
Journal of Machine Learning Research 25 (2024) 1-73 Submitted 2/23; Revised 12/23; Published 8/24

Learning Dynamic Mechanisms in Unknown Environments:
A Reinforcement Learning Approach

Shuang Qiu∗ masqiu@ust.hk
The Hong Kong University of Science and Technology
Hong Kong, China

Boxiang Lyu∗ blyu@chicagobooth.edu
The University of Chicago
Chicago, IL, USA

Qinglin Meng∗ meng160@purdue.edu
Purdue University
West Lafayette, IN, USA

Zhaoran Wang zhaoranwang@gmail.com
Northwestern University
Evanston, IL, USA

Zhuoran Yang zhuoran.yang@yale.edu
Yale University
New Haven, CT, USA

Michael I. Jordan jordan@cs.berkeley.edu

University of California

Berkeley, CA, USA

Editor: Tor Lattimore

Abstract

Dynamic mechanism design studies how mechanism designers should allocate resources
among agents in a time-varying environment. We consider the problem where the agents
interact with the mechanism designer according to an unknown Markov Decision Process
(MDP), where agent rewards and the mechanism designer’s state evolve according to an
episodic MDP with unknown reward functions and transition kernels. We focus on the online
setting with linear function approximation and propose novel learning algorithms to recover
the dynamic Vickrey-Clarke-Grove (VCG) mechanism over multiple rounds of interaction. A
key contribution of our approach is incorporating reward-free online Reinforcement Learning
(RL) to aid exploration over a rich policy space to estimate prices in the dynamic VCG

mechanism. We show that the regret of our proposed method is upper bounded by Õ(T 2/3)
and further devise a lower bound to show that our algorithm is efficient, incurring the
same Ω(T 2/3) regret as the lower bound, where T is the total number of rounds. Our
work establishes the regret guarantee for online RL in solving dynamic mechanism design
problems without prior knowledge of the underlying model.

Keywords: Mechanism Design, Dynamic VCG Mechanism, Reinforcement Learning

∗. Equal contribution. Random order.

c©2024 Shuang Qiu, Boxiang Lyu, Qinglin Meng, Zhaoran Wang, Zhuoran Yang, and Michael I. Jordan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0159.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0159.html

Qiu, Lyu, Meng, Wang, Yang, and Jordan

1. Introduction

Mechanism design is a branch of economics studying the allocation of goods among rational
agents (Myerson, 1989). Its sub-field, dynamic mechanism design, focuses on the setting
where the environment, such as agents’ preferences, may vary with time (Bergemann
and Välimäki, 2019). It has attracted significant research interest from economists and
computer scientists (Pavan et al., 2014; Parkes and Singh, 2003) over decades. Many real-
world problems, such as Uber’s surge pricing, the wholesale energy market, and congestion
control, have all been studied under this framework (Chen and Sheldon, 2016; Bejestani and
Annaswamy, 2014; Barrera and Garcia, 2014). However, existing work usually requires prior
knowledge of key parameters or functionals in the problem, such as the optimal policy or the
agents’ valuations of goods (Parkes and Singh, 2003; Pavan et al., 2009). Such requirements
may be unrealistic in real life.

A promising emerging research direction is learning dynamic mechanisms from repeated
interactions with the environment. Drawing inspiration from Bergemann and Välimäki
(2010) and Parkes and Singh (2003), we propose the first algorithm that can learn a
dynamic mechanism from repeated interactions via reinforcement learning (RL) with no
prior knowledge of the problem.

As a first attempt, we focus on learning a dynamic generalization of the classic Vickrey-
Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1979). More specifi-
cally, we consider the case where the interaction between a group of agents and a single seller
is modeled as an episodic linear Markov Decision Process (MDP) (Jin et al., 2020b; Yang and
Wang, 2019; Jin et al., 2020c), where the seller takes actions to determine the allocation of a
class of scarce resources among agents. Our task is to learn an ideal mechanism from repeated
interactions via online RL (Jin et al., 2020b; Cai et al., 2019). The mechanism we consider
implements the policy that maximizes social welfare and charges each agent according to
the celebrated Clarke pivot rule (Clarke, 1971). A slight variant of the mechanism has been
discussed under known MDP dynamics in Parkes (2007), and we describe the mechanism in
full detail in Section 2.

A key challenge we resolve is estimating the VCG price without prior knowledge of
the MDP. In particular, the VCG price charged to each agent i is characterized by the
externality of that agent, that is, the difference between the maximum social welfare of
the whole group and that when agent i is absent (Karlin and Peres, 2017; Groves, 1979).
In other words, it is the loss that an agent’s participation incurs on other agents’ welfare.
Estimating the VCG price in our dynamic setting requires learning the optimal policy of the
fictitious problem where agent i is absent. Such a policy is never executed by the seller, and
thus it is challenging to assess its uncertainty from data. Existing methods target to estimate
the optimal policy well. However, they have no guarantees on how well they estimate the
fictitious policies. Therefore it is impossible to accurately estimate VCG prices via a direct
application of prior online RL algorithms (Jin et al., 2020b; Cai et al., 2019; Zhou et al.,
2021a).

To address this challenge, our algorithm incorporates a reward-free exploration subroutine
to ensure sufficient coverage over the policy space, thereby reducing the uncertainty of all
policies, ensuring that we can even reduce the uncertainty about the fictitious policies (Jin
et al., 2020a; Wang et al., 2020; Qiu et al., 2021; Zhang et al., 2021; Kaufmann et al., 2021).

2

Learning Dynamic Mechanisms in Unknown Environments

However, such a reward-free approach comes at a price—our proposed approach attains
Õ(T 2/3) regret in terms of social welfare, agent utility, and seller utility, as opposed to the
common Õ(T 1/2) regret in online RL (Jin et al., 2020b). Moreover, we further derive a
matching lower bound for the regrets, showing that our algorithm is minimax optimal up to
multiplicative factors of problem-dependent terms.

To summarize, our contributions are threefold. First, we develop the first reinforcement
learning algorithm that can recover an optimal dynamic mechanism with no prior knowledge
of the problem. In particular, our algorithm is separated into two phases, namely, exploration
and exploitation. In the exploration phase, we propose to learn the underlying model via
reward-free exploration. Then, in the exploitation phase, the algorithm executes a data-
driven policy by solving a planning problem using the collected dataset. Moreover, our
algorithm is able to handle large state spaces by incorporating linear function approximation.
Second, we prove that the proposed algorithm achieves sublinear regret upper bounds in
terms of the various regret notions, such as the welfare regret and individual regret of
the seller and buyers. Our algorithm is proven to approximately satisfy the three key
mechanism design desiderata — truthfulness, individual rationality, and efficiency. Finally,
we demonstrate that the Õ(T 2/3) regret has the minimax optimal dependency in T by
establishing a matching regret lower bound. To our knowledge, we seem to establish the
first provably efficient reinforcement learning algorithm for learning a dynamic mechanism.

1.1 Related Works

There is a wealth of literature on dynamic mechanism design. Parkes and Singh (2003);
Parkes et al. (2004) are two of the earliest works that analyze dynamic mechanism design
from an MDP perspective, and the proposed mechanism is applied to a real-world problem
in Friedman and Parkes (2003). Bergemann and Välimäki (2006) generalize the VCG
mechanism based on the marginal contribution of each agent and derives a mechanism that is
truth-telling in every period. Bapna and Weber (2005) focus on the dynamic auction setting
and formulate the problem as a multi-arm bandit problem. Athey and Segal (2013) adapt
the d’Aspremont-Gerard-Varet (AGV) mechanism (d’Aspremont and Gérard-Varet, 1979)
to the dynamic setting and design an efficient, budget balanced, and Bayesian incentive
compatible mechanism. Pavan et al. (2009) derive the first order conditions of incentive
compatibility in dynamic mechanisms. Cavallo (2008) devises a dynamic allocation rule for
auctions in the multi-arm bandits setting, where a single good is distributed among agents
over multiple rounds. Cavallo et al. (2009) study the truthful implementation of efficient
policies when agents have dynamic types. Pavan et al. (2014) extend the seminal work
of Myerson (1989) and characterize perfect Bayesian equilibrium-implementable allocation
rules in the dynamic regime. Cavallo (2009); Bergemann and Pavan (2015); Bergemann and
Välimäki (2019) provide useful surveys of dynamic mechanism research. Kandasamy et al.
(2020) studies online learning of the VCG mechanism with stationary multi-arm bandits.
Our work considers a more challenging setting modeled by an episodic MDP, where the
agents’ rewards are state-dependent and may evolve over time within each episode. More
importantly, Kandasamy et al. (2020) estimates the VCG price via uniformly exploring
over all arms, which cannot be directly applied to the dynamic setting (Wang et al., 2020).
Rather than uniformly bounding the uncertainty over all actions, our approach bounds the

3

Qiu, Lyu, Meng, Wang, Yang, and Jordan

uncertainty over all implementable policies via a variant of least-squares value iteration
and enjoys provable efficiency under the function approximation setting. Distinct from
the major focus of our work, Simchowitz and Slivkins (2023) studies online mechanism
design with MDPs from a rather different angle. In their work, the mechanism designer
encourages exploration by sending specific information to the agents. More specifically,
the agents initially have beliefs or prior distributions over the MDP’s parameters. The
mechanism designer can reveal to the agents some information, such as information about
the MDP’s transition and reward. The agents then update their beliefs about the underlying
MDP and execute the optimal policy according to the updated beliefs or their posterior
distribution over the MDP’s parameters. The goal is to incentivize agents to explore by
controlling the information they receive. However, our work focuses on implementing the
welfare-maximizing policy among a group of agents by controlling the price that each agent
pays. In other words, theirs focuses on adjusting information, whereas ours focuses on
adjusting price. Additionally, our work focuses on a more general linear MDP than the
tabular MDP studied in their work.

There are many recent works concerning provably efficient RL for MDPs with linear
structures in the absence of generative models (Yang and Wang, 2019; Du et al., 2019;
Yang and Wang, 2020; Jin et al., 2020b; Cai et al., 2019). Jin et al. (2020b) provides the
first provably efficient RL algorithm for linear MDPs that incorporates exploration. Zhou
et al. (2021b) provides a provably efficient algorithm for infinite-horizon discounted linear
MDPs. Ayoub et al. (2020) studies a model-based regime where the transition kernel
belongs to a family of models known to the learning agent. Zhou et al. (2021a) proposes
a computationally efficient nearly minimax optimal algorithm for the linear MDP whose
transition kernel is a linear mixture model. These works require (noisy) feedback of the
reward function in the learning process.

Reward-free exploration in reinforcement learning has recently attracted a lot of attention,
in which the agents explore the environment without any feedback of the reward. Specifically,
Jin et al. (2020a) introduces the problem of reward-free exploration in RL and proposes
a sample-efficient algorithm for tabular MDPs. Ménard et al. (2021); Kaufmann et al.
(2021) provide improved algorithms and tighter rates, also for tabular MDPs. Zhang et al.
(2021) further improves the analysis and obtains nearly minimax-optimal sample complexity
bounds. Wang et al. (2020); Zanette et al. (2020); Chen et al. (2021); Wagenmaker et al.
(2022) study reward-free RL algorithms for linear or linear mixture MDPs and Qiu et al.
(2021) for kernel and neural function approximations. Moreover, Kong et al. (2021) proposes
reward-free algorithms for RL with general function approximation under the setting of
bounded eluder dimension. Miryoosefi and Jin (2021) investigates the problem of reward-
free RL with constraints. Wu et al. (2021) then proposes a reward-free algorithm for the
multi-objective RL problem. In addition, Bai and Jin (2020); Liu et al. (2021); Qiu et al.
(2021) further study the reward-free RL algorithms under the multi-agent setting.

Furthermore, we would like to emphasize that directly extending the existing results
on reward-free exploration (see, e.g., Wang et al. (2020); Qiu et al. (2021)) to learning the
dynamic VCG mechanism seems infeasible. The main reason is that these works focus
only on estimating the optimal value functions corresponding to different reward functions.
In contrast, in the context of mechanism design, we have multiple desiderata, namely
truthfulness, individual rationality, and efficiency, which mathematically translates into the

4

Learning Dynamic Mechanisms in Unknown Environments

various regret notions, such as the welfare regret and individual regret of the seller and the
buyer. Showing the proposed algorithm approximately satisfies these desiderata requires
bounding these regrets using the properties of the dynamic VCG mechanism as well as the
results of reward-free exploration. Finally, the recent work Lyu et al. (2022) focuses on
learning the Markov VCG mechanism via offline RL from a set of collected trajectories.
Under the offline setting, exploration is out of the scope, and thus our core challenge caused
by the fictitious policy is absent in Lyu et al. (2022).

2. Problem Setup

Consider an episodic MDP defined byM(S,A, H,P, r), where S and A are state and action
spaces, H the length of each episode, P = {Ph}Hh=1 the transition kernel, and r = {ri,h}n,Hi=0,h=1

the reward functions. We use r0,h : S ×A 7→ [0, Rmax] to denote the reward function of the
seller at the step h and let ri,h : S × A 7→ [0, 1] be the reward function of agent (buyer) i
at the step h for i ∈ [n], where n is the number of agents and [n] denotes {1, 2, · · · , n}. In
addition, we assume that the reward observation is stochastic and the underlying reward
function is the expectation of its stochastic observation, i.e., the reward observation at
(s, a) ∈ S ×A can be represented by ri,h(s, a;ω) with ri,h(s, a) = Eω[ri,h(s, a;ω)], where ω
is an independent random variable indicating the exogenous randomness for the reward
observation. We further assume that the boundedness holds for the reward observation as
r0,h(·, ·;ω) : S ×A 7→ [0, Rmax] and ri,h(·, ·;ω) : S ×A 7→ [0, 1], ∀i ∈ [n] at all steps h ∈ [H],
where rewards for the seller and agents may have different scales1.

Let π = {πh}Hh=1 denote the seller’s policy, where for each h ∈ [H], πh : S 7→ A
maps a given state to an action. For each step h ∈ [H], reward function r = {rh}Hh=1,
and a given policy π, we define the value function V π

h (·; r) : S 7→ R for all x ∈ S as

V π
h (x; r) :=

∑H
h′=h E [rh′(xh′ , πh′(xh′))|xh = x], where the expectation is taken over states

xh+1 ∼ Ph(·|xh, πh(xh)), xh+2 ∼ Ph(·|xh+1, πh+1(xh+1)), . . . , xH ∼ PH(·|xH , πH(xH)) con-
ditioned on a starting state xh = x at step h. Here we write V π

h (·; r) to highlight that
the definition of the value function depends on a given reward function r. We also
define the corresponding Q-function Qπh(·, ·; r) : S × A 7→ R for all (x, a) ∈ S × A as

Qπh(x, a; r) := rh(x, a) +
∑H

h′=h+1 E
[
rh′(xh′ , πh′(xh′))

∣∣(xh, ah) = (x, a)
]
, where the expecta-

tion is also taken over states xh+1, . . . , xH sampled from the transition model P , conditioned
on a starting state-action pair (xh, ah) = (x, a) at step h.

We stress that while the MDP we consider contains multiple reward functions and
interaction between multiple agents, our setting differs from the Markov game setting, as we
assume that the seller is the only participant who can take actions (Littman, 1994).

Dynamic Mechanism Design. We now describe how agents interact with the mechanism
designer (seller) in our setting. At the beginning of each episode, the mechanism starts
from the initial state x1. At each step h ∈ [H], the seller observes some state xh ∈ S, picks
an action ah ∈ A, and receives a stochastic reward with mean r0,h(xh, ah). Each agent
(buyer) receives their own reward, each with an expected value of ri,h(xh, ah), and reports
a stochastic reward with a mean r̃i,h(xh, ah), given by some potentially untruthful reward
function r̃i,h(·, ·). At the end of each episode, the seller charges each customer some price pi.

1. We allow different reward scales for greater flexibility within our framework.

5

Qiu, Lyu, Meng, Wang, Yang, and Jordan

For any policy π and prices {pi}ni=1, we define agent i’s utility function as

ui := E
[H∑
h=1

ri,h(xh, ah)

]
− pi = V π

1 (x1; ri)− pi. (1)

That is, agent i’s utility equals the difference between the expected total reward and the
charged price. The seller’s utility is then defined as

u0 := V π
1 (x1; r0) +

n∑
i=1

pi. (2)

The social welfare, W π, is defined as the sum of the agents and the seller’s utilities, given by

W π(x1) =
n∑
i=0

V π
1 (x1; ri) = V π

(
x1;

n∑
i=0

ri

)
, (3)

which is equivalent to the expectation of the sum of all rewards as the prices cancel out.

Markov VCG Mechanism. Suppose that the transition kernel is known, all agents and
the seller know their own reward functions ri,h for all (i, h) ∈ [n] × [H], and the agents’
reward functions are known by the seller. The VCG mechanism demands that we choose
the welfare-maximizing policy π∗ that the seller executes each episode. Each agent i is
subsequently charged a price pi∗, which is the loss her presence causes to others. Hence we
have the following mechanism:

π∗ := argmax
π

V π
1 (x1;R), π−i∗ := argmax

π
V π

1 (x1;R−i),

pi∗ := V π−i
∗

1 (x1;R−i)− V π∗
1 (x1;R−i),

(4)

where we define the total reward function R and the sum of reward except agent i, R−i, as

R =
n∑
i=0

ri and R−i =
n∑

j=0,j 6=i
rj .

Here π∗ is the welfare-maximizing policy, i.e., the optimal policy for the reward function R,
while π−i∗ is the fictitious policy that maximizes welfare when agent i is absent. Estimating
the latter and their corresponding value functions requires the algorithm to explore in
directions not aligned with the social welfare maximizing policy, π∗, thus necessitating the
reward-free component of our algorithm. These prices, namely pi∗, can be estimated by
following Equation (4) once the value functions corresponding to policies π∗, π

−i
∗ and reward

functions R,R−i are estimated sufficiently well via our algorithm. As these value functions
are deterministic, the resulting pricing function is also deterministic.

The following lemma introduces the properties of the Markov VCG mechanism.

Lemma 2.1 The Markov VCG mechanism satisfies the following desiderata in mechanism
design:

6

Learning Dynamic Mechanisms in Unknown Environments

1. Truthfulness: A mechanism is truthful if the utility ui of agent i is maximized when,
regardless of other agents’ reported rewards, agent i reports her rewards truthfully.

2. Individual rationality: A mechanism is individually rational if the utility ui of agent i is
non-negative when agent i is truthful.

3. Efficiency: A mechanism is efficient if the mechanism maximizes the welfare when all
agents are truthful.

An agent is truthful if she submits her reward functions truthfully.

Please see Appendix B for the proof. Our proposed pricing formula pi∗ := V π−i
∗

1 (x1;R−i)−
V π∗

1 (x1;R−i) is not the only pricing rule that ensures Lemma 2.1. Nevertheless, our

proposed algorithm can be generalized to any pricing rule of the form p′i = V π−i

1 (x1;R−i)−
V π∗

1 (x1;R−i), where π−i is not necessarily the π−i∗ defined above, but can be any arbitrary
policy independent of agent i. Intuitively, as our algorithm makes use of reward-free
exploration, we can sufficiently accurately estimate the value functions for arbitrary policies,
including both π−i and π−i∗ . Consequently, our approach can be extended to a general class
of pricing functions that use different policies’ value functions as prices.

Mechanism Design with an Unknown MDP. Consider the setting where the agents’
value functions and the MDP’s transition kernel are unknown, and the procedure is repeated
for multiple rounds. At round t, the mechanism choose a policy πt and set prices {pit}ni=1

for the agents. Following Equations (1) and (2), the utilities of agent i and the seller at
round t are

uit = V πt

1 (x1; ri)− pit and u0t = V πt

1 (x1; r0) +

n∑
i=1

pit.

We then denote their summations over T rounds as

UiT =

T∑
t=1

uit and U0T =

T∑
t=1

u0t.

Our goal is to design an algorithm that respects the three mechanism design desiderata over
multiple rounds even when the true reward functions and transition kernels are unknown, as
well as achieving sublinear regret for the agents, the seller, and the welfare. The following
metrics are used to quantify the algorithm’s performance:

RegWT = TV π∗
1 (x1;R)−

T∑
t=1

V πt

1 (x1;R)

Reg0T = Tu0∗ − U0T , RegiT = Tui∗ − UiT , Reg]T =
n∑
i=1

RegiT .

(5)

Here we let u0∗ = V π∗
1 (x1; r0) +

∑n
i=1 pi∗ and ui∗ = V π∗

1 (x1; ri)− pi∗ be the utilities of the
seller and agent i respectively in the VCG mechanism. Moreover, RegWT is the welfare regret
over T rounds, Reg0T the seller regret, and RegiT the agent i’s regret, respectively. We let
Reg]T be the summation of regrets over all agents.

7

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Although the Markov VCG mechanism that we learn is welfare-maximizing, we focus on
how this mechanism can be recovered. Consequently, the learning algorithm’s objective is
not welfare maximization alone. Maximizing welfare increases the total utility by definition
and, therefore, increases the total utility that the agents and the seller share. As our learning
process involves the seller and multiple agents, we also need to ensure that it faithfully
respects their utilities over T rounds of interaction. Otherwise, it may be unfair to either
the agents or the seller. Therefore, we measure the performance of our learning algorithm
through the three terms, RegWT ,Reg]T ,Reg0T , rather than any single objective by itself. We
note that all three regrets are 0 under the Markov VCG mechanism.

Due to our need to approximate the VCG price pi∗, the welfare regret RegWT differs in

scale from both Reg]T and Reg0T , whereas the latter two are of the same scale. Notice that
estimating pi∗ involves estimating the maximum welfare that the remaining n− 1 agents
achieve when agent i is absent and the welfare that these agents receive under π̂t. Thus,
the estimation error for pi∗ is roughly in the same order as the instantaneous welfare regret
V π∗

1 (x1;R) − V π̂t

1 (x1;R) at round t, since both require good estimates of the summation
of the value functions over all agents rather than a single agent. Consequently, recalling
Reg]T is the summation of all agents’ regrets and Reg0T equals the summation of the price

estimation error across all n agents, the terms Reg]T and Reg0T are in fact in the order of n
times the welfare regret RegWT . Therefore, we add a scaling factor n in front of the welfare
regret, and our learning algorithms focus on minimizing

max{nRegWT ,Reg]T ,Reg0T }.

In addition to attaining small regret bounds, we aim to approximately satisfy the
desiderata in Lemma 2.1 for the mechanism design. We define the approximate versions of
truthfulness, individual rationality, and efficiency concerning the agent’s cumulative utility
UiT as follows:

1. Approximate truthfulness: Let UiT be the cumulative utility when agent i is truthful
and ŨiT that when agent i is untruthful. The mechanism is δ-approximately truthful if
ŨiT − UiT ≤ δ, regardless of others’ truthfulness.

2. Approximate individual rationality : When agent i reports truthfully, the mechanism is
δ-approximately individually rational if Uit ≥ −δ, regardless of others’ truthfulness.

3. Approximate efficiency : The mechanism is δ-approximately efficient if RegWT ≤ δ when
all agents are truthful.

When an agent adopts an untruthful reward-reporting strategy, it means that this agent
reports her rewards under a different reward function r̃ih rather than the true reward function
rih. As the algorithm interacts with the environment over T rounds, these approximate
desiderata can have a dependence on T . Our definition generalizes the asymptotic versions
of the desiderata defined in Kandasamy et al. (2020) since the approximate desiderata
naturally imply their asymptotic counterparts when δ is sublinear in T . More specifically, as
long as limT→∞ f(T)/T = 0, if a mechanism is f(T)-approximate truthful, when amortized
over these T rounds of interaction, agents’ utility gain from untruthful reports vanishes. In
other words, in the long run, agents cannot improve upon their average per-episode utility by
untruthfulness, thus deterring rational agents from attempting to alter the learning process

8

Learning Dynamic Mechanisms in Unknown Environments

via untruthfulness. Similarly, if f(T) is sublinear and the mechanism is f(T)-approximately
individually rational, then in the long run, agents’ average episodic utility is lower-bounded
by a number tending to zero (i.e., limT→∞

1
T UiT ≥ − limT→∞ f(T)/T = 0), ensuring they

will not be worse-off from participating.

Since approximate truthfulness implies, for suitable f(T), that agents will not benefit
from untruthful reporting in the long run, our definition of approximate efficiency focuses only
on truthful agents. Indeed, consider the extreme case where all agents report 1− ri,h(x, a)
instead of ri,h(x, a) and the seller reward is always 0. Under this extreme case of untruthful
behavior, the welfare-maximizing policy under the untruthful report is in fact the welfare-
minimizing policy under truthful reports, showing that it is in general hard to obtain efficiency
guarantees without assuming truthful behavior. Such an approach, namely, first showing
that the mechanism is approximately truthful and then providing guarantees under the
assumption that the reports are truthful, is common in existing literature at the intersection
of mechanism design and learning (Nazerzadeh et al., 2008; Kandasamy et al., 2020). We
refer interested readers to Epasto et al. (2018), which justifies in further detail why agents
will behave truthfully under approximately truthful mechanisms.

To handle the potentially large state and action spaces S,A, our work focuses on the
linear function approximation setting, where the linear MDP is considered.

Linear MDP. We assume that there exist a feature map φ : S × A 7→ Rd, d unknown
measures µh = (µ1

h, · · · , µdh) over S for any h ∈ [H], and n+ 1 unknown vectors {θih}ni=0

with each θih ∈ Rd for all h ∈ [H]. For any (x, a, x′) ∈ S ×A× S, the transition kernel and
reward function can be linearly represented as

Ph(x′|x, a) = 〈φ(x, a),µh(x′)〉
ri,h(x, a) = 〈φ(x, a),θih〉, ∀i = 0, 1, · · · , n.

(6)

Following standard assumptions in the prior literature (Jin et al., 2020b,c), we assume
‖φ(x, a)‖ ≤ 1 for all (x, a) ∈ S × A, max{‖µh(S)‖, ‖θih‖} ≤

√
d for all h ∈ [H], 0 ≤ i ≤ n.

Recall that the linear MDP assumption implies that the value functions and action-value
functions are both linear in the feature space defined by φ (Jin et al., 2020b). When the
problem reduces to the tabular setting, we have d = |S||A| with φ(x, a) = ex,a ∈ R|S||A|
being an indicator vector.

Remark 2.2 When linear function approximation is considered, a typical assumption is
that the underlying MDP has a linear structure. Here we assume the MDP satisfies Equation
(6). As discussed above, the tabular MDP can be covered as a special case of the linear MDP.
Thus, our method for the linear MDP can also solve problems modeled by the tabular MDP.
In realistic and complex scenarios, the underlying MDP may not be strictly linear. One
can still apply the linear function approximation along with introducing a misspecification
error. This error can be characterized by supx,a ‖Ph(·|x, a) − 〈φ(x, a),µh(·)‖TV ≤ EP and
supi,x,a ‖ri,h(x, a) − 〈φ(x, a),θih〉‖TV ≤ Er as commonly discussed in prior RL literature
(e.g., Jin et al. (2019)), where ‖ · ‖TV denotes the total variation. By making small changes
to our current analysis, extra misspecification terms containing EP and Er will be added to
our regret bounds. If both EP and Er are small, the underlying MDP is approximately linear
such that the extra terms can be considered minor.

9

Qiu, Lyu, Meng, Wang, Yang, and Jordan

2.1 Motivating Examples

We provide several motivating examples for the dynamic mechanism design introduced
above, which are the potential application areas for our proposed algorithm.

Dynamic Sponsored Search Auction. We assume the state x includes information on
the agents’ remaining budgets for the episode. Let H be a fiscal year. As advertisements’
values change within a single year (e.g., value increases around Black Friday), agents’ rewards
from advertising naturally change with time. The seller’s action would affect the agents’
budgets, which would further affect their valuations: an agent who did not win any auction in
previous rounds would have a high remaining budget near the end of the year and, therefore,
would be willing to pay more for each advertisement slot in an effort to increase their odds
of winning.

Dynamic Platform-as-a-Service (PaaS). We assume there are multiple users using
the same computing cluster and a central planner who allocates computation resources
to these users. The state x includes information on the server’s current load, and action
a reflects how the central planner allocates these resources among users. Naturally, the
planner’s action affects the server load in the next state. While a higher server load would
provide users with immediate satisfaction, it would also incur higher electricity costs for the
planner. As the users’ demands may fluctuate within a day (for instance, demands are lower
during the night), it is a significant challenge for the planner to balance electricity costs
and user satisfaction in an environment with the users’ valuations and demands constantly
changing. The problem is further complicated by the fact that the service provider only
learns user satisfaction after the resources are allocated, justifying our setup above.

Dynamic Public Service. This example is inspired by Section 9.3.5.5 in Nisan et al.
(2007). Here the seller takes the form of a government body, and the agents are the citizens.
The seller wishes to provide public services to benefit the general population, and the agents
pay the seller in the form of taxation. The state x contains information on the seller’s
remaining budget for the year as well as the agents’ satisfaction with the seller. When
the seller does not provide sufficient public service, agents will become less satisfied and
have more urgent demands for public services in later steps, exhibiting natural transition
dynamics. As the seller can only learn the agents’ valuation after the service has been
provided, the problem fits naturally within the setting considered above.

Relationship to Parkes and Singh (2003). Finally, our work could address several
key problems raised by prior works on dynamic mechanism design without assuming prior
knowledge of the underlying model. Parkes and Singh (2003) studies an online mechanism
design problem by formulating the problem as an MDP and proposes Wi-Fi pricing at
Starbucks as a motivating example. Parkes and Singh (2003) assumes that the welfare-
maximizing policy is known a priori. However, the MDP in Parkes and Singh (2003) is an
infinite-horizon, un-discounted, and non-average reward one, and we are not aware of any
existing literature that can provably learn nearly optimal policies in this setting. We thus
leave the question as a future direction of independent interest. Nevertheless, our work takes
a first step towards relaxing the assumption by requiring the mechanism designer to recover
the policy from repeated interaction in the finite horizon case.

10

Learning Dynamic Mechanisms in Unknown Environments

3. Algorithm

In this section, we introduce our proposed algorithm for VCG mechanism learning on linear
MDPs (VCG-LinMDP). The general learning framework of our algorithm is summarized in
Algorithm 1, comprising two phases: the exploration phase and the exploitation phase. The
exploration and exploitation phases are summarized in Algorithms 2, 3, and 4.

3.1 Algorithmic Framework

Markov VCG with Function Approximation. In order to learn the Markov VCG
mechanism, we consider a learning framework with function approximation, in which the
reward-free exploration phase aims to efficiently explore the environment with wide coverage
over the underlying policy space. The exploitation phase targets at utilizing the collected
data to update the seller’s policy and estimate the prices charged to the agents. We
remark that this learning framework is general and can fit any linear or nonlinear function
approximators. We summarize it as follows:

1. Exploration for multiple rounds to collect an initial dataset. The exploration is performed
via a reward-free least-square value iteration (LSVI) with function approximation (Jin
et al., 2020a; Wang et al., 2020; Qiu et al., 2021).

2. Exploitation with the collected data. At each round t of the exploitation phase:

• Update the seller’s policy π̂t via a planning subroutine implemented as optimistic LSVI
with function approximation w.r.t. the reward function R.

• Update F−it by the value function from a planning subroutine implemented as optimistic
or pessimistic LSVI with function approximation w.r.t. R−i.

• Update G−it by the value function from a policy evaluation subroutine by optimistic or
pessimistic evaluation with function approximation at the learned policy π̂t w.r.t. R−i.

• Estimate the price pit = F−it −G
−i
t for all i ∈ [n].

• Take actions following π̂t and charge each agent i a price pit for i ∈ [n].

• Determine whether we should update the dataset with the new trajectory.

Here π̂t is the learned policy aiming to estimate π∗, the function F−it can be viewed as

an estimate of the value function under the fictitious policy, i.e., V π−i
∗

1 (x1;R−i), and G−it
estimates V π̂t

1 (x1;R−i) under the policy π̂t. In particular, the hyperparameters ζ2, ζ3 control
whether such an estimation by F−it and G−it is optimistic or pessimistic. Moreover, since
π̂t estimates π∗, then G−it can further be considered as an approximation of V π∗

1 (x1;R−i),
which implies that the price pi∗ is estimated by pit according to its definition. At a higher
level, the algorithm decomposes learning the Markov VCG mechanism into two parts: 1)
learning an efficient, social welfare-maximizing policy, and 2) estimating the suitable prices
to charge the agents.

This paper focuses on a special case, i.e., Markov VCG with linear function approxi-
mation named VCG-LinMDP, as shown in Algorithm 1. The associated exploration phase is
implemented in Algorithm 2, and the exploitation phase is implemented in Algorithms 3
and 4, where we adopt LSVI with linear function approximation. In particular, Algorithms
3 and 4 are the planning and policy evaluation subroutines respectively. As we can see from

11

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Algorithm 1 VCG-LinMDP

Input: ζ1 ∈ {ETC, EWC}, ζ2, ζ3 ∈ {OPT, PES}, R ∈ {R,R−i}, and K.

//Exploration Phase

1: Reward-free exploration for K rounds via Algorithm 2 and obtain D = {(xkh, akh)}h,k ∪
{rki,h(xkh, a

k
h)}i,h,k.

//Exploitation Phase

2: for t = K + 1, · · · , T do

3: Update policy π̂t by the returned policy of Algorithm 3 with input parameters

(R, ζ1, OPT,D).

4: Update F−it by the returned value function of Algorithm 3 with parameters

(R−i, ζ1, ζ2,D) for all i ∈ [n].

5: Update G−it by the returned value function of Algorithm 4 with parameters

(R−i, ζ1, ζ3,D, π̂t) for all i ∈ [n].

6: Calculate the price pit = F−it −G
−i
t for all i ∈ [n].

7: Take action ath = π̂th(xth), receive rewards {rti,h(xth, a
t
h)}i, and observe xth+1 ∼

Ph(·|xth, ath) from h = 1 to H.

8: Charge each agent i a price pit for all i ∈ [n].

9: if ζ1 = EWC then

10: D ← D ∪ {(xth, ath)}t,h ∪ {rti,h(xth, a
t
h)}i,h,t

11: else if ζ1 = ETC then

12: Keep D unchanged as collected in the exploration phase.

13: end if

14: end for

the overall framework, learning the price requires both planning to learn a fictitious policy
(the function F−1

t) and function evaluation on the learned policy G−it in order to estimate
the price, necessitating the inclusion of both Algorithm 3 and Algorithm 4.

As shown in Algorithm 1, there are multiple hyper-parameters. Specifically, ζ1 controls
the overall learning strategy of VCG-LinMDP with options ETC and EWC. The option ETC

indicates the explore-then-commit strategy, where we exploit using only the data generated
during the exploration phase. EWC indicates explore-while-commit strategy, where we exploit
using data generated during both the exploration phase and the exploitation phase. The
options OPT and PES for the hyper-parameters ζ2 and ζ3 refer to optimistic and pessimistic
exploitation approaches respectively, which control the trade-off between the seller’s and the
agents’ utilities. Finally, for Algorithms 3 and 4, the hyper-parameter R controls whether
the input reward function is R or R−i. In these algorithms, for abbreviation, we denote
by rki,h(skh, a

k
h) := ri,h(skh, a

k
h;ωkh) the reward collected at step h of time k in the exploration

phase and by rti,h(sth, a
t
h) := ri,h(sth, a

t
h;ωth) a reward collected at step h of time t in the

exploitation phase, where ωkh and ωth represent the randomness in the reward observation.

Remark 3.1 We remark that in our proposed algorithms in Section 3, with a slight abuse
of notation, we do not require the reports of the rewards to be truthful when setting R = R

12

Learning Dynamic Mechanisms in Unknown Environments

or R = R−i. One can think of R and R−i as input arguments if no specific discussion on
truthfulness is involved. The rewards in the algorithms can be either truthful or untruthful.
Whether the rewards are needed to be truthful or not will be explicitly highlighted in our
theoretical results and the associated proofs.

Remark 3.2 Intuitively, the hyperparameters ζ2 and ζ3 control whether the price favors the
sellers or the buyers. There are two extreme cases for the setting of (ζ2, ζ3), namely (PES, OPT)
and (OPT, PES). The configuration (ζ2, ζ3) = (PES, OPT) that favors agents potentially leads to
a low price pit and high agent utilities, resulting in a low agent regret and a high seller regret.
The configuration (ζ2, ζ3) = (OPT, PES) will favor the seller with a high price pit and a high
seller utility, which results in a high agent regret and low seller regret. The prices charged
under other configurations would fall somewhere between the aforementioned high and low
prices. Consequently, the agents’ and the seller’s regrets would naturally be somewhere in the
middle between the two representative cases, which we will expand in depth in our theoretical
results. Such flexibility can be crucial in practice. For instance, the seller in the dynamic
sponsored search auction or the dynamic PaaS setting discussed in Section 2.1 favors a high
price obtained by setting ζ2 = OPT, ζ3 = PES, while the social good provider in the dynamic
public service setting may prefer a lower price when we set ζ2 = PES, ζ3 = OPT.

Least-Square Value Iteration. With the overarching framework defined, we now intro-
duce a key technique heavily used by our algorithm. For any function approximation class
F , at the t-th episode, we have t−1 transition tuples, {(xτh, aτh, xτh+1)}τ∈[t−1], and LSVI with
function approximation (Jin et al., 2020b; Yang et al., 2020b; Jin et al., 2020c) estimates
the Q-function using f̃ th, obtained from the least-squares regression problem below.

f̃ th = argmin
f∈F

t−1∑
τ=1

[
rτh(xτh, a

τ
h) + V t

h

(
xτh)− fh(xτh, a

τ
h)
)]2

+ pen(f),

f th = truncate{f̃ th},

where pen(f) is some arbitrary regularizer, rh is some reward function, truncate{·} is some
truncation operator to guarantee that the approximation function is in a correct scale such
that it does not violate the boundedness assumptions we place on the Q-function. For
optimistic LSVI, we construct optimistic Q-function as

Qth = truncate{f th + uth},

where we again truncate the estimated Q-function, and uth is an associated UCB bonus
term constructed using the collected trajectories. Similarly, the pessimistic Q-function is
constructed as

Qth = truncate{f th − uth}.

We update the value function by a greedy strategy as

V t
h(·) = argmax

a∈A
Qth(·, a),

13

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Algorithm 2 Exploration

Input: Failure probability δ > 0, K, and λ > 0
1: β = ĉ(n+Rmax)dH

√
log(36ndHT/δ).

2: for k = 1, 2 · · · ,K do
3: Set V k

H+1(·) = 0.
4: for h = H,H − 1 · · · , 1 do
5: Λkh =

∑k−1
τ=1 φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + λI.

6: ukh(·, ·) = Π[0,H(n+Rmax)]

[
β[φ(·, ·)(Λkh)−1φ(·, ·)]1/2

]
.

7: Define an exploration-driven reward function lkh(·, ·) = ukh(·, ·)/H.

8: wkh = (Λkh)−1
∑k−1

τ=1 φ(xτh, a
τ
h)V k

h+1(xτh+1).

9: Qkh(·, ·) = min{Π[0,H(n+Rmax)][(w
k
h)>φ(·, ·)] + lkh(·.·) + ukh(·, ·), H(n+Rmax)}.

10: V k
h (·) = maxa∈AQ

k
h(·, a).

11: πkh(·) = argmaxa∈AQ
k
h(·, a).

12: end for
13: Take action akh = πkh(xkh), receive rewards {rki,h(xkh, a

k
h)}i, and observe the state transi-

tion xkh+1 ∼ Ph(·|xkh, akh) from h = 1 to H.
14: end for
15: return D = {(xkh, akh)}(h,k)∈[H]×[K] ∪ {rki,h(xkh, a

k
h)}(i,h,k)∈({0}∪[n])×[H]×[K]

for optimistic Q-function or pessimistic Q-function respectively. For the linear function
approximation in our algorithm, according to our setting of linear MDPs, we let f(·, ·) =
w>φ(·, ·) for any f ∈ F and pen(f) be λ‖w‖2 where w is the parameter to learn.

With the key ideas sketched out, we then proceed with fleshing out the proposed
algorithms.

3.2 Exploration Phase

Our first component is the exploration phase. Recall that F−it estimates the value function
of the fictitious policy that maximizes welfare when agent i is absent. Obtaining high-quality
F−it for all n agents then requires the algorithm to explore in the direction of multiple
policies rather than only in a single policy’s direction. This challenge necessitates reward-free
reinforcement learning, where the learning algorithm seeks to explore the environment in
the directions of all possible policies as opposed to only a single one.

Inspired by Wang et al. (2020), we design a reward-free exploration algorithm as in
Algorithm 3, incorporating the linear structure of the MDP. Specifically, to handle multiple
reward functions from the seller and n agents, we propose to explore the environment without
using the observed rewards from it. Instead, we define an exploration-driven reward lkh as a
scaled bonus term ukh to encourage exploration by further taking into account the uncertainty
of estimating the environment. The bonus term computed in Line 6 quantifies the uncertainty
of estimation with a linear function approximator. Based on the exploration-driven rewards
lkh = ukh/H and the bonus term ukh as well as the linear function approximation, we calculate
an optimistic Q-function and perform the optimistic reward-free LSVI to generate the
exploration policy. Note that in Algorithm 2 and the subsequent Algorithms 3 and 4, we
define a truncation operator Π[0,x][·] := max{min{·, x}, 0}. Distinguished from the standard

14

Learning Dynamic Mechanisms in Unknown Environments

Algorithm 3 Exploitation: Planning

Input: (R, ζ, ζ ′,D, t).
1: V t

H+1(·;R) = 0.
2: for h = H,H − 1 · · · , 1 do
3: Qth(·, ·;R) = Est-Q(R, ζ, ζ ′,D, h, t)
4: πth(·) = argmaxa∈AQ

t
h(·, a;R).

5: V t
h(·;R) = Qth(·, πth(·);R).

6: end for
7: return {πth}Hh=1, V t

1 (x1;R)

Algorithm 4 Exploitation:
PolicyEval

Input: (R, ζ, ζ ′,D, t, π).

1: V t
H+1(·;R) = 0.

2: for h = H,H − 1 · · · , 1 do

3: Qth(·, ·;R) = Est-Q(R, ζ, ζ ′,D, h, t)
4: V t

h(·;R) = Qth(·, πh(·);R).

5: end for

6: return V t
1 (x1;R)

Algorithm 5 Est-Q: One-Step Optimistic/Pessimistic Estimation of Q-Function

Input: (R, ζ, ζ ′,D, h, t).
1: Set αh(R) as (7) and β = ĉ(n+Rmax)dH

√
log(36ndHT/δ).

2: Pt :=

{
{1, 2, · · · ,K} if ζ = ETC

{1, 2, · · · , t− 1} if ζ = EWC.

3: Λth =
∑

τ∈Pt
φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + λI.

4: uth(·, ·) = Π[0,H(n+Rmax)]

[
β[φ(·, ·)(Λth)−1φ(·, ·)]1/2

]
.

5: wth = (Λth)−1
∑

τ∈Pt
φ(xτh, a

τ
h)[Rτ

h(xτh, a
τ
h) + V t

h+1(xτh+1;R)].

6: f th(·, ·) = Π[0,H(n+Rmax)][(w
t
h)>φ(·, ·)].

7: Qth(·, ·;R) =

{
Π[0,αh(R)][(f

t
h + uth)(·, ·)] if ζ ′ = OPT

Π[0,αh(R)][(f
t
h − uth)(·, ·)] if ζ ′ = PES.

8: return Qth(·, ·;R)

LSVI introduced above, the reward-free LSVI only considers the value function as the
regression target, i.e., we solve a least-square regression problem in the following form

argmin
f∈Flin

k−1∑
τ=1

[
V k
h

(
xτh)− fh(xτh, a

τ
h)
)]2

+ pen(f),

where Flin is the linear function class. Then, we obtain the coefficient vector wkh for linear
function approximation.

Moreover, for the optimistic Q-function in Line 9, we construct it by combining not only
the linear approximation function and the exploration bonus ukh but also the exploration-
driven reward lkh. Meanwhile, we collect the trajectories D of visited state-action pairs and
the corresponding reward feedbacks of ri,∀i = 0, 1, . . . , n, for the subsequent exploitation
phase in Algorithms 3 and 4.

3.3 Exploitation Phase

The exploitation phase is separated into two subroutines, namely Planning for planning in
Algorithm 3 and PolicyEval for policy evaluation in Algorithm 4. The two algorithms are
general subroutines that are instantiated by the inputs.

15

Qiu, Lyu, Meng, Wang, Yang, and Jordan

The Planning subroutine in Algorithm 3 is an optimistic or pessimistic LSVI with linear
function approximation, which generates a greedy policy and its associated value function.
Different from Algorithm 3, PolicyEval subroutine in Algorithm 4 only evaluates any input
policy π by computing the value function under π with linear function approximation.
Both of the two algorithms will call Algorithm 5, which is an optimistic or pessimistic
estimation of the Q-function for a reward function R ∈ {R,R−i} at step h. Algorithm 5 can
be viewed as an instantiation of LSVI in Section 3.1 for linear function approximation. In
Line 4 of Algorithm 5, we compute a bonus uth to quantify the uncertainty in estimation.
In Lines 5 and 6, we obtain the coefficient vector wth for linear function approximation
and the approximator f th. Line 7 yields optimistic and pessimistic Q-functions respectively
determined by ζ ′ = OPT or PES.

The argument ζ in these algorithms determines the composition of the data index set
Pt in Line 2 and thus indicates whether we will use the original exploration dataset or the
updated dataset to construct the bonus term uth and the linear function approximator f th.
More formally, only the data collected in the exploration phase of Algorithm 1 will be used
if we let ζ = ETC, and the data generated in both exploration and exploitation phases is
used when we let ζ = EWC.

The function αh(R) in these algorithms controls the truncation constant, which equals
the supremum of the corresponding reward function. Precisely, we have

αh(R) :=

{
(n+Rmax)(H − h+ 1) if R = R

(n− 1 +Rmax)(H − h+ 1) if R = R−i for any i ∈ [n] .
(7)

Note that Algorithm 3 and Algorithm 4 are two generic subroutines for the exploitation
phase, whose concrete implementation is contingent on the input arguments. For brevity, we
denote all the value functions and Q-functions in Algorithm 3 and Algorithm 4 calculated
in step t by V t

h(·; ·) and Qth(·, ·; ·) respectively. Specifically, in the rest of this work, we

let {V̂ t,∗
h (·;R), Q̂t,∗h (·, ·;R)} and {qV t,∗

h (·;R), qQt,∗h (·, ·;R)} be the realization of V t
h(·; ·) and

Qth(·, ·; ·) generated by Algorithm 3 for ζ ′ = OPT and ζ ′ = PES respectively, with different

options for R; and let {V̂ t,π
h (·;R), Q̂t,πh (·, ·;R)} and {qV t,π

h (·;R), qQt,πh (·, ·;R)} be associated
with ζ ′ = OPT and ζ ′ = PES respectively, which are generated by Algorithm 4 with arbitrary
input policy π. In the sequel, in Algorithm 1, we have

F−it =

{
V̂ t,∗

1

(
x1;R−i

)
if ζ2 = OPT

qV t,∗
1

(
x1;R−i

)
if ζ2 = PES,

G−it =

{
V̂ t,π̂t

1

(
x1;R−i

)
if ζ3 = OPT

qV t,π̂t

1

(
x1;R−i

)
if ζ3 = PES.

These functions then in turn estimate the price that is to be charged to the agents. The
exact formulation can be found in Algorithm 1.

Our proposed algorithms have the potential of being extended to other nonlinear func-
tion approximations following the LSVI steps in Section 3.1, such as the kernel function
approximation and neural function approximation built on the neural tangent kernel theory
(Jacot et al., 2018). This generalization is facilitated by exploring the inherent structure of
specific function classes to construct bonus terms and optimistic/pessimistic Q-functions
using techniques proposed in Zhou et al. (2020a); Yang et al. (2020a); Qiu et al. (2021).
Then, one can replace the function approximation steps in Algorithms 2 and 5 with the

16

Learning Dynamic Mechanisms in Unknown Environments

ones tailored for these approximators to apply nonlinear function approximation. Such a
direction of research warrants further studies in the future.

Remark 3.3 We emphasize that VCG-LinMDP (Algorithm 1) is not a direct extension of
reward-free RL algorithms with function approximation (e.g., Jin et al. (2020a); Wang et al.
(2020); Qiu et al. (2021)) which focus only on estimating the optimal value functions corre-
sponding to different reward functions. Learning the dynamic mechanism requires achieving
multiple desiderata as introduced in Section 2 and minimizing the corresponding regrets,
which introduces additional challenges with decomposing the regret terms not encountered
in prior literature. In particular, we adopt reward-free exploration to address a specific
challenge encountered when learning the dynamic VCG mechanism, namely, the need to learn
the fictitious policy, i.e., the optimal policy in the absence of each agent i, yet reward-free
exploration itself cannot ensure that the resulting mechanism is truthful or individually ra-
tional. Particularly, to show that the final policy output by the exploitation phase enjoys the
desired desiderata requires the particular structure of the VCG mechanism, which we exploit
in our proofs. Besides, the exploitation phase (Algorithm 3 and Algorithm 4) allows for
optimism and pessimism in an online setting, inducing different price estimation strategies
as discussed above. Moreover, Algorithm 2 differs from standard reward-free RL algorithms
by recording the received rewards of different agents during exploration and utilizing these
collected rewards to learn the welfare-maximizing policy and the agents’ prices.

4. Main Results

In this section, we discuss our main theoretical results. We first state the results corresponding
to the three desiderata in mechanism design when ζ1 = ETC, EWC respectively. Then we
present the lower bound of our problem. In our algorithms and theoretical results, ĉ is a
universal absolute constant. We begin with the results for when ζ1 = ETC, i.e., the proposed
algorithms adopt the explore-then-commit strategy, where the exploitation phase uses only
the data generated during the exploration phase.

Theorem 4.1 When ζ1 = ETC, setting K = dH4/3ι1/3T 2/3 where ι := log(36ndHT/δ) for
any δ ∈ (0, 1], defining nR := n+Rmax, with probability at least 1− δ, for all T > K, the
following results hold after executing Algorithm 1 for T rounds:

1. Assuming all agents report truthfully, for all ζ2, ζ3 ∈ {OPT, PES}, the welfare regret satisfies

RegWT ≤ (1 + 2ĉ)nRdH
7/3ι1/3T 2/3,

which indicates that the learned mechanism is (1 + 2ĉ)nRdH
7/3ι1/3T 2/3-approximately

efficient.

2. Assuming all agents report truthfully, the regret of agent i satisfies

RegiT ≤

{
(1 + 2ĉnR)dH7/3ι1/3T 2/3 if (ζ2, ζ3) = (PES, OPT)

(1 + 6ĉnR)dH7/3ι1/3T 2/3 if (ζ2, ζ3) = (OPT, PES).

3. Assuming all agents report truthfully, the regret of the seller satisfies

Reg0T ≤

{
(1 + 4ĉn)nRdH

7/3ι1/3T 2/3 if (ζ2, ζ3) = (PES, OPT)

nRdH
7/3ι1/3T 2/3 if (ζ2, ζ3) = (OPT, PES).

17

Qiu, Lyu, Meng, Wang, Yang, and Jordan

4. The learned mechanism is 6ĉnRdH
7/3ι1/3T 2/3-approximately individually rational.

5. The learned mechanism is
(
1 + 4ĉnR

)
dH7/3ι1/3T 2/3-approximately truthful.

As the learning objective of our algorithm is to minimize the welfare regret together with the
agent and seller regrets, we choose K = dH4/3ι1/3T 2/3 that can lead to a small upper bound
of max{nRegWT ,Reg]T ,Reg0T }, which is O

(
n(n + Rmax)dH7/3ι1/3T 2/3

)
. Here we ignore

constant factors and emphasize K’s dependence on d, H, ι, and T . As discussed in Remark
3.2, we use ζ2 and ζ3 to control the charged price and the seller and agent utilities, which
further affect the achieved regrets. When (ζ2, ζ3) = (OPT, PES), the charged price will be large
and favor the seller, which thus leads to a relatively low seller regret (n+Rmax)dH7/3ι1/3T 2/3

and a high agent regret (1 + 6ĉ(n + Rmax))dH7/3ι1/3T 2/3. When ζ2 = PES and ζ3 = OPT,
there will be a lower price favoring the agent, such that the seller regret increases to
(1+4ĉn)nRdH

7/3ι1/3T 2/3 and agent i’s regret decreases to (1+2ĉ(n+Rmax))dH7/3ι1/3T 2/3.
The seller and agent regrets incurred by other options of (ζ2, ζ3) will lie between the above
regret bounds under such two settings. Since the welfare does not depend on the price as
shown in Equation (5), the choices of (ζ2, ζ3) thus have no impact on the welfare regret.

We further present the results for ζ1 = EWC, i.e., the algorithm adopts the explore-
while-commit strategy, where the exploitation phase uses data collected during both the
exploration and exploitation phases.

Theorem 4.2 When ζ1 = EWC, setting K = dH4/3ι1/3T 2/3 where ι := log(36ndHT/δ) for
any δ ∈ (0, 1], defining nR := n+Rmax, with probability at least 1− δ, for all T > K, the
following results hold after executing Algorithm 1 for T rounds:

1. Assuming all agents report truthfully, for all ζ2, ζ3 ∈ {OPT, PES}, the welfare regret satisfies

RegWT ≤ nRdH7/3ι1/3T 2/3 + 6ĉnRd
3/2H2ιT 1/2,

which indicates that the learned mechanism is (nRdH
7/3ι1/3T 2/3 + 6ĉnRd

3/2H2ιT 1/2)-
approximately efficient.

2. Assuming all agents report truthfully, the regret of agent i satisfies

RegiT ≤

{
dH7/3ι1/3T 2/3 + 6ĉnRd

3/2H2ιT 1/2 if (ζ2, ζ3) = (PES, OPT)

(1 + 4ĉnR)dH7/3ι1/3T 2/3 + 6ĉnRd
3/2H2ιT 1/2 if (ζ2, ζ3) = (OPT, PES),

3. Assuming all agents report truthfully, the regret of the seller satisfies

Reg0T ≤

{
(1 + 4ĉn)nRdH

7/3ι1/3T 2/3 if (ζ2, ζ3) = (PES, OPT)

nRdH
7/3ι1/3T 2/3 if (ζ2, ζ3) = (OPT, PES).

4. The learned mechanism is 6ĉnRdH
7/3ι1/3T 2/3-approximately individually rational.

5. The learned mechanism is (1 + 8ĉnR)dH7/3ι1/3T 2/3-approximately truthful.

Similar to Theorem 4.1, we choose a proper K in Theorem 4.2 that can lead to a small
upper bound of max{nRegWT ,Reg]T ,Reg0T } in terms of d, H, ι, and T , which is O

(
n(n+

Rmax)dH7/3ι1/3T 2/3
)
. Theorem 4.2 also gives the seller and agent regret bounds for the two

settings (ζ2, ζ3) = (PES, OPT) and (ζ2, ζ3) = (OPT, PES), showing that the seller and agent
regret bounds vary between the ones under these two extreme cases according to Remark 3.2.
Note that when the problem reduces to the tabular setting, we have d = |S||A| in Theorems
4.1 and 4.2. When d ≤ |S||A|, we obtain a better rate than that under the tabular setting.

18

Learning Dynamic Mechanisms in Unknown Environments

Metrics Theorem 4.1 (ζ1 = ETC) Theorem 4.2 (ζ1 = EWC)

RegWT (1 + 2ĉ)nRdH
7
3 ι

1
3T

2
3 nRdH

7
3 ι

1
3T

2
3 + 6ĉnRd

3
2H2ιT

1
2

RegiT
(1 + 2ĉnR)dH

7
3 ι

1
3T

2
3 � dH

7
3 ι

1
3T

2
3 + 6ĉnRd

3
2H2ιT

1
2 �

(1 + 6ĉnR)dH
7
3 ι

1
3T

2
3 N (1 + 4ĉnR)dH

7
3 ι

1
3T

2
3 + 6ĉnRd

3
2H2ιT

1
2 N

Reg0T

(1 + 4ĉn)nRdH
7
3 ι

1
3T

2
3 � (1 + 4ĉn)nRdH

7
3 ι

1
3T

2
3 �

nRdH
7
3 ι

1
3T

2
3 N nRdH

7
3 ι

1
3T

2
3 N

Approx. I.R. 6ĉnRdH
7
3 ι

1
3T

2
3 6ĉnRdH

7
3 ι

1
3T

2
3

Approx. Tr. (1 + 4ĉnR)dH
7
3 ι

1
3T

2
3 (1 + 8ĉnR)dH

7
3 ι

1
3T

2
3

Table 1: Comparison of Theorem 4.1 and Theorem 4.2. Here “Approx. I.R.” and “Approx.
Tr.” are the abbreviations of “Approximate Individual Rationality” and “Approximate
Truthfulness”. The results in Theorem 4.1 and Theorem 4.2 hold with probability at least
1−δ respectively for any δ ∈ (0, 1]. We let nR := n+Rmax and ι := log(36ndHT/δ). We use
� to represent the configuration (ζ2, ζ3) = (PES, OPT) and N to represent (ζ2, ζ3) = (OPT, PES).
We further highlight the improvements in the welfare and agent regrets in red.

Further Discussion on Theorem 4.1 and Theorem 4.2. We summarize the results
from the two theorems in Table 1. As shown in our proof sketch in Section 5, we obtain that
RegWT ≤ (n+Rmax)HK + 2ĉ(n+Rmax)

√
d3H6ι/K(T −K) when ζ1 = ETC in Theorem 4.1

and RegWT ≤ (n+Rmax)HK+6ĉ(n+Rmax)
√
d3H4(T −K)ι2 when ζ1 = EWC in Theorem 4.2,

where both bounds share the same term H(n+Rmax)K that results from the exploration
phase. To compare the welfare regrets achieved in both theorems fairly, we in fact need
the rounds of exploration K to be the same, although a straightforward idea might be
setting K differently as K = Õ(T 2/3) for ETC and K = 0 for EWC to minimize the two
bounds respectively. However, we note that the setting K = 0 for Theorem 4.2 will lead
to unboundedness in the seller and agent regrets as well as the individual rationality and
truthfulness according to our proof sketch in Section 5.2. Fortunately, our choice of K
depends on the metric of max{nRegWT ,Reg]T ,Reg0T }, where Reg]T :=

∑n
i=1 RegiT , by taking

all three types of regrets into consideration, which can naturally resolve the aforementioned
issue. Moreover, under this metric, the choices of K for both theorems all have the same
dependence on d, H, ι, and T as justified in our proof sketch, and thus we set the same
value of K directly as dH4/3ι1/3T 2/3.

From Table 1, it is seen that the same setting of K leads to the same individual
rationality guarantee and nearly the same truthfulness guarantee that differs only by an
absolute constant scaling factor. Again referencing Epasto et al. (2018), it is even challenging
for real-world agents to capitalize on a slightly larger constant factor in the approximate
truthfulness guarantees. Therefore, although a slight increase exists in the truthfulness
guarantee for ζ1 = EWC compared to ζ1 = ETC, the current setting of K is justifiable and
enables a fair comparison of regrets. Then, as shown in Table 1, with K = dH4/3ι1/3T 2/3,
the algorithm under ζ1 = ETC can improve a part of the welfare regret from Õ(T 2/3) to
Õ(T 1/2). This improvement results from the use of all the data gathered up to time step t

19

Qiu, Lyu, Meng, Wang, Yang, and Jordan

in the EWC setting rather than the data collected only in the exploration phase in the ETC

setting. From Table 1, we can also observe a similar improvement in the agent regret bound.
The regret improvement also verifies the importance of using the explore-while-commit (EWC)
strategy in the learning algorithm.

Furthermore, we remark that our regret guarantees rely on the assumption that agents
report truthfully. Nevertheless, recalling our earlier discussion on our definition of δ-
approximate efficiency, we note that it is in general difficult to obtain regret bounds without
assuming truthfulness, and thus obtaining performance guarantees under the truthfulness
assumption is reasonable according to existing works (Nazerzadeh et al., 2008; Epasto et al.,
2018; Kandasamy et al., 2020).

Both Theorem 4.1 and Theorem 4.2 implies max{nRegWT ,Reg]T ,Reg0T } = O
(
n(n +

Rmax)dH7/3ι1/3T 2/3
)
. We remark that the Õ(T 2/3) regret is necessary. If we were to focus

only on welfare regret, then it is well-known that the lower bound would be Ω(
√
T). However,

the key challenge of learning the proposed Markov VCG mechanism lies in the interplay
between the three kinds of regrets studied. Consider the extreme case where we set K = 0
in Theorem 4.2. According to our proof sketch in Section 5.2, while the welfare regret upper
bound in Equation (17) improves to Õ(

√
T), we can no longer control the agent nor the

seller regrets in Equations (18) and (19).
At last, we justify that the Õ(T 2/3) bound is tight by providing the lower bound of

max
{
nRegWT ,Reg]T ,Reg0T

}
when all agents are truthful. Let Θ and Alg be the class of

problems and the class of algorithms for this setting respectively, and we obtain the lower
bound as follows:

Theorem 4.3 Let RegWT ,Reg]T ,Reg0T be as defined in (5). Let all agents be truthful.
Defining nR := n+Rmax, we have:

inf
Alg

sup
Θ

E
[
max

{
nRegWT ,Reg]T ,Reg0T

}]
≥ Ω

(
n4/3H2/3T 2/3 + nnRd

√
HT

)
,

for T ≥ max{16(n− 1)/(H − 1), 64(d− 3)2H}, H ≥ 2, d ≥ 4 and n ≥ 3.

At a high level, Theorem 4.3 indicates that the Õ
(
T 2/3

)
upper bound of max

{
nRegWT ,

Reg]T ,Reg0T

}
obtained by the three regrets in Theorem 4.1 and Theorem 4.2 are tight. In

other words, unlike typical single-agent RL, it is impossible to obtain Õ(
√
T) regret when

learning the Markov VCG mechanism. The intuition behind the hard case used for the lower
bound is that we need to accurately learn the VCG prices to achieve a low regret. Setting
the VCG prices too high harms the agents’ utilities, whereas setting them too low harms
the seller’s. Learning the VCG prices requires learning the welfare-maximizing policy when
agent i is absent, π−i∗ . Combined with our need to estimate the welfare-maximizing policy,
any suitable learning algorithm needs to reduce the estimation error of the value functions
for all policies. Our proposed algorithm resolves this challenge by reward-free exploration,
and the procedure is crucial for efficiently learning the Markov VCG mechanism. There is
still a gap between the upper and lower bounds in terms of the multiplicative factors n, d,
and H, and we leave the derivation of exactly matching upper and lower bounds as an open
question for future work.

Our work features several prominent contributions to the existing literature in mecha-
nism design learning and online learning of linear MDPs. As shown in Theorem 4.1 and

20

Learning Dynamic Mechanisms in Unknown Environments

Theorem 4.2, our work proposes the first algorithm capable of learning a dynamic mechanism
with no prior knowledge. In particular, we further show that the mechanism learned by Al-
gorithm 1 simultaneously satisfies approximate efficiency, approximate individual rationality,
and approximate truthfulness. As we will demonstrate in the sequel, the satisfaction of the
approximate versions of the three mechanism design desiderata is demonstrated through
novel decomposition approaches. Moreover, Theorem 4.3 demonstrates that our achieved
results are minimax optimal up to problem-dependent constants.

5. Proof Sketch

In this section, we outline the analysis of our theorems. The formal proof is deferred to
Appendix C - F. For a concise presentation, in the proof, we let V ∗1 (x1; r) := maxπ V

π
1 (x1; r)

for any reward function r. We further provide a table of notation in Appendix A summarizing
all notations used here.

5.1 Proof Sketch of Theorem 4.1

We assume that all agents report their rewards truthfully in the proof of the upper bounds
of the welfare regret, the agent regret, and the seller regret. Since we use the explore-then-
commit algorithm when ζ1 = ETC, we decompose all the regrets into two components: the
regret incurred in the exploration phase and the regret incurred in the exploitation phase.
Additionally, for each of these regrets, we first show its dependence on both the rounds of
exploration K and the total rounds T . Then we determine K that can lead to a tight upper
bound of max{nRegWT ,Reg]T ,Reg0T } in terms of n, d,H, ι, and T .

Welfare Regret. We first decompose the welfare regret into two parts as follows:

RegWT =
∑K

t=1 regWt +
∑T

t=K+1 regWt , (8)

where regWt := V π∗
1 (x1;R)−V π̂t

1 (x1;R) is the instantaneous welfare regret. Here
∑K

t=1 regWt
is the welfare regret in the exploration phase and

∑T
t=K+1 regWt is for the exploitation phase.

For the regret incurred in the exploration phase in Equation (8), we bound the instantaneous
regret regWt at each time step by H(n+Rmax), which is the maximum of the instantaneous
regret at each round. For the exploitation welfare regret in Equation (8), we can bound
its instantaneous welfare regret regWt by 2ĉ(n + Rmax)

√
d3H6ι/K with high probability,

whose proof is inspired by the regret proof for learning linear MDPs, as the prices cancel
out when calculating social welfare. Therefore, with high probability, the following welfare
regret bound holds

RegWT ≤ H(n+Rmax)K + 2ĉ(n+Rmax)
√
d3H6ι/K(T −K), (9)

where the rounds of the exploration phase K will be determined later.

Agent Regret. We have the following regret decomposition in terms of the exploration
phase and exploitation phase as follows,

RegiT =
∑K

t=1 regit +
∑T

t=K+1 regit, (10)

21

Qiu, Lyu, Meng, Wang, Yang, and Jordan

where regit := ui∗ − uit is the instantaneous regret of agent i. As shown in Algorithm 1, we
do not charge the agents in the exploration phase. Thus, the instantaneous regret of agent i
in the exploration phase can be upper bounded as

regit ≤ ui∗ −min
π
V π

1 (x1; ri) ≤ ui∗ = V π∗
1 (x1; ri)− pi∗ ≤ V π∗

1 (x1; ri) ≤ H, 1 ≤ t ≤ K.

For the terms in the second summation in Equation (10), i.e., the instantaneous regret of
agent i incurred in the exploitation phase, we first decompose it to several simple terms as
follows,

regit =
[
V π∗

1

(
x1;R

)
− V π̂t

1

(
x1;R

)]︸ ︷︷ ︸
(i.1)

+
[
F−it − V

π−i
∗

1

(
x1;R−i

)]︸ ︷︷ ︸
(i.2)

+
[
V π̂t

1

(
x1;R−i

)
−G−it

]︸ ︷︷ ︸
(i.3)

, (11)

where (i.1) is the suboptimality of π̂t, (i.2) is the estimation error of V π−i
∗

1

(
x1;R−i

)
by F−it ,

and (i.3) is the policy evaluation error. To satisfy the desiderata of the mechanism design
in Lemma 2.1, we set F -function as the optimistic (when ζ2 = OPT) or pessimistic (when

ζ2 = PES) estimate of V π−i
∗

1

(
x1;R−i

)
, while the G-function is the estimate of V π̂t

1

(
x1;R−i

)
w.r.t. the learned policy π̂t. The different structures of F -function and G-function lead
to different ways of bounding (i.2) and (i.3).When we set (ζ2, ζ3) = (PES, OPT), we have
that (i.2) ≤ 0 and (i.3) ≤ 0 since F−it and G−it are the pessimistic and optimistic estimates
respectively. Then, we can bound the instantaneous regret of agent i in the exploitation
phase as follows

regit ≤ V π∗
1

(
x1;R

)
− V π̂t

1

(
x1;R

)
≤ 2ĉ(n+Rmax)

√
d3H6ι/K, 1 ≤ t ≤ K.

When we set (ζ2, ζ3) = (OPT, PES), we can bound (i.2) and (i.3) by 2ĉ(n+Rmax)
√
d3H6ι/K

respectively with high probability. Thus, we bound the instantaneous regret of agent i in
the exploitation phase as

regit ≤ 6ĉ(n+Rmax)
√
d3H6ι/K, K < t ≤ T.

Combining the regrets incurred in both phases, we obtain with high probability,

RegiT ≤ HK + 6ĉ(n+Rmax)
√
d3H6ι/K(T −K). (12)

Seller Regret. We can decompose the seller regret into two parts as follows

Reg0T =
∑K

t=1 reg0t +
∑T

t=K+1 reg0t, (13)

where reg0t := u0∗ − u0t is the instantaneous regret of the seller. Since the seller charges
a price of 0 to all agents, the instantaneous seller regret in the exploration phase can be
bounded as

reg0t ≤ u0∗ −min
π
V π(x1; r0) ≤ u0∗ ≤ H(n+Rmax), 1 ≤ t ≤ K.

For the instantaneous seller regret in the exploitation phase (K < t ≤ T), we have the
following decomposition

22

Learning Dynamic Mechanisms in Unknown Environments

reg0t = (n− 1)
[
V π̂

t

1

(
x1;R

)
− V ∗1

(
x1;R

)]︸ ︷︷ ︸
(ii.1)

+

n∑
i=1

[
V ∗1
(
x1;R−i

)
− F−it

]︸ ︷︷ ︸
(ii.2)

+

n∑
i=1

[
G−it − V π̂

t(
x1;R−i

)]︸ ︷︷ ︸
(ii.3)

.

Here we have (ii.1) = −(i.3), (ii.2) = −(i.1), and (ii.3) = −(i.2) with (i.1), (i.2), (i.3) defined
in Equation (11). Notice that (ii.1) ≤ 0 always holds regardless of the choice of (ζ2, ζ3). We
can upper bound (ii.2) and (ii.3) using the same method as bounding (i.1) and (i.2). Thus,
with high probability, reg0t in the exploitation phase (K < t ≤ T) is upper bounded as

reg0t ≤

{
4ĉn(n+Rmax)

√
d3H6ι/K if (ζ2, ζ3) = (PES, OPT)

0 if (ζ2, ζ3) = (OPT, PES).

Combining the above results, the seller regret Reg0T is bounded by{
H(n+Rmax)K + 4ĉn(n+Rmax)

√
d3H6ι/K(T −K) if (ζ2, ζ3) = (PES, OPT)

H(n+Rmax)K if (ζ2, ζ3) = (OPT, PES).
(14)

Choice of K. We determine the value of K which can give a tight bound of max{nRegWT ,

Reg]T ,Reg0T } where Reg]T =
∑n

i=1 RegiT . According to (9), (12), and (14), comparing the

upper bounds of nRegWT , Reg]T , and Reg0T , we always have

max{nRegWT ,Reg]T ,Reg0T } ≤ H(n+Rmax)nK + 6ĉ(n+Rmax)n
√
d3H6ι/K(T −K).

Focusing on the factors of H, n, d, T , and ι, we set K = dH4/3ι1/3T 2/3, which can minimize
the order of these factors in the above inequality, and obtain the bounds in Theorem 4.1.

Next, we provide the proof sketches for the approximate individual rationality and
truthfulness. Note that in the following analysis, we do not assume the agents are reporting
truthfully. We denote the potentially untruthful reward function of agent i at step h by r̃ih
and then r̃i = {r̃ih}Hh=1. We further let R̃−i := r0 +

∑n
j=1,j 6=i r̃j .

Individual Rationality. To prove the individual rationality, we assume that agent i
reports truthfully according to the reward function ri and other agents may report un-
truthfully according to the reward function r̃j for j 6= i. Under this reward setting, let

π̃†it be the learned seller’s policy substituting π̂t in Algorithm 1, which is generated by
Algorithm 3 in the current reward setting. We further denote the associated F and G
functions as F †,−it and G†,−it generated by Algorithms 3 and 4 respectively. Note that we do
not charge the agents in the exploration phase (t ≤ K), and hence the utilities in this phase
are always non-negative. Thus, we only need to consider the utilities in the exploitation
phase (t > K). Then, according to the definition of uit, under the current setting of the
reward, the instantaneous utility uit of agent i can be decomposed as

uit = V
π̃†it

1 (x1; ri)− p†it =
[
V
π̃†it

1

(
x1; ri + R̃−i

)
− F †,−it

]
︸ ︷︷ ︸

(iii.1)

+
[
G†,−it − V π̃†it

1

(
x1; R̃−i

)]
︸ ︷︷ ︸

(iii.2)

, (15)

where p†it = F †,−it − G†,−it . To prove the individual rationality, we bound (iii.1) and

(iii.2) from below. Here we denote the optimistic version of F †,−it , when ζ2 = OPT, by

23

Qiu, Lyu, Meng, Wang, Yang, and Jordan

V̂ t,†
1

(
x1; R̃−i

)
according to Algorithm 3, which implies F †,−it ≤ V̂ t,†

1

(
x1; R̃−i

)
. Then, we have

(iii.1) ≥ V π̃†it
1

(
x1; ri + R̃−i

)
− V̂ t,†

1

(
x1; R̃−i

)
. This can be further decomposed as

V
π̃†it

1

(
x1; ri + R̃−i

)
− V̂ t,†

1

(
x1; R̃−i

)
=
[
V ∗1 (x1; ri + R̃−i)− V ∗1 (x1; R̃−i)

]
︸ ︷︷ ︸

(iii.1a)

+
[
V
π̃†it

1

(
x1; ri + R̃−i

)
− V ∗1 (x1; ri + R̃−i)

]
︸ ︷︷ ︸

(iii.1b)

+
[
V ∗1 (x1; R̃−i)− V̂ t,†

1

(
x1; R̃−i

)]
︸ ︷︷ ︸

(iii.1c)

.

Note that (iii.1a) ≥ 0 always holds since both terms in (iii.1a) are optimal value functions
but V ∗1 (x1; ri + R̃−i) has larger reward function. Here (iii.1b) is the suboptimality of policy

π̃†it and (iii.1c) is the estimation error of V ∗1 (x1; R̃−i) by V̂ t,†
1

(
x1; R̃−i

)
. We lower bound

(iii.1b) and (iii.1c) by −2ĉ(n+Rmax)
√
d3H6ι/K respectively with high probability. Then

(iii.2) can be lower bounded by −4ĉ(n+Rmax)
√
d3H6ι/K. For (iii.2), the policy evaluation

error for policy π̃†it , we can lower bound it by −2ĉ(n+Rmax)
√
d3H6ι/K invoking Lemma

C.1. Recall that we set K = dH4/3ι1/3T 2/3. Then we lower bound the summation of (iii.1)
and (iii.2) over T episodes by −4ĉ(n+Rmax)dH7/3ι1/3T 2/3 and −2ĉ(n+Rmax)dH7/3ι1/3T 2/3

respectively. Combining these two parts, with high probability, we have

UiT ≤ −6ĉ(n+Rmax)dH7/3ι1/3T 2/3,

which indicates that the learned mechanism is 6ĉ(n+Rmax)dH7/3ι1/3T 2/3-approximately
individually rational.

Truthfulness. We consider two cases: (1) agent i reports truthfully and others may report
untruthfully (2) all agents may report untruthfully. Then we denote by ri the truthful reward
and r̃i the potentially untruthful reward for all i ∈ [n]. For case (1), we adopt the same

definitions of F †,−it , G†,−it , π̃†it , and uit = V
π̃†it

1 (x1; ri)− p†it as in the above proof of individual

rationality. For case (2), under the untruthful reporting of {r̃i}i∈[n], we let π̃‡t be the learned

policy for the seller under the reward R̃ := r0 +
∑n

i=1 r̃i in Algorithm 1, F ‡,−it and G‡,−it

be the associated F and G functions generated by Algorithms 3 and 4 respectively, and

ũit = V
π̃‡t

1 (x1; ri)− p‡it with p‡it = F ‡,−it −G‡,−it . We then have the following decomposition

ŨiT − UiT =
∑K

t=1(ũit − uit) +
∑T

t=K+1(ũit − uit). (16)

For the first summation, since the agents are not charged, we have∑K
t=1(ũit − uit) ≤

∑K
t=1 ũit ≤

∑K
t=1 maxπ V

π(x1; ri) ≤ HK.

We now turn to decomposing the second summation in Equation (16). We have for t > K,

ũit − uit =
[
V
π̃‡t

1 (x1; ri)− F ‡,−it +G‡,−it

]
−
[
V
π̃†it

1 (x1; ri)− F †,−it +G†,−it

]
.

Notice that when ζ1 = ETC, we only use the data collected in the exploration phase to
calculate the F function. Thus, we have F †,−it = F ‡,−it . Then, we can show that ũit − uit

24

Learning Dynamic Mechanisms in Unknown Environments

can be decomposed as

ũit − uit =
[
G‡,−it − V π̃‡t

1

(
x1; R̃−i

)]︸ ︷︷ ︸
(iv.1)

+
[
V
π̃†it

1

(
x1; R̃−i

)
−G†,−it

]︸ ︷︷ ︸
(iv.2)

+
[
V
π̃‡t

1

(
x1; ri + R̃−i

)
− V π̃i

∗
1

(
x1; ri + R̃−i

)]︸ ︷︷ ︸
(iv.3)

+
[
V
π̃i
∗

1

(
x1; ri + R̃−i

)
− V π̃†it

1

(
x1; ri + R̃−i

)]︸ ︷︷ ︸
(iv.4)

.

We remark that different from the bandit setting in Kandasamy et al. (2020), the estimates of
value functions are not linear w.r.t. the reward functions, i.e., V̂ t,π

1 (x1;R1) + V̂ t,π
1 (x1;R2) 6=

V̂ t,π
1 (x1;R1 +R2) or qV π

1 (x1;R1) + qV t,π
1 (x1;R2) 6= qV t,π

1 (x1;R1 +R2) for any reward functions
R1 and R2, due to the truncation of Q-functions in Algorithm 3 and Algorithm 4. However,
the true value function, i.e., V π

1 (x1;R1) + V π
1 (x1;R2) = V π

1 (x1;R1 + R2), is linear w.r.t.
the reward function. This leads to a novel and more complex decomposition in the above
equation. Note that (iv.3) ≤ 0 since V ∗1 (x1; ri + R̃−i) = maxπ V

π
1 (x1; ri + R̃−i). And

(iv.4) is the suboptimality of policy π̃†it . Then, with high probability, the term (iv.4) is
upper bounded by 2ĉ(n + Rmax)

√
d3H6ι/K. Here (iv.1) and (iv.2) are evaluation errors

depending on the setting of ζ3 under different reward settings. When ζ3 = OPT, we have
(iv.1) ≤ 2ĉ(n+Rmax)

√
d3H6ι/K while (iv.2) ≤ 0. And when ζ3 = PES, we have (iv.1) ≤ 0

and (iv.2) ≤ 2ĉ(n+Rmax)
√
d3H6ι/K. Thus, regardless of the choices for ζ2, ζ3, we always

have
ũit − uit ≤ 4ĉ(n+Rmax)

√
d3H6ι/K, t > K.

Summing up the regret incurred in both the exploration and exploitation phases as in (16),
and setting K = dH4/3ι1/3T 2/3, with high probability, we have

ŨiT − UiT ≤
(
1 + 4ĉ(n+Rmax)

)
dH7/3ι1/3T 2/3,

which implies that the mechanism learned by our algorithm is
(
1+4ĉ(n+Rmax)

)
dH7/3ι1/3T 2/3-

approximately truthful.

5.2 Proof Sketch of Theorem 4.2

We assume that all agents report their rewards truthfully in the proof of the upper bounds
of the welfare regret, the agent regret, and the seller regret. Although we use all the data
generated in T rounds to compute our mechanism when ζ1 = EWC, we still need to perform
reward-free exploration for individual rationality and truthfulness. Thus, we also decompose
regrets into two components: the regret incurred in the exploration phase and the regret
incurred in the exploitation phase.

Welfare Regret. We adopt the same decomposition as in Equation (8) and decompose
the welfare regret as RegWT =

∑K
t=1 regWt +

∑T
t=K+1 regWt . The first summation

∑K
t=1 regWt ,

the welfare regret incurred in the exploration phase, can be bounded by (n + Rmax)HK
as in Section 5.1. The key difference between the proofs of welfare regrets in Theorem 4.2
and Theorem 4.1 lies in the upper bound of

∑T
t=K+1 regWt , i.e., the regret incurred in the

exploitation phase. When ζ1 = EWC, we use the information gathered up to round t for
planning in the exploitation phase, instead of just using the K rounds’ exploration data as

25

Qiu, Lyu, Meng, Wang, Yang, and Jordan

we do when ζ1 = ETC. Thus, we can bound the regret incurred in the exploitation phase by
6ĉ(n+Rmax)

√
d3H4(T −K)ι2 with high probability, whose proof takes inspiration from the

regret proof for online linear MDPs with exploration, as the calculation of social welfare does
not involve prices. Combining the regrets incurred in both phases, with high probability,
the following welfare regret bound holds

RegWT ≤ (n+Rmax)HK + 6ĉ(n+Rmax)
√
d3H4(T −K)ι2, (17)

where the rounds of the exploration phase K will be determined later.

Agent Regret. Following Equation (13), we decompose the regret of agent i in terms of
the exploration phase and exploitation phase as RegiT =

∑K
t=1 regit+

∑T
t=K+1 regit. For the

first summation
∑K

t=1 regit, the agent i’s regret in the exploration phase, we can bound it by

HK as in Section 5.1. For the term
∑T

t=K+1 regit, recalling the decomposition in Equation
(11), it can be decomposed as

T∑
t=K+1

[
V π∗

1

(
x1;R

)
− V π̂t

1

(
x1;R

)]
︸ ︷︷ ︸

(i.1)

+
T∑

t=K+1

[
F−it − V

π−i
∗

1

(
x1;R−i

)]
+
[
V π̂t

1

(
x1;R−i

)
−G−it

]
︸ ︷︷ ︸

(i.2)

.

For term (i.1), we can bound it by 6ĉ(n + Rmax)
√
d3H4(T −K)ι2 with high probability

leveraging the information gathered up to round t instead of K in the exploitation phase,
whose proof follows the proof for welfare regret when ζ1 = EWC. For term (i.2), following
the same proof in Section 5.1, we get an upper bound 0 when (ζ2, ζ3) = (PES, OPT) and an

upper bound 4ĉ(n+Rmax)
√
d3H6ι/K(T −K) when (ζ2, ζ3) = (OPT, PES). Combining the

upper bounds of (i.1), (i.2) for
∑T

t=K+1 regit and the regret bound for the exploitation phase∑K
t=1 regit ≤ HK, with high probability, RegiT has the following upper bound,{
HK + 6ĉ(n+Rmax)

√
d3H4(T −K)ι2 if (ζ2, ζ3) = (PES, OPT)

HK + ĉ(n+Rmax)
(
6
√
d3H4(T −K)ι2 + 4

√
d3H6ι/K(T −K)

)
if (ζ2, ζ3) = (OPT, PES).

(18)

Seller Regret. Since the trajectories we collected are according to the process where all
the agents are engaged, we can not make a better estimation of the VCG prices even if we
use the information gathered in the exploitation phase. Also, note that the seller regret
comes from the estimation error of the VCG prices, we cannot improve the analysis of the
seller regret. Thus, we reuse the proof in Section 5.1, and can get the upper bound of seller
regret Reg0T as{

H(n+Rmax)K + 4ĉn(n+Rmax)
√
d3H6ι/K(T −K) if (ζ2, ζ3) = (PES, OPT)

H(n+Rmax)K if (ζ2, ζ3) = (OPT, PES).
(19)

Choice of K. We determine the value of K which can give a tight bound of max{nRegWT ,

Reg]T ,Reg0T } where Reg]T =
∑n

i=1 RegiT . According to (17), (18), and (19), compar-

ing the upper bounds of nRegWT , Reg]T , and Reg0T , we always have the upper bound of

max{nRegWT ,Reg]T ,Reg0T } as

n(n+Rmax)
(
HK + 6ĉ

√
d3H4(T −K)ι2 + 4ĉ

√
d3H6ι/K(T −K)

)
.

26

Learning Dynamic Mechanisms in Unknown Environments

Focusing on the factors of H, n, d, T , and ι, we set K = dH4/3ι1/3T 2/3, which can minimize
the order of these factors in the above inequality, and obtain the bounds in Theorem 4.2.

Individual Rationality. We assume that agent i reports truthfully according to the
reward function ri and other agents may report untruthfully according to the reward
function r̃j for j 6= i. According to the above assumption, agent i cannot manipulate the
policy used during the exploitation phase, which implies that agent i can not influence
trajectories collected during the exploitation phase. Note that the only difference between
the algorithm when ζ1 = EWC and ζ1 = ETC is the trajectories collected during exploitation
are used for estimating policy and VCG prices. Thus, agent i cannot affect policy and
VCG price estimates obtained during exploration. Hence we can reuse the proof for
individual rationality in Section 5.1 and get the conclusion that the mechanism we learned
is 6ĉ(n+Rmax)dH7/3ι1/3T 2/3-approximately individually rational.

Truthfulness. The proof for truthfulness when ζ1 = EWC significantly differs from the
case when ζ1 = ETC. At a high level, when ζ1 = ETC, we use the fact that the data used to
calculate F is collected entirely during the exploration phase and is not affected by agent
i potentially reporting untruthfully, and hence F ‡,−it and F †,−it cancel out. Unfortunately,
when ζ1 = EWC, F depends the untruthful behavior of agent i. The trajectories collected
during exploitation affect F . The policy used for collecting these trajectories is affected
by the agent i’s report. Because agent i’s untruthfulness impacts F , we need to bound
the difference between F †,−it and F ‡,−it , which is different from the proof of truthfulness in
Section 5.1. Thus, we follow the decomposition in Equation (16). For the first summation
in Equation (16), which corresponds to the exploration phase, we can upper bound it by
HK. For the second summation that relates to the exploitation phase, regardless of other
agents’ truthfulness, the amount of utility an agent gains from untruthful reporting ũit − uit
for t > K can be decomposed as

ũit − uit =
[
V
π̃‡t

1

(
x1; ri + R̃−i

)
− V ∗1

(
x1; ri + R̃−i

)]︸ ︷︷ ︸
(i.1)

+
[
V ∗1
(
x1; ri + R̃−i

)
− V π̃†it

1

(
x1; ri + R̃−i

)]︸ ︷︷ ︸
(i.2)

+
[
G‡,−it − V π̃‡t

1

(
x1; R̃−i

)]︸ ︷︷ ︸
(i.3)

+
[
V
π̃†it

1

(
x1; R̃−i

)
−G†,−it

]︸ ︷︷ ︸
(i.4)

+
[
F †,−it − F ‡,−it

]︸ ︷︷ ︸
(1.5)

.

Following Section 5.1, regardless of the choice of ζ3, with high probability, we have

(i.1) + (i.2) + (i.3) + (i.4) ≤ 4ĉ(n+Rmax)
√
d3H6ι/K.

We next focus on the upper bound of (i.5). When ζ1 = EWC, the trajectories collected during

the exploitation phase may differ for the computations of V̂ t,†
1 (x1; R̃−i) and qV t,‡

1 (x1; R̃−i),
due to agent i’s untruthful reporting. Fortunately, the policy evaluation error can still
be bounded. The reward-free exploration procedure in Algorithm 2 ensures that the data
collected during exploitation cannot affect the estimated value functions too much. The
estimation error surrounding estimated value functions is already small due to the exploration
phase. As a result, adding more trajectories during exploitation cannot significantly alter

27

Qiu, Lyu, Meng, Wang, Yang, and Jordan

our estimated values, thereby controlling the policy evaluation error. More formally, we have

(i.5) ≤
(
V̂ t,†

1 (x1; R̃−i)− V ∗1 (x1; R̃−i)
)

︸ ︷︷ ︸
(ii.1)

+
(
V ∗1 (x1; R̃−i)− qV t,‡

1 (x1; R̃−i)
)

︸ ︷︷ ︸
(ii.2)

,

where (ii.1) and (ii.2) can be upper bounded by 2ĉ
√
d3H6ι/K with high probability respec-

tively. In summary, we have that, with high probability, for all t > K,

ũit − uit ≤ 8ĉ(n+Rmax)
√
d3H6ι/K.

Summing ũit − uit from t = 1 to T , recalling the bound for all t ∈ [K], and setting
K = dH4/3ι1/3T 2/3, with high probability, we get

ŨiT − UiT ≤ (1 + 8ĉ(n+Rmax))dH7/3ι1/3T 2/3,

which implies the mechanism we learned is (1 + 8ĉ(n+Rmax))dH7/3ι1/3T 2/3-approximately
truthful.

5.3 Proof Sketch of Theorem 4.3

Although the previous work Kandasamy et al. (2020) studies the lower bound for mechanism
design in the bandit setting, we remark that deriving the lower bound for our problem is
non-trivial which requires different constructions and proof techniques from that of this
earlier work. Our lower bound takes into account the function approximation and the
transition model within the finite horizon, which cannot be handled by Kandasamy et al.
(2020). In addition, our work invalidates the Gaussian reward construction in Kandasamy
et al. (2020) because of the bounded reward assumption in our work. We use a different
construction with the Bernoulli reward and apply a different anti-concentration analysis.

Our lower bound is devised by considering two hard cases for the Markov VCG learning
with linear function approximation. For the first hard case, we mimic the strategy of the
lower bound design as in Kandasamy et al. (2020) with constructing two problems θ0 and θ1

that are hard to distinguish. Then, the lower bound is obtained by further lower bounding
specific quantities w.r.t. θ0 and θ1. Though we follow such a proving strategy, the model
construction is specific to our MDP setting and different from the existing work as discussed
above. Specifically, we consider constructing two linear MDPs for the two problems θ0

and θ1 that are hard to distinguish, i.e., they share the same linear feature mapping and
deterministic transition kernel but have a small difference in the distribution of reward
functions. In addition, we let the dimension of the linear space be d = n + 2. Note that
due to the bounded reward assumption in this work, we define Bernoulli reward functions
which further leads to a different anti-concentration analysis. By bounding the specific
quantities associated with θ0 and θ1, we obtain a dimension-free lower bound in an order of
Ω(n4/3H2/3T 2/3).

Moreover, to further understand the dependence on any dimension d, our second hard
case is constructed by the observation that max

(
nRegWT ,Reg]T ,Reg0T

)
≥ nRegWT always

holds. This further inspires us to connect the lower bound to the problem of learning a d
dimensional linear MDP with n+ 1 reward functions. We thus prove that the lower bound

28

Learning Dynamic Mechanisms in Unknown Environments

of nRegWT is Ω
(
n(n+Rmax)d

√
HT

)
, where the factor n+Rmax reflects the impact of the

n agent reward functions and the seller reward function on the lower bound. Combining
the above two hard cases, we eventually obtain the lower bound for our mechanism design
problem, which is Ω

(
n4/3H2/3T 2/3 + n(n+Rmax)d

√
HT

)
. Please refer to Appendix E for

the detailed proof.

6. Conclusion

In this paper, we consider the problem where the agents interact with the mechanism
designer according to an unknown MDP. We focus on the online setting with linear function
approximation and attempt to recover the dynamic VCG mechanism over multiple rounds of
interaction. We propose novel algorithms to learn the mechanism and show that the regret of
our proposed method is upper bounded by Õ(T 2/3), where T is the total number of rounds.
We further devise a lower bound, incurring the same Ω(T 2/3) regret as the upper bound.
Our work establishes the regret guarantee for online RL in solving dynamic mechanism
design problems without prior knowledge of the underlying model.

29

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Appendix

Contents

A Table of Notation 31

B Proof of Lemma 2.1 32

C Proof of Theorems 4.1 and 4.2 32
C.1 Proof of Theorem 4.1 . 33
C.2 Proof of Theorem 4.2 . 40

D Proof of Lemma C.1 46
D.1 Preliminaries for Proofs . 46
D.2 Proof of Lemma C.1 . 52

E Proof of Lower Bound 58

F Other Supporting Lemmas 66

30

Learning Dynamic Mechanisms in Unknown Environments

Appendix A. Table of Notation

To summarize our notations, we present the following table of notation.

Table 2: Table of Notation

Notation Meaning

R summation of the reward functions of the seller and the agents, i.e.,
∑n
i=0 ri

R−i summation of the reward functions except that of agent i, i.e.,
∑n
j=0,j 6=i rj

V ∗(; r) maxπ V
π(; r) for any value function r

π̂t seller’s policy in Alg. 1 w.r.t. the reward function R, generated by Alg. 3

V̂ t,∗h (x1;R) optimistic value function generated by Alg. 3 w.r.t. R

V̂ t,∗h (x1;R−i) optimistic value function generated by Alg. 3 w.r.t. R−i

qV t,∗h (x1;R−i) pessimistic value function generated by Alg. 3 w.r.t. R−i

V̂ t,π̂
t

h (x1;R−i) optimistic value function generated by Alg. 4 w.r.t. R−i and π̂t

qV t,π̂
t

h (x1;R−i) pessimistic value function generated by Alg. 4 w.r.t. R−i and π̂t

F−it V̂ t,∗1 (x1;R−i) if ζ2 = OPT; qV t,∗1 (x1;R−i) if ζ2 = PES

G−it V̂ t,π̂
t

1 (x1;R−i) if ζ3 = OPT; qV t,π̂
t

1 (x1;R−i) if ζ3 = PES

ι the logarithmic term log(36ndHT/δ)

r̃i potentially untruthful reward function for agent i, i ∈ [n]

R̃−i r0 +
∑n
j=1,j 6=i r̃j

π̃†it seller’s policy in Alg. 1 w.r.t. the reward function ri + R̃−i, generated by Alg. 3

V̂ t,†h (x1; ri+R̃
−i) optimistic value by Alg. 3 w.r.t. ri + R̃−i if agents are untruthful except agent i

V̂ t,†h (x1; R̃−i) optimistic value by Alg. 3 w.r.t. R̃−i if agents are untruthful except agent i

qV t,†h (x1; R̃−i) pessimistic value by Alg. 3 w.r.t. R̃−i if agents are untruthful except agent i

V̂
t,π̃†it
h (x1; R̃−i) optimistic value by Alg. 4 w.r.t. R̃−i, π̃†it if agents are untruthful except agent i

qV
t,π̃†it
h (x1; R̃−i) pessimistic value by Alg. 4 w.r.t. R̃−i, π̃†it if agents are untruthful except agent i

F †,−it V̂ t,†1 (x1; R̃−i) if ζ2 = OPT; qV t,†1 (x1; R̃−i) if ζ2 = PES

G†,−it V̂
t,π̃†it
1 (x1; R̃−i) if ζ3 = OPT; qV

t,π̃†it
1 (x1; R̃−i) if ζ3 = PES

R̃ r0 +
∑n
i=1 r̃i

π̃‡t seller’s policy in Alg. 1 w.r.t. the reward function R̃, generated by Alg. 3

V̂ t,‡h (x1; R̃) optimistic value by Alg. 3 w.r.t. R̃ if all agents are untruthful

V̂ t,‡h (x1; R̃−i) optimistic value by Alg. 3 w.r.t. R̃−i if all agents are untruthful

qV t,‡h (x1; R̃−i) pessimistic value by Alg. 3 w.r.t. R̃−i if all agents are untruthful

V̂
t,π̃‡t
h (x1; R̃−i) optimistic value by Alg. 4 w.r.t. R̃−i, π̃‡t if all agents are untruthful

qV
t,π̃‡t
h (x1; R̃−i) pessimistic value by Alg. 4 w.r.t. R̃−i, π̃‡t if all agents are untruthful

F ‡,−it V̂ t,‡1 (x1; R̃−i) if ζ2 = OPT; qV t,‡1 (x1; R̃−i) if ζ2 = PES

G‡,−it V̂
t,π̃‡t
1 (x1; R̃−i) if ζ3 = OPT; qV

t,π̃‡t
1 (x1; R̃−i) if ζ3 = PES

31

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Appendix B. Proof of Lemma 2.1

Proof The detailed proof for these three properties can be found in Appendix B of Lyu
et al. (2022). We include a sketch of the proof here for completeness. The proof for the
linear Markov VCG mechanism’s properties is provided as follows:

1. Truthfulness: We begin by noting that when agent i reports their rewards untruthfully,
the untruthful reporting may change the optimal policy of V π

1 (x1;R) by altering only
the reported value of ri and the associated value function V π

1 (; ri). However, agent i
cannot affect the value of V π

1 (x1;R−i), as R−i is independent of ri.

With the previous observation in mind, let r̃i be the untruthful value function reported
by agent i and π̃ = argmaxπ∈Π V

π
1 (x1; r̃i + R−i). Under the linear Markov VCG

mechanism, agent i attains the following utility

ũi = V π̃
1 (x1; ri)− V π−i

∗
1 (x1;R−i) + V π̃

1 (x1;R−i) = V π̃
1 (x1;R)− V π−i

∗
1 (x1;R−i).

Similarly, we know ui = V π∗
1 (x1;R)− V π−i

∗
1 (x1;R−i) when agent i reports truthfully.

Since π∗ is the maximizer of V π
1 (x1;R), we know ui ≥ ũi, thus proving truthfulness.

2. Individual Rationality : For any agent i, their utility is given by

ui∗ = V π∗
1 (x1; ri)− pi∗ = V π∗

1 (x1;R)− V π−i
∗

1 (x1;R−i)

≥ V π−i
∗

1 (x1;R)− V π−i
∗

1 (x1;R−i) = V π−i
∗

1 (x1; ri) ≥ 0,
(20)

where we use the fact that ri,h(s, a) ≥ 0 for all (i, h, s, a) ∈ [n]× [H]× S ×A.

3. Efficiency : Under truthful reporting, the chosen policy π∗ is the maximizer of the
value-function of welfare V π

1 (x1;R) and hence is efficient.

This completes the proof.

Appendix C. Proof of Theorems 4.1 and 4.2

We begin by introducing a crucial result that will be used throughout the rest of the section.
This lemma presents the estimation errors of certain value functions by their corresponding
optimistic or pessimistic value estimates. We refer readers to the table of notation in Section
A for detailed definitions of the policies, rewards, and value functions in this lemma.

Lemma C.1 For both when ζ1 = ETC and when ζ1 = EWC, let ι = log(36ndHT/δ). With
probability at least 1− δ, the following statements hold true jointly for all t > K and some
absolute constant ĉ.

1. Regardless of any agent’s truthfulness, the policy used is sufficiently close to the one
that maximizes the value functions of the reported reward functions. More specifically,
V ∗1 (x1;R) − V π

1 (x1;R) ≤ 2ĉ
√
d3H6ι/K for all (R, π) ∈ {(R, π̂t), (R̃, π̃‡t)} ∪ {(ri +

R̃−i, π̃†it)}ni=1.

32

Learning Dynamic Mechanisms in Unknown Environments

2. For all i ∈ [n], Algorithm 3 returns a sufficiently good estimate regardless of agent
i’s or other agents’ truthfulness. More specifically, 0 ≤ V̂ t,π

1 (x1;R) − V ∗(x1;R) ≤
2ĉ
√
d3H6ι/K and −2ĉ

√
d3H6ι/K ≤ qV t,π

1 (x1;R) − V ∗(x1;R) ≤ 0, for all (R, π) ∈
{(R−i, ?), (R̃−i, †), (R̃−i, ‡)}ni=1.

3. For all i ∈ [n], Algorithm 4 returns a sufficiently good estimate regardless of agent
i’s or other agents’ truthfulness. More specifically, 0 ≤ V̂ t,π

1 (x1;R) − V π
1 (x1;R) ≤

2ĉ
√
d3H6ι/K and −2ĉ

√
d3H6ι/K ≤ qV t,π

1 (x1;R)−V π
1 (x1;R), for all (R, π) ∈ {(R−i, π̂t),

(R̃−i, π̃†it), (R̃−i, π̃‡t)}ni=1.

Please see Appendix D for the detailed proof. At the high level, the first clause ensures that
the policy executed during exploitation is always sufficiently close to the one that maximizes
the sum of the reported reward functions. The second and third clauses ensure that the price
estimation is sufficiently good. With Lemma C.1, we can obtain the proofs of Theorems
4.1 and 4.2. For a concise presentation, we ignore presenting the probability for a certain
inequality holds when calling Lemma C.1. Overall, the results in Theorem 4.1 and Theorem
4.2 will hold with probability at least 1− δ respectively, according to the above lemma.

C.1 Proof of Theorem 4.1

Proof We prove each bound in Theorem 4.1 separately. Overall, the inequalities in Lemma
C.1 for the proof of Theorem 4.1 hold together with probability at least 1−δ. For conciseness,
we ignore the detailed description of probabilities for each of these inequalities in our proof.

Welfare Regret. Recall that in Equation (5), the social welfare regret is defined as
RegWT =

∑T
t=1 regWt where regWt = V π∗

1 (x1;R)− V π̂t

1 (x1;R). We begin by decomposing the
regret into two parts, the regret suffered in the exploration phase and the regret suffered in
the exploitation phase, as follows,

RegWT =
K∑
t=1

regWt +
T∑

t=K+1

regWt . (21)

For the first summation in Equation (21), we have

K∑
t=1

regWt ≤ KH(n+Rmax) = H(n+Rmax)K, (22)

recalling that regWt ≤ H(n+Rmax) due to the upper bound of the reward functions.
We now turn to the second summation. By Lemma C.1, for t > K we have

regWt = V π∗
1 (x1;R)− V π̂t

1 (x1;R) ≤ 2ĉ(n+Rmax)
√
d3H6ι/K. (23)

Summing the above equation form t = K + 1 to T , we have

T∑
t=K+1

regWt ≤ 2ĉ(n+Rmax)
√
d3H6ι/K(T −K). (24)

33

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Combining Equations (21), (22), and (24), we have

RegWt ≤ H(n+Rmax)K + 2ĉ(n+Rmax)
√
d3H6ι/K(T −K), (25)

where the value of K will be determined by jointly considering the upper bounds of nRegWT ,

Reg]T , and Reg0T .

Agent Regret. Recall that in Equation (5), the agent regret is defined as RegiT =∑T
t=1 regit, where regit = ui∗ − uit. Similar to our proof for welfare regret, we decompose

the regret to that incurred during exploration and exploitation,

RegiT =

K∑
t=1

regit +

T∑
t=K+1

regit. (26)

For the first summation in Equation (26), we begin by upper bounding the instantaneous
regret of agent i during the exploration phase. As the price charged to the agents is set to 0
during the exploration phase, for any t ∈ [K], we have

regit ≤ ui∗ −min
π
V π

1 (x1; ri) ≤ ui∗ = V π∗
1 (x1; ri)− pi∗,

where we recall pi∗ = V π−i
∗

1 (x1;R−i) − V π∗
1 (x1;R−i) and use the fact that ri ≥ 0. By

definition of π−i∗ , we know that pi∗ ≥ 0 and V π∗
1 (x1; ri) ≤ H, using the fact that ri ≤ 1. We

then have
K∑
t=1

regit ≤
K∑
t=1

V π∗
1 (x1; ri) ≤ HK.

Bounding the instantaneous agent regret during the exploitation phase is more complicated,
as it depends on not only the suboptimality of the learned policy π̂t itself, but also the
suboptimality incurred by estimation of the VCG price, pit = F−it −G

−i
t . To handle this

challenge, we propose the following decomposition for t > K,

regit = ui∗ − uit

=
[
V π∗

1

(
x1; ri

)
− V π−i

∗
1 (x1;R−i) + V π∗

1 (x1;R−i)
]
−
[
V π̂t

1

(
x1; ri

)
− F−it +G−it

]
=
[
V π∗

1 (x1;R)− V π̂t

1 (x1;R)
]︸ ︷︷ ︸

(i)

+
[
F−it − V

π−i
∗

1 (x1;R−i)
]︸ ︷︷ ︸

(ii)

+
[
V π̂t

1 (x1;R−i)−G−it
]︸ ︷︷ ︸

(iii)

,
(27)

where the second equation uses the fact that V π
1

(
x1; ri

)
+ V π

1 (x1;R−i) = V π
1 (x1;R) for any

π. The above decomposition allows us to bound the agent regret in terms of (i) suboptimality
of π̂t, (ii) estimation error of F−it , and (iii) policy evaluation error of G−it .

For term (i), by the result already obtained in Equation (23) for the welfare regret, we
have for all t > K,

V π∗
1 (x1;R)− V π̂t

1 (x1;R) ≤ 2ĉ(n+Rmax)
√
d3H6ι/K.

We now bound term (ii). Let π̂−it be the fictitious policy generated by Algorithm 3 when

calculating F−it . For t > K, when ζ2 = PES, F−it = qV
t,π̂−i

t
1 (x1;R−i) , we have

(ii) = qV
t,π̂−i

t
1 (x1;R−i)− V π−i

∗
1 (x1;R−i) ≤ 0,

34

Learning Dynamic Mechanisms in Unknown Environments

where the inequality is by Lemma C.1. When ζ2 = OPT, F−it = V̂
t,π̂−i

t
1 (x1;R−i), we have

(ii) = V̂
t,π̂−i

t
1 (x1;R−i)− V π−i

∗
1 (x1;R−i) ≤ 2ĉ(n+Rmax)

√
d3H6ι/K,

where the inequality also stems from Lemma C.1.
Term (iii) is controlled in a similar way. By Lemma C.1, for t ≥ K, when ζ3 = OPT,

G−it = V̂ t,π̂t

1 (x1;R−i), we have

(iii) = V π̂t

1 (x1;R−i)− V̂ t,π̂t

1 (x1;R−i) ≤ 0,

and when ζ3 = PES, G−it = qV t,π̂t

1 (x1;R−i), we have

(iii) = V π̂t

1 (x1;R−i)− qV t,π̂t

1 (x1;R−i) ≤ 2ĉ(n+Rmax)
√
d3H6ι/K.

Combining the regrets incurred in both phases, by RegiT =
∑T

t=1 regit, we obtain

RegiT ≤

{
HK + 2ĉ(n+Rmax)

√
d3H6ι/K(T −K) if (ζ2, ζ3) = (PES, OPT)

HK + 6ĉ(n+Rmax)
√
d3H6ι/K(T −K) if (ζ2, ζ3) = (OPT, PES).

(28)

Seller Regret. Recall that in Equation (5), the seller regret is defined as Reg0T =∑T
t=1 reg0t where reg0t = u0∗ − u0t. Thus, we have the following decomposition

Reg0T =

K∑
t=1

reg0t +

T∑
t=K+1

reg0t. (29)

We begin with bounding the first summation. Recall that reg0t = u0∗ − u0t. During
exploration, as the seller charges a price of 0 to all agents, their utility is lower bounded by
u0t = minπ V

π(x1; r0) + 0 = minπ V
π(x1; r0). As r0 ≥ 0, we know that for all t ∈ [K],

K∑
t=1

reg0t ≤
K∑
t=1

u0∗ ≤ Ku0∗.

Recall that

u0∗ = V π∗
1 (x1; r0) +

n∑
i=1

pi∗ = V π∗
1 (x1; r0) +

n∑
i=1

(
V π−i
∗ (x1;R−i)− V π∗(x1;R−i)

)
= −(n− 1)V π∗

1 (x1;R) +

n∑
i=1

V π−i
∗ (x1;R−i).

Since ri ≥ 0, R = R−i + ri ≥ R−i, we have

u0∗ ≤ −(n− 1)V π∗
1 (x1;R) +

n∑
i=1

V π−i
∗ (x1;R) ≤ −(n− 1)V π∗

1 (x1;R) +

n∑
i=1

V π∗(x1;R)

= V π∗(x1;R) ≤ H(n+Rmax),

35

Qiu, Lyu, Meng, Wang, Yang, and Jordan

according to the definitions of π∗ and π−i∗ . We then have the following upper bound for the
first summation in Equation (29) as

K∑
t=1

reg0t ≤ Ku0∗ ≤ (n+Rmax)HK.

We now bound the second summation in Equation (29). The seller’s instantaneous regret
during exploration can be decomposed as

reg0t = u0∗ − u0t

=

[
V π∗1 (x1; r0) +

n∑
i=1

pi∗

]
−
[
V π̂

t

1 (x1; r0) +

n∑
i=1

pit

]

=

[
V π∗1 (x1; r0) +

n∑
i=1

[
V
π−i
∗

1 (x1;R−i)− V π∗1 (x1;R−i)
]]
−
[
V π̂

t

1 (x1; r0) +

n∑
i=1

(
F−it −G−it

)]

=

[
− (n− 1)V π∗1 (x1;R) +

n∑
i=1

V
π−i
∗

1 (x1;R−i)

]

−
[
− (n− 1)V π̂

t

1 (x1;R) +

n∑
i=1

[
F−it −G−it + V π̂

t

1 (x1;R−i)
]]

= (n− 1)
[
V π̂

t

1 (x1;R)− V π∗1 (x1;R)
]︸ ︷︷ ︸

(i)

+

n∑
i=1

[
V
π−i
∗

1 (x1;R−i)− F−it
]︸ ︷︷ ︸

(ii)

+

n∑
i=1

[
G−it − V π̂

t

(x1;R−i)
]︸ ︷︷ ︸

(iii)

.

For term (i), we have (i) ≤ 0 due to the optimality of V ∗1 . For term (ii), when ζ2 = OPT, by
the construction of F−it , we have

(ii) = V π−i
∗

1 (x1;R−i)− F−it = V π−i
∗

1 (x1;R−i)− V̂ t,π̂−i
t

1 (x1;R−i) ≤ 0,

where we invoke Lemma C.1 for the inequality. When ζ2 = PES, we obtain that

(ii) = V π−i
∗

1 (x1;R−i)− F−it = V π−i
∗

1 (x1;R−i)− qV
t,π̂−i

t
1 (x1;R−i) ≤ 2ĉ(n+Rmax)

√
d3H6ι/K,

where the last inequality also uses Lemma C.1.
For term (iii), further invoking Lemma C.1, when ζ3 = PES, (iii) ≤ 0, and when ζ3 = OPT,

we have
(iii) = V̂ t,π̂t

1 (x1;R−i)− V π̂t

1

(
x1;R−i

)
≤ 2ĉ(n+Rmax)

√
d3H6ι/K.

Combining the bounds for terms (i), (ii), and (iii) above, we have

T∑
t=K+1

reg0t ≤

{
4ĉn(n+Rmax)

√
d3H6ι/K(T −K) if (ζ2, ζ3) = (PES, OPT)

0 if (ζ2, ζ3) = (OPT, PES),

where ĉ is some absolute constant. By adding the regret incurred in the exploration phase,
this result further gives the upper bound of the seller regret Reg0T as{

H(n+Rmax)K + 4ĉn(n+Rmax)
√
d3H6ι/K(T −K) if (ζ2, ζ3) = (PES, OPT)

H(n+Rmax)K if (ζ2, ζ3) = (OPT, PES).
(30)

36

Learning Dynamic Mechanisms in Unknown Environments

Choice of K. Now we determine the value of K that can lead to a tight bound of
max{nRegWT ,Reg]T ,Reg0T }, where Reg]T =

∑n
i=1 RegiT as defined in Equation (5). Accord-

ing to Equations (25), (28), and (30), comparing the upper bounds of nRegWT , Reg]T , and
Reg0T , we always have

max{nRegWT ,Reg]T ,Reg0T } ≤ H(n+Rmax)nK + 6ĉ(n+Rmax)n
√
d3H6ι/K(T −K).

Focusing on the factors of H, n, d, T , and ι, we set K = dH4/3ι1/3T 2/3, which can minimize
the order of these factors in the above inequality, and obtain the bound

max{nRegWT ,Reg]T ,Reg0T } = O
(
n(n+Rmax)dH7/3ι1/3T 2/3

)
.

Thus, plugging K = dH4/3ι1/3T 2/3 into (25), we have

RegWT ≤ (1 + 2ĉ)(n+Rmax)dH7/3ι1/3T 2/3.

Plugging the value of K into (28), we have

RegiT ≤

{(
1 + 2ĉ(n+Rmax)

)
dH7/3ι1/3T 2/3 if (ζ2, ζ3) = (PES, OPT)(

1 + 6ĉ(n+Rmax)
)
dH7/3ι1/3T 2/3 if (ζ2, ζ3) = (OPT, PES).

Plugging the value of K into (30), we obtain

Reg0T ≤

{
(1 + 4ĉn)(n+Rmax)dH7/3ι1/3T 2/3 if (ζ2, ζ3) = (PES, OPT)

(n+Rmax)dH7/3ι1/3T 2/3 if (ζ2, ζ3) = (OPT, PES).

This completes the proof of the upper bounds of the welfare regret, the agent regret, and
the seller regret.

Individual Rationality. We note that for the proof of individual rationality, we do not
require the truthfulness of agents other than agent i. Recall that if we do not charge the
agents in the exploration phase, for any agent i, we always have utility uit ≥ 0 during
exploration because ri ≥ 0. Thus, we only need to bound from below agent i’s utility
during the exploitation phase. When agent i reports according to the reward function
ri but other agents report rewards potentially untruthfully according to r̃j for j 6= i, we

define R̃−i := r0 +
∑

j∈[n],i 6=j r̃j and let π̃†it substitute π̂t in Algorithm 1, which is generated
by Algorithm 3 in the current reward setting. We further define the associated F and G
generated by Algorithms 3 and 4 respectively as follows

F †,−it =

{
V̂ t,†

1

(
x1; R̃−i

)
if ζ2 = OPT

qV t,†
1

(
x1; R̃−i

)
if ζ2 = PES,

G†,−it =

V̂
t,π̃†it

1

(
x1; R̃−i

)
if ζ3 = OPT

qV
t,π̃†it

1

(
x1; R̃−i

)
if ζ3 = PES.

(31)

For all t > K, according to the definition of uit, under the current reward setting, we have

uit = V
π̃†it

1 (x1; ri)− p†it

= V
π̃†it

1

(
x1; ri

)
− F †,−it +G†,−it

=
[
V
π̃†it

1

(
x1; ri

)
+ V

π̃†it
1

(
x1; R̃−i

)
− F †,−it] +

[
G†,−it − V π̃†it

1

(
x1; R̃−i

)]
=
[
V
π̃†it

1

(
x1; ri + R̃−i

)
− F †,−it

]︸ ︷︷ ︸
(i)

+
[
G†,−it − V π̃†it

1

(
x1; R̃−i

)]︸ ︷︷ ︸
(ii)

,

(32)

37

Qiu, Lyu, Meng, Wang, Yang, and Jordan

where p†it = F †,−it −G†,−it . For term (i) in Equation (32), by the definition of V ∗1 (x1, r) :=
maxπ V

π
1 (x1, r) for any r, we have

(i) ≥ V π̃†it
1

(
x1; ri + R̃−i

)
− V̂ t,†

1

(
x1; R̃−i

)
=
[
V ∗1 (x1; ri + R̃−i)− V ∗1 (x1; R̃−i)

]︸ ︷︷ ︸
(i.a)

+
[
V
π̃†it

1

(
x1; ri + R̃−i

)
− V ∗1 (x1; ri + R̃−i)

]︸ ︷︷ ︸
(i.b)

+
[
V ∗1 (x1; R̃−i)− V̂ t,†

1

(
x1; R̃−i

)]︸ ︷︷ ︸
(i.c)

,

where the first inequality stems from the fact that F †,−it is always at most V̂ t,†
1

(
x1; R̃−i

)
regardless of the choice of ζ2 shown in Equation (31). For (i.a), we have that

(i.a) = max
π

V π
1 (x1; ri + R̃−i)−max

π
V π

1 (x1; R̃−i).

Note that for any π, we have V π
1 (x1; ri + R̃−i) ≥ V π

1 (x1; R̃−i) since ri ≥ 0, which implies

that maxπ V
π

1 (x1; ri + R̃−i) ≥ V π
1 (x1; R̃−i) holds for any π. Taking maximum on the right-

hand side further gives maxπ V
π

1 (x1; ri + R̃−i) ≥ maxπ V
π

1 (x1; R̃−i). We then have that

(i.a) ≥ 0. Moreover, (i.b) is the suboptimality of policy π̃†it and (i.c) is the estimation error

of V ∗1 (x1; R̃−i) by V̂ t,†
1

(
x1; R̃−i

)
, which can be bounded below by −2ĉ(n+Rmax)

√
d3H6ι/K

respectively invoking Lemma C.1. We can then bound term (i) from below by −4ĉ(n +
Rmax)

√
d3H6ι/K.

For term (ii) in Equation (32), observe that G†,−it is always at least qV
t,π̃†it

1

(
x1; R̃−i

)
regardless of the choice of ζ3 shown in Equation (31) and thus we have by Lemma C.1 that

(ii) ≥ qV
t,π̃†it

1

(
x1; R̃−i

)
− V π̃†it

1

(
x1; R̃−i

)
≥ −2ĉ(n+Rmax)

√
d3H6ι/K,

for some absolute constant ĉ. Summing (i) and (ii) from t = 1 to T , we get

UiT ≥
T∑

t=K+1

uit ≥ −6ĉ(n+Rmax)
√
d3H6ι/K,

Setting K = dH4/3ι1/3T 2/3 in the above inequality, we further get,

UiT ≥ −6ĉ(n+Rmax)dH7/3ι1/3T 2/3

which implies the mechanism we learned is 6ĉ(n+Rmax)dH7/3ι1/3T 2/3-approximately indi-
vidually rational.

Truthfulness. We consider two cases for our proof of truthfulness: (1) agent i reports
truthfully, and others may report untruthfully (2) all agents may report untruthfully. Then
we denote by ri the truthful reward and r̃i the potentially untruthful reward. For case (1),

we adopt the same notations F †,−it , G†,−it , π̃†it , and uit = V
π̃†it

1 (x1; ri)− p†it as in the above

proof of individual rationality. For case (2), we let π̃‡t be the learned policy for the seller

38

Learning Dynamic Mechanisms in Unknown Environments

under the reward R̃ := r0 +
∑n

i=1 r̃i in Algorithm 1, F ‡,−it and G‡,−it be the associated F and

G functions, and ũit = V
π̃‡t

1 (x1; ri)− p‡it with p‡it = F ‡,−it −G‡,−it generated by Algorithms 3

and 4 respectively. Let ŨiT =
∑T

t=1 ũit and UiT =
∑T

t=1 uit. The surplus in utility the agent
gains from untruthful reporting is then

ŨiT − UiT =
T∑
t=1

(ũit − uit) . (33)

We decompose the summation in terms of the exploration and exploitation phases. When
t ≤ K, the agents are not charged any price, and then ri ≥ 0 ensures uit ≥ 0. We then have

ũit − uit ≤ ũit ≤ max
π

V π
1 (x1; ri) ≤ H,

where the second inequality uses the fact that the price is 0.

We now consider the case when t > K. We explicitly define F ‡,−it and G‡,−it as follows

F ‡,−it =

{
V̂ t,‡

1

(
x1; R̃−i

)
if ζ2 = OPT

qV t,‡
1

(
x1; R̃−i

)
if ζ2 = PES,

G†,−it =

V̂
t,π̃‡t

1

(
x1; R̃−i

)
if ζ3 = OPT

qV
t,π̃‡t

1

(
x1; R̃−i

)
if ζ3 = PES,

(34)

where the value functions are generated by Algorithms 3 and 4 respectively based on the
untruthfully reported rewards by all agents.

For any t > K, we have

ũit − uit =
[
V
π̃‡t

1 (x1; ri)− F ‡,−it +G‡,−it

]
−
[
V
π̃†it

1 (x1; ri)− F †,−it +G†,−it

]
.

We first show that F †,−it = F ‡,−it . Recall that when ζ1 = ETC, both F †,−it and F ‡,−it are
calculated using only data collected during the exploration phase. As the data collection
policy is given by a reward-free exploration algorithm, namely Algorithm 2, the trajectories
collected remain the same whether agent i is truthful or not. Additionally, both F †,−it and

F ‡,−it are given by Algorithm 3, which only uses the rewards reported by other agents.

In other words, the input data used to calculate F †,−it and F ‡,−it are exactly the same,
irregardless of the truthfulness of agent i. Conditionally on the K trajectories collected
during the exploration phase, the two functions F †,−it and F ‡,−it equal to each other and
cancel out. We then obtain that for all t > K,

ũit − uit

= V
π̃‡t

1 (x1; ri) +G‡,−it − V π̃†it
1 (x1; ri)−G†,−it

=
[
V
π̃‡t

1

(
x1; ri + R̃−i

)
− V ∗1

(
x1; ri + R̃−i

)]︸ ︷︷ ︸
(i)

+
[
V ∗1
(
x1; ri + R̃−i

)
− V π̃†it

1

(
x1; ri + R̃−i

)]︸ ︷︷ ︸
(ii)

+
[
G‡,−it − V π̃‡t

1

(
x1; R̃−i

)]︸ ︷︷ ︸
(iii)

+
[
V
π̃†it

1

(
x1; R̃−i

)
−G†,−it

]︸ ︷︷ ︸
(iv)

.

39

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Here, term (i) ≤ 0 is due to the definition of V ∗1 (x1; ri + R̃−i) = maxπ V
π

1 (x1; ri + R̃−i).

Term (ii) is the suboptimality of policy π̃†it , term (iii) and term (iv) are policy evaluation

errors for policy π̃‡t and π̃†it . Using Lemma C.1, term (ii) is upper bounded by 2ĉ(n +
Rmax)

√
d3H6ι/K. We then consider terms (iii) and (iv). When ζ3 = OPT, we have (iii) ≤

2ĉ(n+Rmax)
√
d3H6ι/K while (iv) ≤ 0. Similarly, we have (iii) ≤ 0 and (iv) ≤ 2ĉ

√
d3H6ι/K

when ζ3 = PES. In summary, regardless of the choices for ζ2, ζ3, we always have for all i, t

ũit − uit ≤

{
H if t ∈ [K]

4ĉ(n+Rmax)
√
d3H6ι/K if t > K.

Now we have obtained the upper bounds of ũit − ut−1
it for both when t ∈ [K] and when

t > K. Summing ũit − uit from t = 1 to T , we get

ŨiT − UiT ≤ HK + 4ĉ(n+Rmax)
√
d3H6ι/K(T −K).

Setting K = dH4/3ι1/3T 2/3 in the above inequality, we further obtain

ŨiT − UiT ≤ dH7/3ι1/3T 2/3 + 4ĉ(n+Rmax)dH7/3ι1/3T 2/3,

which implies that the learned mechanism is
(
1+4ĉ(n+Rmax)

)
dH7/3ι1/3T 2/3-approximately

truthful. This completes the proof.

C.2 Proof of Theorem 4.2

Proof We now prove each result separately in Theorem 4.2. The concentration inequalities
for the proof of Theorem 4.2 jointly hold with probability at least 1 − δ. We ignore the
detailed description of probabilities in our proof for conciseness.

Welfare Regret. When setting ζ1 = EWC, we can decompose the regret into two parts,
the regret incurred in the exploration phase and the regret incurred in the exploitation phase
as

RegWT =

K∑
t=1

regWt +

T∑
t=K+1

regWt .

Then we can bound the first summation as
∑K

t=1 regWt ≤ H(n + Rmax)K using the same
technique for obtaining Equation (22). For the second part, we have

T∑
t=K+1

regWt =

T∑
t=K+1

[
V π∗

1 (x1;R)− V π̂t

1 (x1;R)
]
.

Notice that during the exploitation phase, the welfare regret of Algorithm 1 when ζ1 = EWC

is the well-studied regret bound for LSVI-UCB, derived in Jin et al. (2020b). For integrity,
we sketch out the proof below and refer interested readers to the detailed proofs in Jin et al.
(2020b).

40

Learning Dynamic Mechanisms in Unknown Environments

Following standard decomposition (see Lemmas B.5 and B.6 in Jin et al. (2020b), for
instance), we have

T∑
t=K+1

regWt =
T∑

t=K+1

[
V π∗

1 (x1;R)− V π̂t

1 (x1;R)
]
≤

T∑
t=K+1

[
V t

1 (x1;R)− V π̂t

1 (x1;R)
]

≤
T∑

t=K+1

H∑
h=1

(
E
[
ξth
∣∣xth−1, a

t
h−1

]
− ξth

)
︸ ︷︷ ︸

(i)

+ 2β
T∑

t=K+1

H∑
h=1

√(
φ(xth, a

t
h)
)>(

Λth
)−1(

φ(xth, a
t
h)
)

︸ ︷︷ ︸
(ii)

,

(35)

where ξth = V t
h

(
xth;R

)
− V π̂t

h

(
xth;R

)
. Then, we bound terms (i) and (ii) in Equation (35)

respectively. For term (i), since the computation of V̂ t
h does not use the new observation xth at

rounds t, the terms in term (i) is a martingale difference sequence bounded by 2(n+Rmax)H.
Then we can bound it by Azuma-Hoeffding inequality and get an O

(
(n + Rmax)HιT 1/2

)
upper bound for term (i) in Equation (35). We provide the details as follows: for any ν > 0,
we have

P
(T∑
t=K+1

H∑
h=1

(
E
[
ξth
∣∣xth−1, a

t
h−1

]
− ξth

)
≥ ν

)
≤ exp

{
−ν2

2(n+Rmax)2H2(T −K)

}
.

Hence, with high probability, we have

T∑
t=K+1

H∑
h=1

(
E
[
ξth
∣∣xth−1, a

t
h−1

]
− ξth

)
≤
√

2(n+Rmax)2H2(T −K) log(2/δ)

≤ 2(n+Rmax)
√
H2(T −K)ι,

(36)

where ι = log(36ndHT/δ). For term (ii), we can bound it using Lemma F.2 and Cauchy-
Schwarz inequality,

T∑
t=K+1

H∑
h=1

√(
φ(xth, a

t
h)
)>(

Λth
)(
φ(xth, a

t
h)
)
≤

T∑
t=K+1

H∑
h=1

√(
φ(xth, a

t
h)
)>(

Λ̃th
)−1(

φ(xth, a
t
h)
)

≤
H∑
h=1

[T∑
t=K+1

φ(xth, a
t
h)>(Λ̃th)−1φ(xth, a

t
h)

]1/2

≤ 2
√

2dH2(T −K)ι, (37)

where Λ̃th =
∑t−1

τ=K+1 φ(xτh, a
τ
h)φ(xτh, a

τ
h)> + λI is the design matrix only using the data in

the exploitation phase. The first step is due to Λ̃th � Λt
h, the second step is by Cauchy-

Schwartz inequality, and the last step uses the elliptical potential lemma in Abbasi-Yadkori

41

Qiu, Lyu, Meng, Wang, Yang, and Jordan

et al. (2011). Combining Equations (35), (36) and (37), with the setting of β = ĉ(n +
Rmax)dH

√
ι where ι = log(36ndHT/δ), we have the following upper bound

T∑
t=K+1

regWt ≤ 2(n+Rmax)
√
H2(T −K)ι+ 2β

√
2dH2(T −K)ι

≤ 2(n+Rmax)
√
H2(T −K)ι+ 4ĉ(n+Rmax)

√
d3H4(T −K)ι2

≤ 6ĉ(n+Rmax)
√
d3H4(T −K)ι2.

Combining the above inequality with the upper bound for
∑K

t=1 regWt , we have the upper
bound of the welfare regret as

RegWT ≤ (n+Rmax)HK + 6ĉ(n+Rmax)
√
d3H4(T −K)ι2, (38)

where the value of K will be determined by jointly considering the upper bounds of nRegWT ,

Reg]T , and Reg0T .

Agent Regret. For agent i’s regret incurred during the exploration phase, we know
from Section C.1 that it is bounded as

∑K
t=1 regit ≤ HK. We now focus on when t > K.

According Equation (27), we have that

regit = ui∗ − uit

=
[
V π∗

1 (x1;R)− V π̂t

1 (x1;R)
]︸ ︷︷ ︸

(i)

+
[
F−it − V

π−i
∗

1 (x1;R−i)
]︸ ︷︷ ︸

(ii)

+
[
V π̂t

1 (x1;R−i)−G−it
]︸ ︷︷ ︸

(iii)

. (39)

Term (i) is the welfare regret, term (ii) is the function evaluation and policy estimation
errors for F−it , and term (iii) is the function evaluation error for G−it . Recalling that the
welfare regret bound above, we know that the summation of (i) from t = K + 1 to T can be
bounded as

T∑
t=K+1

[
V π∗

1 (x1;R)− V π̂t

1 (x1;R)
]
≤ 6ĉ(n+Rmax)

√
d3H4(T −K)ι2.

Our bounds for terms (ii) and (iii) use similar techniques for the case when ζ1 = ETC. Let
π̂−it be the fictitious policy returned by Algorithm 3 when we compute F−it . We obtain that

(ii) = V̂
t,π̂−i

t
1 − V π−i

∗
1 (x1;R−i) ≤ 2ĉ(n+Rmax)

√
d3H6ι/K,

when ζ2 = OPT, using Lemma C.1. Similarly, we know (ii) ≤ 0 when ζ2 = PES.
Finally, by Lemma C.1, we know (iii) ≤ 2ĉ(n + Rmax)

√
d3H6ι/K when ζ3 = PES and

(iii) ≤ 0 when ζ3 = OPT. Combining the bounds for terms (i), (ii), and (iii) in both phases,
we have the upper bound of the agent regret RegiT as follows:

If (ζ2, ζ3) = (PES, OPT), then

RegiT ≤ HK + 6ĉ(n+Rmax)
√
d3H4(T −K)ι2. (40)

If (ζ2, ζ3) = (OPT, PES), then

RegiT ≤ HK + 6ĉ(n+Rmax)
√
d3H4(T −K)ι2 + 4ĉ(n+Rmax)

√
d3H6ι/K(T −K). (41)

42

Learning Dynamic Mechanisms in Unknown Environments

Seller Regret. Similar to our proof of agent regret, from Section C.1, we first have

K∑
t=1

reg0t ≤ H(n+Rmax)K.

In addition, the exploration regret can be decomposed as

reg0t = u0∗ − u0t

= (n− 1)
[
V π̂t

1 (x1;R)− V π∗
1 (x1;R)

]
+

n∑
i=1

[
V π−i
∗

1 (x1;R−i)− F−it
]

+

n∑
i=1

[
G−it − V π̂t

(x1;R−i)
]

≤
n∑
i=1

[
V π−i
∗

1 (x1;R−i)− F−it
]︸ ︷︷ ︸

(i)

+

n∑
i=1

[
G−it − V π̂t

(x1;R−i)
]︸ ︷︷ ︸

(ii)

,

where the second equation directly follows the decomposition proven in Section C.1 and the
inequality comes from the definition of π∗, which is then used to eliminate the first term.

Similar to our proof for agent regret, invoking Lemma C.1 we immediately know that
(i) ≤ 2ĉ(n + Rmax)

√
d3H6ι/K when ζ2 = PES, and (i) ≤ 0 when ζ2 = OPT. Also by

Lemma C.1, we have (ii) ≤ 0 when ζ3 = PES, and (ii) ≤ 2ĉ(n + Rmax)
√
d3H6ι/K when

ζ3 = OPT. Summing both (i) and (ii) over i ∈ [n] and then summing the regrets incurred
in both exploration and exploitation phases, we have the upper bound of the seller regret
Reg0T as{

(n+Rmax)HK + 4ĉn(n+Rmax)
√
d3H6ι/K(T −K) if (ζ2, ζ3) = (PES, OPT)

(n+Rmax)HK if (ζ2, ζ3) = (OPT, PES).
(42)

Choice of K. We determine the value of K that can lead to a tight bound of max{nRegWT ,

Reg]T ,Reg0T }, where Reg]T =
∑n

i=1 RegiT . According to Equations (38), (40), (41), and

(42), comparing the upper bounds of nRegWT , Reg]T , and Reg0T , we always have

max{nRegWT ,Reg]T ,Reg0T } ≤ n(n+Rmax)HK + 6ĉn(n+Rmax)
√
d3H4(T −K)ι2

+ 4ĉn(n+Rmax)
√
d3H6ι/K(T −K)

≤ n(n+Rmax)HK + 6ĉn(n+Rmax)
√
d3H4Tι2 + 4ĉn(n+Rmax)

√
d3H6ι/KT.

Focusing on the factors of H, n, d, T , and ι, we set K = dH4/3ι1/3T 2/3, which can minimize
the order of these factors in the above inequality, and obtain the bound

max{nRegWT ,Reg]T ,Reg0T } = O
(
n(n+Rmax)dH7/3ι1/3T 2/3

)
.

Thus, plugging K = dH4/3ι1/3T 2/3 into (38), we have

RegWT ≤ (n+Rmax)(dH7/3ι1/3T 2/3 + 6ĉd3/2H2ιT 1/2).

43

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Plugging the value of K into (40) and (41), we have that RegiT can be bounded by{
dH7/3ι1/3T 2/3 + 6ĉ(n+Rmax)d3/2H2ιT 1/2 if (ζ2, ζ3) = (PES, OPT)

(1 + 4ĉ(n+Rmax))dH7/3ι1/3T 2/3 + 6ĉ(n+Rmax)d3/2H2ιT 1/2 if (ζ2, ζ3) = (OPT, PES).

Plugging the value of K into (42), we obtain

Reg0T ≤

{
(1 + 4ĉn)(n+Rmax)dH7/3ι1/3T 2/3 if (ζ2, ζ3) = (PES, OPT)

(n+Rmax)dH7/3ι1/3T 2/3 if (ζ2, ζ3) = (OPT, PES).

This completes the proof of the upper bounds of the welfare regret, the agent regret, and
the seller regret.

Individual Rationality. We assume that agent i reports truthfully according to the
reward function r̃i and other agents may report untruthfully according to the reward
function r̃j for j 6= i. Then, we adopt the same definitions of π̃†it , R̃−i, F †,−it , and G†,−it as
in the proof of individual rationality in Section C.1.

Here the agents are not charged during the exploration phase, and ri ≥ 0 ensures that
uit ≥ 0 for all t ∈ [K]. Recalling Equation (32), we have the following decomposition for
t > K,

uit =
[
V
π̃†it

1

(
x1; ri + R̃−i

)
− F †,−it

]︸ ︷︷ ︸
(i)

+
[
G†,−it − V π̃†it

1

(
x1; R̃−i

)]︸ ︷︷ ︸
(ii)

.

Moreover, in the proof of individual rationality in Section C.1, we have shown that

(i) ≥
[
V
π̃†it

1

(
x1; ri + R̃−i

)
− V ∗1 (x1; ri + R̃−i)

]
+
[
V ∗1 (x1; R̃−i)− V̂ t,†

1

(
x1; R̃−i

)]
and

(ii) ≥ qV
π̃†it

1

(
x1; R̃−i

)
− V π̃†it

1

(
x1; R̃−i

)
,

according to the definitions of F †,−it and G†,−it . Applying Lemma C.1, we have that

(i) ≥ −4ĉ(n+Rmax)
√
d3H6ι/K, (ii) ≥ −2ĉ(n+Rmax)

√
d3H6ι/K.

Summing (i) and (ii) from t = 1 to T , we get

UiT ≥
T∑

t=K+1

uit ≥ −6ĉ(n+Rmax)
√
d3H6ι/K,

Setting K = dH4/3ι1/3T 2/3 in the above inequality, we further get,

UiT ≥ −6ĉ(n+Rmax)dH7/3ι1/3T 2/3

which implies the mechanism we learned is 6ĉ(n+Rmax)dH7/3ι1/3T 2/3-approximately indi-
vidually rational.

44

Learning Dynamic Mechanisms in Unknown Environments

Truthfulness: The proof for truthfulness when ζ1 = EWC significantly differs from the
case when ζ1 = ETC. At a high level, when ζ1 = ETC, we use the fact that the data used to
calculate F is collected entirely during the exploration phase and is not affected by agent
i potentially reporting untruthfully, and hence F ‡,−it and F †,−it cancel out. Unfortunately,
when ζ1 = EWC, F ’s computation is dependent on the untruthful behavior of agent i. The
trajectories collected during exploitation are used for computing F . The policy used for
collecting these trajectories is learned using the agent i’s report and thus is affected by the
agent’s untruthfulness. In this way, different from the proof of truthfulness in Section C.1
where F †,−it = F ‡,−it , the following proof also bounds the difference between F †,−it and F ‡,−it .
We adopt the same notations as in the proof of truthfulness in Section C.1.

We first decompose Equation (33) in terms of the exploration and exploitation phases.
When t ≤ K, the agents are not charged any price, and then ri ≥ 0 ensures uit ≥ 0. We
thus have

ũit − uit ≤ ũit ≤ max
π

V π
1 (x1; ri) ≤ H,

where the second inequality uses the fact that the price is 0.
For t > K, the utility an agent gains from untruthful reporting, regardless of other

agents’ truthfulness, can be decomposed as follows

ũit − uit

= V
π̃‡t

1 (x1; ri)− F ‡,−it +G‡,−it − V π̃†it
1 (x1; ri) + F †,−it −G†,−it

=
[
V
π̃‡t

1

(
x1; ri + R̃−i

)
− V ∗1

(
x1; ri + R̃−i

)]︸ ︷︷ ︸
(i)

+
[
V ∗1
(
x1; ri + R̃−i

)
− V π̃†it

1

(
x1; ri + R̃−i

)]︸ ︷︷ ︸
(ii)

+
[
G‡,−it − V π̃‡t

1

(
x1; R̃−i

)]︸ ︷︷ ︸
(iii)

+
[
V
π̃†it

1

(
x1; R̃−i

)
−G†,−it

]︸ ︷︷ ︸
(iv)

+
[
F †,−it − F ‡,−it

]︸ ︷︷ ︸
(v)

.

By Lemma C.1, we know that regardless of the choice of ζ3, we have

(i) + (ii) + (iii) + (iv) ≤ 4ĉ(n+Rmax)
√
d3H6ι/K.

We focus on studying the upper bound of (v). By the definitions of F function in Equations
(31) and (34), we know

F †,−it =

{
V̂ t,†

1

(
x1; R̃−i

)
if ζ2 = OPT

qV t,†
1

(
x1; R̃−i

)
if ζ2 = PES,

F ‡,−it =

{
V̂ t,‡

1

(
x1; R̃−i

)
if ζ2 = OPT

qV t,‡
1

(
x1; R̃−i

)
if ζ2 = PES.

Recall that F †,−it are generated by Algorithm 3 using dataset D collected with untruthful

report from all the agents except agent i. On the other hand, F ‡,−it are generated by
Algorithm 3 with dataset D collected with untruthful report from all the agents. Then,
regardless of the choice of ζ2 when generating F function, we have

F †,−it − F ‡,−it ≤ V̂ t,†
1 (x1; R̃−i)− qV t,‡,

1 (x1; R̃−i),

since it can be easily verify that V̂ t,†
1

(
x1; R̃−i

)
≥ qV t,†

1

(
x1; R̃−i

)
and V̂ t,‡

1

(
x1; R̃−i

)
≥ qV t,‡

1

(
x1; R̃−i

)
,

which thus implies that F †,−it is at most V̂ t,†
1

(
x1; R̃−i

)
and F ‡,−it is at least qV t,‡

1

(
x1; R̃−i

)
regardless of the choices of ζ2, ζ3.

45

Qiu, Lyu, Meng, Wang, Yang, and Jordan

When ζ3 = EWC, the trajectories collected during the exploitation phase may differ for
the computations of V̂ t,†

1 (x1; R̃−i) and qV t,‡
1 (x1; R̃−i), due to agent i’s untruthful reporting.

Fortunately, as we can see from Lemma C.1, the policy evaluation error can still be bounded:
the reward-free exploration procedure in Algorithm 2 ensures that even when agent i is not
truthful and ζ3 = EWC, data collected during the exploration phase ensures a sufficient value
function estimation.With adding and subtracting V ∗1 (x1; R̃−i), we have

F †,−it − F ‡,−it ≤
(
V̂ t,†

1 (x1; R̃−i)− V ∗1 (x1; R̃−i)
)

︸ ︷︷ ︸
(i)

+
(
V ∗1 (x1; R̃−i)− qV t,‡

1 (x1; R̃−i)
)

︸ ︷︷ ︸
(ii)

≤ 2ĉ(n+Rmax)
√
d3H6ι/K + 2ĉ(n+Rmax)

√
d3H6ι/K

= 4ĉ(n+Rmax)
√
d3H6ι/K,

by apply Lemma C.1 to term (i) and (ii) and get 2ĉ
√
d3H6ι/K upper bounds on both terms

respectively. In summary, we have that for all t > K,

ũit − uit ≤ 8ĉ(n+Rmax)
√
d3H6ι/K.

Summing ũit − uit from t = 1 to T , recalling the bound for all t ∈ [K], we get

ŨiT − UiT ≤ HK + 8ĉ(n+Rmax)
√
d3H6ι/K.

Setting K = dH4/3ι1/3T 2/3 in the above inequality, we further get

ŨiT − UiT ≤ (1 + 8ĉ(n+Rmax))dH7/3ι1/3T 2/3,

implying the learned mechanism is (1+8ĉ(n+Rmax))dH7/3ι1/3T 2/3-approximately truthful.

Appendix D. Proof of Lemma C.1

In this section, we present the detailed proof of Lemma C.1.We first introduce several
important notions e.g., Bellman operator and model evaluation error, and a supporting
lemma with its proof in D.1.Then we provide the proof of Lemma C.1 in Section D.2.

We note that bounding the errors in our setting is significantly different from the results
in earlier works on reward-free exploration. Note that the planning subroutines described
in Algorithms 3 and 4 use the collected rewards, rather than an arbitrary given reward
function, to calculate the functions F and G. As a result, the concentration analysis required
to prove Lemma C.1, as well as the decomposition used for the lemma, are all designed to
cater to the dynamic mechanism design regime.

D.1 Preliminaries for Proofs

We first define two operators to help characterize the estimation errors. For any function
f(;R) : S → R with reward function R,

(Phf)(x, a;R) = E[f(xh+1)|xh = x, ah = a], (43)

46

Learning Dynamic Mechanisms in Unknown Environments

and the Bellman operator at step h ∈ [H] as

(Bhf)(x, a;R) = E[Rh(x, a) + f(xh+1)|xh = x, ah = a]

= E[Rh(x, a)|xh = x, ah = a] + (Phf)(x, a).
(44)

For estimated value functions V t,π
h and corresponding action-value functions Qt,πh . We define

the model evaluation error with policy π in episode t at each step h ∈ [H] as

∆̂t,π
h (x, a;) = (BhV̂ t,π

h+1)(x, a;)− Q̂t,πh (x, a;),

q∆t,π
h (x, a;) = (Bh qV t,π

h+1)(x, a;)− qQt,πh (x, a;),
(45)

for ζ3 = OPT and PES respectively. In other words, ∆h is the error in estimating the Bellman
operator defined in Equation (44), based on the dataset D collected in Algorithm 2.

For clarity, we define the following events to quantify the uncertainty of the estimation
of the Bellman operator Bh in Algorithm 3 and Algorithm 4 with different hyperparameters.

Definition D.1 We define for all t > K the event Et by requiring the following in-
equalities hold for all (x, a) ∈ S × A, h ∈ [H], and (R, π) ∈ {(R, π̂), (R̃, π̃‡t)} ∪ {(ri +

R̃−i, π̃†it), (R−i, ∗), (R̃−i, †), (R̃−i, ‡), (R−i, π̂t), (R̃−i, π̃†it), (R̃−i, π̃‡t)}ni=1, for each pair’s asso-
ciated w’s ∣∣φ(x, a)>ŵt,πh

(
R
)
− BhV̂ t,π

h+1

(
x, a;R

)∣∣ ≤ uth(x, a),∣∣φ(x, a)> qwt,πh
(
R
)
− Bh qV t,π

h+1

(
x, a;R

)∣∣ ≤ uth(x, a),

where the associated w’s are the learned parameters generated by Algorithm 3 if (R, π) ∈
{(R, π̂t), (R̃, π̃‡t)}∪{(ri+ R̃−i, π̃†it), (R−i, ∗), (R̃−i, †), (R̃−i, ‡)}ni=1, and the associated w’s are

learned parameters generated by Algorithm 4 if (R, π) ∈ {(R−i, π̂t), (R̃−i, π̃†it), (R̃−i, π̃‡t)}ni=1.

Intuitively, the event defined here ensures that we attain sufficiently good policy estimates
and sufficiently good value function estimates for these policies. Moreover, we highlight that
the event allows for untruthfulness in the agents’ behavior, thanks to our choices of R, and
the “good” properties remain valid even when agents are untruthful. Examining the pairs of
(R, π) included in E , we can see that the good event Et directly implies that the clauses in
Lemma C.1 hold for a specific value of t > K.

Across this paper, we let E denote the intersection of all the event {Et}Tt=K+1 defined in
D.1, which is

E := ∩Tt=k+1Et (46)

The following lemma shows that under the appropriate choice of regularization parameter λ
and scaling parameter β, event E is guaranteed to happen with high probability.

Lemma D.2 (Adaptation of Lemma 5.2 from Jin et al. (2020c)) Under the setting
in Section 2, we set

λ = 1, β = ĉ(n+Rmax)dH
√
ι, where ι = log(36ndHT/δ).

Here δ ∈ (0, 1) is the confidence parameter. It holds that

PrD(E) ≥ 1− δ/2.

where PrD denotes the probability under the data-generating distribution.

47

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Proof Note that by union bound, we only need to show that for an arbitrary and fixed
t > K, the event Et holds with probability at least 1− δ/T . We note that we can obtain
a tighter bound for ETC, as the value functions and the policies do not change during
exploitation. Here we slightly loosen our bound (by a multiplicative factor of log T) for
brevity of the proof.

Additionally, let us examine the possible choices of (R, π) and w for any t > K. We
know that for any t, the concentration bound needs to hold for 2 · (2 + 7n) ≤ 18n distinct
reward-policy pairs. As such, we only need to show that for an arbitrary and fixed pair
of (R, π), the concentration bounds on ŵt,πh and qwt,πh hold simultaneously for all h with
probability at least 1− δ/36nT . Without loss of generality, we consider only the pair (R, π̂t)
and the associated optimistic linear weight, as the proof for all other pairs of (R, π) and
choices of weight w remain largely the same.

Moreover, note that π̂t is simply the policy outputted by Algorithm 3 with respect to R
when all agents are truthful. For simplicity, we then let ŵt,∗h denote the weight associated

with the pair (R, π̂t). As we focus on the pair (R, π) and the weight ŵt,∗h , for the rest of the
proof, we let f th and uth denote the terms used by Algorithm 3.

Recall the definition of the transition operator Ph+1 and the Bellman operator Bh+1 in
Equation (43) and Equation (44). We first show that for any function f , (Phf)(, ;R) and
(Bh+1f)(, ;R) are linear in the feature map φ. By Equation (6),

(Phf)(x, a;R) =
〈
φ(x, a),

∫
f(x′)µh(x′)dx′

〉
(Bhf)(x, a;R) =

n∑
i=0

〈φ(x, a),θih〉+
〈
φ(x, a),

∫
f(x′)µh(x′)dx′

〉

where we recall θih parameterizes rih. Crucially, the fact that both equations hold for a
generic f shows that (PhV̂ t,∗

h+1)(, ;R) and (BhV̂ t,∗
h+1)(, ;R) are both linear.

The objective is then to obtain a high probability bound over |(BhV̂ t,∗
h+1)(, ;R)− φ>ŵt,∗h |

for all h ∈ [H], (x, a) ∈ S ×A. Let wh be the vector such that (BhV̂ t,∗
h+1)(, ;R) = φ(,)>wh,

which is guaranteed to exist by the term’s linearity. When ζ1 = EWC, for all t > K, we have

(BhV̂ t,∗
h+1)(x, a;R)− φ(x, a)>ŵt,∗h = φ(x, a)>(wh − ŵt,∗h)

= φ(x, a)>wh − φ(x, a)>(Λth)−1
(K∑
τ=1

φ(xτh, a
τ
h)
(
Rτh + V̂ t,∗

h+1(xτh+1;R)
))

= φ(x, a)>wh − φ(x, a)>(Λth)−1
(K∑
τ=1

φ(xτh, a
τ
h)(BhV̂ t,∗

h+1)(xτh, a
τ
h;R)

)
︸ ︷︷ ︸

(i)

− φ(x, a)>(Λth)−1
(K∑
τ=1

φ(xτh, a
τ
h)
(
Rτh + V̂ t,∗

h+1(xτh+1;R)− (BhV̂ t,∗
h+1)(xτh, a

τ
h;R)

))
︸ ︷︷ ︸

(ii)

,

(47)

48

Learning Dynamic Mechanisms in Unknown Environments

where the second equality follows from the construction of ŵt,∗h . Therefore we have∣∣(BhV̂ t,∗
h+1)(x, a)− φ(x, a)>ŵt,∗h

∣∣ ≤ |(i)|+ |(ii)|.
We now bound the two terms separately. Note that V̂ t,∗

h+1(;R) ∈ [0, (n+Rmax)(H − h)] by

truncation and ‖θh‖ = ‖
∑n

i=0 θih‖ ≤ (n+ 1)
√
d. Applying Lemma F.4, we then know that

‖wh‖ ≤ (n + Rmax)(H − h)
√
d < (n + Rmax)H

√
d for all h. Hence, term (i) in Equation

(47) satisfies

|(i)| =
∣∣∣∣φ(x, a)>wh − φ(x, a)>(Λth)−1

(K∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)>wh

)∣∣∣∣
=
∣∣φ(x, a)>wh − φ(x, a)>(Λth)−1(Λth − λI)wh

∣∣ = λ
∣∣φ(x, a)>(Λth)−1wh

∣∣
≤ λ‖wh‖(Λt

h)−1‖φ(x, a)‖(Λt
h)−1 ≤ (n+Rmax)H

√
d/λ

√
φ(x, a)>(Λth)−1φ(x, a),

(48)

where the second equality is by definition of Λth and the last by the fact that Λth � λI.

It remains to upper bound term (ii) in Equation (47) . For simplicity, we defined the
random variable

ετh(V ;R) = Rτh + V (xτh+1;R)− (BhV)(xτh, a
τ
h;R). (49)

We then have

|(ii)| =
∣∣∣∣φ(x, a)>(Λth)−1

(K∑
τ=1

φ(xτh, a
τ
h)ετh(V̂ t,∗

h+1;R)
)∣∣∣∣

≤
∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V̂ t,∗

h+1)
∥∥∥

(Λt
h)−1
‖φ(x, a)‖(Λt

h)−1

=
∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V̂ t,∗

h+1;R)
∥∥∥

(Λt
h)−1︸ ︷︷ ︸

(iii)

√
φ(x, a)>(Λth)−1φ(x, a).

(50)

Define the function class for any L > 0, B > 0, h ∈ [H

Vh(L,B, λ) =
{
Vh(x; θ, β,Σ): S → [0, (n+Rmax)H] with ‖θ‖ ≤ L, β ∈ [0, B],Σ � λI

}
,

where Vh(x; θ, β,Σ) = max
a∈A

{
min

{
φ(x, a)>θ + β

√
φ(x, a)>Σ−1φ(x, a), (n+Rmax)H

}}
.

(51)
and let Nh(ε;L,B, λ) be the ε-cover of Vh(L,B, λ) with respect to the distance dist(V, V ′) =
supx∈S

∥∥V (x) − V ′(x)
∥∥. By Lemma F.4, we have

∥∥ŵt,∗h+1

∥∥ ≤ (n + Rmax)H
√
Kd/λ, and

therefore

V̂ t,∗
h+1 ∈ Vh+1(L0, B0, λ), where L0 = (n+Rmax)H

√
Kd/λ, B0 = 2β.

49

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Here λ > 0 is the regularization parameter, and β > 0 is the scaling parameter specified
in Algorithm 3. For simplicity, we use Vh+1 and Nh+1(ε) to denote Vh+1(L0, B0, λ) and

Nh+1(ε;L0, B0, λ), respectively. There then exists a function V †h+1(x;R) ∈ N (ε) where

sup
x∈S

∣∣V̂ t,∗
h+1(x;R)− V 0

h+1(x;R)
∣∣ ≤ ε, (52)

By definition of the transition operator Ph and Jensen’s inequality,∣∣(PhV 0
h+1)(x, a;R)− (PhV̂ t,∗

h+1)(x, a;R)
∣∣ =

∣∣∣E[V 0
h+1(xh+1;R)− V̂ t,∗

h+1(xh+1;R)
∣∣∣ sh = x, ah = a

]∣∣∣
≤ E

[∣∣V 0
h+1(xh+1;R)− V̂ t,∗

h+1(xh+1;R)
∣∣ ∣∣∣ sh = x, ah = a

]
≤ ε.

We then know that
∣∣(BhV 0

h+1)(x, a;R)− (BhV̂ t,∗
h+1)(x, a;R)

∣∣ ≤ ε, and by triangle inequality,∣∣∣(Rth(x, a) + V̂ t,∗
h+1(x′;R)− (BhV̂ t,∗

h+1)(x, a;R)
)

−
(
Rth(x, a) + V 0

h+1(x′;R)− (BhV 0
h+1)(x, a;R)

)∣∣∣ ≤ 2ε
(53)

for all h ∈ [H] and all (x, a, x′) ∈ S ×A× S. Setting (x, a, x′) = (xτh, a
τ
h, x

τ
h+1) in Equation

(53) ensures ∣∣ετh(V̂ t,∗
h+1;R)− ετh(V 0

h+1;R)
∣∣ ≤ 2ε, ∀τ ∈ [K], ∀h ∈ [H].

We then have the following bound for term (iii) in Equation (50).

|(iii)|2 ≤2
∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V 0

h+1;R)
∥∥∥2

(Λt
h)−1

+ 2
∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)
(
ετh(V̂ t,∗

h+1;R)− ετh(V 0
h+1;R)

)∥∥∥2

(Λt
h)−1

.

(54)

By direct expansion, the second term on the right-hand side of Equation (54) can be
controlled as follows.

2
∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)
(
ετh(V̂ t,∗

h+1;R)− ετh(V 0
h+1;R)

)∥∥∥2

(Λt
h)−1

= 2

K∑
τ=1

K∑
τ ′=1

φ(xτh, a
τ
h)>(Λτh)−1φ(xτ

′
h , a

τ ′
h)

×
(
ετh(V̂ t,∗

h+1;R)− ετh(V 0
h+1;R)

)(
ετ
′
h (V̂ t,∗

h+1;R)− ετ ′h (V 0
h+1;R)

)
≤ 8ε2

K∑
τ=1

K∑
τ ′=1

∣∣φ(xτh, a
τ
h)>(Λth)−1φ(xτ

′
h , a

τ ′
h)
∣∣ ≤ 8ε2K2/λ,

(55)

where the last step follows from the fact that ‖φ(x, a)‖ ≤ 1 and Λt
h � λI. Combining

Equations (54) and (55) shows

|(iii)|2 ≤ 2 sup
V ∈Nh+1(ε)

∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V ;R)

∥∥∥2

(Λt
h)−1

+ 8ε2K2/λ. (56)

50

Learning Dynamic Mechanisms in Unknown Environments

We then upperbound the term supV ∈Nh+1(ε)

∥∥∥∑K
τ=1 φ(xτh, a

τ
h)ετh(V ;R)

∥∥∥2

(Λt
h)−1

by uniform

concentration over the covering Nh+1(ε). Applying Lemma F.6 and taking union bound
over Nh+1(ε), for any fixed h ∈ [H], with probability at least 1− p|Nh+1(ε)|,

sup
V ∈Nh+1(ε)

∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V ;R)

∥∥∥2

(Λt
h)−1
≤ (n+Rmax)2H2

(
2 log(1/p) + d log(1 +K/λ)

)
.

For all δ ∈ (0, 1) and all ε > 0, we set p = δ/[(36n)H|Nh+1(ε)|]. Hence, for all fixed h ∈ [H],
it holds that

sup
V ∈Nh+1(ε)

∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V ;R)

∥∥∥2

(Λt
h)−1

≤ (n+Rmax)2H2
(
2 log((36n)H|Nh+1(ε)|/δ) + d log(1 +K/λ)

) (57)

with probability at least 1 − δ/(36nH), taken with respect to process that generates the
dataset D. Then, combining Equations (56) and (57), for all h ∈ [H], with probability at
least 1− δ/(18nH),

∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V̂ t,∗

h+1;R)
∥∥∥2

(Λt
h)−1

= |(iii)|2

≤ (n+Rmax)2H2
(
2 log((36n)H|Nh+1(ε)|/δ) + d log(1 +K/λ)

)
+ 8ε2K2/λ.

Since V̂ t,∗
h+1 ∈ Vh+1((n+Rmax)H

√
Td/λ, 2β, λ) we can upperbound |Nh+1(ε)| via Lemma F.5.

As term (iii) is controlled, we can then ensure that term (ii) of Equation (47) can be bounded,
which when combined with Equation (48) yields a bound for

∣∣(BhV̂ t,∗
h+1)(x, a)− φ(x, a)>ŵt,∗h

∣∣
under a specific choice of ε, β, and λ.

All that remains is then to set the hyperparameters to ensure that the error can be
bounded. Letting ι = log(36ndHT/δ), we set

β = ĉ(n+Rmax)dH
√
ι, ε = dH/K, λ = 1,

where ĉ > 0 is an absolute constant that ensures

|(ii)| ≤ (ĉ/2)ndH
√
ι
√
φ(x, a)>(Λth)−1φ(x, a) = β/2

√
φ(x, a)>(Λth)−1φ(x, a) (58)

with probability at least 1 − δ/(36nT). By Equations (47), (48) and (58), for all h ∈ [H]
and all (x, a) ∈ S ×A, it holds that∣∣(BhV̂h+1)(x, a)− φ(x, a)>ŵt,∗h

∣∣ ≤ ((n+Rmax)H
√
d+ β/2)

√
φ(x, a)>(Λth)−1φ(x, a),

with probability at least 1− δ/(36n), taking the union bound over h ∈ [H].
Extending the result to when ζ1 = EWC is straightforward. Observe that Equation (47)

consists of bounding K random variables whose randomness is due to only the stochasticity
inherent in the transition kernel. Moving from the ETC to EWC setting simply requires bounding

51

Qiu, Lyu, Meng, Wang, Yang, and Jordan

T , rather than K, such variables. However, as our choice for β and ι accommodates the
move from K to T , the bound in Equations (58) and (48) remain valid.

Then combining Equation (58) and (48), we obtain∣∣BhV̂ t,∗
h+1(x, a)− φ(x, a)>ŵt,∗h

∣∣ ≤ β√φ(x, a)>(Λth)−1φ(x, a).

As there are only 18n such combinations of R, π and w, obtaining the individual upper
bound with probability at least 1 − δ/(36n) ensures that the union bound over all these
triplets is satisfied with probability at least 1− δ/2. Therefore, we conclude the proof of
Lemma D.2.

D.2 Proof of Lemma C.1

With event E defined, we proceed with the proof of Lemma C.1. The proof is organized as
follows. We first directly control the model evaluation errors conditioned on the event E , then
relate these model evaluation errors to uncertainty bonuses uth, followed by a reward-free style
analysis that ensures sufficiently small model evaluation error across all policies. Combining
these three ingredients yields Lemma C.1 directly.

In the first step of the proof, we upper and lower bound the model evaluation error ∆,
defined in Equation (45), in the following lemma.

Lemma D.3 (Adaptation of Lemma 5.1 from Jin et al. (2020c)) With λ, β set ac-
cording to Lemma D.2, which ensures PrD(E) ≥ 1− δ/2, we have

0 ≥ ∆̂t,π
h (x, a;R) ≥ −2uth(x, a), 0 ≤ q∆t,π

h (x, a;R) ≤ 2uth(x, a) (59)

for all t > K, (x, a) ∈ S×A, h ∈ [H], and (R, π) ∈ {(R, π̂), (R̃, π̃‡t)}∪{(ri+R̃−i, π̃
†i
t), (R−i, ∗),

(R̃−i, †), (R̃−i, ‡), (R−i, π̂t), (R̃−i, π̃†it), (R̃−i, π̃‡t)}ni=1, regardless of the choice of ζ1.

Proof The results in Lemma D.3 can be split into two parts: the upper and lower bounds

of {q∆h} and {∆̂h}. For brevity, we take ∆̂t,∗
h (x, a;R−i) and q∆t,π̂t

h (x, a;R−i) as examples for
optimistic and pessimistic versions for an arbitrary i, because the techniques used are largely
the same.

Bounding ∆̂t,∗
h (x, a;R−i). We first show that conditioned on the event E , as defined in

Definition D.1 and Equation (46), the model evaluation errors ∆̂t,∗
h (x, a;R−i) ≤ 0 for all

h ∈ [H]. We assume that E holds for the rest of the proof. Recalling the construction of
Q̂t,∗h from Algorithm 3, for all h ∈ [H] and all (x, a) ∈ S ×A, we have

Q̂t,∗h (x, a;R−i) = min{(f th + uth)(x, a), (H − h+ 1)(n− 1 +Rmax)}.

Throughout the rest of the paragraph, we use f th and uth to denote the components that

Algorithm 3 uses in order to construct Q̂t,∗h (x, a;R−i). We first focus on when f th+uth(x, a) ≤
(H − h+ 1)(n− 1 +Rmax). Here we have Q̂t,∗h (x, a;R−i) = f th + uth(x, a). By definition of

∆̂t,∗
h (x, a;R−i) in Equation (45),

∆̂t,∗
h (x, a;R−i) = (BhV̂ t,∗

h+1)(x, a;R−i)− Q̂t,∗h (x, a;R−i) = (BhV̂ t,∗
h+1)(x, a;R−i)− f th − uth ≤ 0,

52

Learning Dynamic Mechanisms in Unknown Environments

and the desired bound on ∆̂t,∗
h (x, a;R−i) inequality follows from Lemma D.2.

If f th+uth(x, a) ≥ (H−h+1)(n+Rmax), we have Q̂t,∗h (x, a;R−i) = (H−h+1)(n+Rmax),
which implies

∆̂t,∗
h (x, a;R−i) = (BhV̂ t,∗

h+1)(x, a;R−i)− ((H − h+ 1)(n+Rmax)) ≤ 0,

where the inequality follows from the definition of the Bellman operator in Equation (44)
and the construction of V̂ t,∗

h+1 in Algorithm 3.

It remains to establish the lower bound of ∆̂t,∗
h (x, a;R−i). Combining the definition of

∆̂t,∗
h (x, a;R−i) and Q̂t,∗h (x, a;R−i), we have

∆̂t,∗
h (x, a;R−i) = (BhV̂ t,∗

h+1)(x, a;R−i)− Q̂t,∗h (x, a;R−i)

≥ (BhV̂ t,∗
h+1)(x, a;R−i)− f th − uth ≥ −2uth,

where the first inequality follows from the definition of Q̂t,∗h (x, a;R−i) and the second
inequality follows from Lemma D.2. In summary, we conclude that when conditioned on E ,

0 ≥ ∆̂t,∗
h (x, a;R−i) ≥ −2uth(x, a), ∀(x, a) ∈ S ×A, ∀h ∈ [H].

Bounding q∆t,∗
h (x, a;R−i). We now show that the model evaluation errors for the pes-

simistic version is also bounded. Recalling the construction of qQt,∗h , we have

qQt,∗h (x, a;R−i) = Π[0,(n−1+Rmax)(H−h+1)][(f
t
h − uth)(x, a)].

For the rest of the paragraph, we instead let f th and uth denote the components Algorithm 3

uses to construct qQt,∗h (x, a;R−i) instead. We first show that the term is bounded below by
zero. When (f th − uth)(x, a) ≤ 0, we trivially have

q∆t,∗
h (x, a;R−i) = (Bh qV t,∗

h+1)(x, a;R−i)− 0 ≥ 0.

When (f th − uth)(x, a) ∈ (0, (n− 1 +Rmax)(H − h+ 1)), we have

q∆t,∗
h (x, a;R−i) = (Bh qV t,∗

h+1)(x, a;R−i)− f th + uth ≥ 0,

where the inequality direct follows from Lemma D.2. Finally, when (f th − uth)(x, a) ≥
(n− 1 +Rmax)(H − h+ 1), we have

q∆t,∗
h (x, a;R−i) ≥ (Bh qV t,∗

h+1)(x, a;R−i)− f th + uth ≥ 0,

where the inequality is again by Lemma D.2.
We then bound the term from above. When (f th−uth)(x, a) ∈ (0, (n−1+Rmax)(H−h+1))

q∆t,∗
h (x, a;R−i) ≤ (Bh qV t,∗

h+1)(x, a;R−i)− f th + uth ≤ 2uth

by Lemma D.2. When (f th−uth)(x, a) ∈ (0, (n−1+Rmax)(H−h+1)), the same bound holds
as well for the same reason. We then focus on when (f th−uth)(x, a) ≥ (n−1+Rmax)(H−h+1),
in which case

q∆t,∗
h (x, a;R−i) = (Bh qV t,∗

h+1)(x, a;R−i)− (n− 1 +Rmax)(H − h+ 1)

≤ (n− 1 +Rmax)(H − h+ 1)− (n− 1 +Rmax)(H − h+ 1) = 0.

53

Qiu, Lyu, Meng, Wang, Yang, and Jordan

The last inequality comes from the fact that qV t,∗
h+1(;R−i) and R−i are bounded above.

As the proofs for the remaining reward functions remain largely the same, we can apply
the same analysis, only changing the reward function being used, thus completing the proof.

With Lemma D.3 in mind, we relate the value function estimation errors to the uncertainty
bonus uth.

Lemma D.4 With λ, β set according to Lemma D.2, which ensures PrD(E) ≥ 1 − δ/2,
regardless of the choice of ζ1, the following statements hold true jointly for all t > K and
some absolute constant ĉ.

1. 0 ≤ V̂ π
1 (x1;R)−V ∗1 (x1;R) ≤ 2

∑H
h=1 Eπ[uth] for all (R, π) ∈ {(R, π̂t), (R̃, π̃‡t)}∪ {(ri +

R̃−i, π̃†it)}ni=1.

2. For all i ∈ [n], 0 ≤ V̂ t,π
1 (x1;R) − V ∗(x1;R) ≤ 2

∑H
h=1 Eπ[uth] and 0 ≤ V ∗(x1;R) −

qV t,π
1 (x1;R) ≤ 2 maxπ′{

∑H
h=1 Eπ′ [uth]}, for all (R, π) ∈ {(R−i, ?), (R̃−i, †), (R̃−i, ‡)}ni=1.

3. For all i ∈ [n], 0 ≤ V̂ t,π
1 (x1;R) − V π

1 (x1;R) ≤ 2
∑H

h=1 Eπ[uth] and 0 ≤ V π
1 (x1;R) −

qV t,π
1 (x1;R) ≤ 2

∑H
h=1 Eπ[uth], for all (R, π) ∈ {(R−i, π̂t), (R̃−i, π̃†it), (R̃−i, π̃‡t)}ni=1.

where the bonuses {uth} are the exploration bonuses calculated by either Algorithm 3 or
Algorithm 4.

Proof For brevity, we only upper bound V ∗1 (x1;R)−V π̂t

1 (x1;R) in this section, as the proof
of the remaining terms is similar.

Adding and subtracting V̂ t,∗
1 into the difference, we can decompose the difference into

two terms

V ∗1 (x1;R)− V π̂t

1 (x1;R) =
(
V ∗1 (x1;R)− V̂ t,∗

1 (x1;R)
)

︸ ︷︷ ︸
(i)

+
(
V̂ t,∗

1 (x1;R)− V π̂t

1 (x1;R)
)

︸ ︷︷ ︸
(ii)

. (60)

where we recall V̂ t,∗
1 (x1;R) is the value function estimates constructed by Algorithm 3. Term

(i) in Equation (60) is the difference between the estimated value function V̂ t,∗
1 (;R) and the

optimal value function V ∗1 (;R), while term (ii) is the difference between V̂ t,∗
1 (;R) and the

value function of π̂t, V π̂t

1 (;R).

For term (i), we invoke Lemma F.3 with π = π̂t and π′ = π∗ and have

V̂ t,∗
1 (x1;R)− V ∗1 (x1;R) =

H∑
h=1

Eπ∗
[
〈Q̂t,∗h (xh, ;R), π̂th(|xh)− π∗,h(|xh)〉A

∣∣x1 = x
]

+

H∑
h=1

Eπ∗
[
Q̂t,∗h (xh, ah;R)− (BhV̂ t,∗

h+1)(xh, ah;R)
∣∣x1 = x

]
,

54

Learning Dynamic Mechanisms in Unknown Environments

where Eπ∗ is taken with respect to the trajectory generated by π∗. By the definition of the
model evaluation error ∆h in Equation (45), we have

V ∗1 (x1;R)− V̂ t,∗
1 (x1;R) =

H∑
h=1

Eπ∗
[
〈Q̂t,∗h (xh, ah;R), π∗,h(|xh)− π̂th(|xh)〉A

∣∣x1

]
+

H∑
h=1

Eπ∗
[
∆̂t,∗
h (xh, ah;R)

∣∣x1

]
.

(61)

Similarly, invoking Lemma F.3 with π = π′ = π̂t, for term (ii), we have

V̂ t,∗
1 (x1;R)− V π̂t

1 (x1;R) =
H∑
h=1

Eπ̂t

[
Q̂t,∗h (xh, ah;R)− (BhV̂ t,∗

h+1)(xh, ah;R)
∣∣x1

]
= −

H∑
h=1

Eπ̂t

[
∆̂t,∗
h (xh, ah;R)

∣∣x1

]
,

(62)

where Eπ̂t is taken with respect to the trajectory generated by π̂t.
Combining Equations (60), (61) and (62), we have

V ∗1 (x1;R)− V π̂t

1 (x1;R) =
H∑
h=1

Eπ∗
[
〈Q̂t,∗h (xh, ;R), π∗,h(|xh)− π̂th(|xh)〉A

∣∣x1

]
(63)

+

H∑
h=1

Eπ∗
[
∆̂t,∗
h (xh, ah;R)

∣∣x1

]
−

H∑
h=1

Eπ̂t

[
∆̂t,∗
h (xh, ah;R)

∣∣x1

]
.

It remains to upper bound the three terms in the right-hand side of Equation (63). For the
first term, we can upper bound it by 0 following the definition of π̂t in Algorithm 3. To
bound the last two terms, we invoke Lemma D.3, which implies

H∑
h=1

Eπ∗
[
∆̂t,∗
h (xh, ah;R)

∣∣x1 = x
]
≤ 0,

− Eπ̂t

[
∆̂t,∗
h (xh, ah;R)

∣∣x1 = x
]
≤ Eπ̂t

[
2uth(xh, ah)

∣∣x1 = x
]
,

for all (x, a) ∈ S ×A under event E . We then know that

V ∗1 (x1;R)− V π̂t

1 (x1;R) ≤
H∑
h=1

Eπ̂t

[
2uth(xh, ah)

∣∣x1 = x
]
.

The remaining terms can be controlled with a similar technique, with only minor differences
between optimistic and pessimistic value function estimates. The differences only affect the
signs of the resulting terms but do not change the proof itself. We conclude the proof.

As we can see from Lemma D.4, all that remains is to control the term Eπ[
∑H

h=1 u
t
h |x1].

For convenience, we begin with a more general bound that holds for all π and R, and then

55

Qiu, Lyu, Meng, Wang, Yang, and Jordan

discuss a specialized bound for when ζ1 = EWC. Recalling Algorithm 3, bounding V ∗(x1;uth)

suffices, as the definition of V ∗ ensures that it is the maximum of Eπ[
∑H

h=1 u
t
h |x1] taken

over π. We detail the steps in the following Lemma.

Lemma D.5 With probability at least 1−δ/(36nT), for the function uth defined in Algorithm
3, we have for all t > K that

V ∗1 (x1;ut) ≤ 2ĉ(n+Rmax)
√
d3H6ι/K,

where ι = log
(
36ndHT/δ

)
, and ĉ is an absolute constant. The claim holds regardless of the

choice of ζ1.

Proof Using the similar technique in the proof of Lemma D.2 and Lemma D.4, with
probability at least 1− δ/8, we have for possible pairs of (R, π),∣∣(PhV k

h+1)(x, a;R)−Π[0,B][φ(x, a)>wkh]
∣∣

≤ min
{
β
√
φ(x, a)>(Λkh)−1φ(x, a), B

}
= ukh(x, a),

(64)

for all h ∈ [H] and all (x, a) ∈ S ×A with B = H(n+Rmax), where wkh is the linear weight
constructed in Algorithm 1 during the exploration phase. For simplicity, for the remaining
proof we let V k(·) = V (·;uk), Qk(·, ·) = Q(·, ·;uk), and (PhV k)(·, ·) = (PhV)(·, ·;uk). Based
on the above inequality, we have the following intermediate results for the functions V ∗1 (·; lk)
and V k

1 (·) defined in Algorithm 2

V ∗1 (x1; lk) ≤ V k
1 (x1) for all k ∈ [K], (65)

and
K∑
k=1

V k
1 (x1) ≤ ĉ(n+Rmax)

√
d3H4Kι, (66)

for some absolute constant ĉ with probability at least 1− δ/4.
Equation (65) and Equation (66) show that the estimated value function in the exploration

phase is optimistic and the sum of V k
1 (x1) should be small with high probability.

Equation (65) can be proved by induction. When h = H + 1, for all k ∈ [K] and s ∈ S,
we know V ∗H+1(x; lk) = 0 and V k

H+1(x) = 0 such that V ∗H+1(x; lk) = V k
H+1(x). Assume that

for some h ∈ [H] and all x ∈ S,

V ∗h+1(x; lk) ≤ V k
h+1(x).

Then based on Equation (64), for all (x, h, k) ∈ S × [H]× [K], we further have

Q∗h(x, a; lk)−Qkh(x, a)

= lkh(x, a) + (PhV ∗h+1)(x, a; lk)−min{Π[0,B][(w
k
h)>φ(x, a)] + lkh(x, a) + ukh(x, a), B}

≤ max{(PhV ∗h+1)(x, a; lk)−Π[0,B][(w
k
h)>φ(x, a)]− ukh(x, a), 0}

≤ max{(PhV k
h+1)(x, a)−Π[0,B][(w

k
h)>φ(x, a)]− ukh(x, a), 0}

≤ 0,

56

Learning Dynamic Mechanisms in Unknown Environments

where the first inequality is due to 0 ≤ lkh(x, a) + (PhV ∗h)(x, a; lk) ≤ B, the second inequality
is by the assumption that lkh(x, a) + PhV ∗h (x; lk), and the last inequality by Equation (64).
The above inequality further leads to

V ∗h (x; lk) = max
a∈A

Q∗h(x, a; lk) ≤ max
a∈A

Qkh(x, a) = V k
h (x).

We can then complete the proof of Equation (65) by induction.

Next, we detail the proof of Equation (66), namely the upper bound of
∑K

k=1 V
k

1 (x1).
Specifically, based on Equation (64), we have

V k
h (xkh) ≤ Π[0,B][(w

k
h)>φ(xkh, a

k
h)] + lkh(xkh, a

k
h) + ukh(xkh, a

k
h)

≤ PhV k
h+1(xkh, a

k
h) + lkh(xkh, a

k
h) + 2ukh(xkh, a

k
h)

= PhV k
h+1(xkh, a

k
h)− Vh+1(xkh+1) + Vh+1(xkh+1) + (2 + 1/H)ukh(xkh, a

k
h),

(67)

where the first inequality is due to the definition of V k
h and the second by Equation (64).

For brevity, we let ξkh = PhV k
h+1(xkh, a

k
h)− Vh+1(xkh+1) in the following. Recursively applying

Equation (67), we have

V k
1 (x1) ≤

H−1∑
h=1

ξkh + (2 + 1/H)
H∑
h=1

ukh(xkh, a
k
h).

Taking summation on both sides of the above inequality with k from 1 to K, we have

K∑
k=1

V k
1 (x1) ≤

K∑
k=1

H−1∑
h=1

ξkh + (2 + 1/H)
K∑
k=1

H∑
h=1

ukh(xkh, a
k
h).

For the first summation on the right side of the above inequality, we can bound it with
Azuma-Hoeffding inequality and have

K∑
k=1

H−1∑
h=1

ξkh ≤ O
(√

H3K log(1/δ)
)
,

with probability at least 1− δ/8. On the other hand, by Lemma F.2, we have

K∑
k=1

H∑
h=1

ukh(xkh, a
k
h) ≤ O

(√
dKH2 logK

)
,

with probability at least 1− δ/8. Then, combining the above two inequalities, we obtain
that with probability at least 1− δ/4, there is

K∑
k=1

V k
1 (x1) ≤ ĉ(n+Rmax)

√
d3H4Kι,

which completes the proof of Equation (66).

57

Qiu, Lyu, Meng, Wang, Yang, and Jordan

At last, we prove the conclusion of this lemma that

V ∗1 (x1;ut) ≤ ĉ(n+Rmax)
√
d3H6ι/K.

Notice that for all k ∈ [K],

Λkh 4 Λh,

especially when ζ1 = EWC and Λh may further grow during the exploitation phase. Therefore,
we have for all (h, k) ∈ [H]× [K],

lkh ≥ uth/H

whenever t ≥ k. Hence, V ∗1 (x1;ut/H) ≤ V ∗1 (x1; lk). Together with Equation (65) and (66),
we obtain

V ∗1 (x1;ut) = HV ∗1 (x1;ut/H) ≤ H
K∑
k=1

V k
1 (x1)/K ≤ ĉ(n+Rmax)

√
d3H6ι/K,

which concludes the proof.

Finally, with Lemmas D.4 and D.5 in mind, we argue how they can be combined to
prove the claims in Lemma C.1 for both when ζ1 = ETC and when ζ1 = EWC.

As the proof techniques are largely the same, let (R, π) be an arbitrary and fixed pair and
we discuss only V̂ t,π

1

(
x1;R

)
− V π

1

(
x1;R

)
to avoid redundancy. Recalling from Lemma D.4,

we know that

V̂ t,π
1

(
x1;R

)
− V π

1

(
x1;R

)
≤ 2

H∑
h=1

Eπ[uth] ≤ 2ĉ(n+Rmax)
√
d3H6ι/K,

where the second inequality comes from Lemma D.5.

Appendix E. Proof of Lower Bound

In this section, we present the proof of the lower bound shown in Theorem 4.3. While the
work Kandasamy et al. (2020) studies the lower bound for the bandit setting, we remark that
deriving the lower bound for our problem is non-trivial, which requires different constructions
and proof techniques from that of this earlier work. Specifically, our work focuses on the
setting of the stochastic rewards and invalidates the Gaussian reward construction in the
proof of Theorem 1 in Kandasamy et al. (2020) because of the bounded reward assumption
in our MDP setting. We use a different construction with the Bernoulli reward and apply
a different anti-concentration analysis. Moreover, our lower bound considers the linear
function approximation and the transition dynamics along the finite horizon in the MDP
model which cannot be covered by the bandit setting.

We first show several important lemmas for the proof of Theorem 4.3. The following
lemma translates the utilities of the seller and agent i into the differences between the value
functions according to Markov VCG mechanism.

58

Learning Dynamic Mechanisms in Unknown Environments

Lemma E.1 When the actions and prices are chosen according to the Markov VCG mech-
anism, we have

ui∗ = V π∗
1

(
x1;R

)
− V π−i

∗
1

(
x1;R−i

)
,

u0∗ =
n∑
i=1

V π−i
∗

1

(
x1;R−i

)
− (n− 1)V π∗

1

(
x1;R

)
.

Proof We can deduce the above results by the definition of the utilities of the agents and
the seller. For the utility of agent i, we have

ui∗ = V π∗
1 (x1; ri)− pi∗

= V π∗
1

(
x1; ri

)
−
[
V π−i
∗

1

(
x1;R−i

)
− V π∗

1

(
x1;R−i

)]
= V π∗

1

(
x1;R

)
− V π−i

∗
1

(
x1;R−i

)
.

For the utility of the seller, we have

u0∗ = V π∗
1 (x1; r0) +

n∑
i=1

pi∗

= V π∗
1

(
x1; r0

)
+

n∑
i=1

[
V π−i
∗

1

(
x1;R−i

)
− V π∗

1

(
x1;R−i

)]
=

n∑
i=1

V π−i
∗

1

(
x1;R−i

)
− (n− 1)V π∗

1

(
x1;R

)
,

where the last equation is by V π∗
1 (x1;R−i) = V π∗

1 (x1; r0 +
∑

j∈[n],j 6=i rj) = V π∗
1 (x1; r0) +∑

j∈[n],j 6=i V
π∗

1 (x1; rj). This completes the proof.

We then define the estimation of
∑n

i=1 V
π−i
∗

1

(
x1;R−i

)
and the error of this estimation as

YT =
1

T

n∑
i=1

T∑
t=1

(
pit + V πt

1

(
x1;R−i

))
, ZT = YT −

n∑
i=1

V π−i
∗

1

(
x1;R−i

)
.

The next lemma states the relationships between different regret terms defined in
Equation (5), which supports the proof of our lower bound.

Lemma E.2 Let RegWT ,Reg0T ,Reg]T be defined as in Equation (5). Then

Reg]T = nRegWT + TZT , Reg0T = −(n− 1)RegWT − TZT .

Proof The proof of this lemma relies on the decomposition of these regret terms. We first
define hit := pit +V πt

1

(
x1;R−i

)
. Then we have YT = 1

T

∑n
i=1

∑T
t=1 hit. For agent i, we have

uit = V πt

1

(
x1; ri

)
− pit

= V πt

1

(
x1; ri

)
−
(
hit − V πt

1

(
x1;R−i

))
= V πt

1

(
x1;R

)
− hit.

(68)

59

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Combining Lemma E.1 and Equation (68), we can obtain

ui∗ − uit =
(
V π∗

1

(
x1;R

)
− V π−i

∗
1

(
x1;R−i

))
−
(
V πt

1

(
x1;R

)
− hit

)
=
(
V π∗

1

(
x1;R

)
− V πt

1

(
x1;R

))
−
(
V π−i
∗

1

(
x1;R−i

)
− hit

)
.

Then by the definition of Reg]T in Equation (5), we have

Reg]T =

T∑
t=1

n∑
i=1

(ui∗ − uit)

=
T∑
t=1

n∑
i=1

[(
V π∗

1

(
x1;R

)
− V πt

1

(
x1;R

))
−
(
V π−i
∗

1

(
x1;R−i

)
− hit

)]
= n

T∑
t=1

(
V π∗

1

(
x1;R

)
− V πt

1

(
x1;R

))
+ T

(
YT −

n∑
i=1

V π−i
∗

1

(
x1;R−i

))
= nRegWT + TZT .

This proves the first claim. For the seller, at time t, we have the following observation that

u0t = V πt

1

(
x1; r0

)
+

n∑
i=1

pit

= V πt

1

(
x1; r0

)
+

n∑
i=1

(
hit − V πt

1

(
x1;R−i

))
=

n∑
i=1

hit − (n− 1)V πt

1

(
x1;R

)
.

(69)

Similarly, we can now combine Lemma E.1 and Equation (69) and obtain

Reg0T =
T∑
t=1

(u0∗ − u0t)

=
T∑
t=1

(
V π∗

1

(
x1;R−i

)
− hit

)
+ (n− 1)

T∑
t=1

(
V πt

1

(
x1;R

)
− V π∗

1

(
x1;R

))
= −TZT − (n− 1)RT .

This completes the proof of the second claim.

The following lemma about relative entropy gives another useful inequality for our proof
of the lower bound.

Lemma E.3 (Bretagnolle-Huber Inequality) Let Q1 and Q2 be probability measures on the
same measurable space (Ω,F), and let A ∈ F be an arbitrary event. Then,

Q1(A) + Q2(Ac) ≥ 1

2
exp(−KL(Q1||Q2)), (70)

where Ac = Ω\A is the complement of A.

60

Learning Dynamic Mechanisms in Unknown Environments

Now we are ready to prove Theorem 4.3.
Proof [Proof of Theorem 4.3] At the beginning of the proof, we first state a basic inequality
here: for any set of real numbers {ri}i≥1, and any set of {ai}i≥1 such that

∑
i≥1 ai = 1 and

ai ≥ 0, we have max{ri}i≥1 ≥
∑

i≥1 airi. Combining the above inequality and Lemma E.2,

we obtain two lower bounds of max{nRegWT ,Reg]T ,Reg0T }. The first one is

max{nRegWT ,Reg]T ,Reg0T } ≥
4

5
nRegWT +

1

5
Reg0T

=
4

5
nRegWT −

1

5

(
− (n− 1)RegWT − TZT

)
≥ 2

5
nRegWT −

1

5
TZT ,

where we use Lemma E.2 in the first equality and use the fact that RegWT ≥ 0. Moreover,
we obtain another lower bound as

max{nRegWT ,Reg]T ,Reg0T } ≥
2

5
nRegWT +

1

5
TZT .

Comparing the above two lower bounds of max{nRegWT ,Reg]T ,Reg0T }, we have

max{nRegWT ,Reg]T ,Reg0T } ≥
2

5
nRegWT +

1

5
T |ZT |.

For brevity, hereafter, we define ST := 2
5nRegWT + 1

5T |ZT |. Our goal is to obtain a lower

bound on infAlg supΘ E[ST] which is also a lower bound on max{nRegWT ,Reg]T ,Reg0T }. To
achieve this goal, we construct two problems in Θ and show that no algorithm can work
well on these two problems simultaneously.

We define the underlying MDPM0 for the first problem θ0 as follows: M0 is an episodic
MDP with horizon H ≥ 2, state space S = {x0, x1, x2, · · · , xn+1, xn+2}, and action space
A = {b1, b2, · · · , bA} with |A| = A ≥ n+ 2. We let the initial state be fixed as x0. For the
transition kernel, at the first step h = 1, we set

P1(xi|x0, bi) = 1, for all i ∈ {1, 2, · · · , n+ 1},
P1(xn+2|x0, bi) = 1 for all i ∈ {n+ 2, · · · , A}.

Meanwhile, at any subsequent step h ∈ {2, · · · , H}, we set

Ph(xi|xi, a) = 1, for all a ∈ A,

i.e., state {xi}n+2
i=1 are absorbing states. For the reward function, we let Ber(p) denote a

Bernoulli random variable with success probability p and set

r0h(s, a) = 0, for all (h, s, a) ∈ {1, · · · , H} × S ×A,
ri1(x0, a) = 0, for all (i, a) ∈ [n+ 2]×A,
rjh(xi, a) ∼ Ber(1/2), for all j 6= i and (i, h, a) ∈ [n]× {2, · · · , H} × A,
rih(xi, a) = 0, for all (i, h, a) ∈ [n]× {2, · · · , H} × A,
rjh(xn+1, a) ∼ Ber(1/2), for all (j, h, a) ∈ [n]× {2, · · · , H} × A,
rjh(xn+2, a) ∼ Ber(1/8), for all (j, h, a) ∈ [n]× {2, · · · , H} × A,

(71)

61

Qiu, Lyu, Meng, Wang, Yang, and Jordan

𝑥1 𝑥𝑛 𝑥𝑛+1 𝑥𝑛+2

𝑥0

ℎ ≥2 ℎ ≥2 ℎ ≥2 ℎ ≥2

Figure 1: An illustration of the episodic MDPs M0,M1 with the state space S =
{x0, x1, · · · , xn+2} and action space A = {bj}Aj=1. Here we fix the initial state as
x1 = x0, where the agent takes the action a ∈ A and transitions into the second state
s2 ∈ {x1, · · · , xn+2}. In both MDPs, we have the same transition kernel. At the first
step h = 1, the transition kernel satisfies P1(xi|x0, bi) = 1 for all i ∈ {1, 2, · · · , n+ 1} and
P1(xn+2|x0, bi) = 1 for all i ∈ {n + 2, · · · , A}. Also, x1, x2, sxn+2 ∈ S are the absorbing
states. The reward functions for M0,M1 are showed as in Equations (71) and (72).

which means the seller’s reward is always 0. Please see Figure 1 for an illustration of the
construction.

Note that M0 is a linear MDP with the dimension d = n+ 2. We set the corresponding
feature map φ : S ×A → Rd as

φ(x0, bi) = ei, for all i = 1, 2, · · · , n+ 1,

φ(x0, bi) = en+2, for all i = n+ 2, · · · , A,
φ(xi, bj) = ei, for all i = 1, 2, · · · , n+ 1 and j ∈ [A],

φ(xi, bj) = en+2, for all i = n+ 2, · · · , A and j ∈ [A],

where {ej} are the canonical basis of Rn+2. Additionally, if the seller transitions to state
xh+1, the sum of agents’ utilities will be the largest. We can also obtain the following results
about problem θ0 directly,

V π∗
1 (x0;R) = Q1(x0, bn+1;R) =

1

2
n(H − 1),

V π−i
∗

1 (x0;R−i) = Q1

(
x0, bi;R

−i) =
1

2
(n− 1)(H − 1),

n∑
i=1

V π−i
∗

1 (x0;R−i) =
1

2
n(n− 1)(H − 1).

For the rest of this section, we slightly abuse the notation and drop the superscript from the
Q-function, as the Q-functions of the different policies we consider are determined by the
actions taken by these policies at the first step.

The second problem, i.e., θ1, with the underlying MDP M1 is nearly the same as θ0 but
differs in reward functions at state xi for i ∈ [n]. Then, we define θ1 as

rjh(xi, a) ∼ Ber(1/2 + δ), for all j 6= i and (i, h, a) ∈ [n]× {2, · · · , H} × A,
rih(xi, a) = 0, for all (i, h, a) ∈ [n]× {2, · · · , H} × A.

(72)

62

Learning Dynamic Mechanisms in Unknown Environments

Here we set δ ∈ (0, 1/(2n− 2)). The problem θ1 shares the same feature maps φ and the
transition parameters µ with problem θ0. And the difference lies in the reward parameters.
Please see figure 1 for an illustration. Then, we can obtain the following inequalities for
problem θ1,

V π∗
1 (x0;R) = Q1(x0, bn+1;R) =

1

2
n(H − 1),

V π−i
∗

1 (x0;R−i) = Q1

(
x0, bi;R

−i) =
(1

2
+ δ
)

(n− 1)(H − 1),

n∑
i=1

V π−i
∗

1 (x0;R−i) =
(1

2
+ δ
)
n(n− 1)(H − 1).

Specifically, we denote ST (θ0) and ST (θ1) as the ST under problems θ0 and θ1 respectively.
The expectations and probabilities corresponding to problem θi will be denoted as Eθi and

Prθi respectively. Let Nk(a) =
∑k

τ=1 I{(aτ1 = a)} denote the number of times that the seller
takes action a at the first step in the initial k rounds. Here we rewrite the lower bound of
the welfare regret in problem θ ∈ {θ1, θ2} as

Eθ[RegWT] =

n+2∑
j=1,j 6=n+1

(
Q1(x0, bn+1;R)−Q1(x0, bj ;R)

)
Eθ[NK(bj)]

≥
n∑
j=1

(
Q1(x0, bn+1;R)−Q1(x0, bj ;R)

)
Eθ[NK(bj)].

Observing that Q1(x0, bn+1;R) − Q1(x0, bj ;R) = (H − 1)/2 in problem θ0, and that |ZT |
is at least n(n − 1)(H − 1)/2 when YT > [n2/2 − n/2 + n(n − 1)δ/2](H − 1), we get the
following lower bound of Eθ0 [ST (θ0)] as

Eθ0 [ST (θ0)]

≥ 2

5
nRegWT +

1

5
T |ZT |

≥ 2

5
n

n∑
j=1

H − 1

2
Eθ0 [NK(bj)] +

T

5

n(n− 1)(H − 1)δ

2
Prθ0

(
YT >

[n2
2
− n

2
+
n(n− 1)δ

2

]
(H − 1)︸ ︷︷ ︸

event E

)

≥ n(H − 1)

10

[n∑
j=1

2Eθ0 [NK(bj)] + T (n− 1)δPrθ0(E)
]
. (73)

In problem θ1, we have |ZT | is at least n(n− 1)(H − 1)/2 when YT ≤ [n2/2− n/2 + n(n−
1)δ/2](H − 1). We drop the welfare regret, which is positive, in the analysis and use the
above statement regarding YT under the event Ec in problem θ1 to obtain

Eθ1 [ST (θ1)] ≥ n(H − 1)

10
T (n− 1)δPrθ1(Ec). (74)

Applying Lemma E.3 to Prθ0(E) + Prθ1(Ec), we have

Prθ0(E) + Prθ1(Ec) ≥ 1

2
exp(−KL(PrTθ0 ||PrTθ1)),

63

Qiu, Lyu, Meng, Wang, Yang, and Jordan

where we slightly abuse the notation and let PrTθ0 and PrTθ1 denote the probability distribution
of the observed rewards up to time T in problem θ0 and θ1 respectively. We also notice that
if the seller takes action bn+1, bn+2 at the first step, then PrTθ0 = PrTθ1 . If the seller take
action bi for i ∈ {1, 2, sn} in the first step, then the reward distributions of agent i are the
same in both θ0 and θ1.However, for other agents j 6= i, the KL divergence between the
corresponding distributions in the two problems is − log(1− 4δ2)(H − 1) since the rewards
are mutually independent and the KL divergence between Ber(1/2) and Ber(1/2 + δ) is
− log(1− 4δ2). Then we have

KL(PrTθ0 ||PrTθ1) = −(n− 1)(H − 1) log(1− 4δ2)
n∑
j=1

Eθ0 [NK(bj)]. (75)

By combining Equations (73), (74),(70), and (75), we obtain the lower bound for Eθ0 [ST (θ0)]+
Eθ1 [ST (θ1)] as

Eθ0 [ST (θ0)] + Eθ1 [ST (θ1)]

≥ n(H − 1)

10

[n∑
j=1

2Eθ0 [NK(bj)] + T (n− 1)δ
(
Prθ0(E) + Prθ1(Ec)

)]
≥ n(H − 1)

10

[
2

n∑
j=1

Eθ0 [NK(bj)]

+
1

2
T (n− 1)δ exp

(
(n− 1)(H − 1) log(1− 4δ2)

n∑
j=1

Eθ0 [NK(bj)]
)]

≥ n(H − 1)

10
min

{
2x+

1

2
T (n− 1)δ exp

(
(n− 1)(H − 1) log(1− 4δ2)x

)
︸ ︷︷ ︸

:= f(x)

}
,

where we combine Equation (73) and (74) in the first inequality, and the second inequality
is by Equation (70) and Equation (75). For the last step we substitute

∑n
j=1 Eθ0 [NK(bj)]

by x and turn to find the minimum value of the function f(x). Then, we have

x0 =
−1

(n− 1)(H − 1) log(1− 4δ2)
log
(−T (n− 1)2(H − 1)δ log(1− 4δ2)

4

)
as the minimum of f(x). Thus, we have

Eθ0 [ST (θ0)] + Eθ1 [ST (θ1)] ≥ n(H − 1)

10
2x0

≥ −1

5 log(1− 4δ2)
log
(−T (n− 1)2(H − 1)δ log(1− 4δ2)

4

)
.

(76)

Using the basic inequality x/(1 + x) ≤ log(1 + x) ≤ x for x > −1, we have

−4δ2 ≥ log(1− 4δ2) ≥ −4δ2

1− 4δ2
≥ −8δ2,

64

Learning Dynamic Mechanisms in Unknown Environments

when 0 ≤ δ2 ≤ 1/8. Combining Equation (76) and the above inequality, we obtain

Eθ0 [ST (θ0)] + Eθ1 [ST (θ1)] ≥ −1

5(−8δ2)
log

(
−T (n− 1)2(H − 1)δ(−4δ2)

4

)
=

1

40δ2
log
(
T (n− 1)2(H − 1)δ3

)
.

Finally, we choose δ =
(

1/
(
T (n− 1)2(H − 1)

))1/3
to obtain the lower bound

1

2

(
Eθ0 [ST (θ0)] + Eθ1 [ST (θ1)]

)
≥ cn4/3H2/3T 2/3,

for some absolute constant c. Here δ ∈ (0, 1/(2n−2)) is satisfied when T ≥ 8(n−1)/(H−1)
and δ2 ∈ (0, 1/8) is satisfied when n ≥ 3. Observing that

sup
θ∈Θ

E[ST (θ)] ≥ max{
(
Eθ0 [ST (θ0)] + Eθ1 [ST (θ1)]

)
} ≥ 1

2

(
Eθ0 [ST (θ0)] + Eθ1 [ST (θ1)]

)
we have the conclusion that

inf
Alg

sup
Θ

E
[
max

(
nRegWT ,Reg]T ,Reg0T)

]
≥ Ω(n4/3H2/3T 2/3).

On the other hand, noting that max
(
nRegWT ,Reg]T ,Reg0T) ≥ nRegWT always holds, we

have

max
(
nRegWT ,Reg]T ,Reg0T) ≥ nRegWT = n

[
TV ∗1 (x1;R)−

T∑
t=1

V πt

1 (x1;R)

]
, (77)

where we recall V ∗1 (x1; r) := maxπ V
π(x1; r) for any reward function r. Since R =

∑n
i=0 ri,

we consider a simple hard instance that r1 = r2 = s = rn = r′ and r0 = Rmax × r′, where
r′ : S×A 7→ [0, 1] is some reward function. In other words, here we consider an instance with
the same reward function for all ri, 1 ≤ i ≤ n, and r0 is simply the same reward function
scaled by Rmax. Under this setting, by (77), we have

max
(
nRegWT ,Reg]T ,Reg0T)] ≥ n

[
TV ∗1 (x1;R)−

T∑
t=1

V πt

1 (x1;R)

]

= n(n+Rmax)

[
TV ∗1 (x1; r′)−

T∑
t=1

V πt

1 (x1; r′)

]
.

The above inequality implies that the lower bound of max
(
nRegWT ,Reg]T ,Reg0T)] can be

further lower bounded by the lower bound of the regret for linear MDPs of dimension d with
rewards in [0, 1]. Theorem 1 in Zhou et al. (2020b) shows that for any algorithm, if d ≥ 4
and T ≥ 64(d− 3)2H, then there exists at least one linear MDP instance that incurs regret
at least Ω(d

√
HT). Therefore, we can further obtain that under the same assumptions, the

65

Qiu, Lyu, Meng, Wang, Yang, and Jordan

minimax lower bound for max
(
nRegWT ,Reg]T ,Reg0T)] is at least Ω

(
n(n + Rmax)d

√
HT

)
,

i.e.,

inf
Alg

sup
Θ

E
[
max

(
nRegWT ,Reg]T ,Reg0T)

]
≥ Ω

(
n(n+Rmax)d

√
HT

)
.

Combining the above results together, we have the following lower bound as

inf
Alg

sup
Θ

E
[
max

(
nRegWT ,Reg]T ,Reg0T)

]
≥ Ω

(
n4/3H2/3T 2/3 + n(n+Rmax)d

√
HT

)
.

This concludes the proof of Theorem 4.3.

Appendix F. Other Supporting Lemmas

The following lemma from Abbasi-Yadkori et al. (2011) establishes the concentration of
self-normalized processes.

Lemma F.1 (Concentration of Self-Normalized Processes) Let {Ft}∞t=0 be a filtra-
tion and {εt}∞t=1 be an R-valued stochastic process such that εt is Ft-measurable for all t ≥ 1.
Moreover, suppose that conditioning on Ft−1, εt is a zero-mean and σ-sub-Gaussian random
variable for all t ≥ 1, that is,

E[εt | Ft−1] = 0, E
[
exp(λεt)

∣∣Ft−1

]
≤ exp(λ2σ2/2), ∀λ ∈ R.

Meanwhile, let {φt}∞t=1 be an Rd-valued stochastic process such that φt is Ft−1-measurable
for all t ≥ 1. Also, let M0 ∈ Rd×d be a deterministic positive-definite matrix and

Mt = M0 +
t∑

s=1

φsφ
>
s

for all t ≥ 1. For all δ > 0, it holds that∥∥∥ t∑
s=1

φsεs

∥∥∥2

M−1
t

≤ 2σ2 log
(det(Mt)

1/2 det(M0)−1/2

δ

)
for all t ≥ 1 with probability at least 1− δ.

Lemma F.2 (Abbasi-Yadkori et al. (2011)) Let {φt}t≥0 be a bounded sequence in Rd
satisfying supt≥0 ‖φt‖ ≤ 1. Let Λ0 ∈ Rd×d be a positive definite matrix. For any t ≥ 0, we

define Λt = Λ0 +
∑t

j=1 φ
>
j φj. Then, if the smallest eigenvalue of Λ0 satisfies λmin(Λ0) ≥ 1,

we have

log

[
det(Λt)

det(Λ0)

]
≤

t∑
j=1

φ>j Λ−1
j−1φj ≤ 2 log

[
det(Λt)

det(Λ0)

]
.

The following lemma from Cai et al. (2019) depicts the difference between an estimated
value function and the value function under a certain policy.

66

Learning Dynamic Mechanisms in Unknown Environments

Lemma F.3 (Extended Value Difference (Cai et al., 2019)) Let π = {πh}Hh=1 and

π′ = {π′h}Hh=1 be any two policies and let {Q̂h}Hh=1 be any estimated Q-functions. For all h ∈
[H], we define the estimated value function V̂h : S 7→ R by setting V̂h(x) = 〈Q̂h(x,), πh(|x)〉A
for all x ∈ S. For all x ∈ S, we have

V̂1(x)− V π′
1 (x) =

H∑
h=1

Eπ′
[
〈Q̂h(xh,), πh(|xh)− π′h(|xh)〉A

∣∣x1 = x
]

+

H∑
h=1

Eπ′
[
Q̂h(xh, ah)− (BhV̂h+1)(xh, ah)

∣∣x1 = x
]
,

where Eπ′ is taken with respect to the trajectory generated by π′, while Bh is the Bellman
operator defined in Equation (44).

The following lemma controls the norms of the w’s generated by either Algorithm 3 or
Algorithm 4 and is used heavily for the concentration analysis.

Lemma F.4 (Bounded Weights of Value Functions (Jin et al., 2020c)) Let Vmax >
0 be an absolute constant. For any function V : S → [0, Vmax], h ∈ [H], and (R, π) ∈
{(R, π̂), (R̃, π̃‡t)}∪{(ri+R̃−i, π̃

†i
t), (R−i, ∗), (R̃−i, †), (R̃−i, ‡), (R−i, π̂t), (R̃−i, π̃†it), (R̃−i, π̃‡t)}ni=1,

we have

‖wh‖ ≤ ‖θh‖+ Vmax

√
d, ‖ŵt,πh ‖, ‖ qwt,πh

∥∥ ≤ (n+Rmax)H
√
Kd/λ,

where ŵt,πh , qwt,πh are the linear weights associated with the pair (R, π), wh parameterizes
(BhV)(, ;R), and θh parameterizes R.

Proof Observe that in our setting, the absolute value of the empirical observations of
(BhV)(, ;R) is instead |Rτ

h+ V̂ t,π
h+1(;R)|, which is upper bounded by 2(n+Rmax)H. Rescaling

the Lemma B.1 of Jin et al. (2020c) completes the proof.

Lemma F.5 For all h ∈ [H] and all ε > 0,we have

log |Nh(ε;L,B, λ)| ≤ d log(1 + 4L/ε) + d2 log
(
1 + 8d1/2B2/(ε2λ)

)
,

where the function class

Vh(L,B, λ) =
{
Vh(x; θ, β,Σ): S → [0, (n+Rmax)H] with ‖θ‖ ≤ L, β ∈ [0, B],Σ � λI

}
with Vh(x; θ, β,Σ) = max

a∈A

{
min

{
φ(x, a)>θ + β

√
φ(x, a)>Σ−1φ(x, a), (n+Rmax)H

}}
and Nh(ε;L,B, λ) is the ε-cover of Vh(L,B, λ) with respect to the distance dist(V, V ′) =
supx∈S

∥∥V (x)− V ′(x)
∥∥.

Proof See Lemma D.6 in Jin et al. (2020b) for a detailed proof.

67

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Lemma F.6 (Concentration of Self-Normalized Processes) Let V : S 7→ [0, (n+Rmax)(H−
1)] be any fixed function. For any h ∈ [H], p ∈ (0, 1), and reward function r, we have

Pr

(∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V ; r)

∥∥∥2

(Λt
h)−1

> (n+Rmax)2H2
(
2 log(1/p) + d log(1 +K/λ)

))
≤ p.

Proof For the fixed h ∈ [H] and all τ ∈ {0, s,K}, we define the σ-algebra

Fh,τ = σ
(
{(xjh, a

j
h, x

j
h+1)}τj=1 ∪ (x

(τ+1)∧K
h , a

(τ+1)∧K
h)

)
,

where σ(·) denotes the σ-algebra generated by a set of random variables and (τ + 1) ∧K
denotes min{τ + 1,K}. For all τ ∈ [K], we have φ(xτh, a

τ
h) ∈ Fh,τ−1, as (xτh, a

τ
h) is Fh,τ−1-

measurable. Also, for the fixed function V : S 7→ [0, (n+Rmax)(H − 1)] and all τ ∈ [K], we
have

ετh(V ; r) = rτh + V (xτh+1; r)− (BhV)(xτh, a
τ
h; r) ∈ Fh,τ ,

as (xτh, a
τ
h, x

τ
h+1) is Fh,τ -measurable. Hence, {ετh(V)}Kτ=1 is a stochastic process adapted to

the filtration {Fh,τ}Kτ=0. Furthermore, we have

E
[
ετh(V ; r)

∣∣Fh,τ−1

]
= E

[
rτh + V (xτh+1; r)

∣∣ {(xjh, ajh, xjh+1)}τ−1
j=1 , (x

τ
h, a

τ
h)
]
− (BhV)(xτh, a

τ
h; r)

= E
[
rτh + V (sh+1)

∣∣ sh = xτh, ah = aτh
]
− (BhV)(xτh, a

τ
h; r) = 0,

where the first step is because (BhV)(xτh, a
τ
h; r) is Fh,τ−1-measurable and the second step

follows from the Markov property of the process. Moreover, as (BhV)(xτh, a
τ
h; r) ∈ [0, (n+

Rmax)H], we have |ετh(V ; r)| ≤ (n+Rmax)H. Hence, the random variable ετh(V ; r) defined
in Equation (49) is mean-zero and (n+Rmax)H-sub-Gaussian conditioning on Fh,τ−1.

Invoke Lemma F.1 with M0 = λI and Mk = λI +
∑k

τ=1 φ(xτh, a
τ
h) φ(xτh, a

τ
h)> for all

k ∈ [K]. We then know that

Pr

(∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V ; r)

∥∥∥2

(Λt
h)−1

> 2(n+Rmax)2H2 log
(det(Λth)1/2

p det(λI)1/2

))
≤ p (78)

for all p ∈ (0, 1). Here, we use the fact that Λth = Mk. To upper bound det(Λth)1/2, we first
notice that

‖Λth‖op =
∥∥∥λI +

K∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)>
∥∥∥

op
≤ λ+

K∑
τ=1

‖φ(xτh, a
τ
h)φ(xτh, a

τ
h)>‖op ≤ λ+K,

where the first inequality follows from the triangle inequality of operator norm and the
second inequality follows from the fact that ‖φ(x, a)‖ ≤ 1 for all (x, a) ∈ S × A by our
assumption. This implies det(Λth) ≤ (λ+K)d. Combining with the fact that det(λI) = λd

and Equation (78), we have

Pr

(∥∥∥ K∑
τ=1

φ(xτh, a
τ
h)ετh(V ; r)

∥∥∥2

(Λt
h)−1

> (n+Rmax)2H2
(
2 log(1/p) + d log(1 +K/λ)

))
≤ p.

Therefore, we conclude the proof of Lemma F.6.

68

Learning Dynamic Mechanisms in Unknown Environments

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In NIPS, volume 11, pages 2312–2320, 2011.

Susan Athey and Ilya Segal. An efficient dynamic mechanism. Econometrica, 81(6):
2463–2485, 2013.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based
reinforcement learning with value-targeted regression. In International Conference on
Machine Learning, pages 463–474. PMLR, 2020.

Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning.
In International conference on machine learning, pages 551–560. PMLR, 2020.

Abhishek Bapna and Thomas A Weber. Efficient dynamic allocation with uncertain valua-
tions. Available at SSRN 874770, 2005.

Jorge Barrera and Alfredo Garcia. Dynamic incentives for congestion control. IEEE
Transactions on Automatic Control, 60(2):299–310, 2014.

Arman Kiani Bejestani and Anuradha Annaswamy. A dynamic mechanism for wholesale
energy market: Stability and robustness. IEEE Transactions on Smart Grid, 5(6):
2877–2888, 2014.

Dirk Bergemann and Alessandro Pavan. Introduction to symposium on dynamic contracts
and mechanism design. Journal of Economic Theory, 159:679–701, 2015.

Dirk Bergemann and Juuso Välimäki. Efficient dynamic auctions. Technical report, Cowles
Foundation for Research in Economics, Yale University, 2006.

Dirk Bergemann and Juuso Välimäki. The dynamic pivot mechanism. Econometrica, 78(2):
771–789, 2010.

Dirk Bergemann and Juuso Välimäki. Dynamic mechanism design: An introduction. Journal
of Economic Literature, 57(2):235–74, 2019.

Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably efficient exploration in policy optimization.
arXiv preprint arXiv:1912.05830, 2019.

Ruggiero Cavallo. Efficiency and redistribution in dynamic mechanism design. In Proceedings
of the 9th ACM conference on Electronic commerce, pages 220–229, 2008.

Ruggiero Cavallo. Mechanism design for dynamic settings. ACM SIGecom Exchanges, 8(2):
1–5, 2009.

Ruggiero Cavallo, David C Parkes, and Satinder Singh. Efficient mechanisms with dynamic
populations and dynamic types. Harvard University Technical Report, 2009.

M Keith Chen and Michael Sheldon. Dynamic pricing in a labor market: Surge pricing and
flexible work on the Uber platform. Ec, 16:455, 2016.

69

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Xiaoyu Chen, Jiachen Hu, Lin F Yang, and Liwei Wang. Near-optimal reward-free exploration
for linear mixture MDPs with plug-in solver. arXiv preprint arXiv:2110.03244, 2021.

Edward H Clarke. Multipart pricing of public goods. Public choice, pages 17–33, 1971.

Claude d’Aspremont and Louis-André Gérard-Varet. Incentives and incomplete information.
Journal of Public economics, 11(1):25–45, 1979.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation
sufficient for sample efficient reinforcement learning? arXiv preprint arXiv:1910.03016,
2019.

Alessandro Epasto, Mohammad Mahdian, Vahab Mirrokni, and Song Zuo. Incentive-aware
learning for large markets. In Proceedings of the 2018 World Wide Web Conference, pages
1369–1378, 2018.

Eric J Friedman and David C Parkes. Pricing WiFi at Starbucks: issues in online mechanism
design. In Proceedings of the 4th ACM conference on Electronic commerce, pages 240–241,
2003.

Theodore Groves. Efficient collective choice when compensation is possible. The Review of
Economic Studies, 46(2):227–241, 1979.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. Advances in neural information processing systems,
31, 2018.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free explo-
ration for reinforcement learning. In International Conference on Machine Learning, pages
4870–4879. PMLR, 2020a.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages
2137–2143. PMLR, 2020b.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL?
arXiv preprint arXiv:2012.15085, 2020c.

Kirthevasan Kandasamy, Joseph E Gonzalez, Michael I Jordan, and Ion Stoica. Vcg
mechanism design with unknown agent values under stochastic bandit feedback. arXiv
preprint arXiv:2004.08924, 2020.

Anna R Karlin and Yuval Peres. Game theory, alive, volume 101. American Mathematical
Soc., 2017.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard
Leurent, and Michal Valko. Adaptive reward-free exploration. In Algorithmic Learning
Theory, pages 865–891. PMLR, 2021.

70

Learning Dynamic Mechanisms in Unknown Environments

Dingwen Kong, Ruslan Salakhutdinov, Ruosong Wang, and Lin F Yang. Online sub-
sampling for reinforcement learning with general function approximation. arXiv preprint
arXiv:2106.07203, 2021.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning.
In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. A sharp analysis of model-based
reinforcement learning with self-play. In International Conference on Machine Learning,
pages 7001–7010. PMLR, 2021.

Boxiang Lyu, Zhaoran Wang, Mladen Kolar, and Zhuoran Yang. Pessimism meets vcg:
Learning dynamic mechanism design via offline reinforcement learning. arXiv preprint
arXiv:2205.02450, 2022.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard
Leurent, and Michal Valko. Fast active learning for pure exploration in reinforcement
learning. In International Conference on Machine Learning, pages 7599–7608. PMLR,
2021.

Sobhan Miryoosefi and Chi Jin. A simple reward-free approach to constrained reinforcement
learning. arXiv preprint arXiv:2107.05216, 2021.

Roger B Myerson. Mechanism design. In Allocation, Information and Markets, pages
191–206. Springer, 1989.

Hamid Nazerzadeh, Amin Saberi, and Rakesh Vohra. Dynamic cost-per-action mechanisms
and applications to online advertising. In Proceedings of the 17th international conference
on World Wide Web, pages 179–188, 2008.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic Game
Theory. Cambridge University Press, 2007.

David C Parkes. Online mechanisms. In N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani, editors, Algorithmic Game Theory, pages 411–439. Cambridge University
Press, 2007.

David C Parkes and Satinder Singh. An mdp-based approach to online mechanism design.
Advances in neural information processing systems, 16, 2003.

David C Parkes, Satinder Singh, and Dimah Yanovsky. Approximately efficient online mech-
anism design. In Proceedings of the 17th International Conference on Neural Information
Processing Systems, pages 1049–1056, 2004.

Alessandro Pavan, Ilya R Segal, and Juuso Toikka. Dynamic mechanism design: Incentive
compatibility, profit maximization and information disclosure. Profit Maximization and
Information Disclosure (May 1, 2009), 2009.

Alessandro Pavan, Ilya Segal, and Juuso Toikka. Dynamic mechanism design: A Myersonian
approach. Econometrica, 82(2):601–653, 2014.

71

Qiu, Lyu, Meng, Wang, Yang, and Jordan

Shuang Qiu, Jieping Ye, Zhaoran Wang, and Zhuoran Yang. On reward-free rl with kernel
and neural function approximations: Single-agent mdp and markov game. In International
Conference on Machine Learning, pages 8737–8747. PMLR, 2021.

Max Simchowitz and Aleksandrs Slivkins. Exploration and incentives in reinforcement
learning. Operations Research, 2023.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal
of finance, 16(1):8–37, 1961.

Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S Du, and Kevin Jamieson.
Reward-free RL is no harder than reward-aware RL in linear Markov decision processes.
arXiv preprint arXiv:2201.11206, 2022.

R. Wang, S. S. Du, L. F. Yang, and R. Salakhutdinov. On reward-free reinforcement learning
with linear function approximation. arXiv preprint arXiv:2006.12274, 2020.

Jingfeng Wu, Lin Yang, et al. Accommodating picky customers: Regret bound and ex-
ploration complexity for multi-objective reinforcement learning. Advances in Neural
Information Processing Systems, 34, 2021.

Lin Yang and Mengdi Wang. Sample-optimal parametric Q-learning using linearly additive
features. In International Conference on Machine Learning, pages 6995–7004. PMLR,
2019.

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels,
and regret bound. In International Conference on Machine Learning, pages 10746–10756.
PMLR, 2020.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael Jordan. Provably
efficient reinforcement learning with kernel and neural function approximations. Advances
in Neural Information Processing Systems, 33:13903–13916, 2020a.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. On function
approximation in reinforcement learning: Optimism in the face of large state spaces. arXiv
preprint arXiv:2011.04622, 2020b.

Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill. Provably
efficient reward-agnostic navigation with linear value iteration. Advances in Neural
Information Processing Systems, 33:11756–11766, 2020.

Zihan Zhang, Simon Du, and Xiangyang Ji. Near optimal reward-free reinforcement learning.
In International Conference on Machine Learning, pages 12402–12412. PMLR, 2021.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In International Conference on Machine Learning, pages 11492–11502. PMLR,
2020a.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement
learning for linear mixture Markov decision processes. In Conference on Learning Theory,
pages 4532–4576. PMLR, 2021a.

72

Learning Dynamic Mechanisms in Unknown Environments

Dongruo Zhou, Jiafan He, and Quanquan Gu. Provably efficient reinforcement learning
for discounted MDPs with feature mapping. In International Conference on Machine
Learning, pages 12793–12802. PMLR, 2021b.

Huozhi Zhou, Jinglin Chen, Lav R Varshney, and Ashish Jagmohan. Nonstationary rein-
forcement learning with linear function approximation. arXiv preprint arXiv:2010.04244,
2020b.

73

	Introduction
	Related Works

	Problem Setup
	Motivating Examples

	Algorithm
	Algorithmic Framework
	Exploration Phase
	Exploitation Phase

	Main Results
	Proof Sketch
	Proof Sketch of Theorem 4.1
	Proof Sketch of Theorem 4.2
	Proof Sketch of Theorem 4.3

	Conclusion
	Table of Notation
	Proof of Lemma 2.1
	Proof of Theorems 4.1 and 4.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Proof of Lemma C.1
	Preliminaries for Proofs
	Proof of Lemma C.1

	Proof of Lower Bound
	Other Supporting Lemmas

