f )

µ2

)
. Since η̃t ≤ 1

9LF
, (32) becomes

E∆t+1 ≤
(

1− µF η̃t
2

)
E∆t +

η̃3
t

β2
(C̃0C1 + C3) +

η̃4
t

β4

C̃0C4

9LF
.

Similar to the analysis above, we can obtain

E∆T ≤ O

(
∆0

T 4
+
C̃0C1 + C3

µ3
Fβ

2T 2
+

C̃0C4

µ4
FLFβ

4T 3

)
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= O

(
∆0

T 4
+
λ2(1 + γ2

f )

µ3
Fβ

2T 2
+

κ2
Fσ

2
F,1

µ2
Fβ

2T 2
+
κFλ

2(1 + γ2
f )

µ2µ3
Fβ

4T 3

)
,

E
∥∥xTk − x∗k

∥∥2

2
≤ 4

µ2

(
γ2
f

DT
+ νT

)
+

2λ2(1 + s)2

µ2
E ‖w̃T − w̃∗‖22

≤ O

(
1 + γ2

f

µ2µFβ2T 2
+
λ2

µ2
E ‖w̃T − w̃∗‖22

)
.

This completes the proof.

A.6 Proof of Theorem 15

In this subsection, we give the formal statement and proof of Theorem 15.

Theorem 28 (Formal version of Theorem 15) Suppose that Assumptions 2 to 6 hold.
Define αt := ηt∑T−1

t=0 ηt
and sample t∗ from {0, 1, . . . , T − 1} with P(t∗ = i) = αt. Let ηt =

1
90βRλ2LF

√
t+1

, νt = 1
90λ2LF

√
t+1

, Dt =
⌈

90λ2LF
√
t+1

D

⌉
and ∆F = F (w̃0)−minw̃∈Rdsub F (w̃),

where λ ≥ max{
√

10L2 + 1, 4L}, β ≥ 1 and D is a positive constant. With probability at
least 1− 2 exp(−cdsub), we have

E
[
‖∇F (w̃t∗)‖22

]
≤ O

(
λ2L2

F∆F√
T

+
(1 + γ2

f ) lnT

λ2LF
√
T

+
(N/S − 1)σ2

F,2 lnT

λ2N
√
T

+
σ2
F,2

λ4β2
√
T

)
,

where c is a positive constant, LF = λ is the smoothness parameter of Fk, σ2
F,2 =

λ2σ2
f

λ2−10L2

measures the bounded diversity of Fk, the expectation is w.r.t. all the randomness except
for P and O hides constants. Moreover, when there is no client sampling (S = N), let

ηt = 1
90β1/3Rλ2LF (t+1)1/3 , νt = 1

90λ2LF β2/3(t+1)2/3 and Dt =
⌈

90λ2LF β
2/3(t+1)2/3

D

⌉
. Then with

probability at least 1− 2 exp(−cdsub), we have

E
[
‖∇F (w̃t∗)‖22

]
≤ O

(
λ2LF∆F

β2/3T 2/3
+

σ2
F,2 lnT

λ4β2/3T 2/3
+

(1 + γ2
f )(λ−4 + lnT )

λ2LFβ2/3T 2/3

)
.

Note that there are four terms on the right-hand side. The first term is due to initialization.
The second term is from approximation error and mini-batch sampling in each client. The
third term is caused by client sampling. And the last term reflects the client drift with
multiple local updates because of the diversity across clients. A larger β leads to a smaller
step size and consequently lightens the client drift. In terms of the number of communication

rounds, the order is O
(

lnT/
√
T
)

.

Proof By Proposition 24, we have (5) holds with probability at least 1− 2 exp(−cdsub) and
0 < s < 1/30 as long as dsub/d is sufficiently small. Throughout the proof, we assume this
inequality holds. In this case, Lemma 11 becomes that for a fixed w̃t

k,r, we have

1

λ2
E
[∥∥∇Fk(w̃t

k,r)− λ(w̃t
k,r − Pxtk,r)

∥∥2

2

]
≤ δ2

t :=
2(1 + s)6

((1− s)4λ− (1 + s)2L)2

(
γ2
f

Dt
+ νt

)
.
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With our choice of Dt and νt, we have δ2
t ≤

(1+s)6(γ2
fD+1)

45((1−s)4λ−(1+s)2L)2λ2LF
√
t+1

.

Similar to the proof of Theorem 13, we rewrite the local update as

w̃t
k.r+1 = w̃t

k,r − ηt λ(w̃t
k,r − Pxtk,r)︸ ︷︷ ︸

=:gtk,r

,

which implies

ηt

R−1∑
r=0

gtk,r =
R−1∑
r=0

(w̃t
k,r − w̃t

k,r+1) = w̃t
k,0 − w̃t

k,R = w̃t − w̃t
k,R.

Then the global update rule becomes

w̃t+1 = (1− β)w̃t +
β

S

∑
k∈St

w̃t
k,R = w̃t −

β

S

∑
k∈St

(w̃t − w̃t
k,R) = w̃t − ηtβR︸ ︷︷ ︸

=:η̃t

1

SR

∑
k∈St

R−1∑
r=0

gtk,r︸ ︷︷ ︸
=:gt

.

With our choice of ηt, we have η̃t = 1
90λ2LF

√
t+1

. Since λ, β ≥ 1, it holds that η̃t ≤ β
5LF

and

η̃t ≤ 1
90λ2LF

. Following the same procedure as the proof of Theorem 13, we can obtain

E [F (w̃t+1)− F (w̃t)]

≤ − η̃t
4
E
[
‖∇F (w̃t)‖22

]
+
η̃3
t δ

2
t

β2
40L2

Fλ
2︸ ︷︷ ︸

=:C5

+
η̃3
t

β2
84L2

Fσ
2
F,2︸ ︷︷ ︸

=:C6

+η̃2
t 5LFσ

2
F,2

N/S − 1

N − 1︸ ︷︷ ︸
=:C7

+η̃tδ
2
t 2λ2︸︷︷︸

=:C8

.

Recall that δ2
t ≤

(1+s)6(γ2
fD+1)

45((1−s)4λ−(1+s)2L)2λ2LF
√
t+1

= C9η̃t with C9 :=
2(1+s)6(γ2

fD+1)

((1−s)4λ−(1+s)2L)2 =

O
(

1+γ2
f

λ2

)
. Summing from t = 0 to T − 1 yields

E [F (w̃T )−F (w̃0)] ≤ −
T−1∑
t=0

η̃t
4
E
[
‖∇F (w̃t)‖22

]
+
C5C9

β2

T−1∑
t=0

η̃4
t+

C6

β2

T−1∑
t=0

η̃3
t+(C7+C8C9)

T−1∑
t=0

η̃2
t .

From the definition of αt and ∆F , rearranging and dividing both sides by
∑T−1

t=0 η̃t/4, we
obtain

T−1∑
t=0

αtE
[
‖∇F (w̃t)‖22

]
≤ 4∆F∑T−1

t=0 η̃t
+

4C5C9

β2

∑T−1
t=0 η̃4

t∑T−1
t=0 η̃t

+
4C6

β2

∑T−1
t=0 η̃3

t∑T−1
t=0 η̃t

+4(C7+C8C9)

∑T−1
t=0 η̃2

t∑T−1
t=0 η̃t

.

(33)

With η̃t = 1
90λ2LF

√
t+1

, we have

T−1∑
t=0

η̃t ≥
1

90λ2LF

∫ T+1

1

dt√
t

=
(
√
T + 1− 1)

45λ2LF
,
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T−1∑
t=0

η̃2
t ≤

1

(90λ2LF )2

(
1 +

∫ T

1

dt

t

)
=

lnT + 1

(90λ2LF )2
,

T−1∑
t=0

η̃3
t ≤

1

(90λ2LF )3

(
1 +

∫ T

1

dt

t3/2

)
≤ 3

(90λ2LF )3
,

T−1∑
t=0

η̃4
t ≤

1

(90λ2LF )4

(
1 +

∫ T

1

dt

t2

)
=

2

(90λ2LF )4
.

It follows that

T−1∑
t=0

αtE
[
‖∇F (w̃t)‖22

]
≤ 180λ2LF∆F√

T + 1− 1
+

4C5C9

(90λ2LF )3β2(
√
T + 1− 1)

+
6C6

(90λ2LF )2β2(
√
T + 1− 1)

+
2(C7 + C8C9)(lnT + 1)

90λ2LF (
√
T + 1− 1)

= O

(
λ2L2

F∆F√
T

+
1 + γ2

f

λ6L3
Fβ

2
√
T

+
σ2
F

λ4β2
√
T

)
+O

((
(N/S − 1)σ2

F

λ2N
+

1 + γ2
f

λ2LF

)
lnT√
T

)
.

Note that LF = λ > 1. Rearranging the terms gives the desired result.

When S = N , we choose ηt = 1
90β1/3Rλ2LF (t+1)1/3 (implying η̃t = β2/3

90λ2LF (t+1)1/3 ) , νt =

1
90λ2LF β2/3(t+1)2/3 , Dt =

⌈
90λ2LF β

2/3(t+1)2/3

D

⌉
, then we have the following upper bound δ2

t ≤
(1+s)6(γ2

fD+1)

45((1−s)4λ−(1+s)2L)2λ2LF (t+1)2/3 = C̃9
η̃2
t
β2 with C̃9 :=

180λ2LF (1+s)6(γ2
fD+1)

((1−s)4λ−(1+s)2L)2 = O
(
LF (1 + γ2

f )
)

.

Then (33) becomes

T−1∑
t=0

αtE
[
‖∇F (w̃t)‖22

]
≤ 4∆F∑T−1

t=0 η̃t
+

4C5C̃9

β4

∑T−1
t=0 η̃5

t∑T−1
t=0 η̃t

+
4(C6 + C8C̃9)

β2

∑T−1
t=0 η̃3

t∑T−1
t=0 η̃t

.

And we have

T−1∑
t=0

η̃t ≥
β2/3

90λ2LF

∫ T+1

1

dt

t1/3
=
β2/3[(T + 1)2/3 − 1]

60λ2LF
,

T−1∑
t=0

η̃3
t ≤

β2

(90λ2LF )3

(
1 +

∫ T

1

dt

t3/2

)
≤ β2(lnT + 1)

(90λ2LF )3
,

T−1∑
t=0

η̃5
t ≤

β10/3

(90λ2LF )5

(
1 +

∫ T

1

dt

t5/3

)
=

3β10/3/2

(90λ2LF )5
.

It follows that

T−1∑
t=0

αtE
[
‖∇F (w̃t)‖22

]
≤ 240λ2LF∆F

β2/3[(T + 1)2/3 − 1]
+

4C5C̃9

(90λ2LF )4β2/3[T + 1)2/3 − 1]
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+
8(C6 + C8C̃9)(lnT + 1)/3

(90λ2LF )2β2/3[T + 1)2/3 − 1]

≤ O

(
λ2LF∆F

β2/3T 2/3
+

1 + γ2
f

λ6LFβ2/3T 2/3
+

lnT (L2
Fσ

2
F,2 + λ2LF (1 + γ2

f ))

λ4L2
Fβ

2/3T 2/3

)

= O

(
λ2LF∆F

β2/3T 2/3
+

σ2
F,2 lnT

λ4β2/3T 2/3
+

(1 + γ2
f )(λ−4 + lnT )

λ2LFβ2/3T 2/3

)
.

This completes the proof.

Appendix B. Federated Linear Regression

In this section, we consider a federated linear regression model, which is different from that
in Li et al. (2021b).

Suppose that the true parameter on client k is wk, there are n samples on each client
and the covariate on client k is {ξk,i}ni=1 and fixed. The observations are generated by
yk,i = ξ>k,iwk + zk,i where the noises zk,i are i.i.d. and distributed as N (0, σ2). Then the loss

on client k is fk(xk) = 1
2n

∑n
i=1(yk,i − ξ>k,ixk)2

Li et al. (2021b) focused on a Bayesian framework where the true parameters wk are
drawn from a Gaussian distribution and the mean of this Gaussian distribution is drawn from
the non-informative prior, while we treat wk as fixed vectors. We compare the performance
of local (pure local training), FedAvg (McMahan et al., 2017), pFedMe (Dinh et al., 2020),
Ditto (Li et al., 2021b) and our method lp-proj-2 in terms of test losses, robustness and
fairness.

B.1 Solutions of Different Methods

In this subsection, we derive the solutions of different methods. Let Ξk = (ξk,1, ξk,2, . . . , ξk,n)>

and yk = (yk,1, yk,2, . . . , yk,n)>. Then the loss on client k can be rewritten as fk(xk) =
1

2n ‖Ξkxk − yk‖22. Suppose rank(Ξk) = d. The least-square estimator of wk is

ŵk = (Ξ>k Ξk)
−1Ξ>k yk.

local For pure local training, the solution on client k is defined as follows wloc
k =

argminxk∈Rd fk(xk) = ŵk.

FedAvg For FedAvg, the solution is defined as wAvg = argminw∈Rd
1
N

∑N
k=1 fk(w). One

can check that wAvg =
(∑N

k=1 Ξ>k Ξk

)−1∑N
k=1 Ξ>k yk =

(∑N
k=1 Ξ>k Ξk

)−1∑N
k=1 Ξ>k Ξkŵk.

pFedMe pFedMe corresponds to our method with P = Id. Then the optimization problem
is minw∈Rd F (w) = 1

N

∑N
k=1 Fk(w) where Fk(w) = minxk∈Rd{fk(xk) + λ

2 ‖w − xk‖22}. The

solution of the global model is defined as wMe = argminw∈Rd
1
N

∑N
k=1 Fk(w) and the solution

of the local model is defined as xMe
k = argminxk∈Rd

{
fk(xk) + λ

2

∥∥wMe − xk
∥∥2

2

}
.

Now we give the explicit forms of wMe and xMe
k . Define x̂k(w) := argminxk∈Rd{fk(xk) +

λ
2 ‖w − xk‖22}. It is easy to check x̂k(w) = (Ξ>k Ξk/n + λId)

−1(Ξ>k yk/n + λw). Then we
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have

Fk(w) = fk(x̂k(w)) +
λ

2
‖w − x̂k(w)‖22

= −1

2

(
Ξ>k yk
n

+ λw

)>(
Ξ>k Ξk

n
+ λId

)−1(
Ξ>k yk
n

+ λw

)
+
λ

2
‖w‖22 +

‖yk‖22
2n

=
λw>

2

(
Ξ>k Ξk

n
+ λId

)−1(
Ξ>k Ξkw

n

)
− λw>

(
Ξ>k Ξk

n
+ λId

)−1
Ξ>k yk
n

+
‖yk‖22

2n
−

y>k Ξk

2n

(
Ξ>k Ξk

n
+ λId

)−1
Ξ>k yk
n

.

It follows that

F (w) =
1

N

N∑
k=1

λw>

2

(
Ξ>k Ξk

n
+ λId

)−1(
Ξ>k Ξkw

n

)

− 1

N

N∑
k=1

λw>
(

Ξ>k Ξk

n
+ λId

)−1
Ξ>k yk
n

+ C0,

where C0 is a constant number. Then wMe is the solution to

1

2

N∑
k=1

[(
Ξ>k Ξk

n
+ λId

)−1
Ξ>k Ξk

n
+

Ξ>k Ξk

n

(
Ξ>k Ξk

n
+ λId

)−1
]

w

=
N∑
k=1

(
Ξ>k Ξk

n
+ λId

)−1
Ξ>k yk
n

. (34)

By the Sherman–Morrison–Woodbury formula, we have(
Ξ>k Ξk

n
+ λId

)−1

=
Id
λ
− Ξ>k

λ

(
nIn +

ΞkΞ
>
k

λ

)−1
Ξk

λ
.

It follows that(
Ξ>k Ξk

n
+ λId

)−1
Ξ>k Ξk

n
=

Ξ>k Ξk

λn
− Ξ>k

λ

(
nIn +

ΞkΞ
>
k

λ

)−1
ΞkΞ

>
k

λ

Ξk

n

=
Ξ>k
λ

(
nIn +

ΞkΞ
>
k

λ

)−1

Ξk.

Similarly, we can obtain Ξ>k Ξk

n

(
Ξ>k Ξk

n + λId

)−1

= Ξ>k
λ

(
nIn + ΞkΞ

>
k

λ

)−1

Ξk. This implies

that

(
Ξ>k Ξk

n + λId

)−1
Ξ>k Ξk

n = Ξ>k Ξk

n

(
Ξ>k Ξk

n + λId

)−1

. Thus, the solution to (34) is

wMe =

[
N∑
k=1

(
Ξ>k Ξk

n
+ λId

)−1
Ξ>k Ξk

n

]−1 [ N∑
k=1

(
Ξ>k Ξk

n
+ λId

)−1
Ξ>k yk
n

]
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=

[
N∑
k=1

(
Ξ>k Ξk

n
+ λId

)−1
Ξ>k Ξk

n

]−1 [ N∑
k=1

(
Ξ>k Ξk

n
+ λId

)−1
Ξ>k Ξk

n
ŵk

]
,

which can be seen as a weighted average of ŵk with weight

(
Ξ>k Ξk

n + λId

)−1
Ξ>k Ξk

n . Then

solution of the local model is xMe
k = x̂k(w

Me) = (Ξ>k Ξk/n + λId)
−1(Ξ>k yk/n + λwMe) =

(Ξ>k Ξk/n+ λId)
−1(Ξ>k Ξkŵk/n+ λwMe).

Ditto For Ditto, the solution of the global model is the same as that of FedAvg,

i.e., wDi = argminw∈Rd
1
N

∑N
k=1 fk(w) =

(∑N
k=1 Ξ>k Ξk

)−1∑N
k=1 Ξ>k Ξkŵk. The solution of

the local model is defined as xDi
k = argminxk∈Rd

{
fk(xk) + λ

2

∥∥wDi − xk
∥∥2

2

}
= (Ξ>k Ξk/n+

λId)
−1(Ξ>k yk/n+ λwDi) = (Ξ>k Ξk/n+ λId)

−1(Ξ>k Ξkŵk/n+ λwDi).
lp-proj-2 For our method lp-proj-2, the optimization problem is minw̃∈Rdsub F (w̃) =

1
N

∑N
k=1 Fk(w̃) where Fk(w̃) = minxk∈Rd{fk(xk) + λ

2 ‖w̃ − Pxk‖22}. The solution of the

global model is defined as w̃l2 = argminw̃∈Rdsub
1
N

∑N
k=1 Fk(w̃) and the solution of the

local solution is defined as xl2
k = argminx∈Rd

{
fk(xk) + λ

2

∥∥w̃l2 − Pxk
∥∥2

2

}
. Let x̌(w̃) :=

argminxk∈Rd
{
fk(xk) + λ

2 ‖w̃ − Pxk‖22
}

. It is easy to check the following equation x̌(w̃) =

(Ξ>k Ξk/n+ λP>P )−1(Ξ>k yk/n+ λP>w̃). It follows that

Fk(w̃) = fk(x̌k(w̃)) +
λ

2
‖w̃ − x̌k(w̃)‖22

= −1

2

(
Ξ>k yk
n

+λP>w̃

)>(
Ξ>k Ξk

n
+λP>P

)−1(
Ξ>k yk
n

+λP>w̃

)
+
λ

2
‖w̃‖22 +

‖yk‖22
2n

=
λ

2
‖w̃‖22 −

λ2

2
w̃>P

(
Ξ>k Ξk

n
+λP>P

)−1

P>w̃ − λw̃>P

(
Ξ>k Ξk

n
+λP>P

)−1
Ξ>k yk
n

+
‖yk‖22

2n
−

y>k Ξk

2n

(
Ξ>k Ξk

n
+ λP>P

)−1
Ξ>k yk
n

.

Then we can obtain the expression of F (w̃). However, for the general Ξk, it is difficult to
obtain a concise expression of the minimizer of F (w̃). To make the calculations clean, we
assume Ξ>k Ξk = nbkId. Then the solutions of other methods can be simplified as

• FedAvg: wAvg =
∑N
k=1 bkŵk∑N
k=1 bk

.

• pFedMe: wMe =
∑N
k=1 bkŵk/(bk+λ)∑N
k=1 bk/(bk+λ)

and xMe
k = bkŵk+λwMe

bk+λ .

• Ditto: wDi =
∑N
k=1 bkŵk∑N
k=1 bk

and xDi
k = bkŵk+λwDi

bk+λ .

Meanwhile, for lp-proj-2, without loss of generalization, we can assume P = P0 :=
(e1, e2, . . . , edsub

)>, where ei is the unit vector in Rd with the i-th element equal to 1 and
other elements equal to 0. Otherwise, we can find a orthogonal matrix Q such that P = P0Q.
Then we have

fk(xk) +
λ

2
‖w̃ − Pxk‖22 =

1

2n
‖Ξkxk − yk‖22 +

λ

2
‖w̃ − Pxk‖22
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=
1

2n

∥∥∥ΞkQ
>Qxk − yk

∥∥∥2

2
+
λ

2
‖w̃ − P0Qxk‖22

=
1

2n

∥∥∥Ξ̃kx̃k − yk

∥∥∥2

2
+
λ

2
‖w̃ − P0x̃k‖22

where x̃k = Qxk and Ξ̃k = ΞkQ
>. Note that Ξ>k Ξk = nbkId implies Ξ̃

>
k Ξ̃k = QΞ>k ΞkQ

> =
nbkId. After reparametrization, we return to the special case P = P0.

Now we have

Fk(w̃) =
λbk

2(bk+λ)
‖w̃‖22−

λ

(bk+λ)n
w̃>P0Ξ

>
k yk+

‖yk‖22
2n
−

y>k Ξk

2n

(
Ξ>k Ξk

n
+λP>0 P0

)−1
Ξ>k yk
n

=
λbk

2(bk + λ)
‖w̃‖22 −

λbk
bk + λ

w̃>ŵk,1 +
‖yk‖22

2n
−

y>k Ξk

2n

(
Ξ>k Ξk

n
+ λP>0 P0

)−1
Ξ>k yk
n

,

where ŵk,1 = P0ŵk is the first dsub elements of ŵk. Then we obtain

Fk(w̃) =
1

N

N∑
k=1

λbk
2(bk + λ)

‖w̃‖22 −
1

N

N∑
k=1

λbk
bk + λ

w̃>ŵk,1 + C1,

where C1 is a constant. Thus the solution of the global model is w̃l2 =
∑N
k=1 bkŵk,1/(bk+λ)∑N
k=1 bk/(bk+λ)

,

and the solution of the local model is xl2
k = x̌k(w̃

l2) =

(
(bkŵk,1 + λw̃l2)/(bk + λ)

ŵk,2

)
, where

ŵk,2 is the last d− dsub elements of ŵk.

To summarize, the solutions of different models are listed as follows.

• local: wloc
k = ŵk.

• FedAvg: wAvg =
∑N
k=1 bkŵk∑N
k=1 bk

.

• pFedMe: wMe =
∑N
k=1 bkŵk/(bk+λ)∑N
k=1 bk/(bk+λ)

and xMe
k = bkŵk+λwMe

bk+λ .

• Ditto: wDi =
∑N
k=1 bkŵk∑N
k=1 bk

and xDi
k = bkŵk+λwDi

bk+λ .

• lp-proj-2: w̃l2 =
∑N
k=1 bkŵk,1/(bk+λ)∑N
k=1 bk/(bk+λ)

and xl2
k = x̌k(w̃l2) =

(
(bkŵk,1 + λw̃l2)/(bk + λ)

ŵk,2

)
.

Note that xMe
k and xDi

k are both the weighted average of wMe/wDi and ŵk with the same
weight. wMe and wDi are weighted average of ŵk with different weights. If λ = 0, we have
wMe = 1

N

∑N
k=1 ŵk. If λ→∞, we have ŵMe → wAvg. Thus, the weight of pFedMe is more

uniform than that of FedAvg. In Section 4.2, we assume bk = b. This is reasonable since we
often normalize the data. Then we have wAvg = wMe = wDi = 1

N

∑N
k=1 ŵk and xMe

k = xDi
k .

Moreover, lp-proj-2 can be viewed as a interpolation of local and pFedMe. The first
dsub dimensions of xl2

k equal to those of xMe
k and the last d− dsub dimensions equal to those

of wloc
k .
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B.2 Test Loss

In this subsection, we compute the test losses of different methods. From now on, we always
assume bk = b to make calculations clean.

Recall that the data set on client k is (Ξk,yk), where Ξk is fixed and yk follows Gaussian
distribution N (Ξkwk, σ

2In). Then the data heterogeneity across clients only lies in the
heterogeneity of wk. We can obtain the distribution of the solutions of different methods.

Let w̄ =
∑N
k=1 wk
N . We have

• local: wloc
k ∼ N

(
wk,

σ2

bnId

)
.

• FedAvg: wAvg ∼ N
(
w̄, σ2

bNnId

)
.

• pFedMe: wMe ∼ N
(
w̄, σ2

bNnId

)
and xMe

k ∼ N
(
bwk+λw̄
b+λ ,

(b2+ 2bλ
N )σ

2

bn
+λ2

N
·σ

2

bn

(bk+λ)2 Id

)
.

• Ditto: wDi = wMe and xDi
k = xMe

k .

• lp-proj-2: w̃l2 ∼ N
(
w̄·,1,

σ2

bNnIdsub

)
and

xl2
k ∼ N

( bwk,1+λw̄·,1
bk+λ

wk,2

)
,

(b2+ 2bλ
N )σ

2

bn
+ λ2

N2 ·
σ2

bn

(bk+λ)2 Idsub

σ2

bnId−dsub


where wk,1 is the first d elements of wk, wk,2 is the last d− dsub elements of wk and
w̄·,1 is the first k elements of w̄.

Since Ξk is fixed, we assume the test data is (Ξk,y
′
k) where y′k = Ξkwk + z′k with

z′k ∼ N (0n, σ
2In) independent of zk. Then the test loss on client k is defined as

f te
k (xk) =

1

2n
E
∥∥Ξkxk − y′k

∥∥2

2

=
1

2n
E
∥∥Ξkxk − (Ξkwk + z′k)

∥∥2

2

=
σ2

2
+

1

2n
E ‖Ξk(xk −wk)‖22

=
σ2

2
+
b

2
E ‖xk −wk‖22

=
σ2

2
+
b

2
tr(var(xk)) +

b

2
‖Exk −wk‖22 . (35)

and the averaged test loss is

1

N

N∑
k=1

f te
k (xk) =

σ2

2
+

b

2N

N∑
k=1

tr(var(xk)) +
b

2N

N∑
k=1

‖Exk −wk‖22 .

Then we can compute the test losses for different methods. Since the solutions of Ditto

and pFedMe are the same, we omit the analysis for Ditto.
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To make the calculation simple, we assume the heterogeneity in terms of wk is uniform
in all dimensions, that is

1

dN

N∑
k=1

‖w̄ −wk‖22 =
1

dsubN

N∑
k=1

‖w̄·,1 −wk,1‖22 := Σ. (36)

Then we have

Lloc =
1

N

N∑
k=1

f te
k (wloc

k ) =
σ2

2
+
σ2d

2n
,

LAvg =
1

N

N∑
k=1

f te
k (wAvg) =

σ2

2
+

σ2d

2Nn
+

b

2N

N∑
k=1

‖w̄ −wk‖22 =
σ2

2
+

σ2d

2Nn
+
bdΣ

2
,

LMe(λ) =
1

N

N∑
k=1

f te
k (xMe

k ) =
σ2

2
+
b2 + 2bλ

N + λ2

N

(b+ λ)2
· σ

2d

2n
+

bλ2

2N(b+ λ)2

N∑
k=1

‖w̄ −wk‖22 ,

=
σ2

2
+
b2 + 2bλ

N + λ2

N

(b+ λ)2
· σ

2d

2n
+

bλ2dΣ

2N(b+ λ)2
,

Ll2(λ) =
1

N

N∑
k=1

f te
k (xl2

k )

=
σ2

2
+
b2 + 2bλ

N + λ2

N

(b+ λ)2
· σ

2dsub

2n
+
σ2(d− dsub)

2n
+

bλ2

2N(b+ λ)2

N∑
k=1

‖w̄·,1 −wk,1‖22 ,

=
σ2

2
+
b2 + 2bλ

N + λ2

N

(b+ λ)2
· σ

2dsub

2n
+
σ2(d− dsub)

2n
+

bλ2dsubΣ

2N(b+ λ)2
.

Note that the test losses for pFedMe and lp-proj-2 are functions of λ. To find the optimal
λ, we could use the following lemma.

Lemma 29 For any λ ≥ 0, define g(λ) = Aλ2+Bλ+C
(λ+b)2 with A,B,C, b > 0. If 2Ab− B > 0

and Bb− 2C < 0, then argminλ≥0 g(λ) = 2C−Bb
2Ab−B .

Proof [Proof of Lemma 29] For convenience, define λ0 = 2C−Bb
2Ab−B . One can check that

g′(λ) = (2Ab−B)λ+Bb−2C
(λ+b)3 . Then for λ ∈ [0, λ0), g′(λ) < 0; for λ > λ0, g′(λ) > 0. Conse-

quently, λ0 = argminλ≥0 g(λ).

For pFedMe and lp-proj-2, the optimal λ can be obtained by applying Lemma 29 with

(A,B,C) =

(
σ2d

2Nn
+
bdΣ

2N
,
σ2bd

Nn
,
σ2b2d

2n

)
and

(
σ2dsub

2Nn
+
bdsubΣ

2N
,
σ2bdsub

Nn
,
σ2b2dsub

2n

)
,

respectively. One can check that both choices lead to the following value of λ: λ∗ := (1−1/N)σ2

nΣ .
Note that σ2 is the variance of the observation noises on different clients, and n is the
number of samples on each client. Thus λ∗ can reflect the relative magnitude of the variance
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and the heterogeneity. Then we can compute the minimal test losses for the algorithms
under consideration as follows.

Lloc =
σ2

2
+

σ2d

2n(b+ λ∗)2

[
(λ∗)2 + 2bλ∗ + b2

]
,

LAvg =
σ2

2
+

σ2d

2n(b+ λ∗)2

[
(λ∗)2

N
+
N + 1

N
bλ∗ +

2N − 1

N
b2 +

N − 1

N

b3

λ∗

]
,

LMe
∗ =

σ2

2
+

σ2d

2n(b+ λ∗)2

[
(λ∗)2

N
+
N + 1

N
bλ∗ + b2

]
,

Ll2
∗ =

σ2

2
+

σ2dsub

2n(b+ λ∗)2

[
(λ∗)2

N
+
N + 1

N
bλ∗ + b2

]
+
σ2(d− dsub)

2n(b+ λ∗)2

[
(λ∗)2 + 2bλ∗ + b2

]
.

Comparing their (optimal) losses, we can obtain the following observations.

• Lloc ≥ Ll2
∗ ≥ LMe

∗ and LAvg ≥ LMe
∗ . This means that pFedMe with the optimal λ always

has the minimal loss. Moreover, since lp-proj-2 can be regarded as an interpolation
of local and pFedMe, Ll2

∗ is also a interpolation of Lloc and LMe
∗ .

• Lloc ≤ LAvg if and only if λ∗ ≤ b. This means that if the heterogeneity or the number
of local data is sufficiently large, then local is better than FedAvg.

• Ll2
∗ ≤ LAvg if and only if λ∗ ≤

√
d

d−dsub
b. The range of λ∗ over which lp-proj-2 is

better than FedAvg is slightly larger than the range of that over which local is better
than FedAvg.

• Fix σ2 and n and let Σ→∞. Then we have λ∗ → 0, limλ∗→0 L
loc = limλ∗→0 L

Me
∗ =

limλ∗→0 L
l2
∗ and limλ∗→0 L

Avg =∞. This implies that if the heterogeneity is sufficiently
large, the optimal lambda is nearly 0 and there is little difference between local,
pFedMe and lp-proj-2. And the loss of FedAvg is large. So there is no need for
federated learning.

Up to now, we have only focused on the optimal value of λ. However, in practice, we can
hardly know this value. Thus we need to compare these losses under different values of λ.

With (36) holding, we have the following results.

• Lloc ≤ LAvg if and only if Σ ≥ N−1
N

σ2

bn (λ∗ ≤ b).

• Lloc ≤ Ll2(λ) ≤ LMe(λ) if and only if Σ ≥ N−1
N

2b+λ
λ

σ2

bn . If Σ > N−1
N

σ2

bn (λ∗ < b), this is

equivalent to λ ≥ 2λ∗

1−λ∗/b .

• LMe(λ) ≤ LAvg if and only if Σ ≥ N−1
N

σ2

(b+2λ)n . This is equivalent to λ ≥ λ∗−b
2 .

• Ll2(λ) ≤ LAvg if and only if Σ ≥ N−1
N

σ2

bn
d(b+λ)2−dsubλ(2b+λ)
d(b+λ)2−dsubλ2 . About d(b+λ)2−dsubλ(2b+λ)

d(b+λ)2−dsubλ2 ,

we have
1+

√
d−dsub

d

1+
√

d
d−dsub

≤ d(b+λ)2−dsubλ(2b+λ)
d(b+λ)2−dsubλ2 ≤ 1. When λ = 0 or λ → ∞, the fraction

goes to 1. When λ =
√

d
d−dsub

b, the fraction attains the minimal value.
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Then we can sort these losses.

If the heterogeneity is small, i.e., Σ < N−1
N

σ2

bn

1+

√
d−dsub

d

1+
√

d
d−dsub

, then λ∗ > b. When λ < λ∗−b
2 ,

we have LAvg ≤ LMe(λ) ≤ Ll2(λ) ≤ Lloc; when λ > λ∗−b
2 , we have LMe(λ) ≤ LAvg ≤

Ll2(λ) ≤ Lloc. In this case, FedAvg and pFedMe are always better than lp-proj-2 and
local. If λ is larger than a threshold value, pFedMe is better than FedAvg.

If the heterogeneity is large, i.e., Σ > N−1
N

σ2

bn , then λ∗ < b. When λ ≤ 2λ∗

1−λ∗/b , we have

LMe(λ) ≤ Ll2(λ) ≤ Lloc ≤ LAvg; when λ > 2λ∗

1−λ∗/b , we have Lloc ≤ Ll2(λ) ≤ LMe(λ) ≤ LAvg.
In this case, FedAvg is the worst method and lp-proj-2 always lies between local and
pFedMe.

B.3 Robustness

In this subsection, we consider the robustness of different methods against Byzantine attacks.
Recall that in the last subsection, we only consider the exact solution of these methods and
ignore the process of the algorithms. In terms of robustness, we must take the procedures of
different methods into account, especially the communication between the central server
and local clients. Moreover, we focus on the simplified setting where the number of local
update steps is infinite, there is only one round of communication and all clients participate
in the communication.

As indicated in Section 4.2 , we examine three types of Byzantine attacks. Throughout
this subsection, we suppose that there are Nb benign clients and Na malicious clients with
Na +Nb = N , and let Ib denote the indices of benign clients and Ia denote the indices of
malicious clients.

We will analyze how these attacks will affect the solution of different methods, and
compare the averaged test losses on benign clients.

B.3.1 The Simplified Setting

We first show that in our simplified setting, after one round of communication, all the
methods will obtain their exact solutions defined in Appendix B.1.

local The objective of the local client is minw∈Rd fk(w). If the number of local update
steps is infinite, we will obtain the least square estimator ŵk = wloc

k . For the convergence of
SGD, see Nemirovski et al. (2009).

FedAvg Similar to local, the local client will obtain ŵk and sends it to the server.
Then the server obtains 1

N

∑N
k=1 ŵk = wAvg and broadcasts wAvg to all the clients.

pFedMe pFedMe corresponds to lp-proj-2 with P = Id. The local update step is
wt
k,r+1 = wk,r − ηλ(wt

k,r − xtk,r) where xtk,r denotes the minimizer xtk,r = x̂k(w
t
k,r) =

argminx∈Rd

{
fk(xk) + λ

2

∥∥∥wt
k,r − xk

∥∥∥2

2

}
=

bŵk+λwk,r
b+λ . (When the number of local update

steps is infinite, it is reasonable to assume that we can obtain the exact value of xtk,r.) The

local update rule can be rewritten as wt
k,r+1 = wk,r− ηλb

b+λ(wt
k,r−ŵk), which can be regarded

as a step of gradient descent with step size ηλb
b+λ to minimize 1

2 ‖w − ŵk‖22. As long as the
step size is not too large, we have limR→∞wt

k,R = ŵk. This means that if we do infinite
steps of local update, the local version of global parameter is ŵk. Then each client sends this
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local version to the server and the server obtains 1
N

∑N
k=1 ŵk = wMe. After that, the server

broadcasts wMe to all clients. Finally, the client k solves minx∈Rd
{
fk(xk) + λ

2

∥∥wMe − xk
∥∥2

2

}
and obtains xMe

k = x̂k(w
Me).

Ditto The global model of Ditto is the same as the model of FedAvg. So the server
will also obtain 1

N

∑N
k=1 ŵk = wDi. Then the server broadcasts wDi to all the clients and

the client k solves minxk∈Rd
{
fk(xk) + λ

2

∥∥wDi − xk
∥∥2

2

}
and gets xDi

k .

lp-proj-2 For lp-proj-2, without loss of generality, we can still assume P = P0 :=
(e1, e2, . . . , edsub

). The local update step is w̃t
k,r+1 = x̌k(w̃t

k,r) = w̃t
k,r − ηλ(w̃t

k,r − Pxtk,r) =

w̃t
k,r −

ηλb
b+λ(w̃t

k,r − ŵk,1), where

xtk,r = argmin
xk∈Rd

{
fk(xk) +

λ

2

∥∥w̃t
k,r − P0xk

∥∥2

2

}
=

(
(bŵk,1 + λw̃t

k,r)/(b+ λ)

ŵk,2

)
.

Similar to pFedMe, the local update step can be regarded as a step pf gradient descent
with step size ηλb

b+λ to minimize 1
2 ‖w̃ − ŵk,1‖22. As long as the step size is not too large, we

have limR→∞ w̃t
k,R = ŵk,1. After the communication, the server gets 1

N

∑N
k=1 ŵk,1 = w̃l2

and the client k obtains xl2
k = x̌k(w̃

l2).

B.3.2 Same-value Attacks

Now we focus on the same-value attacks.

As in Appendix B.2, to make calculations clean, we assume that the heterogeneity is
uniform in all dimensions, i.e.,

1

dNb

∑
k∈Ib

∥∥∥∥
∑

i∈Ib wi

N
−wk

∥∥∥∥2

2

=
1

dsubNb

∑
k∈Ib

∥∥∥∥
∑

i∈Ib wi,1

N
−wk,1

∥∥∥∥2

2

:= Σ1. (37)

local For pure local training, there is no communication between the central server and
local clients. So the averaged test loss on benign clients is Lloc, att1 = 1

Nb

∑
k∈Ib f

te
k (wloc

k ) =
σ2

2 + σ2d
2n .

FedAvg For FedAvg, the local problem minw∈Rd fk(w) remains unchanged, no matter
what the server sends to the local client. As long as the number of local update steps goes
to ∞, the local parameter will go to the least square estimator ŵk.

If the k-th client is benign, it will send ŵk to the server. Recall that ŵk=(ΞkΞk)−1Ξkyk ∼
N (wk, σ

2Id/(bn)). This means that ŵk can be viewed as an unbiased observation of wk

with covariance matrix σ2

bnId.

If the k-th client is malicious, it will send w
(ma)
k = cId to the server with c ∼ N (0, τ2).

Then w
(ma)
k is an unbiased observation of 0m with covariance matrix τ2Jd where Jd =

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 ∈ Rd×d. In this case, the number of local update steps will not affect

the messages transferred by the malicious client. Then the server obtains wAvg,att1 =
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1
N

(∑
k∈Ib ŵk +

∑
k∈Ia w

(ma)
k

)
. We have wAvg,att1 ∼ N

(
1
N

∑
k∈Ib wk,

1
N2

(
Nbσ

2

bn Id +Naτ
2Jd

))
.

Then we can compute the averaged test loss on benign clients as

LAvg,att1 =
1

Nb

∑
k∈Ib

f te
k (wAvg,att1) =

σ2

2
+

bd

2N2

(
Nbσ

2

bn
+Naτ

2

)
+

b

2Nb

∑
k∈Ib

∥∥∥∥
∑

i∈Ib wi

N
−wk

∥∥∥∥2

2

(37)
=

1

Nb

∑
k∈Ib

f te
k (wAvg,att1) =

σ2

2
+

bd

2N2

(
Nbσ

2

bn
+Naτ

2

)
+
bdΣ1

2
.

pFedMe Similar to FedAvg, the attack will not influence the minimization of the
local model. If the k-th client is benign, it sends ŵk to the server. If the k-th client

is malicious, it sends w
(ma)
k = c1d to the server with c ∼ N (0, τ2). The server obtains

wMe,att1 = 1
N

(∑
k∈Ib ŵk +

∑
k∈Ia w

(ma)
k

)
= wAvg, att1.

Then the server broadcasts wMe,att1 to all the clients. And the benign client k compute

the local parameter xMe,att1
k = x̂k(w

Me,att1) = bŵk+λwMe,att1

b+λ . We have

xMe,att1
k ∼ N

bwk + λ
∑

i∈Ib wi/N

b+ λ
,

[(
b+ λ

N

)2 σ2

bn + (Nb − 1) λ
2

N2
σ2

bn

]
Id +Na

λ2

N2 τ
2Jd

(b+ λ)2

 .

Then we can compute the averaged loss on benign clients as

LMe,att1(λ) =
1

Nb

∑
k∈Ib

f te
k (xAvg,att1

k )

=
σ2

2
+
bd

2
·

(
b2+2bλ

N +Nbλ
2

N2

)
σ2

bn+Naλ2

N2 τ2

(b+ λ)2
+

bλ2

2(b+λ)2
· 1

Nb

∑
i∈Ib

∥∥∥∥
∑

i∈Ib wi

N
−wk

∥∥∥∥2

2

(37)
=

σ2

2
+
bd

2
·

(
b2 + 2bλ

N + Nbλ
2

N2

)
σ2

bn + Naλ2

N2 τ2 + λ2Σ1

(b+ λ)2
.

Ditto Since the global model of Ditto is the same as the model of FedAvg, we have
wDi, att1 = wAvg, att1. Then the server broadcasts wDi, att1 to all the clients and the benign

client k obtains xDi, att1
k = x̂k(wDi, att1) = bŵk+λwDi, att1

b+λ = xMe,att1
k . Then Ditto and pFedMe

have the same loss. So we will omit the analysis for Ditto.
lp-proj-2 Similar to pFedMe, if the k-th client is benign, it sends ŵk,1 to the server.

If the k-th client is malicious, it sends w̃
(ma)
k = c1dsub

to the server where c ∼ N (0, τ2).

The server receives the messages and obtains w̃l2,att1 = 1
N

(∑
k∈Ib ŵk,1 +

∑
k∈Ia w̃

(ma)
k

)
.

And we have w̃l2,att1 ∼ N
(

1
N

∑
k∈Ib wk,1,

1
N2

(
Nbσ

2

bn Idsub
+Naτ

2Jdsub

))
. Then the server

broadcasts w̃l2,att1 to all the clients and the benign client k computes the optimal local

parameter xl2, att1
k = x̌k(w̃

l2,att1) =

(
(bŵk,1 + λw̃l2, att1)/(b+ λ)

ŵk,2

)
. It follows that

xl2,att1
k ∼ N

( bwk,1+λ
∑
i∈Ib

wi,1/N

b+λ

xk,2

)
,

[
(b+ λ

N )
2 σ2

bn
+(Nb−1)σ

2

bn

]
Idsub

+Na
λ2

N2 τ
2Jdsub

(b+λ)2

σ2

bnIdsub

 .
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Then we can compute the averaged loss on benign clients as

Ll2, att1(λ) =
1

Nb

∑
k∈Ib

f te
k (xl2, att1

k )

=
σ2

2
+
bdsub

2
·

(
b2 + 2bλ

N + Nbλ
2

N2

)
σ2

bn + Naλ2

N2 τ2

(b+ λ)2
+

(d− dsub)σ2

2n

+
bλ2

2(b+ λ)2
· 1

Nb

∑
i∈Ib

∥∥∥∥
∑

i∈Ib wi,1

N
−wk,1

∥∥∥∥2

2

(37)
=

σ2

2
+
bdsub

2
·

(
b2 + 2bλ

N + Nbλ
2

N2

)
σ2

bn + Naλ2

N2 τ2 + λ2Σ1

(b+ λ)2
+

(d− dsub)σ2

2n
.

To find the optimal λ for pFedMe and lp-proj-2, we could apply Lemma 29 again

with (A,B,C) =
(
σ2Nb
bN2n

+ Naτ2

N2 + Σ1,
2σ2

Nn ,
σ2b
n

)
. One can check that the optimal λ is

λ∗1 := (1−1/N)σ2/n

Σ1+Na
N2 (τ2−σ2/(bn))

. The numerator of λ∗1 is the variance of noises over the number of

samples. The denominator is the sum of data heterogeneity and variance of attacks.
Now we can obtain the losses of different methods at λ∗1.

Lloc, att1 =
σ2

2
+
σ2d

2n
=
σ2

2
+

σ2d

2n(b+ λ∗1)2

[
(λ∗1)2 + 2bλ∗1 + b2

]
,

LAvg,att1 =
σ2

2
+

σ2d

2n(b+ λ∗1)2

[
(λ∗1)2

N
+
N + 1

N
bλ∗1 +

2N − 1

N
b2 +

N − 1

N

b3

λ∗1

]
,

LMe, att1
∗ = LMe,att1(λ∗1) =

σ2

2
+

σ2d

2n(b+ λ∗1)2

[
(λ∗1)2

N
+
N + 1

N
bλ∗1 + b2

]
,

Ll2, att1
∗ = Ll2,att1(λ∗1) =

σ2

2
+

σ2dsub

2n(b+ λ∗1)2

[
(λ∗1)2

N
+
N + 1

N
bλ∗1 + b2

]
+
σ2(d− dsub)

2n(b+ λ∗1)2

[
(λ∗1)2 + 2bλ∗1 + b2

]
.

(38)

We have the following observations.

• Lloc, att1 ≥ Ll2, att1
∗ ≥ LMe, att1

∗ and LAvg, att1 ≥ LMe, att1
∗ . This means that pFedMe

with the optimal λ always has the minimal loss.

• Lloc, att1 ≤ LAvg, att1 if and only if λ∗1 ≤ b. This means that if the heterogeneity or the
noise of attacks is sufficiently large, then local is better than FedAvg.

• Ll2
∗ ≤ LAvg, att1 if and only if λ∗1 ≤

√
d

d−dsub
b. The range of λ∗ over which lp-proj-2

is better than FedAvg is slightly larger than the range of that over which local is
better than FedAvg.

Since τ2 can be very large, λ∗1 is much smaller than λ∗. Recall that in the settings of Figure
1, we have λ∗1 =4.9e-04.
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Now we compare the losses for different values of λ and give the formal version of
Proposition 16.

Theorem 30 (Formal version of Proposition 16) We have

Lloc, att1 =
σ2

2
+
σ2d

2n
,

LAvg,att1 =
σ2

2
+

bd

2N2

(
Nbσ

2

bn
+Naτ

2

)
+
bdΣ1

2
,

LMe,att1(λ) =
σ2

2
+
bd

2
·

(
b2 + 2bλ

N + Nbλ
2

N2

)
σ2

bn + Naλ2

N2 τ2

(b+ λ)2
+

bλ2dΣ1

2(b+ λ)2
,

LDi, att1(λ) = LMe,att1(λ),

Ll2, att1(λ) =
σ2

2
+
bdsub

2
·

(
b2 + 2bλ

N + Nbλ
2

N2

)
σ2

bn + Naλ2

N2 τ2

(b+ λ)2
+

(d− dsub)σ2

2n
+
bλ2dsubΣ1

2(b+ λ)2
.

(39)
And the following propositions hold.

• Lloc,att1 ≤ LAvg,att1 if and only if Σ1 + Na
N2

(
τ2 − σ2

bn

)
≥ N−1

N
σ2

bn (λ∗1 ≤ b).

• Lloc, att1 ≤ Ll2, att1(λ) ≤ LMe,att1(λ) if and only if Σ1 + Na
N2

(
τ2 − σ2

bn

)
≥ N−1

N
2b+λ
λ

σ2

bn .

If Σ1 + Na
N2

(
τ2 − σ2

bn

)
> N−1

N
σ2

bn (λ∗1 < b), this is equivalent to λ ≥ 2λ∗1
1−λ∗1/b

.

• LMe, att1(λ) ≤ LAvg, att1 if and only if Σ1 + Na
N2

(
τ2 − σ2

bn

)
≥ N−1

N
σ2

(b+2λ)n . This is

equivalent to λ ≥ λ∗1−b
2 .

• Ll2, att1(λ) ≤ LAvg, att1 if and only if Σ1 + Na
N2

(
τ2 − σ2

bn

)
≥ N−1

N
σ2

bn
d(b+λ)2−dsubλ(2b+λ)
d(b+λ)2−dsubλ2 .

With (39), it is easy to check the above propositions hold.

If the attacks are very serious, we can have Σ1 + Na
N2

(
τ2 − σ2

bn

)
> N−1

N
σ2

bn (λ∗1 < b).

Similar to the analysis at the end of Appendix B.2, when λ ≤ 2λ∗1
1−λ∗1/b

, we have LMe, att1(λ) ≤

Ll2, att1(λ) ≤ Lloc, att1 ≤ LAvg, att1; when λ >
2λ∗1

1−λ∗1/b
, we have Lloc, att1 ≤ Ll2, att1(λ) ≤

LMe, att1(λ) ≤ LAvg, att1.

Remark 31 (Detailed presentation of Remark 17) The optimal test loss function of
lp-proj-2 is

L∗l2 =
σ2

2
+

σ2dsub

2n(b+ λ∗1)2

[
(λ∗1)2

N
+
N + 1

N
bλ∗1 + b2

]
+
σ2(d− dsub)

2n(b+ λ∗1)2

[
(λ∗1)2 + 2bλ∗1 + b2

]
= C +

σ2λ1

2n(b+ λ1)

(
1

N
− 1

)
dsub,
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where C is used to represent the quantities irrelevant to dsub. Since 1/N − 1 < 0, we can see
that the coefficient of dsub is negative, which implies that the test loss would be smaller as
we increase the dimension of the random projection subspace.

The first-order derivative of the test loss of lp-proj-2 is

L′l2,att1(λ) =
bdsubσ

2

n
·

( 1
N − 1)b+ (NbN − 1) · λN

(b+ λ)3
+
b2λdsub(Naτ

2

N2 ) + Σ1

(b+ λ)3
.

One can see that the first-order derivative is linear in dsub. Therefore, given all the other
parameters, for a specific λ, the derivative is smaller in absolute value if dsub is smaller.
In other words, the test loss is less sensitive to the change of λ, which gives a more robust
performance to the algorithm when precisely tuning the hyper-parameter is hard.

B.3.3 Sign-flipping Attacks

The second type of attack is sign-flipping attacks. For simplicity, we define w̄b = 1
Nb

∑
i∈Ib wi,

w̄a = 1
Na

∑
i∈Ia wi, w̄b,1 = 1

Nb

∑
i∈Ib wi,1 and w̄a,1 = 1

Na

∑
i∈Ia wi,1.

To simplify and clarify the calculations, we continue to focus on the scenario where the
heterogeneity is uniform across all dimensions. However, due to the increased complexity of
the sign-flipping attack compared to the same-value attack, this uniformity condition takes
a more intricate form, specifically:

1

dNb

∑
k∈Ib

∥∥∥∥∥Nbw̄b −Na

√
2/πτw̄a

N
−wk

∥∥∥∥∥
2

2

=
1

dsubNb

∑
k∈Ib

∥∥∥∥∥Nbw̄b,1 −Na

√
2/πτw̄a,1

N
−wk,1

∥∥∥∥∥
2

2

:= Σ2, (40)

∑
i∈Ia tr(Mi)

Nad
=

∑
i∈Ia tr(M̃i)

Nadsub
:= M0, (41)

where Mi and M̃i denote the variance of the information transmitted by malicious clients
under the attacks when applying pFedMe and lp-proj-2, respectively. Their specific forms
are defined in (42) and (43). The form of (40) arises because the attack involves sign-flipping.

local This attack will not affect local. So the averaged test loss on benign clients is
Lloc, att2 = 1

Nb

∑
k∈Ib f

te
k (wloc

k ) = σ2

2 + σ2d
2n .

FedAvg If the k-th client is benign, it sends ŵk to the server. If the k-th client is

malicious, it send w
(ma)
k = −|c|ŵk to the server, where c ∼ N (0, τ2). Recall that ŵk is an

unbiased observation of wk with covariance matrix σ2

bnId. Now we examine w
(ma)
k . Although

w
(ma)
k does not obey Gaussian distribution, we can still calculate its mean and covariance

by the independence of c and ŵk. We have E [−|c|ŵk] = −
√

2/πτwk and

var (−|c|ŵk) = E
[
c2ŵkŵ

>
k

]
− E [|c|ŵk]E

[
|c|ŵ>k

]
= τ2

(
wkw

>
k +

σ2

bn
Id

)
− 2

π
τ2wkw

>
k
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=
π − 2

π
τ2wkw

>
k + τ2σ

2

bn
Id := Mk (42)

Then w
(ma)
k can be regarded as an unbiased observation of −

√
2/πτwk with covariance

matrix Mk. Thus the server gets wAvg, att2 = 1
N

(∑
k∈Ib ŵk +

∑
k∈Ia w

(ma)
k

)
. We have

E[wAvg, att2] =
Nbw̄b−Na

√
2/πτw̄a

N and var(wAvg, att2) = 1
N2

(
Nbσ

2

bn Id +
∑

k∈Ia Mk

)
.

Then we can compute the averaged test loss on benign clients as

LAvg, att2 =
1

Nb

∑
k∈Ib

f te
k (wAvg, att2)

=
σ2

2
+

bd

2N2

Nbσ
2

bn
+
∑
k∈Ia

tr(Mk)

d

+
b

2Nb

∑
k∈Ib

∥∥∥∥∥Nbw̄b −Na

√
2/πτw̄a

N
−wk

∥∥∥∥∥
2

2

(40)+(41)
=

σ2

2
+

bd

2N2

(
Nbσ

2

bn
+NaM0

)
+
bdΣ2

2
.

pFedMe If the k-th client is benign, it will send ŵk to the server. If the k-th client

is malicious, it will send w
(ma)
k = −|c|ŵk to the server. The server obtains wMe, att2 =

1
N

(∑
k∈Ib ŵk +

∑
k∈Ia w

(ma)
k

)
= wAvg, att2 and broadcasts wMe, att2 back to all the clients.

For the benign client k, it gets xMe, att2
k = x̂k(w

Me, att2) = bŵk+λwMe, att2

b+λ . We have

that the expectation is E[xMe, att2
k ] = 1

b+λ

[
bwk + λ

Nbw̄b−Na
√

2/πτw̄a
N

]
and the variance

is var(xMe, att2
k ) =

[
(b+ λ

N )
2 σ2

bn
+(Nb−1) λ

2

N2
σ2

bn

]
Id+ λ2

N2

∑
i∈Ia Mi

(b+λ)2 .

Then we can compute the averaged test loss on benign clients as

LMe, att2(λ) =
1

Nb

∑
k∈Ib

f te
k (xMe, att2

k )

=
σ2

2
+
bd

2

(
b2 + 2bλ

N + Nbλ
2

N2

)
σ2

bn + λ2

N2

∑
i∈Ia

tr(Mi)
d

(b+ λ)2

+
bλ2

2(b+ λ)2

1

Nb

∑
k∈Ib

∥∥∥∥∥Nbw̄b −Na

√
2/πτw̄a

N
−wk

∥∥∥∥∥
2

2

(40)+(41)
=

σ2

2
+
bd

2

(
b2 + 2bλ

N + Nbλ
2

N2

)
σ2

bn + Naλ2

N2 M0 + λ2Σ2

(b+ λ)2
.

Ditto The global model of Ditto is the same as the model of FedAvg. Similar to the
analysis of same-value attacks, we have wDi, att2 = wAvg, att2 and xDi, att2

k = x̂k(wDi, att2) =
bŵk+λwDi, att2

b+λ = xMe, att2
k . Then Ditto and pFedMe have the same losses. We will also omit

the analysis for Ditto.
lp-proj-2 If the k-th client is benign, it will send ŵk,1 to the server. If the k-th client

is malicious, it will send w̃
(ma)
k = −|c|ŵk,1 to the server, where c ∼ N (0, τ2). Then we have
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E[w̃
(ma)
k ] = −

√
2/πτwk,1 and

var(w̃
(ma)
k ) =

π − 2

π
τ2wk,1w

>
k,1 + τ2σ

2

bn
Idsub

:= M̃k. (43)

The server receives these messages and gets w̃l2, att2 = 1
N

(∑
k∈Ib ŵk,1 +

∑
k∈Ia w̃

(ma)
k

)
.

And the benign client k obtains xl2, att2
k = x̌k(w̃

l2, att2) =

(
(bŵk,1 + λw̃l2, att2)/(b+ λ)

ŵk,2

)
.

Then we have E[xl2, att2
k ] =

 1
b+λ

[
bwk,1 + λ

Nbw̄b,1−Na
√

2/πτw̄a,1
N

]
wk,2

 and var(xl2, att2
k ) =[

(b+ λ
N )

2 σ2

bn
+(Nb−1) λ

2

N2
σ2

bn

]
Id+ λ2

N2

∑
i∈Ia M̃i

(b+λ)2

σ2

bnId−dsub

. The averaged test loss on benign

clients is

Ll2, att2(λ) =
1

Nb

∑
k∈Ib

f te
k (xl2, att2

k )

=
σ2

2
+
bdsub

2

(
b2 + 2bλ

N + Nbλ
2

N2

)
σ2

bn + λ2

N2

∑
i∈Ia

tr(M̃i)
dsub

(b+ λ)2
+

(d− dsub)σ2

2n

+
bλ2

2(b+ λ)2

1

Nb

∑
k∈Ib

∥∥∥∥∥Nbw̄b,1 −Na

√
2/πτw̄a,1

N
−wk,1

∥∥∥∥∥
2

2

(40)+(41)
=

σ2

2
+
bdsub

2

(
b2+2bλ

N +Nbλ
2

N2

)
σ2

bn + Naλ2

N2 M0 + λ2Σ2

(b+ λ)2
+

(d−dsub)σ2

2n
.

We find that under the conditions in (40) and (41), the losses of different methods have
similar forms as (39). To find the optimal λ for pFedMe and lp-proj-2, we could also

apply Lemma 29 with (A,B,C) =
(
σ2Nb
bN2n

+ NaM0
N2 + Σ2,

2σ2

Nn ,
σ2b
n

)
. One can check that the

optimal λ is λ∗2 := (1−1/N)σ2/n

Σ2+Na
N2 (M0−σ2/(bn))

. The losses of different methods at optimal λ∗2 also

share similar forms as (38), with Σ1, τ2, λ∗1 replaced by Σ2, M0 and λ∗2 respectively. For the
comparison of losses at different values of λ, The discussion below (39) also applies here.

B.3.4 Gaussian Attacks

Gaussian attacks are similar to same-value attacks. For FedAvg, pFedMe and Ditto, the

malicious client sends w
(ma)
k to the server, where w

(ma)
k ∼ N (0d, τ

2Id). For lp-proj-2, the

malicious client sends w̃
(ma)
k to the server, where w̃

(ma)
k ∼ N (0dsub

, τ2Idsub
).

Note that tr(Id) = tr(Jd) for any d and the test loss (35) is only relevant to the trace
of the covariance matrix. Thus the averaged test losses on benign clients under Gaussian
attacks are the same as those under same-value attacks.
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B.4 Fairness

In this subsection, we examine the performance fairness of these methods. Recall that in
Definition 1, we measure performance fairness in terms of the variance of test accuracy/losses.
In Appendix B.2, the test loss on client k is

f te
k (xk) =

σ2

2
+
b

2
tr(var(xk)) +

b

2
‖Exk −wk‖22 .

For different methods, we can compute that

f te
k (wloc

k ) =
σ2

2
+
σ2d

2n
,

f te
k (wAvg) =

σ2

2
+

σ2d

2Nn
+
b

2
‖w̄ −wk‖22 ,

f te
k (xMe

k ) =
σ2

2
+
b2 + 2bλ

N + λ2

N

(b+ λ)2

σ2d

2n
+

bλ2

2(b+ λ)2
‖w̄ −wk‖22 ,

f te
k (xDi

k ) = f te
k (xMe

k ),

f te
k (xl2

k ) =
σ2

2
+
b2 + 2bλ

N + λ2

N

(b+ λ)2

σ2dsub

2n
+
σ2(d− dsub)

2n
+

bλ2

2(b+ λ)2
‖w̄·,1 −wk,1‖22 .

For simplicity of notation, given N real numbers a1, a2, . . . , aN , we use ṽar(ak) the
variance of a random variable that takes the value ak with probability 1

N , as defined below7

ṽar(ak) :=
1

N

N∑
k=1

a2
k −

(
1

N

N∑
k=1

ak

)2

. (44)

Then we give the formal version of Proposition 18.

Theorem 32 (Formal version of Proposition 18) The variances of test losses on dif-
ferent clients for these methods are as follows:

V loc = ṽar(f tek (wloc
k )) = 0,

V Avg = ṽar(f tek (wAvg)) =
b2

4
ṽar(‖w̄ −wk‖22),

V Me(λ) = ṽar(f tek (xMe
k )) =

b2λ4

4(b+ λ)4
ṽar(‖w̄ −wk‖22),

V Di(λ) = V Me(λ),

V l2(λ) = ṽar(f tek (xl2
k )) =

b2λ4

4(b+ λ)4
ṽar(‖w̄·,1 −wk,1‖22).

(45)

If the wk are i.i.d. from N (µw,Σw) with Σw = (Σij)d×d, we have

EV Avg = b2
(N−1)(N−2)

N2

d∑
i=1

d∑
j=1

Σ2
ij = O

(
d2
)
, (46)

7. Here, we slightly abuse notation by treating the lowercase letter ak a random variable.
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EV Me(λ) =
b2λ4

(b+ λ)4

(N−1)(N−2)

N2

d∑
i=1

d∑
j=1

Σ2
ij = O

(
d2
)
, (47)

EV l2(λ) =
b2λ4

(b+ λ)4

(N−1)(N−2)

N2

dsub∑
i=1

dsub∑
j=1

Σ2
ij = O

(
d2

sub

)
. (48)

By Theorem 32, we have V loc ≤ V Me(λ) ≤ V Avg and V loc ≤ V l2(λ). And larger λ leads to
more fairness. This is because in our settings, only the true parameters wk on the clients
are different. For local, wloc

k is an unbiased estimation of wk. So f te
k (wloc

k ) = f te
l (wloc

l ) for

any k 6= l. For other methods, xAvg
k , xMe

k and xl2
k are all biased. Thus test losses on different

clients can vary a lot.
However, it is not easy to compare ṽar(‖w̄ −wk‖22) and ṽar(‖w̄·,1 −wk,1‖22) directly. If

the variance of wk concentrates on the the first dsub dimensions, ṽar(‖w̄·,1 −wk,1‖22) can be

larger than ṽar(‖w̄ −wk‖22).
To gain more intuition, we further assume wk are i.i.d. and distributed as N (µw,Σw).

Then Theorem 32 implies that EV loc ≤ EV l2(λ) ≤ EV Me(λ) ≤ EV Avg.
Now we give the proof of Theorem 32.

Proof [Proof of Theorem 32] From the definition of ṽar in (44), the equalities in (45) are
easy to check. For the remaining results, we first give an equivalent form of ṽar(‖w̄ −wk‖22)
when treating the wk as fixed.

ṽar(‖w̄ −wk‖22)
(a)
=

1

N

N∑
k=1

‖w̄ −wk‖42 −

(
1

N

N∑
k=1

‖w̄ −wk‖22

)2

(b)
=

1

N2

(N − 1)

N∑
k=1

‖wk − w̄‖42 −
N∑
k=1

N∑
l=1,l 6=k

‖wk − w̄‖22 ‖wl − w̄‖22


(c)
=

1

N2

N∑
k=1

N∑
l=1,l 6=k

(
‖wk − w̄‖22 − ‖wl − w̄‖22

)2

2

(d)
=

1

N2

N∑
k=1

N∑
l=1,l 6=k

〈wk −wl,wk + wl − 2w̄〉2 , (49)

where (a) follows from the definition of ṽar in (44), (b) and (d) result from expanding the
squared terms, and (c) is based on the fact that, for any real numbers a1, a2, . . . , aN , the
following equality holds:

N∑
k=1

N∑
l=1,l 6=k

(ak − al)2

2
=

N∑
k=1

N∑
l=1,l 6=k

a2
k + a2

l − 2akal
2

=
N − 1

2

N∑
k=1

a2
k +

N − 1

2

N∑
l=1

a2
l −

N∑
k=1

N∑
l=1,l 6=k

akal

= (N − 1)
N∑
k=1

a2
k −

N∑
k=1

N∑
l=1,l 6=k

akal.
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If we further assume wk are i.i.d. from N (µw,Σw), one can check that

cov(wk −wl,wk + wl − 2w̄)

= E(wk −wl)(wk + wl − 2w̄)> − E(wk −wl)E(wk + wl − 2w̄)>

= Ewkw
>
k − Ewlw

>
l − 2Ewkw̄

> + 2Ewlw̄
> = 0,

where the last step is due to the symmetry between k and l. Note that (wk−wl,wk+wl−2w̄)
also follows a Gaussian distribution. Then unrelatedness implies independence. Thus, wk−wl

and wk + wl − 2w̄ are independent. To calculate E ṽar(‖w̄ −wk‖22), it suffices to examine
E 〈wk −wl,wk + wl − 2w̄〉2 for k 6= l. Take X1 = wk−wl and X2 = wk+wl−2w̄ for short.
Due to that the wk are i.i.d. one can check EX1 = EX2 = 0, var(X1) = var(wk) + var(wl) =
2Σw and

var(X2) =

(
1− 2

N

)2

var(wk) +

(
1− 2

N

)2

var(wl) +
4

N2

N∑
i=1,i 6=k,l

var(wi) =

(
2− 4

N

)
Σw.

In other words, X1 ∼ N (0, 2Σw) and X2 ∼ N (0, (2 − 4/N)Σw). Moreover, both the
distributions are independent of the choice of k and l. Due to the independence between X1

and X2, we have

E 〈X1, X2〉2 = Etr(X>2 X1X
>
1 X2) = Etr(X1X

>
1 X2X

>
2 ) = tr(EX1X

>
1 EX2X

>
2 )

= 4

(
1− 2

N

)
tr(Σ2

w) = 4

(
1− 2

N

) d∑
i=1

d∑
j=1

Σ2
ij .

Plugging this equality into (49) yields

E ṽar(‖w̄ −wk‖22) =
4(N − 1)(N − 2)

N2

d∑
i=1

d∑
j=1

Σ2
ij .

It follows that (46) and (47) hold. The proof of (48) is similar to that of (47), with the only
difference being the dimension: the term d in (47) is replaced by dsub in (48).

Appendix C. Experimental Details

The data sets, corresponding models and tasks are summarized in Table 3 below. The
performance of lp-proj-1 and lp-proj-2 are evaluated on both convex and non-convex
models across a set of FL benchmarks, including both synthetic and real data sets.

The synthetic data sets are generated following the setup in Li et al. (2020a), we denote it
as Synthetic(α, β), where α controls how much local models differ from each other and β
controls how much the local data for each client differs from that of other clients. Specifically,
the synthetic samples (Xk, yk) are generated from the model y = arg max(softmax(Wkx+bk))
with x ∈ R60, W ∈ R10×60 and bk ∈ R10, where Xk ∈ Rnk×60 and yk ∈ Rnk . Each entry
of Wk and bk are modeled as N(µk, 1) with µk ∼ (0, α), and (xk)j ∼ N(vk,

1
j1.2

) with

vk ∼ N(Bk, 1) and Bk ∼ N(0, β).
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Data sets # of Clients
Average Sample Size

for each Client
Tasks Partitions Models

Synthetic(0, 0) 100 202 10-class classification ? logistic
Synthetic(1, 1) 100 202 10-class classification ? logistic

EMNIST 248 2000 62-class classification 10 classes to each client 2-hidden-layers NN
CIFAR 200 200 10-class classification 2 classes to each client CNN
MNIST 100 434 10-class classification 2 classes to each client 1-hidden-layer NN

FASHIONMNIST 100 480 10-class classification 2 classes to each client CNN

Table 3: Summary of data sets and models.

Neural Network Architecture for the Models Used in Numerical Experiments.

• 1-hidden-layer NN for MNIST: One hidden fully-connected layer with 100 neurons.
We use ReLU as the activation function.

• 2-hidden-layer NN for EMNIST: Two hidden fully-connected layers, each with 100
neurons. For each FC layer, ReLU is used as the activation function.

• CNN for CIFAR: The neural network used in our experiment consists of two convolu-
tional layers and three fully-connected layers. The architecture for each layer is listed as
follows:

– Convolutional layer 1: input channel: 3, output channel: 6, kernel size: 5.

– Convolutional layer 2: input channel: 6, output channel: 16, kernel size: 5.

– Fully-connected layer 1: input features: 400, output features: 120.

– Fully-connected layer 2: input features: 120, output features: 84.

– Fully-connected layer 3: input features: 84, output features: 10.

For each convolutional layer, we would first apply a ReLU activation function right after
the convolution, and then apply a max pooling with kernel size = 2, stride = 2 to extract
the feature map. Besides, for the fully-connected layers, we use ReLU as the activation
function.

• CNN for FASHIONMNIST: The neural network used for FASHIONMNIST data set in
our experiment is modified from He et al. (2016), which consists of a normal convolutional
layer, two resnet blocks and finally a fully connected layer. The architecture for each layer
is listed as follows:

– Convolutional layer: input channel: 1, output channel: 64, kernel size: 7, stride: 2,
padding: 3. Right after the convolution, we apply a batch normalization layer to
standardize the features, and then the ReLU function is applied as the activation
function, and finally, a max pooling layer with kernel size = 3, stride = 2, padding =
1 is applied to extract the feature map.

– Resnet block 1: input channels: 64, output channels: 64, number of residuals: 2.

– Resnet block 2: input channels: 64, output channels: 128, number of residuals: 2.

– Fully-connected layer: input features: 128, output features: 10.
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Furthermore, we apply average pooling right after resnet block 2 to extract the feature
map before feeding to the fully connected layer.

For implementation details, please refer to the source code provided in https://github.

com/desternylin/perfed.

Total Number of Parameters for the Full Model.

• Synthetic: 610.

• MNIST: 79510.

• CIFAR: 62006.

• EMNIST: 94862.

• FASHIONMNIST: 678794.

Computing Resource for Numerical Experiments. All of our experiments are per-
formed on GPUs. Specifically, every single experiment (a competing method with its given
parameter setting and model) is performed on a single GPU, where the type of GPU is one
of the following two:

• NVIDIA TITAN RTX with 24220MB memory, driver version: 470.63.01, CUDA version:
11.4.

• NVIDIA GeForce RTX 2080 Ti with 11019MB memory, driver version: 470.63.01, CUDA
version: 11.4.

C.1 Competing Methods

Several state-of-the-art methods in the literature aiming for different purposes such as
personalization, robustness and communication efficiency are considered in our experiment.
We list and provide a brief description of these methods below.

• FedAvg (McMahan et al., 2017), which learns a shared model by averaging the locally-
computed model updates in each communication round. This is a baseline algorithm in
the FL literature, but it would probably suffer from the statistical heterogeneity among
clients.

• Local, which trains a local model for each client separately. This algorithm does not have
the communication burden issue, but may perform poorly when there is little local data.

• Ditto (Li et al., 2021b), which considers two overarching tasks: the global objectives
and the local objectives, and uses a regularization term that encourages the personalized
model to be close to the optimal global model.

• LG-FedAvg (Liang et al., 2020), which proposes to learn useful and compact features
from the raw data locally and the central server only aggregates the learned representations
to improve communication efficiency and get better personalization performance.
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• RSA (Li et al., 2019), which incorporates the objective function with an Lp regularizer
to robustify the learning task and mitigate the negative effects of Byzantine attacks.

• pFedMe (Dinh et al., 2020), which considers a bi-level problem that concerns global
and local objectives respectively. The main difference of pFedMe and Ditto is that when
considering the global objective, pFedMe considers the whole loss function including the
regularizer, while Ditto excludes the regularizer in the global level.

• Per-FedAvg (Fallah et al., 2020), which applies MAML (Finn et al., 2017) to personalize
federated models with a Hessian-product approximation to approximate the second-order
gradients.

• Sketch (Ivkin et al., 2019), which carries out distributed SGD by communicating count
sketches instead of full gradients to reduce communication costs. However, in our experi-
ments, we find that the size of the sketches should be relatively large to retain accuracy
performance in heterogeneous networks.

• LBGM (Look-Back Gradient Multiplier) (Azam et al., 2021), which exploits the low-rank
property of the gradient space to enable gradient recycling between model update rounds
of federated learning.

• QSGD (Quantized SGD) (Alistarh et al., 2017), which quantizes each component by
randomized rounding to a discrete set of values before message transmission. Furthermore,
it employs efficient lossless code for quantized gradients, which exploits their statistical
properties to generate efficient encodings.

• DGC (Deep Gradient Compression) (Lin et al., 2018), which compresses the gradient
with momentum correction and local gradient clipping on top of the gradient sparsification.
What’s more, to overcome the staleness problem caused by reduced communication,
momentum factor masking and warmup training are also used.

C.2 Parameter Settings

For each competing algorithm, different hyper-parameters need to be tuned. We provide two
or three candidates for each hyper-parameter and perform a grid search on all the possible
combinations based on the accuracy performance on the validation data set. The tuning
hyper-parameter and their corresponding candidates for each algorithm are listed as follows.

• FedAvg: local learning rate: {0.05, 0.1, 0.5}, rounds for local update: {1, 5}.

• Local: local learning rate: {0.05, 0.1, 0.5}.

• Ditto: local learning rate: {0.05, 0.1, 0.5}, personalization model learning rate: {0.01, 0.05, 0.1},
λ : {0.1, 1, 10}, local computation rounds R : {1, 5}.

• LG-FedAvg: local learning rate: {0.05, 0.1, 0.5}, rounds for local update: {1, 5}.

• RSA: local learning rate: {0.05, 0.1, 0.5}, personalization model learning rate: {0.01, 0.05, 0.1},
λ : {0.1, 1, 10}, local computation rounds R : {1, 5}.

67



Han, Li, Lin, and Zhang

• pFedMe: local learning rate: {0.05, 0.1, 0.5}, personalization model learning rate: {0.01,
0.05, 0.1}, λ : {0.1, 1, 10}, local computation rounds R : {1, 5}.

• Per-FedAvg: local learning rate: {0.05, 0.1, 0.5}, personalization model learning rate:
{0.01, 0.05, 0.1}.

• Sketch: local learning rate: {0.05, 0.1, 0.5}, columns of the sketch: {0.02, 0.05}× dimen-
sion of the full model, rows of the sketch: {0.005, 0.01}× dimension of the full model, k
for the recovered k-sparse gradient: {0.01, 0.05}× dimension of the full model.

• lp-proj-1: local learning rate: {0.05, 0.1, 0.5}, personalization model learning rate:
{0.01, 0.05, 0.1}, λ : {0.1, 1, 10}, local computation rounds R : {1, 5}.

• lp-proj-2: local learning rate: {0.05, 0.1, 0.5}, personalization model learning rate:
{0.01, 0.05, 0.1}, λ : {0.1, 1, 10}, local computation rounds R : {1, 5}.

• LBGM: learning rate: {0.05, 0.1, 0.5}, local computation rounds R : {1, 5}, look-back
phase (LBP) error threshold δthre : {0.2, 0.5, 0.8}.

• QSGD: learning rate: {0.05, 0.1, 0.5}, quantization level: {5, 10, 15}, bucket size: {500,
1000, 2000}.

• DGC: learning rate: {0.05, 0.1, 0.5}, initial sparsity level: {0.25, 0.5, 0.75}, sparsity rising
level during warm-up training: {0.75, 0.5, 0.25}.

Other parameters shared by all algorithms:

• # of clients particiate in each communication: 10% × total # of clients.

• Accuracy level ν for inner loop for personalization methods: 10−10.

• Batch size for local SGD: 64.

• Projection dimension dsub for lp-proj-1 and lp-proj-2: Synthetic: 21, EMNIST: 80,
CIFAR: 60, MNIST: 50, FASHIONMNIST: 600. The projection dimension for each data set
and each model is determined by the full model size and communication budget, and we
show theoretically (Lemma 11) that the accuracy performance only has mild dependence
on the projection dimension.

• # of repeated experiments: 10.

C.3 Complete Results on Personalization and Fairness Performance

Table 4 shows complete results on personalization performance in terms of train loss and test
accuracy and performance fairness in terms of variance of the above two metrics. Figure 5
displays the training loss and test accuracy evolution as the training proceeds. We can see
that lp-proj-1 and lp-proj-2 own better performance with lower train loss, higher test
accuracy and lower variance across clients.
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Data set method Train Loss Train Loss Var Test Acc Test Acc Var

Synthetic(0, 0)

Ditto 0.3500 ± 0.0038 0.0780 ± 0.0020 0.8569 ± 0.0012 0.0178 ± 0.0005
pFedMe 0.3542 ± 0.0013 0.0785 ± 0.0009 0.8580 ± 0.0015 0.0178 ± 0.0007

Per-fedavg 0.6986 ± 0.0184 0.2106 ± 0.0085 0.7977 ± 0.0010 0.0410 ± 0.0006
FedAvg 0.7988 ± 0.0114 0.2815 ± 0.0112 0.7714 ± 0.0010 0.0455 ± 0.0023

local 0.2522 ± 0.0045 0.0451 ± 0.0016 0.8665 ± 0.0016 0.0159 ± 0.0007
lp-proj-1 0.0769 ± 0.0097 0.0048 ± 0.0012 0.8868 ± 0.0010 0.0106 ± 0.0003
lp-proj-2 0.0818 ± 0.0041 0.0053 ± 0.0005 0.8867 ± 0.0013 0.0105 ± 0.0003

RSA 0.5319 ± 0.0075 0.1466 ± 0.0034 0.8314 ± 0.0019 0.0265 ± 0.0008

Synthetic(1, 1)

Ditto 0.3431 ± 0.0165 0.1596 ± 0.0488 0.8615 ± 0.0011 0.0193 ± 0.0006
pFedMe 0.3010 ± 0.0029 0.0660 ± 0.0014 0.8666 ± 0.0008 0.0170 ± 0.0004

Per-fedavg 0.6015 ± 0.0151 0.2194 ± 0.0193 0.7925 ± 0.0046 0.0465 ± 0.0022
FedAvg 0.6938 ± 0.0147 0.3392 ± 0.0214 0.7875 ± 0.0025 0.0480 ± 0.0023

local 0.2969 ± 0.0157 0.1283 ± 0.0439 0.8675 ± 0.0018 0.0177 ± 0.0007
lp-proj-1 0.0614 ± 0.0143 0.0162 ± 0.0191 0.8954 ± 0.0019 0.0123 ± 0.0008
lp-proj-2 0.0679 ± 0.0068 0.0074 ± 0.0042 0.8932 ± 0.0018 0.0125 ± 0.0009

RSA 0.4547 ± 0.0075 0.1271 ± 0.0032 0.8416 ± 0.0015 0.0242 ± 0.0009

EMNIST

Ditto 0.2499 ± 0.0032 0.0066 ± 0.0001 0.9089 ± 0.0008 0.0016 ± 0.0001
pFedMe 0.4397 ± 0.0062 0.0301 ± 0.0092 0.8556 ± 0.0012 0.0035 ± 0.0004

Per-fedavg 0.9061 ± 0.0882 2.1828 ± 2.7274 0.7944 ± 0.0083 0.0104 ± 0.0011
FedAvg 0.7219 ± 0.0119 0.0300 ± 0.0036 0.7713 ± 0.0029 0.0070 ± 0.0004

local 0.3903 ± 0.0013 0.0110 ± 0.0017 0.8566 ± 0.0008 0.0022 ± 0.0001
lp-proj-1 0.0389 ± 0.0036 0.0039 ± 0.0003 0.9067 ± 0.0003 0.0017 ± 0.0001
lp-proj-2 0.0448 ± 0.0022 0.0039 ± 0.0002 0.9070 ± 0.0001 0.0017 ± 0.0000

RSA 0.2740 ± 0.0054 0.0066 ± 0.0004 0.8714 ± 0.0011 0.0019 ± 0.0001
LG-FedAvg 0.4500 ± 0.0194 0.1624 ± 0.0691 0.8453 ± 0.0042 0.0089 ± 0.0015

CIFAR

Ditto 0.1463 ± 0.0335 0.0232 ± 0.0128 0.7909 ± 0.0084 0.0110 ± 0.0008
pFedMe 0.1837 ± 0.0262 0.0311 ± 0.0072 0.7913 ± 0.0034 0.0100 ± 0.0006

Per-fedavg 1.0378 ± 0.1614 0.8320 ± 1.0412 0.7257 ± 0.0220 0.0183 ± 0.0022
FedAvg 1.4739 ± 0.0198 0.0438 ± 0.0092 0.4594 ± 0.0091 0.0173 ± 0.0026

local 0.3101 ± 0.0098 0.0409 ± 0.0021 0.7688 ± 0.0026 0.0131 ± 0.0006
lp-proj-1 0.0381 ± 0.0296 0.0077 ± 0.0066 0.7922 ± 0.0017 0.0097 ± 0.0003
lp-proj-2 0.0043 ± 0.0105 0.0009 ± 0.0024 0.7910 ± 0.0015 0.0099 ± 0.0005

RSA 0.0073 ± 0.0015 0.0000 ± 0.0000 0.7768 ± 0.0048 0.0097 ± 0.0008
LG-FedAvg 0.4231 ± 0.0182 0.0352 ± 0.0028 0.7523 ± 0.0055 0.0134 ± 0.0009

MNIST

Ditto 0.0266 ± 0.0010 0.0001 ± 0.0000 0.9863 ± 0.0004 0.0003 ± 0.0000
pFedMe 0.0511 ± 0.0037 0.0006 ± 0.0001 0.9824 ± 0.0005 0.0005 ± 0.0000

Per-fedavg 0.0555 ± 0.0011 0.0010 ± 0.0004 0.9831 ± 0.0005 0.0004 ± 0.0000
FedAvg 0.2099 ± 0.0013 0.0029 ± 0.0002 0.9416 ± 0.0009 0.0015 ± 0.0001

local 0.0204 ± 0.0065 0.0002 ± 0.0001 0.9822 ± 0.0001 0.0004 ± 0.0000
lp-proj-1 0.0101 ± 0.0046 0.0000 ± 0.0000 0.9822 ± 0.0002 0.0004 ± 0.0000
lp-proj-2 0.0060 ± 0.0052 0.0000 ± 0.0000 0.9825 ± 0.0002 0.0004 ± 0.0000

RSA 0.0829 ± 0.0032 0.0010 ± 0.0001 0.9809 ± 0.0002 0.0005 ± 0.0000
LG-FedAvg 0.0156 ± 0.0019 0.0001 ± 0.0000 0.9821 ± 0.0003 0.0004 ± 0.0000

FASHIONMNIST

Ditto 0.0141 ± 0.0016 0.0004 ± 0.0005 0.9770 ± 0.0004 0.0019 ± 0.0001
pFedMe 0.0076 ± 0.0013 0.0001 ± 0.0001 0.9729 ± 0.0004 0.0024 ± 0.0001

Per-fedavg 0.1834 ± 0.0383 0.3004 ± 0.1443 0.9500 ± 0.0041 0.0092 ± 0.0013
FedAvg 0.1129 ± 0.0109 0.0194 ± 0.0042 0.9694 ± 0.0021 0.0029 ± 0.0006

local 0.0020 ± 0.0016 0.0001 ± 0.0002 0.9748 ± 0.0008 0.0021 ± 0.0001
lp-proj-1 0.0002 ± 0.0004 0.0000 ± 0.0000 0.9752 ± 0.0008 0.0022 ± 0.0002
lp-proj-2 0.0004 ± 0.0005 0.0000 ± 0.0001 0.9749 ± 0.0007 0.0021 ± 0.0002

RSA 0.0908 ± 0.0368 0.0046 ± 0.0035 0.9605 ± 0.0033 0.0039 ± 0.0012
LG-FedAvg 0.0038 ± 0.0037 0.0001 ± 0.0001 0.9738 ± 0.0005 0.0021 ± 0.0001

Table 4: Complete Result on Personalization and Fairness Performance in terms of Tran
Loss and Test Accuracy.
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Figure 5: Personalization performance of competing methods.

C.4 Complete Results on Communication Efficiency

Table 5 shows complete results on communication performance in terms of test accuracy
and communication bytes. For a fair comparison, we personalize the gradient compression
methods, i.e., Sketch, LBGM, QSGD and DGC, which are not personalization algorithms in the
original literature. We use a simple meta-learning framework (Finn et al., 2017; Fallah et al.,
2020), which uses the collaboratively trained global model as an initialization and performs
gradient updates with respect to the client’s own loss function to obtain its personalized
model. From the comparison result, we can see that, given a communication budget of bytes,
lp-proj-1 and lp-proj-2 achieve the highest test accuracy. On the other hand, given a
target test accuracy, these two approaches need the least bytes for communication, and the
compression rate could be up to 1000x.

C.5 Complete Results on Robustness

Complete results for different methods under various kinds and various levels of Byzantine
attacks are shown in Table 6, 7 and 8, and complete results under data poison attack is
shown in Table 9. lp-proj-1 and lp-proj-2 show stable performance and are the most
robust to different attacks.
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Data set Method Bytes Budget Test Acc Target Acc Used Bytes

Synthetic(0, 0)

FedAvg 328020 0.625 ± 0.006 0.6 597800 ± 0
Sketch 328020 0.456 ± 0.020 0.6 ? ± ?

lp-proj-1 328020 0.885 ± 0.002 0.6 4620 ± 0
lp-proj-2 328020 0.888 ± 0.001 0.6 4620 ± 0
LBGM 328020 0.815 ± 0.007 0.6 12200 ± 23578
QSGD 328020 0.115 ± 0.069 0.6 923350 ± 174383
DGC 328020 ? ± ? 0.6 372000 ± 186123

Synthetic(1, 1)

FedAvg 401940 0.516 ± 0.028 0.6 523380 ± 34268
Sketch 401940 0.554 ± 0.017 0.6 ? ± ?

lp-proj-1 401940 0.892 ± 0.002 0.6 4620 ± 0
lp-proj-2 401940 0.888 ± 0.001 0.6 4620 ± 0
LBGM 401940 0.858 ± 0.042 0.6 11200 ± 371717
QSGD 401940 0.625 ± 0.018 0.6 46950 ± 905787
DGC 401940 0.175 ± 0.208 0.6 58400 ± 184500

EMNIST

FedAvg 4236900 ? ± ? 0.7 445851400 ± 16265444
Sketch 4236900 ? ± ? 0.7 ? ± ?

lp-proj-1 4236900 0.906 ± 0.000 0.7 174720 ± 10699
lp-proj-2 4236900 0.906 ± 0.000 0.7 196560 ± 6552

LG-FedAvg 4236900 0.071 ± 0.016 0.7 230786010 ± 6629787
LBGM 4236900 ? ± ? 0.7 206307624 ± 37552057
QSGD 4236900 ? ± ? 0.7 173663720 ± 101397671
DGC 4236900 ? ± ? 0.7 ? ± ?

CIFAR

FedAvg 1029600 ? ± ? 0.4 392870016 ± 33519046
Sketch 1029600 ? ± ? 0.4 2271432000 ± 220100908

lp-proj-1 1029600 0.792 ± 0.002 0.4 26400 ± 0
lp-proj-2 1029600 0.790 ± 0.002 0.4 26400 ± 0

LG-FedAvg 1029600 ? ± ? 0.4 51369296 ± 10550837
LBGM 1029600 ? ± ? 0.4 4898475 ± 41680525
QSGD 1029600 ? ± ? 0.4 87514000 ± 24632864
DGC 1029600 ? ± ? 0.4 25671000 ± 323640

MNIST

FedAvg 228000 ? ± ? 0.7 56293080 ± 6828608
Sketch 228000 ? ± ? 0.7 146026720 ± 51486427

lp-proj-1 228000 0.982 ± 0.000 0.7 12000 ± 0
lp-proj-2 228000 0.982 ± 0.000 0.7 12000 ± 0

LG-FedAvg 228000 0.111 ± 0.026 0.7 763560 ± 55540
LBGM 228000 ? ± ? 0.7 1590200 ± 5492558
QSGD 228000 ? ± ? 0.7 15966000 ± 4693474
DGC 228000 ? ± ? 0.7 27579900 ± 2836077

FASHIONMNIST

FedAvg 3384000 ? ± ? 0.7 1186531912 ± 52998121
lp-proj-1 3384000 0.975 ± 0.001 0.7 144000 ± 0
lp-proj-2 3384000 0.975 ± 0.001 0.7 144000 ± 0

LG-FedAvg 3384000 0.892 ± 0.010 0.7 1725336 ± 118790
LBGM 3384000 ? ± ? 0.7 51588348 ± 120013474
QSGD 3384000 ? ± ? 0.7 42696225 ± 252785764
DGC 3384000 ? ± ? 0.7 133637400 ± 165916659

Table 5: Complete Result on Communication Performance in terms of Test Accuracy and
Communication Bytes. There are two comparisons: one is test accuracy on a given
byte budget, and the other is used bytes to achieve a target test accuracy. Under
the given bytes budget, a ? on the column “Test Acc” refers to the situation that
bytes used in the first iteration of the corresponding algorithm have exceeded the
budget. Under target test accuracy, a ? on the column “Used Bytes” means the
algorithm could not provide a solution that reaches the target accuracy.
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Data set Method Clean 10% 20% 50% 80%

Synthetic(0, 0)

Ditto 0.857 (0.018) 0.856 (0.017) 0.851 (0.020) 0.855 (0.017) 0.837 (0.014)
Global+Mean 0.772 (0.044) 0.558 (0.150) 0.485 (0.161) 0.462 (0.169) 0.446 (0.166)

Global+Median 0.519 (0.140) 0.558 (0.129) 0.604 (0.121) 0.434 (0.156) 0.471 (0.155)
Global+Krum 0.235 (0.109) 0.285 (0.127) 0.318 (0.133) 0.298 (0.131) 0.285 (0.122)

RSA 0.832 (0.026) 0.881 (0.011) 0.879 (0.011) 0.885 (0.012) 0.863 (0.008)
lp-proj-1 0.888 (0.010) 0.868 (0.013) 0.880 (0.011) 0.884 (0.012) 0.869 (0.010)
lp-proj-2 0.887 (0.010) 0.865 (0.014) 0.873 (0.012) 0.875 (0.014) 0.858 (0.012)

Synthetic(1, 1)

Ditto 0.863 (0.018) 0.882 (0.015) 0.884 (0.014) 0.885 (0.012) 0.873 (0.012)
Global+Mean 0.785 (0.051) 0.481 (0.168) 0.440 (0.175) 0.387 (0.171) 0.477 (0.147)

Global+Median 0.525 (0.142) 0.606 (0.124) 0.655 (0.122) 0.428 (0.163) 0.484 (0.166)
Global+Krum 0.224 (0.105) 0.294 (0.135) 0.310 (0.139) 0.396 (0.143) 0.241 (0.149)

RSA 0.844 (0.023) 0.901 (0.013) 0.903 (0.012) 0.906 (0.010) 0.916 (0.005)
lp-proj-1 0.893 (0.014) 0.890 (0.014) 0.907 (0.010) 0.908 (0.010) 0.914 (0.005)
lp-proj-2 0.891 (0.013) 0.890 (0.015) 0.905 (0.011) 0.898 (0.013) 0.907 (0.007)

EMNIST

Ditto 0.907 (0.002) 0.293 (0.004) 0.294 (0.004) 0.289 (0.004) 0.282 (0.003)
Global+Mean 0.770 (0.007) 0.057 (0.013) 0.058 (0.013) 0.061 (0.013) 0.072 (0.015)

Global+Median 0.556 (0.015) 0.057 (0.013) 0.058 (0.013) 0.061 (0.013) 0.072 (0.015)
Global+Krum 0.504 (0.032) 0.057 (0.013) 0.058 (0.013) 0.061 (0.013) 0.072 (0.015)

RSA 0.872 (0.002) 0.293 (0.004) 0.294 (0.004) 0.337 (0.012) 0.431 (0.021)
lp-proj-1 0.906 (0.002) 0.908 (0.002) 0.905 (0.002) 0.908 (0.002) 0.908 (0.002)
lp-proj-2 0.907 (0.002) 0.900 (0.002) 0.902 (0.002) 0.904 (0.002) 0.907 (0.002)

CIFAR

Ditto 0.796 (0.010) 0.501 (0.000) 0.502 (0.001) 0.502 (0.001) 0.511 (0.002)
Global+Mean 0.456 (0.022) 0.106 (0.042) 0.116 (0.044) 0.115 (0.044) 0.150 (0.052)

Global+Median 0.247 (0.035) 0.106 (0.042) 0.116 (0.044) 0.115 (0.044) 0.150 (0.052)
Global+Krum 0.246 (0.038) 0.106 (0.042) 0.116 (0.044) 0.115 (0.044) 0.150 (0.052)

RSA 0.775 (0.010) 0.539 (0.008) 0.574 (0.013) 0.590 (0.016) 0.595 (0.013)
lp-proj-1 0.791 (0.009) 0.786 (0.009) 0.790 (0.009) 0.797 (0.010) 0.795 (0.012)
lp-proj-2 0.792 (0.009) 0.783 (0.009) 0.789 (0.010) 0.791 (0.012) 0.788 (0.011)

MNIST

Ditto 0.986 (0.000) 0.529 (0.011) 0.516 (0.009) 0.958 (0.005) 0.939 (0.005)
Global+Mean 0.942 (0.001) 0.107 (0.042) 0.120 (0.046) 0.113 (0.046) 0.198 (0.055)

Global+Median 0.808 (0.014) 0.861 (0.006) 0.120 (0.046) 0.113 (0.046) 0.175 (0.057)
Global+Krum 0.647 (0.062) 0.668 (0.080) 0.120 (0.046) 0.113 (0.046) 0.168 (0.061)

RSA 0.981 (0.001) 0.980 (0.000) 0.981 (0.001) 0.984 (0.000) 0.985 (0.000)
lp-proj-1 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) 0.984 (0.000) 0.987 (0.000)
lp-proj-2 0.982 (0.000) 0.983 (0.001) 0.982 (0.000) 0.984 (0.000) 0.989 (0.000)

FASHIONMNIST

Ditto 0.977 (0.002) 0.605 (0.020) 0.611 (0.018) 0.630 (0.016) 0.615 (0.013)
Global+Mean 0.967 (0.004) 0.130 (0.047) 0.151 (0.052) 0.153 (0.048) 0.176 (0.057)

Global+Median 0.729 (0.033) 0.739 (0.024) 0.119 (0.045) 0.120 (0.046) 0.162 (0.044)
Global+Krum 0.374 (0.072) 0.413 (0.122) 0.119 (0.045) 0.140 (0.050) 0.192 (0.062)

RSA 0.960 (0.004) 0.685 (0.033) 0.767 (0.036) 0.775 (0.022) 0.827 (0.018)
lp-proj-1 0.975 (0.002) 0.973 (0.002) 0.980 (0.001) 0.976 (0.002) 0.976 (0.002)
lp-proj-2 0.974 (0.002) 0.971 (0.003) 0.979 (0.001) 0.975 (0.002) 0.975 (0.002)

Table 6: Complete Result on Robustness Performance in terms of test accuracy under
same-value attacks. (The number in the parentheses is the corresponding variance.)
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Data set Method Clean 10% 20% 50% 80%

Synthetic(0, 0)

Ditto 0.857 (0.018) 0.853 (0.017) 0.850 (0.017) ? (?) ? (?)
Global+Mean 0.772 (0.044) 0.412 (0.146) 0.324 (0.130) ? (?) ? (?)

Global+Median 0.519 (0.140) 0.421 (0.131) 0.425 (0.139) 0.192 (0.087) ? (?)
Global+Krum 0.280 (0.133) 0.304 (0.139) 0.308 (0.157) 0.281 (0.134) ? (?)

RSA 0.832 (0.026) 0.829 (0.025) 0.834 (0.022) 0.881 (0.012) 0.848 (0.011)
lp-proj-1 0.888 (0.010) 0.884 (0.011) 0.885 (0.010) 0.885 (0.010) 0.863 (0.010)
lp-proj-2 0.887 (0.010) 0.885 (0.010) 0.884 (0.010) ? (?) ? (?)

Synthetic(1, 1)

Ditto 0.863 (0.018) 0.879 (0.015) 0.884 (0.013) ? (?) ? (?)
Global+Mean 0.785 (0.051) 0.292 (0.142) 0.243 (0.134) ? (?) ? (?)

Global+Median 0.525 (0.142) 0.455 (0.140) 0.436 (0.169) 0.168 (0.092) ? (?)
Global+Krum 0.269 (0.134) 0.287 (0.142) 0.326 (0.141) 0.372 (0.155) ? (?)

RSA 0.844 (0.023) 0.856 (0.023) 0.863 (0.020) 0.905 (0.010) 0.920 (0.004)
lp-proj-1 0.893 (0.014) 0.905 (0.011) 0.909 (0.010) 0.905 (0.009) 0.918 (0.005)
lp-proj-2 0.891 (0.013) 0.902 (0.013) 0.908 (0.011) ? (?) ? (?)

EMNIST

Ditto 0.907 (0.002) 0.746 (0.004) 0.748 (0.003) ? (?) ? (?)
Global+Mean 0.770 (0.007) 0.057 (0.013) 0.072 (0.012) ? (?) ? (?)

Global+Median 0.556 (0.015) 0.382 (0.021) 0.392 (0.024) 0.107 (0.005) ? (?)
Global+Krum 0.501 (0.037) 0.452 (0.029) 0.409 (0.031) 0.495 (0.035) ? (?)

RSA 0.872 (0.002) 0.501 (0.007) 0.598 (0.006) 0.905 (0.002) 0.907 (0.002)
lp-proj-1 0.906 (0.002) 0.908 (0.002) 0.910 (0.002) 0.905 (0.002) 0.907 (0.002)
lp-proj-2 0.907 (0.002) 0.907 (0.002) 0.907 (0.002) ? (?) ? (?)

CIFAR

Ditto 0.795 (0.010) 0.746 (0.016) 0.762 (0.015) ? (?) ? (?)
Global+Mean 0.456 (0.022) 0.106 (0.042) 0.128 (0.029) ? (?) ? (?)

Global+Median 0.247 (0.035) 0.265 (0.039) 0.224 (0.018) ? (?) ? (?)
Global+Krum 0.246 (0.038) 0.240 (0.038) 0.290 (0.019) 0.200 (0.059) ? (?)

RSA 0.778 (0.009) 0.646 (0.010) 0.613 (0.013) 0.788 (0.010) 0.791 (0.010)
lp-proj-1 0.790 (0.009) 0.795 (0.010) 0.793 (0.009) 0.801 (0.010) 0.788 (0.011)
lp-proj-2 0.792 (0.009) 0.788 (0.009) 0.786 (0.010) ? (?) ? (?)

MNIST

Ditto 0.986 (0.000) 0.981 (0.000) 0.981 (0.000) ? (?) ? (?)
Global+Mean 0.942 (0.001) 0.188 (0.057) 0.296 (0.061) ? (?) ? (?)

Global+Median 0.859 (0.007) 0.103 (0.041) 0.817 (0.008) 0.206 (0.032) ? (?)
Global+Krum 0.679 (0.076) 0.668 (0.080) 0.723 (0.045) 0.796 (0.029) ? (?)

RSA 0.981 (0.001) 0.954 (0.006) 0.976 (0.001) 0.984 (0.000) 0.984 (0.000)
lp-proj-1 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) 0.984 (0.000) 0.984 (0.000)
lp-proj-2 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) ? (?) ? (?)

FASHIONMNIST

Ditto 0.977 (0.002) 0.973 (0.002) 0.980 (0.001) ? (?) ? (?)
Global+Mean 0.967 (0.004) 0.111 (0.043) 0.119 (0.045) ? (?) ? (?)

Global+Median 0.729 (0.033) 0.214 (0.031) 0.537 (0.038) ? (?) ? (?)
Global+Krum 0.374 (0.072) 0.430 (0.069) 0.511 (0.107) 0.728 (0.065) ? (?)

RSA 0.960 (0.004) 0.891 (0.021) 0.930 (0.011) 0.974 (0.002) 0.977 (0.002)
lp-proj-1 0.975 (0.002) 0.975 (0.002) 0.981 (0.001) 0.976 (0.001) 0.977 (0.002)
lp-proj-2 0.974 (0.002) 0.974 (0.002) 0.981 (0.001) ? (?) ? (?)

Table 7: Complete Result on Robustness Performance in terms of test accuracy under sign-
flipping attacks. (The number in the parentheses is the corresponding variance.)
A ? on the cell means that the corresponding algorithm would collapse under the
given intensity of the adversarial attack and could not return a solution.
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Data set Method Clean 10% 20% 50% 80%

Synthetic(0, 0)

Ditto 0.857 (0.018) 0.651 (0.052) 0.674 (0.056) 0.722 (0.045) 0.710 (0.047)
Global+Mean 0.772 (0.044) 0.174 (0.081) 0.173 (0.080) 0.189 (0.082) 0.246 (0.102)

Global+Median 0.519 (0.140) 0.124 (0.054) 0.143 (0.071) 0.189 (0.083) 0.204 (0.091)
Global+Krum 0.235 (0.109) 0.133 (0.072) 0.148 (0.086) 0.208 (0.105) 0.290 (0.086)

RSA 0.832 (0.026) 0.845 (0.019) 0.851 (0.018) 0.868 (0.017) 0.837 (0.015)
lp-proj-1 0.888 (0.010) 0.876 (0.013) 0.880 (0.011) 0.885 (0.011) 0.862 (0.009)
lp-proj-2 0.887 (0.010) 0.838 (0.023) 0.846 (0.020) 0.861 (0.018) 0.844 (0.011)

Synthetic(1, 1)

Ditto 0.863 (0.018) 0.694 (0.060) 0.741 (0.051) 0.762 (0.032) 0.795 (0.024)
Global+Mean 0.785 (0.051) 0.194 (0.089) 0.188 (0.101) 0.196 (0.090) 0.295 (0.143)

Global+Median 0.525 (0.142) 0.132 (0.059) 0.124 (0.078) 0.231 (0.122) 0.250 (0.144)
Global+Krum 0.224 (0.105) 0.157 (0.096) 0.159 (0.084) 0.248 (0.116) 0.268 (0.121)

RSA 0.844 (0.023) 0.886 (0.014) 0.887 (0.014) 0.885 (0.015) 0.902 (0.006)
lp-proj-1 0.893 (0.014) 0.898 (0.013) 0.910 (0.011) 0.905 (0.011) 0.916 (0.005)
lp-proj-2 0.891 (0.013) 0.868 (0.020) 0.887 (0.016) 0.878 (0.013) 0.893 (0.008)

EMNIST

Ditto 0.907 (0.002) 0.649 (0.004) 0.673 (0.004) 0.681 (0.006) 0.703 (0.006)
Global+Mean 0.770 (0.007) 0.068 (0.005) 0.063 (0.005) 0.060 (0.008) 0.059 (0.009)

Global+Median 0.556 (0.015) 0.061 (0.001) 0.079 (0.002) 0.081 (0.002) 0.062 (0.011)
Global+Krum 0.504 (0.032) 0.177 (0.005) 0.164 (0.009) 0.181 (0.006) 0.180 (0.006)

RSA 0.872 (0.002) 0.782 (0.003) 0.786 (0.003) 0.820 (0.002) 0.844 (0.003)
lp-proj-1 0.906 (0.002) 0.899 (0.002) 0.903 (0.002) 0.905 (0.002) 0.907 (0.002)
lp-proj-2 0.907 (0.002) 0.862 (0.002) 0.862 (0.002) 0.881 (0.002) 0.883 (0.002)

CIFAR

Ditto 0.796 (0.010) 0.668 (0.011) 0.674 (0.011) 0.658 (0.014) 0.604 (0.021)
Global+Mean 0.456 (0.022) 0.139 (0.010) 0.151 (0.038) 0.146 (0.035) 0.153 (0.033)

Global+Median 0.247 (0.035) 0.112 (0.011) 0.136 (0.024) 0.159 (0.034) 0.144 (0.009)
Global+Krum 0.246 (0.038) 0.160 (0.008) 0.166 (0.013) 0.156 (0.007) 0.169 (0.017)

RSA 0.775 (0.010) 0.731 (0.011) 0.736 (0.010) 0.757 (0.009) 0.772 (0.011)
lp-proj-1 0.791 (0.009) 0.790 (0.008) 0.791 (0.010) 0.797 (0.009) 0.795 (0.010)
lp-proj-2 0.792 (0.009) 0.775 (0.011) 0.779 (0.010) 0.784 (0.010) 0.776 (0.011)

MNIST

Ditto 0.986 (0.000) 0.931 (0.002) 0.928 (0.002) 0.932 (0.003) 0.937 (0.002)
Global+Mean 0.942 (0.001) 0.460 (0.027) 0.272 (0.040) 0.186 (0.027) 0.210 (0.043)

Global+Median 0.808 (0.014) 0.862 (0.006) 0.141 (0.038) 0.114 (0.039) 0.207 (0.062)
Global+Krum 0.647 (0.062) 0.669 (0.062) 0.770 (0.012) 0.778 (0.013) 0.821 (0.013)

RSA 0.981 (0.001) 0.957 (0.001) 0.963 (0.001) 0.979 (0.001) 0.982 (0.000)
lp-proj-1 0.982 (0.000) 0.981 (0.000) 0.982 (0.001) 0.983 (0.000) 0.984 (0.000)
lp-proj-2 0.982 (0.000) 0.978 (0.000) 0.980 (0.000) 0.984 (0.000) 0.987 (0.000)

FASHIONMNIST

Ditto 0.977 (0.002) 0.886 (0.015) 0.880 (0.014) 0.873 (0.017) 0.895 (0.007)
Global+Mean 0.967 (0.004) 0.167 (0.041) 0.165 (0.040) 0.170 (0.050) 0.174 (0.034)

Global+Median 0.729 (0.033) 0.650 (0.046) 0.346 (0.018) 0.192 (0.035) 0.192 (0.051)
Global+Krum 0.374 (0.072) 0.437 (0.117) 0.468 (0.067) 0.494 (0.060) 0.362 (0.012)

RSA 0.960 (0.004) 0.947 (0.007) 0.959 (0.002) 0.964 (0.002) 0.969 (0.002)
lp-proj-1 0.975 (0.002) 0.973 (0.002) 0.978 (0.001) 0.977 (0.001) 0.974 (0.002)
lp-proj-2 0.974 (0.002) 0.964 (0.003) 0.973 (0.001) 0.968 (0.002) 0.972 (0.002)

Table 8: Complete Result on Robustness Performance in terms of test accuracy under
Gaussian attacks. (The number in the parentheses is the corresponding variance.)

74



A Random Projection Approach to Personalized Federated Learning

Data set Method Clean 2% 5% 10% 20%

Synthetic(0, 0)

Ditto 0.857 (0.018) 0.853 (0.019) 0.851 (0.019) 0.749 (0.068) 0.342 (0.123)
Global+Mean 0.772 (0.044) 0.484 (0.163) 0.304 (0.134) 0.257 (0.129) 0.141 (0.059)

Global+Median 0.519 (0.140) 0.539 (0.141) 0.552 (0.130) 0.322 (0.118) 0.435 (0.133)
Global+Krum 0.280 (0.133) 0.288 (0.130) 0.290 (0.134) 0.291 (0.156) 0.300 (0.146)

RSA 0.832 (0.026) 0.850 (0.019) 0.865 (0.016) 0.876 (0.012) 0.875 (0.011)
lp-proj-1 0.888 (0.010) 0.886 (0.011) 0.884 (0.011) 0.884 (0.011) 0.881 (0.011)
lp-proj-2 0.887 (0.010) 0.886 (0.011) 0.881 (0.012) 0.868 (0.015) 0.866 (0.014)

Synthetic(1, 1)

Ditto 0.863 (0.018) 0.863 (0.019) 0.853 (0.023) 0.810 (0.045) 0.401 (0.184)
Global+Mean 0.785 (0.051) 0.432 (0.156) 0.253 (0.124) 0.208 (0.111) 0.146 (0.090)

Global+Median 0.525 (0.142) 0.534 (0.151) 0.554 (0.144) 0.274 (0.132) 0.373 (0.152)
Global+Krum 0.269 (0.134) 0.277 (0.129) 0.300 (0.145) 0.249 (0.140) 0.290 (0.163)

RSA 0.844 (0.023) 0.864 (0.019) 0.874 (0.016) 0.894 (0.013) 0.903 (0.010)
lp-proj-1 0.893 (0.014) 0.889 (0.013) 0.901 (0.012) 0.904 (0.011) 0.914 (0.009)
lp-proj-2 0.891 (0.013) 0.896 (0.012) 0.893 (0.012) 0.895 (0.013) 0.899 (0.013)

EMNIST

Ditto 0.907 (0.002) 0.761 (0.003) 0.778 (0.005) 0.859 (0.002) ? (?)
Global+Mean 0.770 (0.007) 0.179 (0.024) 0.110 (0.019) 0.150 (0.019) ? (?)

Global+Median 0.556 (0.015) 0.549 (0.013) 0.564 (0.015) 0.433 (0.012) 0.419 (0.011)
Global+Krum 0.501 (0.037) 0.454 (0.038) 0.449 (0.022) 0.329 (0.030) 0.321 (0.031)

RSA 0.872 (0.002) 0.832 (0.002) 0.825 (0.002) 0.871 (0.002) 0.878 (0.002)
lp-proj-1 0.906 (0.002) 0.909 (0.002) 0.910 (0.002) 0.906 (0.002) 0.905 (0.002)
lp-proj-2 0.907 (0.002) 0.907 (0.002) 0.907 (0.002) 0.908 (0.002) 0.906 (0.002)

CIFAR

Ditto 0.795 (0.010) 0.750 (0.016) 0.749 (0.015) 0.739 (0.009) 0.765 (0.011)
Global+Mean 0.456 (0.022) 0.102 (0.041) 0.139 (0.033) 0.153 (0.025) 0.155 (0.038)

Global+Median 0.247 (0.035) 0.252 (0.023) 0.247 (0.025) 0.292 (0.015) 0.288 (0.011)
Global+Krum 0.246 (0.038) 0.250 (0.045) 0.250 (0.027) 0.301 (0.046) 0.222 (0.019)

RSA 0.778 (0.009) 0.719 (0.011) 0.753 (0.010) 0.739 (0.013) 0.778 (0.011)
lp-proj-1 0.790 (0.009) 0.795 (0.010) 0.793 (0.008) 0.795 (0.010) 0.801 (0.010)
lp-proj-2 0.792 (0.009) 0.794 (0.009) 0.794 (0.008) 0.786 (0.009) 0.789 (0.009)

MNIST

Ditto 0.986 (0.000) 0.983 (0.000) 0.982 (0.000) 0.982 (0.001) ? (?)
Global+Mean 0.942 (0.001) 0.832 (0.007) 0.712 (0.025) 0.627 (0.047) 0.514 (0.028)

Global+Median 0.859 (0.007) 0.860 (0.006) 0.862 (0.006) 0.857 (0.007) 0.839 (0.006)
Global+Krum 0.679 (0.076) 0.697 (0.078) 0.659 (0.068) 0.668 (0.080) 0.697 (0.046)

RSA 0.981 (0.001) 0.978 (0.001) 0.975 (0.001) 0.979 (0.001) 0.979 (0.001)
lp-proj-1 0.982 (0.000) 0.983 (0.000) 0.982 (0.000) 0.982 (0.000) 0.982 (0.001)
lp-proj-2 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) 0.982 (0.001)

FASHIONMNIST

Ditto 0.977 (0.002) 0.972 (0.002) 0.973 (0.002) 0.964 (0.004) ? (?)
Global+Mean 0.967 (0.004) 0.208 (0.070) 0.181 (0.070) 0.161 (0.055) ? (?)

Global+Median 0.729 (0.033) 0.739 (0.036) 0.720 (0.025) 0.721 (0.029) 0.840 (0.037)
Global+Krum 0.374 (0.072) 0.480 (0.082) 0.488 (0.100) 0.401 (0.072) 0.581 (0.126)

RSA 0.960 (0.004) 0.969 (0.003) 0.959 (0.004) 0.965 (0.003) 0.976 (0.002)
lp-proj-1 0.975 (0.002) 0.974 (0.002) 0.973 (0.002) 0.974 (0.002) 0.980 (0.001)
lp-proj-2 0.974 (0.002) 0.973 (0.002) 0.973 (0.002) 0.975 (0.002) 0.981 (0.001)

Table 9: Complete Result on Robustness Performance in terms of test accuracy under data-
poison attacks. (The number in the parentheses is the corresponding variance.)
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Figure 6: Complete results of performance fairness of competing methods. (The point closer
to the bottom right corner is better.)

C.6 Complete Results on Accuracy and Performance Fairness Trade-off

Figure 6 shows complete results for accuracy and performance fairness trade-off on all the
data sets used for numerical experiments. lp-proj-1 and lp-proj-2 are comparable to
other state-of-the-art methods.

C.7 Further Extensions

C.7.1 Data Volume Skewness

In the main paper, we consider the statistical heterogeneity with respect to label skewness,
i.e., we distribute the data set among clients so that each client only contains partial classes
of the data in multi-classification problems. In practice, there may be another source of
statistical heterogeneity, namely data volume skewness. Here we distribute the synthetic
data set among N = 100 clients in a data volume unbalanced fashion (Synthetic(0,
0)-unbalance), i.e., the number of samples among clients follows a power law (Li et al.,
2020b).

Similar numerical experiments as in the main paper are also performed on the unbalanced
data set. The training curves are shown in Figure 8. From the numerical results, we can
see that lp-proj-1and lp-proj-2are also well-performed personalized federated learning
methods.
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Figure 7: Complete results of performance fairness in terms of variance of test losses versus
the corresponding test loss of competing methods. (The point closer to the bottom
left corner is better.)
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Figure 8: Personalization performance of competing methods on data-volume-skewed data
set.

Personalization and Fairness Performance Table 10 shows the personalization and
performance fairness comparison of different state-of-the-art algorithms on the synthetic data-
volume-skewed data set. From the comparison, we can see that our proposed methods enjoy
lower training loss (a reduction of at least 50%) and higher test accuracy (an improvement
of at least 6%), together with smaller corresponding variance (a reduction of at least 40%),
i.e., better performance in terms of performance fairness.
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Method Train Loss Train Loss Var Test Acc Test Acc Var

Ditto 0.3860 ± 0.0033 0.1027 ± 0.0239 0.8576 ± 0.0014 0.0230 ± 0.0025
pFedMe 0.3875 ± 0.0018 0.1213 ± 0.0141 0.8587 ± 0.0010 0.0257 ± 0.0014

Per-fedavg 0.6141 ± 0.0076 0.2197 ± 0.0035 0.7732 ± 0.0095 0.0498 ± 0.0057
FedAvg 0.7502 ± 0.0107 0.3246 ± 0.0096 0.7522 ± 0.0022 0.0655 ± 0.0030

local 0.3070 ± 0.0059 0.0806 ± 0.0440 0.8733 ± 0.0013 0.0206 ± 0.0032
lp-proj-1 0.1556 ± 0.0011 0.0095 ± 0.0033 0.9253 ± 0.0007 0.0122 ± 0.0007
lp-proj-2 0.1664 ± 0.0014 0.0131 ± 0.0050 0.9230 ± 0.0007 0.0122 ± 0.0010

RSA 0.4440 ± 0.0123 0.1328 ± 0.0041 0.8374 ± 0.0075 0.0314 ± 0.0024

Table 10: Personalization and fairness performance on data volume-skewed data set in terms
of train loss and test accuracy and their corresponding variance.

Method Bytes Budget Test Acc Target Acc Used Bytes

FedAvg 194700 0.566 ± 0.023 0.6 250100 ± 18300
Sketch 194700 0.484 ± 0.085 0.6 511392 ± 272179

lp-proj-1 194700 0.899 ± 0.002 0.6 4620 ± 0
lp-proj-2 194700 0.898 ± 0.002 0.6 4620 ± 0
LBGM 194700 0.457 ± 0.020 0.6 429996 ± 56411
QSGD 194700 0.587 ± 0.072 0.6 248835 ± 93494
DGC 194700 0.735 ± 0.075 0.6 184320 ± 9145

Table 11: Communication efficiency of Different methods on the data-volume-skewed data
set in terms of test accuracy and communication bytes.

Communication Efficiency Table 11 shows the communication efficiency comparison of
different methods on the data-volume-skewed data set. Under the given bytes budget, our
methods show an improvement in terms of test accuracy with at least 32% compared with
the best SOTA method.

Robustness Table 12, 13, 14 and 15 show the robustness performance in terms of test
accuracy of different state-of-the-art methods. From the comparison, we can see that our
proposed methods enjoy stable performance under various adversarial attacks.

C.7.2 Data Poisoning

In the main paper, we consider three kinds of adversarial attacks: same value, sign flip and
Gaussian attack, where all of them can be categorized as model update poisoning attacks.
For extension, we consider a special case of the data poisoning attack.

• Data poisoning attacks: Under the data-poisoning attacks, the training samples
on the corrupted clients are poisoned with flipped (if binary) or uniformly random
noisy labels. Furthermore, in the communication period, these clients would scale
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Method Clean 10% 20% 50% 80%

Ditto 0.857 (0.024) 0.860 (0.021) 0.860 (0.021) 0.837 (0.019) 0.846 (0.016)
Global+Mean 0.752 (0.069) 0.659 (0.145) 0.594 (0.154) 0.572 (0.144) 0.633 (0.126)

Global+Median 0.640 (0.117) 0.667 (0.125) 0.685 (0.122) 0.623 (0.130) 0.673 (0.147)
Global+Krum 0.426 (0.132) 0.375 (0.121) 0.439 (0.097) 0.481 (0.095) 0.431 (0.082)

RSA 0.839 (0.031) 0.919 (0.013) 0.913 (0.015) 0.906 (0.012) 0.910 (0.007)
lp-proj-1 0.926 (0.011) 0.913 (0.014) 0.924 (0.012) 0.916 (0.009) 0.924 (0.006)
lp-proj-2 0.924 (0.011) 0.885 (0.016) 0.903 (0.014) 0.883 (0.011) 0.892 (0.010)

Table 12: Robustness performance in terms of test accuracy on the data-volume-skewed
data set under same-value attack.

Method Clean 10% 20% 50% 80%

Ditto 0.857 (0.024) 0.860 (0.023) 0.861 (0.021) ? (?) ? (?)
Global+Mean 0.752 (0.069) 0.587 (0.146) 0.429 (0.120) ? (?) ? (?)

Global+Median 0.640 (0.117) 0.605 (0.138) 0.568 (0.128) 0.115 (0.020) ? (?)
Global+Krum 0.426 (0.132) 0.373 (0.104) 0.301 (0.125) 0.564 (0.122) ? (?)

RSA 0.839 (0.031) 0.825 (0.035) 0.830 (0.036) 0.913 (0.011) 0.921 (0.007)
lp-proj-1 0.926 (0.011) 0.926 (0.013) 0.926 (0.012) 0.916 (0.009) 0.921 (0.007)
lp-proj-2 0.924 (0.011) 0.923 (0.013) 0.923 (0.012) ? (?) ? (?)

Table 13: Robustness performance in terms of test accuracy on the data-volume-skewed
data set under sign-flipping attack.

Method Clean 10% 20% 50% 80%

Ditto 0.857 (0.024) 0.707 (0.073) 0.679 (0.058) 0.693 (0.070) 0.703 (0.058)
Global+Mean 0.752 (0.069) 0.331 (0.055) 0.349 (0.054) 0.436 (0.077) 0.598 (0.103)

Global+Median 0.640 (0.117) 0.254 (0.031) 0.143 (0.063) 0.371 (0.057) 0.573 (0.056)
Global+Krum 0.426 (0.132) 0.128 (0.093) 0.158 (0.043) 0.258 (0.082) 0.465 (0.076)

RSA 0.839 (0.031) 0.851 (0.023) 0.866 (0.020) 0.848 (0.014) 0.875 (0.012)
lp-proj-1 0.926 (0.011) 0.916 (0.012) 0.919 (0.013) 0.917 (0.011) 0.926 (0.007)
lp-proj-2 0.924 (0.011) 0.844 (0.028) 0.871 (0.019) 0.846 (0.020) 0.855 (0.020)

Table 14: Robustness performance in terms of test accuracy on the data-volume-skewed
data set under Gaussian attack.

Method Clean 2% 5% 10% 20%

Ditto 0.857 (0.024) 0.853 (0.020) 0.846 (0.022) 0.761 (0.049) 0.322 (0.131)
Global+Mean 0.752 (0.069) 0.618 (0.160) 0.398 (0.104) 0.234 (0.119) 0.275 (0.054)

Global+Median 0.640 (0.117) 0.652 (0.122) 0.661 (0.122) 0.427 (0.128) 0.443 (0.128)
Global+Krum 0.426 (0.132) 0.411 (0.126) 0.494 (0.117) 0.444 (0.145) 0.442 (0.151)

RSA 0.839 (0.031) 0.848 (0.023) 0.871 (0.026) 0.901 (0.015) 0.911 (0.013)
lp-proj-1 0.926 (0.011) 0.916 (0.012) 0.919 (0.013) 0.922 (0.012) 0.915 (0.013)
lp-proj-2 0.924 (0.011) 0.923 (0.012) 0.902 (0.012) 0.883 (0.017) 0.876 (0.017)

Table 15: Robustness performance in terms of test accuracy on the data-volume-skewed
data set under data poisoning attack.
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their transmitted messages to make dominate the aggregate update. In particular, the
scaling parameter is randomly sampled from N (0, 202).

Table 9 shows complete comparison of different state-of-the-art methods under data-poison
attacks. It is worth noting that the data poisoning attack is a rather strong attack, hence
the fraction of malicious workers we consider range from 2% to 20%, and we find that
on the EMNIST and MNIST data set, Ditto and Global+Mean would explode and fail
to return a solution when the fraction of malicious workers reaches 20%. On the other
hand, lp-proj-1and lp-proj-2always enjoy stable performance and are insensitive to the
intensity of the attack.

C.7.3 Collaboration Fairness

In the main paper, our consideration of fairness is performance fairness, i.e., the variance of
test accuracy across the system. According to Zhou et al. (2021), there are three kinds of
fairness in federated learning, i.e., performance fairness, collaboration fairness and model
fairness. Here we consider collaboration fairness, whose definition is as follows.

• Collaboration Fairness (Lyu et al., 2020): In a federated system, a high-contribution
participant should be rewarded with a better-performing local model than a low-contribution
participant. Mathematically, fairness can be quantified by the correlation coefficient
between the contributions of participants and their respective final model accuracies.
Following Lyu et al. (2020), we use the test accuracy under pure local training for each
client to quantify their respective contributions.

Figure 9 shows the comparison of collaboration fairness of different methods. Note that the
point that is closer to the top right corner implies the corresponding method enjoys better
performance under the accuracy-fairness trade-off. We can find that our proposed methods
enjoy comparable performance compared with other SOTA methods.

C.7.4 Orthogonalization of the Projection Matrix

In the main paper, we assume the projection matrix P is orthogonal throughout the
theoretical analysis, while in practice, explicitly orthogonalizing the matrix P may bring
computational burden as the full dimension d of the model is usually large. But the
dilemma can be circumvented thanks to the approximate orthogonality of high dimensional
random vectors, which fact is also taken advantage of in the construction of our projection
matrix. Through numerical experiments, we show that by using high dimensional random
vectors to construct the projection matrix, model accuracy is hardly affected by explicit
orthogonalization or not. Table 16 shows the comparison of model accuracies on the MNIST
data set with orthogonalization or not. From the comparison, we can see that the difference in
model accuracy between the orthogonal projection matrix and the non-orthogonal projection
matrix is so tiny that can be ignored in practice. Therefore, we can safely use the random
projection matrix directly to proceed with the algorithm.

C.7.5 Dimension of the Random Subspace

In our proposed algorithm, we need to generate a dsub × d random projection matrix P ,
where dsub is the dimension of the projection random subspace. In our theoretical analysis,
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Figure 9: Collaboration Fairness of lp-proj-1, lp-proj-2 with other methods. (The point
closer to the top right corner is the better.)

Method Orthogonalization Train Loss Test Acc

lp-proj-1
× 4.027E-03 (3.555E-06) 9.822E-01 (4.281E-04)
X 4.026E-03 (3.545E-06) 9.822E-01 (4.281E-04)

lp-proj-2
× 1.778E-02 (1.015E-04) 9.817E-01 (4.465E-04)
X 1.779E-02 (1.047E-04) 9.819E-01 (4.334E-04)

Table 16: Comparison of model accuracies on the MNIST data set with explicit orthogonal-
ization or not.

we show that the convergence of our method only has mild dependence on the projection
dimension, for both convex and non-convex but smooth cases, which provides huge flexibility
to the choice of the dimension of the random subspace.

Here we verify this finding by numerical experiment on the EMNIST data set with a
2-hidden layer neural network. We set the projection dimension as 80 in the main paper.
For comparison, we let the dimension of the random projection subspace range from 40 to
200, and track the corresponding training losses and test accuracies. From Table 17, we can
see that as dsub increases, there are tiny changes in the training loss and test accuracy and
their corresponding variance.
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Method dsub Train Loss Test Acc

lp-proj-1

40 0.0451 (0.0039) 0.9082 (0.0016)
80 0.0473 (0.0043) 0.9064 (0.0017)
120 0.0370 (0.0037) 0.9058 (0.0018)
160 0.0407 (0.0040) 0.9076 (0.0016)
200 0.0464 (0.0043) 0.9070 (0.0016)

lp-proj-2

40 0.0462 (0.0040) 0.9074 (0.0017)
80 0.0447 (0.0039) 0.9072 (0.0017)
120 0.0459 (0.0038) 0.9071 (0.0016)
160 0.0454 (0.0037) 0.9074 (0.0016)
200 0.0487 (0.0040) 0.9066 (0.0017)

Table 17: Comparison of model accuracies on the EMNIST data set with different dimensions
of the random projection subspace.

In view of this, we claim that the dimension of the random projection subspace dsub

can be determined by the trade-off between full model size and communication budget in
practice, and this feature would significantly improve communication efficiency.
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Algorithms. Springer Berlin, Heidelberg, 1993.

Tim Hoheisel, Maxime Laborde, and Adam Oberman. A regularization interpretation of the
proximal point method for weakly convex functions. Journal of Dynamics & Games, 7(1):
79–96, 2020.

Zeou Hu, Kiarash Shaloudegi, Guojun Zhang, and Yaoliang Yu. Federated learning meets
multi-objective optimization. IEEE Transactions on Network Science and Engineering, 9
(4):2039–2051, 2022.

Wei Huang, Tianrui Li, Dexian Wang, Shengdong Du, and Junbo Zhang. Fairness and
accuracy in federated learning. arXiv preprint arXiv:2012.10069, 2020.

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong
Zhang. Personalized cross-silo federated learning on non-iid data. In AAAI Conference
on Artificial Intelligence (AAAI), 2021.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and Raman
Arora. Communication-efficient distributed SGD with sketching. In Advances in Neural
Information Processing Systems (NeurIPS), pages 13142–13152, 2019.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating machine learning: Poisoning attacks and countermeasures for regression
learning. In IEEE Symposium on Security and Privacy (SP), pages 19–35. IEEE, 2018.
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Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Franccoise Beaufays,
and Daniel Ramage. Federated evaluation of on-device personalization. arXiv preprint
arXiv:1910.10252, 2019b.

Lin Wang, Zhichao Wang, Sai Praneeth Karimireddy, and Xiaoying Tang. Fedeba+:
Towards fair and effective federated learning via entropy-based model. arXiv preprint
arXiv:2301.12407, 2023.

Ruiyuan Wu, Anna Scaglione, Hoi-To Wai, Nurullah Karakoc, Kari Hreinsson, and Wing-Kin
Ma. Federated block coordinate descent scheme for learning global and personalized models.
In AAAI Conference on Artificial Intelligence (AAAI), volume 35, pages 10355–10362,
2021.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli.
Is feature selection secure against training data poisoning? In International Conference
on Machine Learning (ICML), pages 1689–1698. PMLR, 2015.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd.
arXiv preprint arXiv:1802.10116, 2018.

Xinyi Xu and Lingjuan Lyu. A reputation mechanism is all you need: Collaborative fairness
and adversarial robustness in federated learning. In ICML Workshop on Federated Learning
for User Privacy and Data Confidentiality, 2021.

Kunda Yan, Sen Cui, Abudukelimu Wuerkaixi, Jingfeng Zhang, Bo Han, Gang Niu, Masashi
Sugiyama, and Changshui Zhang. Balancing similarity and complementarity for federated
learning. In International Conference on Machine Learning (ICML), 2024.

Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and Dacheng Tao. Heterogeneous federated
learning: State-of-the-art and research challenges. ACM Computing Surveys, 56(3):1–44,
2023a.

87



Han, Li, Lin, and Zhang

Rui Ye, Zhenyang Ni, Fangzhao Wu, Siheng Chen, and Yanfeng Wang. Personalized federated
learning with inferred collaboration graphs. In International Conference on Machine
Learning (ICML), pages 39801–39817. PMLR, 2023b.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust
distributed learning: Towards optimal statistical rates. In International Conference on
Machine Learning (ICML), pages 5650–5659. PMLR, 2018.

Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit Niyato, and
Qiang Yang. A fairness-aware incentive scheme for federated learning. In AAAI/ACM
Conference on AI, Ethics, and Society, pages 393–399, 2020a.

Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local
adaptation. arXiv preprint arXiv:2002.04758, 2020b.

Yulin Zhao, Hualin Zhou, and Zhiguo Wan. SuperFL: Privacy-preserving federated learning
with efficiency and robustness. Cryptology ePrint Archive, 2024.

Zirui Zhou, Lingyang Chu, Changxin Liu, Lanjun Wang, Jian Pei, and Yong Zhang. Towards
fair federated learning. In ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pages 4100–4101, 2021.

Shengkun Zhu, Jinshan Zeng, Sheng Wang, Yuan Sun, Xiaodong Li, Yuan Yao, and Zhiyong
Peng. On ADMM in heterogeneous federated learning: Personalization, robustness, and
fairness. arXiv preprint arXiv:2407.16397, 2024.

88


	Introduction
	Related Work
	Personalized Federated Learning
	Communication-Efficient Federated Learning
	Robust Federated Learning
	Fairness in Federated Learning

	Methodology
	The Algorithm
	Multiple Benefits of the Algorithm
	Communication Efficiency
	Robustness and Fairness


	Theoretical Analysis
	Convergence Analysis
	Convergence for the Strongly Convex Case
	Convergence for the Smooth Case
	Refined Convergence under Careful Parameter Tuning

	Robustness and Fairness

	Numerical Experiments
	Experimental Setup
	Personalization Accuracy Performance
	Communication Efficiency
	Robustness
	Fairness

	Large-Scale Application
	Block-Diagonal Projection
	Numerical Performance on ImageNet

	Conclusion
	Convergence of lp-proj for p=2 
	Some Useful Results
	Proof of Theorem 9
	Proof of Theorem 13
	Proof of Auxiliary Results 
	Proof of Theorem 14
	Proof of Theorem 15

	Federated Linear Regression
	Solutions of Different Methods
	Test Loss
	Robustness
	The Simplified Setting
	Same-value Attacks
	Sign-flipping Attacks
	Gaussian Attacks

	Fairness

	Experimental Details
	Competing Methods
	Parameter Settings
	Complete Results on Personalization and Fairness Performance
	Complete Results on Communication Efficiency
	Complete Results on Robustness
	Complete Results on Accuracy and Performance Fairness Trade-off
	Further Extensions
	Data Volume Skewness
	Data Poisoning
	Collaboration Fairness
	Orthogonalization of the Projection Matrix
	Dimension of the Random Subspace



