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Abstract

The Metropolis-adjusted Langevin (MALA) algorithm is a sampling algorithm that incor-
porates the gradient of the logarithm of the target density in its proposal distribution.
In an earlier joint work Pillai et al. (2012), the author had extended the seminal work
of Roberts and Rosenthal (1998) and showed that in stationarity, MALA applied to an

N−dimensional approximation of the target will take O(N
1
3 ) steps to explore its target

measure. It was also shown in Roberts and Rosenthal (1998) and Pillai et al. (2012) that,
as a consequence of the diffusion limit, the MALA algorithm is optimized at an average
acceptance probability of 0.574. In Pereyra (2016), the author introduced the proximal
MALA algorithm where the gradient of the log target density is replaced by the proximal
function (mainly aimed at implementing MALA for non-differentiable target densities). In
this paper, we show that for a wide class of twice differentiable target densities, the proxi-
mal MALA enjoys the same optimal scaling as that of MALA in high dimensions and also
has an average optimal acceptance probability of 0.574. The results of this paper thus give
the following practically useful guideline: for smooth target densities where it is expensive
to compute the gradient while implementing MALA, users may replace the gradient with
the corresponding proximal function (that can be often computed relatively cheaply via
convex optimization) without losing any efficiency gains from optimal scaling. We show
this for two class of examples. First, for the product of Gaussians, we identify the optimal
scale for proximal MALA and show that it is identical to MALA. Next, following the exact
framework used in Pillai et al. (2012), we define a version of the proximal MALA algorithm
in a Hilbert space. We show that for a certain class of twice differentiable, infinite dimen-
sional non-product measures commonly used in applications, the proximal MALA applied
to an N−dimensional approximation of the target also will take O(N

1
3 ) steps to explore the

invariant measure, with an optimal acceptance probability of 0.574. This confirms some of
the empirical observations made in Pereyra (2016).

Keywords: Markov Chain Monte Carlo, Metropolis Adjusted Langevin Algorithm, Scal-
ing limit, Diffusion Approximation, Convex Optimization, Proximal Operators, Moreau
Envelope.

1. Introduction

The Langevin diffusion in RN

dXt = ∇ log πN (Xt)dt+
√

2 dWt (1)
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under practically realistic regularity assumptions on the measure πN has πN as its invariant
measure. The Langevin algorithm has been one of the workhorses for sampling probability
measures; it is widely used in Bayesian statistics (Robert and Casella, 2004), data assimi-
lation, inverse problems (Stuart, 2010) and machine learning e.g., Welling and Teh (2011);
Lamperski (2021), among other areas of data science. The time discretization of Xt with
step-size δ gives rise to the Langevin proposal:

y = x+ δ∇ log πN (x) +
√

2δ ZN , ZN ∼ N(0, IN ) . (2)

Consider a πN−invariant Metropolis Hastings Markov chain
{
xk,N

}
k≥1

obtained by propos-

ing y from the current state x according to the kernel q(x, y) given by (2) and then accepted
with probability

α(x, y) = 1 ∧ π
N (y)q(y, x)

πN (x)q(x, y)
. (3)

The proposal (2) coupled with the accept-reject mechanism above constitutes the Metropolis
Adjusted Langevin Algorithm (MALA) (Robert and Casella, 2004). The proposal kernel
for the simpler, Random Walk Metropolis (RWM) algorithm is derived from the following
random walk:

y = x+
√
δ ZN , ZN ∼ N(0, IN ) . (4)

An important question regarding the computational complexity of these Markov chains
is how should the parameter δ vary as a function of the dimension N . A well-known heuristic
for choosing δ is the following: smaller values of δ lead to high acceptance rates but the
chain moves very slowly and therefore may not be efficient. Larger values of δ lead to
larger moves, but are rejected more often because of smaller acceptance probabilities. The
“optimal scale” for the proposal variance thus strikes a balance between making large moves
and still having an O(1) acceptance probability as a function of the dimension N .

To make this heuristic precise, consider the continuous interpolant of the Markov chain
Xk,N :

zN (t) =
( t

∆t
− k
)
xk+1,N +

(
k + 1− t

∆t

)
xk,N , for k∆t ≤ t < (k + 1)∆t.

(5)

We choose the proposal variance to satisfy δ = `∆t, with ∆t = N−γ setting the scale in
terms of dimension and the parameter ` a “tuning” parameter which is independent of the
dimension N . We now discuss how to choose γ and `.

Suppose that πN is the product of N probability densities π,

πN (x) ∝
N∏
i=1

π(xi). (6)

For this product measure, the seminal papers Roberts et al. (1997) and Roberts and Rosen-
thal (1998) respectively showed that, in stationarity, the “optimal” choice for γ that maxi-
mizes the expected squared jumping distance is γ = 1 for the RWM algorithm and γ = 1

3
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for the MALA. Moreover, the projection of zN into any single fixed coordinate direction xi
converges weakly in C([0, T ];R) to z, the scalar diffusion process of the form:

dz

dt
= h(`)[log π(z)]′ +

√
2h(`)

dW

dt
. (7)

Here h(`) > 0 is a constant determined by the parameter ` from the proposal variance. The
quantity h(`) has the interpretation as the “speed measure” of the limiting diffusion; see
Roberts and Rosenthal (2001). Choosing ` to maximize h(`), thus maximizing the speed of
the limiting diffusion, then yields an optimal average acceptance probability of 0.234 for the
Random Walk Metropolis Algorithm and 0.574 for MALA. A remarkable feature of these
results is that the optimal acceptance probabilities for these two algorithms are “universal”
– they hold for a wide range of π.

The above analysis shows that the number of steps required to sample the target measure
grows asO(N) for RWM, but only asO(N

1
3 ) for MALA. This quantifies the efficiency gained

by use of MALA over RWM, and in particular from employing local moves informed by the
gradient of the logarithm of the target density. These theoretical analyses have inspired
much further research as they give useful guidelines for implementation of MALA in high
dimensions: in addition to employing an explicit scale in the proposal variance as predicted
by the theory, one should “tune” the proposal variance of the RWM and MALA algorithms
so as to have acceptance probabilities of 0.234 and 0.574 respectively.

1.1 Proximal MALA algorithm

The proximal MALA algorithm was introduced in Pereyra (2016). For a convex function
f : RN 7→ R, λ > 0 and ‖ · ‖ denoting the Euclidean norm, define the proximity operator
(also called the λ-Moreau envelope; see Bauschke and Combettes, 2011):

Proxλf (x) = argminy∈RN

(
f(y) +

1

2λ
‖y − x‖2

)
.

The following two extreme limits are well known for proximal functions (see Bauschke and
Combettes, 2011, chap. 12):

lim
λ→0

Proxλf (x) = x, lim
λ→∞

f(Proxλf (x)) = inf
y∈RN

f(y).

Let πN be a probability density in RN and consider its λ−Moreau approximation (see
Equation (3) of Pereyra, 2016):

πNλ (x) ∝ sup
u∈RN

π(u) exp
(
− 1

2λ
‖u− x‖2

)
.

If πN (x) ∝ exp(−Ψ(x)) for a convex function Ψ, we have the identity:

πNλ (x) ∝ exp
{
−Ψ

(
ProxλΨ(x)

)}
exp

{
− 1

2λ
‖ProxλΨ(x)− x‖2

}
. (8)

In addition, if Ψ is differentiable, we also have the identity (Bauschke and Combettes, 2011,
Equation (12.28)):

1

λ
(x− ProxλΨ(x)) = ∇Ψ(ProxλΨ(x)). (9)

3



Natesh S. Pillai

Equation (9) can be thought of as an implicit gradient. Indeed, the usual explicit Euler
discretization for MALA yields:

xk+1,N = xk,N − λ∇Ψ(xk,N ) +
√

2λZN , ZN ∼ N(0, IN ) (10)

whereas (9) leads to the implicit update equation

xk+1,N = xk,N − λ∇Ψ(xk+1,N ) +
√

2λZN (11)

or equivalently

xk+1,N = ProxλΨ(xk,N ) +
√

2λZN . (12)

Motivated by (9) and (12), in Pereyra (2016), the author introduced the following modifi-
cation of the discrete Langevin proposal 1 (2):

y =
(

1− δ

λ

)
x+

δ

λ
ProxλΨ(x) +

√
2δ ZN , ZN ∼ N(0, IN ) . (13)

The proximal MALA Markov chain then proceeds via the accept-reject mechanism (3) using
the proposal given in (13).

In Pereyra (2016), the author chose δ = λ on grounds of the stability of the resulting
algorithm. We also make this choice. Thus our proximal MALA proposal is given by:

y = ProxδΨ(x) +
√

2δ ZN , ZN ∼ N(0, IN ) . (14)

During the revision stages of this paper, the preprint Crucinio et al. (2023) was posted that
significantly generalized our results. In Crucinio et al. (2023), the authors show that λ 6= δ
leads to sub-optimal results; see Section 8 for more discussion.

One of the main reasons why the proximal MALA was introduced in Pereyra (2016) is
that the proposal (14) can be applied to targets even when Ψ is not differentiable: e.g .,
the Laplace density Ψ(x) = |x|. Quoting Pereyra (2016): “finally, similarly to other MH
algorithms based on local proposals, proximal MALA may be geometrically ergodic yet
perform poorly if the proposal variance δ is either too small or very large. Theoretical and
experimental studies of MALA show that for many high-dimensional target densities the
value of δ should be set to achieve an acceptance rate of approximately 40%− 70% (Pillai
et al. 2012).”

1.2 Motivation

In this paper, we show that both the MALA algorithm and the proximal-MALA algorithm
enjoy the same optimal scaling and hence the optimal acceptance probability for a wide
range of differentiable target measures. Our results thus provide the first theoretical confir-
mation of the empirical observation above made in Pereyra (2016). It is natural to ask why
one should consider differentiable target densities for studying the performance of the prox-
imal MALA algorithm since it was developed mainly for addressing the non-differentiable
case. We mention a few reasons that illustrate why such a study is useful.

1. For notational consistency, we have set 2δ = δ′ where δ′ is the analogous parameter in Pereyra’s definition;
see Equation (9) of Pereyra (2016)
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1. The proposal for the MALA algorithm is obtained from the explicit (forward) Euler
discretization in (10):

xk+1,N = xk,N − λ∇Ψ(xk,N ) +
√

2λZN ,

whereas the proximal MALA proposal is obtained from the implicit (backward) Euler
discretization as described in (11). Thus is interesting to know, and far from obvious
apriori, that if this small change in the proposal obtained by the implicit discretization
(proximal MALA) has better or worse scaling properties than the explicit method
(MALA). As mentioned before, one of our main contribution in this paper is to show
that for a wide class of differentiable targets, both of these methods have the same
optimal scaling. In Section 1.4 we give a heuristic argument showing why this is the
case. It is interesting to note that even if the target distribution is non-differentiable
only on a set of measure zero (e.g., the Laplace density, Ψ(x) = |x|), the proximal

MALA does not achieve the N−
1
3 scaling as it does for smooth targets; see Crucinio

et al. (2023).

2. Even if the target density is differentiable, in many practical applications it may be
very expensive to compute the gradient, whereas it is often cheap to compute the
proximal function via convex optimization. For example, in many applied models
encountered in data assimilation and Bayesian inverse problems (Stuart, 2010), the
target density is of the form:

πN (Θ|Y ) ∝ exp
(
− 1

2σ2
‖Y −G(Θ)‖2 + h(Θ)

)
where G : RN 7→ R is an expensive, non-linear function to compute (such as the
solution of a climate model obtained via solving a partial differential equation), Θ is
a parameter we wish to compute posterior inference for, Y is the observed data and
exp(h(Θ)) denotes the prior distribution for Θ. There have been quite a few papers
recently where a sophisticated neural network was used to approximate G when it is a
solution of a partial differential equation (Kovachki et al. (2023); Jiang et al. (2023)).
In such examples, even for lower dimensional Θ, it can be even more expensive to
compute the gradient of a neural network so as to compute the derivative of G with
respect to Θ. Thus there is a natural need for developing derivative free sampling
algorithms that enjoy the same optimality properties of Langevin algorithms.2

3. Optimal scaling is not the only facet of algorithm design; many other factors must
be taken into consideration. Even though our results show that the optimal scaling
and the optimal acceptance probability for MALA and proximal MALA algorithms
are the same, there are many examples in which these two algorithms show vastly
different behavior both during the transient phase and at stationarity. It is well
known that in many ODEs and PDEs, the implicit discretization is numerically more
stable; see Elliott and Stuart (1993) for a construction of an implicit method that is

2. One such class of algorithms is the recently studied zeroth-order discretization of Langevin algorithms
in Roy et al. (2022). It would be of interest to compare the performance of proximal MALA to the
algorithms developed in Roy et al. (2022).

5



Natesh S. Pillai

much more stable than its explicit counterpart. Let us give another example from
Bayesian statistics. Consider a Poisson regression model:

Y |X ∼ Poisson(eX),

with the prior distribution π(X) ∝ exp(−1
2X

2). The goal is to infer the posterior
distribution π(X|Y ). Suppose that we observed Y = 1. Then π(X|Y = 1) ∝
e−

1
2
X2+X−eX . Since π(X|Y = 1) has very light tails, the gradient of log π(X|Y = 1)

takes very large negative values for X � 1. Thus if initialized at large values of X,

Figure 1: Trajectories of the MALA and Proximal MALA algorithms for the Poisson re-
gression example. Both chains were initialized at X = 10.

MALA and proximal MALA show very different behavior. As Figure 1 shows, the
MALA algorithm gets stuck when initialized at X = 10 whereas the proximal MALA
mixes after an initial burn in of ∼ 50 steps. We conjecture that, for this example,
MALA is not even geometrically ergodic whereas proximal MALA is. However, we
believe that using the methods in Crucinio et al. (2023), one can show that both
MALA and proximal MALA have the same optimal scaling for this example.

1.3 Main Results

We study the optimal scaling of proximal MALA in two contexts:

1. When the target measure is a product of standard Gaussians, in Theorem 2 we show
that the optimal scale and optimal acceptance probability for the proximal MALA
algorithm is identical to that of MALA. The recent work Crucinio et al. (2023) extends
our results in this case to a much wider class of densities.

2. For a class of infinite dimensional non-product measures studied in Pillai et al. (2012),
we show that the optimal scaling of N−1/3 for MALA as worked out in Roberts and
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Rosenthal (1998); Pillai et al. (2012) is also optimal for the proximal MALA algorithm
when the log density is convex and differentiable; see Theorem 10 for the formal
statement of our main result.

The results of our paper thus give the following practically useful guideline: for smooth
target densities where the gradient is expensive to compute or numerically unstable while
implementing MALA, users may replace the gradient with the corresponding proximal func-
tion without losing any efficiency gains from optimal scaling; furthermore, users can set the
proximal parameter δ to N−1/3 and tune the algorithm to have an acceptance probability of
0.574 just as in MALA. Of course, as discussed in Section 1.4, optimal scaling alone does not
give a complete picture for preferring one algorithm to the other. Our paper takes the first
theoretical steps using convex optimization to study optimal scaling of MCMC algorithms.

1.4 High-level explanation behind the optimal scaling

Let us give a high-level explanation of why the proximal MALA enjoys the same scaling
as that of MALA when Ψ is differentiable. When Ψ is smooth, it can be shown under
reasonable assumptions on the second derivative of Ψ that:

|ProxδΨ(x)− x| = O(δ). (15)

Consequently, setting λ = δ in the implicit Euler identity (9) and using (15) yields that

ProxδΨ(x) = x− δ∇Ψ(ProxδΨ(x))

= x− δ∇Ψ(x) + R(x, δ), R(x, δ) = O(δ2). (16)

The remainder term R(x, δ) is O(δ2). Comparing this with (14), we see that the proximal
MALA proposal can be written as

y = x− δ∇Ψ(x) + R(x, δ) +
√

2δ ZN , ZN ∼ N(0, IN ) (17)

= xMALA + R(x, δ)

where xMALA is the MALA proposal. In high dimensions, the drift term in the diffusion
limit comes from O(δ) term; the O(δ2) remainder term R(x, δ) does not contribute to the
diffusion limit and vanishes in the large N limit. Our paper formalizes this observation for
a class of infinite dimensional models studied in Pillai et al. (2012); refer to Equation (47),
Lemma 19 and the related discussion in Section 4.1.

Remark 1 Another important theoretical aspect is to study the mixing times of proximal
MALA algorithms and obtaining non-asymptotic guarantees. See Durmus et al. (2018) and
the references therein. As in the original scaling papers Roberts et al. (1997) and Roberts
and Rosenthal (1998), we also do not study the mixing times of the proximal Markov chains
in this paper.

1.5 Infinite Dimensional Diffusions

Motivated by applications in data assimilation, inverse problems and Bayesian nonpara-
metrics (see Stuart (2010) and Hairer et al. (2011)), the papers Mattingly et al. (2012) and
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Pillai et al. (2012) extended the results of product measures Roberts and Rosenthal (1998)
to certain infinite dimensional non-product target measures. In both of these papers, the
target measure of interest, π, is on an infinite dimensional real separable Hilbert space H
and is absolutely continuous with respect to a Gaussian measure π0 on H with mean zero
and covariance operator C. This framework for the analysis of MCMC in high dimensions
was first studied in the papers Beskos et al. (2008, 2009); Beskos and Stuart (2009). The
Radon-Nikodym derivative defining the target measure is assumed to have the form

dπ

dπ0
(x) = MΨ exp(−Ψ(x)) (18)

for a real-valued functional Ψ : Hs 7→ R defined on a subspace Hs ⊂ H that contains the
support of the reference measure π0; here MΨ is a normalizing constant.

It is proved in G. Da Prato and J. Zabczyk (1992); Hairer et al. (2005, 2007) that the
measure π is invariant for H−valued SDEs (or stochastic PDEs – SPDEs) with the form

dz

dt
= −h(`)

(
z + C∇Ψ(z)

)
+
√

2h(`)
dW

dt
, z(0) = z0 (19)

where W is a Brownian motion (see G. Da Prato and J. Zabczyk (1992)) in H with covari-
ance operator C and any constant h(`) > 0.

In Pillai et al. (2012), the MALA algorithm was studied when applied to a sequence
of finite dimensional approximations of π as in (18). The continuous time interpolant
of the Markov chain zN given by (5) is shown to converge weakly to z solving (19) in
C([0, T ];Hs). Furthermore, the scaling of the proposal variance which achieves this scaling
limit is inversely proportional to N1/3 (i.e., corresponds to the exponent γ = 1/3) and
the speed of the limiting diffusion process is maximized at the same universal acceptance
probability of 0.574 that was found for product measures Roberts and Rosenthal (1998).

1.6 Notation

Throughout the paper we use the following notation in order to compare sequences and to
denote conditional expectations.

• Two sequences {αn} and {βn} satisfy αn . βn if there exists a constant K > 0
satisfying αn ≤ Kβn for all n ≥ 0. The notations αn � βn means that αn . βn and
βn . αn.

• Two sequences of real functions {fn} and {gn} defined on the same set D satisfy
fn . gn if there exists a constant K > 0 satisfying fn(x) ≤ Kgn(x) for all n ≥ 0 and
all x ∈ D. The notations fn � gn means that fn . gn and gn . fn.

• The notation Ex
[
f(x, ξ)

]
denotes expectation with respect to ξ with the variable x

fixed.

2. A Simple Example: Product of Gaussians

We start with a simple case, where the target measure is the product of standard Gaussians:

πN (x) ∝
N∏
i=1

exp(−x2
i /2). (20)
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The MALA proposal for πN given in (20) is:

y = x(1− δ) +
√

2δ Z, Z ∼ N(0, IN ).

The Metropolis-Hastings acceptance ratio α(x, y) given in (3) with

q(x, y) =
N∏
i=1

exp
(
− 1

4δ

(
yi − xi(1− δ)

)2)
.

The usual calculation for finding the optimal scale proceeds as follows. Expanding the term

Ln ≡ log
(
πN (y)q(y,x)
πN (x)q(x,y)

)
in δ yields 3:

Ln = −δ
3/2

√
2

N∑
i=1

xiZi +
1

2
δ2

N∑
i=1

(
x2
i − Z2

i

)
+
δ5/2

√
2

N∑
i=1

xiZi −
δ3

4

N∑
i=1

x2
i +O

(
δ7/2

)
. (21)

Since the chain is at stationarity, the first three summands in (21) have expectations zero:

Eπ
N
Ex(xZi) = Eπ

N
Ex
(
x2
i − Z2

i

)
= Eπ

N
Ex(xiZi) = 0.

Moreover, the variance of the coefficient of the O(δ3/2) term satisfies:

Varx(
N∑
i=1

xiZi) =
N∑
i=1

x2
i .

Thus if we set δ = `N−1/3, using the fact that 1
N

∑N
i=1 x

2
i → 1 almost surely, we obtain that

Ln =⇒ Z` ∼ N(−`
3

4
,
`3

2
) (22)

and the acceptance probability:

E(1 ∧ eLn)→ a(`) ≡ E(1 ∧ eZ`).

In particular, Ln = O(1) for δ = N−1/3, and thus the optimal scale that makes the size of
acceptance probability equal to O(1) corresponds to δ = N−1/3. The ongoing computation
generalizes for quite a large class of product measures πN far beyond Gaussians, and forms
the basis of the diffusion limit obtained in Roberts and Rosenthal (1998). Finally, to have the
optimal acceptance probability of 0.574 that maximizes the speed of the limiting diffusion,
all one needs to verify is that the limiting Gaussian random variable Z` satisfies:

−2E(Z`) = Var(Z`). (23)

Indeed, once we have the relation (23), the limiting diffusion has the speed measure:

h(`) = `2E(1 ∧ eZ`) = 2`2Φ(−K
2
`3)

3. We used MATHEMATICA for obtaining this expansion; also see Roberts and Rosenthal (1998).
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for some constant K that depends on the target measure and Φ is the CDF of the standard
Gaussian distribution. As shown in Theorem 2 of Roberts and Rosenthal (1998), the value
of ` that maximizes h(`) is independent of K since making the transformation u = K

2 `
3

yields that

max
`
h(`) = 25/3K−2/3 max

u
u2/3Φ(−u)

and the maximizer û of the latter term is independent of K, see Theorem 2 of Roberts and
Rosenthal (1998). Thus the optimal acceptance probability is also independent of K: it is
just â = 2Φ(−û).

Next, we perform the same computation for the proximal MALA algorithm. The prox-
imal MALA proposal for πN given in (20) is:

y =
1

(1 + δ)
x+
√

2δ Z, Z ∼ N(0, IN ) (24)

with the corresponding q(x, y):

q(x, y) =
N∏
i=1

exp
(
− 1

4δ

(
yi −

xi
(1 + δ)

)2)
.

Theorem 2 For the proximal MALA proposal given in (24), the choice of δ = `N−1/3

yields an acceptance probability of O(1). The limiting acceptance probability a(`) can be

expressed as a(`) = E(1 ∧ eZ̃`) where Z̃` is a Gaussian variable satisfying (23).

Proof As before, expanding Ln ≡ log
(
πN (y)q(y,x)
πN (x)q(x,y)

)
in terms of δ yields:

Ln = − 3√
2
δ3/2

N∑
i=1

xiZi +
3

2
δ2

N∑
i=1

(
x2
i − Z2

i

)
+ δ5/2 7√

2

N∑
i=1

xiZi +
1

4
δ3

N∑
i=1

(
8z2
i − 17x2

i

)
+O

(
δ7/2

)
. (25)

Again, using the fact that the chain is at stationarity, we see that the summands of δ3/2, δ2

and δ5/2 in the expansion (25) all have mean zero. Furthermore, for the choice of δ = `N−1/3,
we have Ln =⇒ Z̃` with 9

2 = −2E(Z̃`) = Var(Z̃`) satisfying (23), and the proof is finished.

While we do not prove a diffusion limit, the arguments laid out in Section 1.4 can be used to
prove a diffusion limit for any single component of the piecewise interpolant of the proximal
Markov chain described above. Consequently, Theorem 2 yields that the optimal acceptance
probability for proximal MALA algorithm is also 0.574 in the case where the target measure
is the product of Gaussians.

Remark 3 While Theorem 2 is only worked out for product of Gaussians, the result and
the heuristic arguments given in Section 1.4 strongly suggest that the same optimal scale
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and acceptance probability should hold for a large class of measures obtained as products of
smooth, log-concave target densities; this was rightly confirmed in Crucinio et al. (2023).
This is because the optimal scale and optimal acceptance probability results are “universal”;
the specifics of target distributions should not matter. In particular, the Gaussian distribu-
tion (as used in Theorem 2) plays no special role in optimality of MALA and nor should
play a role here. We focused on this case for clarity of exposition.

3. Infinite Dimensional Target Measure

We keep the framework in this paper identical to that of Pillai et al. (2012) so that the
reader can easily compare our results to that of the MALA algorithm obtained in that
paper. The structure of proof of the diffusion limit is also identical to that of Pillai et al.
(2012). Recall that our main goal is to show that the proximal MALA proposal has the
same performance as that of the infinite dimensional MALA algorithm studied in Pillai et al.
(2012). Thus we are not interested in reproving the results of Pillai et al. (2012); instead,
we merely wish to highlight only those parts where adding a proximal term (instead of the
gradient) in the MALA leads to an alteration of the proof of diffusion limit worked out in
Pillai et al. (2012).

Let H be a separable Hilbert space of real valued functions with scalar product denoted
by 〈·, ·〉 and associated norm ‖x‖2 = 〈x, x〉. Consider a Gaussian probability measure π0

on
(
H, ‖ · ‖

)
with covariance operator C. The general theory of Gaussian measures G. Da

Prato and J. Zabczyk (1992) ensures that the operator C is positive and trace class. Let
{ϕj , λ2

j}j≥1 be the eigenfunctions and eigenvalues of the covariance operator C:

Cϕj = λ2
j ϕj , j ≥ 1.

We assume a normalization under which the family {ϕj}j≥1 forms a complete orthonormal
basis in the Hilbert space H, which we refer to us as the Karhunen-Loève basis. Any
function x ∈ H can be represented in this basis via the expansion

x =
∞∑
j=1

xj ϕj , xj
def
= 〈x, ϕj〉. (26)

Throughout this paper we will often identify the function x with its coordinates {xj}∞j=1 ∈ `2
in this eigenbasis, moving freely between the two representations. The Karhunen-Loève ex-
pansion (see G. Da Prato and J. Zabczyk (1992), section White Noise expansions), refers
to the fact that a realization x from the Gaussian measure π0 can be expressed by al-
lowing the coordinates {xj}j≥1 in (26) to be independent random variables distributed as
xj ∼ N(0, λ2

j ). Thus, in the coordinates {xj}j≥1, the Gaussian reference measure π0 has a
product structure.

For every x ∈ H we have the representation (26). Using this expansion, we define
Sobolev-like spaces Hr, r ∈ R, with the inner-products and norms defined by

〈x, y〉r
def
=
∞∑
j=1

j2rxjyj , ‖x‖2r
def
=
∞∑
j=1

j2r x2
j . (27)

11
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Notice that H0 = H and Hr ⊂ H ⊂ H−r for any r > 0. The Hilbert-Schmidt norm ‖ · ‖C
associated to the covariance operator C is defined as

‖x‖2C =
∑
j

λ−2
j x2

j .

For x, y ∈ Hr, the outer product operator in Hr is the operator x⊗Hr y : Hr → Hr defined
by (x ⊗Hr y)z

def
= 〈y, z〉r x for every z ∈ Hr. For r ∈ R, let Br : H 7→ H denote the

operator which is diagonal in the basis {ϕj}j≥1 with diagonal entries j2r. The operator Br

satisfies Br ϕj = j2rϕj so that B
1
2
r ϕj = jrϕj . The operator Br lets us alternate between

the Hilbert space H and the Sobolev spaces Hr via the identities 〈x, y〉r = 〈B
1
2
r x,B

1
2
r y〉.

Since ‖B−1/2
r ϕk‖r = ‖ϕk‖ = 1, we deduce that {B−1/2

r ϕk}k≥0 forms an orthonormal basis
for Hr. For a positive, self-adjoint operator D : H 7→ H, we define its trace in Hr by

TrHr(D)
def
=
∞∑
j=1

〈(B−
1
2

r ϕj), D(B
− 1

2
r ϕj)〉r. (28)

Since TrHr(D) does not depend on the orthonormal basis, the operator D is said to be
trace class in Hr if TrHr(D) <∞ for some, and hence any, orthonormal basis of Hr. Let us

define the operator Cr
def
= B

1/2
r CB1/2

r . Notice that TrHr(Cr) =
∑∞

j=1 λ
2
j j

2r. In Pillai et al.
(2012) it is shown that under the condition

TrHr(Cr) <∞, (29)

the support of π0 is included in Hr in the sense that π0-almost every function x ∈ H
belongs to Hr. Furthermore, the induced distribution of π0 on Hr is identical to that of a

centered Gaussian measure on Hr with covariance operator Cr. For example, if ξ
D∼ π0, then

E
[
〈ξ, u〉r〈ξ, v〉r

]
= 〈u, Crv〉r for any functions u, v ∈ Hr. Thus in what follows, we alternate

between the Gaussian measures N(0, C) on H and N(0, Cr) on Hr, for those r for which (29)
holds.

3.1 Change of Measure

Our goal is to sample from a measure π defined through the change of probability formula
(18). As described above, the condition TrHr(Cr) <∞ implies that the measure π0 has full
support on Hr, i.e., π0(Hr) = 1. Consequently, if TrHr(Cr) <∞, the functional Ψ(·) needs
only to be defined on Hr in order for the change of probability formula (18) to be valid. In
this section we give assumptions on the decay of the eigenvalues of the covariance operator
C of π0 that ensure the existence of a real number s > 0 such that π0 has full support on Hs.
The functional Ψ(·) is assumed to be defined on Hs and we impose regularity assumptions
on Ψ(·) that ensure that the probability distribution π is not too different from π0, when
projected into directions associated with ϕj for j large. For each x ∈ Hs the derivative
∇Ψ(x) is an element of the dual (Hs)∗ of Hs comprising linear functionals on Hs. However,
we may identify (Hs)∗ with H−s and view ∇Ψ(x) as an element of H−s for each x ∈ Hs.
With this identification, the following identity holds

‖∇Ψ(x)‖L(Hs,R) = ‖∇Ψ(x)‖−s

12
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and the second derivative ∂2Ψ(x) can be identified as an element of L(Hs,H−s). To avoid
technicalities we assume that Ψ(·) is quadratically bounded, with first derivative linearly
bounded and second derivative globally bounded. Weaker assumptions could be dealt with
by use of stopping time arguments.

Assumptions 4 The covariance operator C and functional Ψ satisfy the following:

1. Decay of Eigenvalues λ2
j of C: there is an exponent κ > 1

2 such that

λj � j−κ. (30)

2. Assumptions on Ψ: The function Ψ is convex. There exist constants Mi ∈ R+, i ≤ 4
and s ∈ [0, κ− 1/2) such that for all x ∈ Hs the functional Ψ : Hs → R satisfies

M1 ≤ Ψ(x) ≤M2

(
1 + ‖x‖2s

)
(31)

‖∇Ψ(x)‖−s ≤M3

(
1 + ‖x‖s

)
(32)

‖∂2Ψ(x)‖L(Hs,H−s) ≤M4. (33)

Remark 5 The convexity of Ψ is not assumed in Pillai et al. (2012). It is not required
for the MALA algorithm. In this paper we assume the convexity of Ψ so as to get a unique
value for the proximal operator. This assumption is not strictly necessary for our methods
to go through. However, since our key aim is to formalize the observation made in (17), we
avoid additional complications.

Remark 6 The condition κ > 1
2 ensures that the covariance operator C is trace class in H.

In fact, Equation (29) shows that Cr is trace-class in Hr for any r < κ− 1
2 . It follows that

π0 has full measure in Hr for any r ∈ [0, κ− 1/2). In particular π0 has full support on Hs.

Remark 7 The functional Ψ(x) = 1
2‖x‖

2
s satisfies Assumptions 4. It is convex, defined

on Hs and its derivative at x ∈ Hs is given by ∇Ψ(x) =
∑

j≥0 j
2sxjϕj ∈ H−s with

‖∇Ψ(x)‖−s = ‖x‖s. The second derivative ∂2Ψ(x) ∈ L(Hs,H−s) is the linear operator
that maps u ∈ Hs to

∑
j≥0 j

2s〈u, ϕj〉ϕj ∈ Hs: its norm satisfies ‖∂2Ψ(x)‖L(Hs,H−s) = 1 for
any x ∈ Hs.

3.2 Finite Dimensional Approximation

We are interested in finite dimensional approximations of the probability distribution π.
To this end, we introduce the vector space spanned by the first N eigenfunctions of the
covariance operator,

XN def
= span

{
ϕ1, ϕ2, . . . , ϕN

}
.

Notice that XN ⊂ Hr for any r ∈ [0; +∞). In particular, XN is a subspace of Hs. Next, we
define N -dimensional approximations of the functional Ψ(·) and of the reference measure

13
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π0. To this end, we introduce the orthogonal projection on XN denoted by PN : Hs 7→
XN ⊂ Hs. The functional Ψ(·) is approximated by the functional ΨN : XN 7→ R defined
by

ΨN def
= Ψ ◦ PN . (34)

The approximation πN0 of the reference measure π0 is the Gaussian measure on XN given
by the law of the random variable

πN0
D∼

N∑
j=1

λjξjϕj = (CN )
1
2 ξN

where ξj are i.i.d standard Gaussian random variables, ξN =
∑N

j=1 ξjϕj and CN = PN ◦ C ◦
PN . Consequently we have πN0 = N(0, CN ). Finally, one can define the approximation πN

of π by the change of probability formula

dπN

dπN0
(x) = MΨN exp

(
−ΨN (x)

)
(35)

where MΨN is a normalization constant. Notice that the probability distribution πN is
supported on XN and has Lebesgue density4 on XN equal to

πN (x) ∝ exp
(
− 1

2
‖x‖2CN −ΨN (x)

)
. (36)

In formula (36), the Hilbert-Schmidt norm ‖ · ‖CN on XN is given by the scalar product
〈u, v〉CN = 〈u, (CN )−1v〉 for all u, v ∈ XN . The operator CN is invertible on XN because
the eigenvalues of C are assumed to be strictly positive. The quantity CN∇ log πN (x) is
repeatedly used in the text and in particular appears in the function µN (x) given by

µN (x) = −
(
PNx+ CN∇ΨN (x)

)
(37)

which is CN∇ log πN (x). This function is the drift of an ergodic Langevin diffusion that
leaves πN invariants. Similarly, one defines the function µ : Hs → Hs given by

µ(x) = −
(
x+ C∇Ψ(x)

)
(38)

which is C∇ log π(x). In Lemmas 4.1 and 4.3 of Pillai et al. (2012), it is shown that for
π0-almost every function x ∈ H, we have limN→∞ µ

N (x) = µ(x); see Section 7.1 below.
This quantifies the manner in which µN (·) is an approximation of µ(·).

The next lemma gathers various regularity estimates on the functional Ψ(·) and ΨN (·)
that are repeatedly used in the sequel. These are simple consequences of Assumptions 4
and proofs can be found in Mattingly et al. (2012) and Pillai et al. (2012).

Lemma 8 (Properties of Ψ) Let the functional Ψ(·) satisfy Assumptions 4 and consider
the functional ΨN (·) defined by Equation (34). The following estimates hold.

4. For ease of notation we do not distinguish between a measure and its density, nor do we distinguish
between the representation of the measure in XN or in coordinates in RN

14
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1. The functionals ΨN : Hs → R satisfy the same conditions imposed on Ψ given by
Equations (31), (32) and (33) with constants that can be chosen independent of N .

2. The function C∇Ψ : Hs → Hs is globally Lipschitz on Hs: there exists a constant
M5 > 0 such that

‖C∇Ψ(x)− C∇Ψ(y)‖s ≤M5 ‖x− y‖s ∀x, y ∈ Hs.

Moreover, the functions CN∇ΨN : Hs → Hs also satisfy this estimate with a constant
that can be chosen independent of N .

3. The functional Ψ(·) : Hs → R satisfies a “one-sided” Taylor formula5. There exists a
constant M6 > 0 such that

Ψ(y)−
(

Ψ(x) + 〈∇Ψ(x), y − x〉
)
≤M6 ‖x− y‖2s ∀x, y ∈ Hs. (39)

Moreover, the functionals ΨN (·) also satisfy the above estimates with a constant that
can be chosen independent of N .

Remark 9 The regularity Lemma 8 shows in particular that the function µ : Hs → Hs
defined by (38) is globally Lipschitz on Hs. Similarly, it follows that CN∇ΨN : Hs → Hs
and µN : Hs → Hs given by (37) are globally Lipschitz with Lipschitz constants that can be
chosen uniformly in N .

4. The proximal MALA in Hilbert space

In this section, we construct a version of the proximal MALA algorithm of Pereyra (2016)
in the Hilbert space Hs. The proximal operators are well defined in an infinite dimensional
Hilbert space. The reader is referred to Bauschke and Combettes (2011) for a book length
treatment. For a function g : Hs 7→ (−∞,∞] and λ > 0, define the proximal function

Proxλg (x) = argminy∈Hs

(
g(y) +

1

2λ
‖x− y‖2s

)
. (40)

If g is convex, Proposition 12.15 of Bauschke and Combettes (2011) yields that Proxλg (x) is
convex and differentiable. Moreover the minimizer in (40) is unique due to the convexity of
g. Similar to (8), define the function Eλg :

Eλg (x) ∝ exp
{
− g
(

Proxλg (x)
)}

exp
{
− 1

2λ
‖Proxλg (x)− x‖2

}
. (41)

The function − log Eλg (x) is the λ-Moreau-Yoshida envelope of g. We also have the identity
(Bauschke and Combettes (2011), Proposition 12.29 and Corollary 17.6):

−∇ log Eλg (x) =
1

λ
(x− Proxλg (x)) = ∇g(Proxλg (x)). (42)

5. We extend 〈·, ·〉 from an inner-product on H to the dual pairing between H−s and Hs.
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4.1 The Proximal-MALA Algorithm

Recall from (36) that our target measure is

πN (x) ∝ exp
(
− 1

2
‖x‖2CN −ΨN (x)

)
.

Our algorithm is motivated by the fact that the probability measure πN defined by
Equation (35) is invariant with respect to the Langevin diffusion process

dz

dt
= CN∇ log πN (z) +

√
2
dWN

dt
(43)

= CNµN (z) +
√

2
dWN

dt

where WN is a Brownian motion in Hs with covariance operator CN and µN is as defined
in (37).

To obtain a proximal algorithm that is analogous to Pereyra’s algorithm given in (14),
we replace ΨN (x) by its δ-Moreau-Yoshida envelope to obtain:

πNλ (x) ∝ exp
(
− 1

2
‖x‖2CN

)
EλΨN (x)

where Eδ
ΨN (x) is defined as in Equation (41) with g = ΨN . Now the usual MALA proposal

for πNλ (x) gives the analogue to Pereyra’s proximal algorithm. Indeed, the MALA proposal
for πNλ (x) (with the choice of λ = δ) gives

y = x+ δ CN∇ log πNλ (x) +
√

2δ (CN )
1
2 ξN (44)

= x+ δ CN
(
− (CN )−1x+∇ log EδΨN (x)

)
+
√

2δ (CN )
1
2 ξN

= (1− δ − CN )x+ CNProxδΨN (x) +
√

2δ (CN )
1
2 ξN δ = `N−

1
3

≡ xProx−MALA

where the third equality follows from Equations (41) and (42).

Applying (42) with Ψ = ΨN and λ = δ, we obtain that

ProxδΨN (x) = x− δ∇ΨN (ProxδΨN (x))

≈ x− δ∇ΨN (x) +O(δ2).

Consequently, on XN ,

(1− δ − CN )x+ CNProxδΨN (x) ≈ x− δ(PNx+ CN∇ΨN (x))

= x+ δµN (x). (45)

Let

xMALA = x+ δµN (x) +
√

2δ (CN )
1
2 ξN where δ = `N−

1
3 (46)
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denote the usual MALA proposal obtained from the Euler discretization of the infinite

dimensional diffusion (43). Notice that (CN )
1
2 ξN

D∼ N(0, CN ). The calculation done in (45)
shows that our proximal MALA proposal (44) closely tags the MALA proposal:

xProx−MALA = xMALA + RN (x, δ) (47)

where the term

RN (x, δ) ≡ δ CN
(

ProxδΨN (x)− x
)

(48)

can be thought of as the added “error” induced by the proximal MALA proposal as com-
pared to MALA. As shown in Lemma 13, we have ‖RN (x, δ)‖CN . δ2(1 + ‖x‖s) = O(δ2).
As in the product measure case, for optimal scaling only terms of O(δ3/2) and lower order
contribute; thus the contribution from this remainder term to the scaling drops out in the
large N limit. Consequently, the optimal scaling and the diffusion limits for the proximal
MALA algorithm follow from the corresponding results for the MALA algorithm.

For streamlining further calculations, we will write the xProx−MALA proposal from (44)
as

y = x+ δµN (x) + RN (x, δ) +
√

2δ (CN )
1
2 ξN where δ = `N−

1
3 . (49)

4.2 Time evolution of the proximal MALA chain

We introduce a related parameter

∆t := `−1δ = N−
1
3

which will be the natural time-step for the limiting diffusion process derived from the
proposal above, after inclusion of an accept-reject mechanism. The scaling of ∆t, and
hence δ, with N will ensure that the average acceptance probability is O(1) as N grows.

Following Pillai et al. (2012), we will study the Markov chain xN = {xk,N}k≥0 resulting
from Metropolizing the proximal proposal (49) when it is started at stationarity: the initial
position x0,N is distributed as πN and thus lies in XN . Therefore, the Markov chain evolves
in XN ; as a consequence, only the first N components of an expansion in the eigenbasis
of C are nonzero and the algorithm can be implemented in RN . However the analysis is
cleaner when written in XN ⊂ Hs. The acceptance probability only depends on the first
N coordinates of x and y and has the form

αN (x, ξN ) = 1 ∧ π
N (y)TN (y, x)

πN (x)TN (x, y)
= 1 ∧ eQN (x,ξN ) (50)

where the proposal y is given by Equation (49). The function TN (·, ·) is the density of the
Langevin proposals (49) and is given by

TN (x, y) ∝ exp
{
− 1

4δ
‖y − x− δµN (x)− RN (x, δ)‖2CN

}
.

The local mean acceptance probability αN (x) is defined by

αN (x) = Ex
[
αN (x, ξN )

]
. (51)
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It is the expected acceptance probability when the algorithm stands at x ∈ H. The Markov
chain xN = {xk,N}k≥0 can also be expressed as{

yk,N = xk,N + δµN (xk,N ) + RN (xk,N , δ) +
√

2δ (CN )
1
2 ξk,N

xk+1,N = γk,Nyk,N + (1− γk,N )xk,N
(52)

where ξk,N are i.i.d samples distributed as ξN and γk,N = γN (xk,N , ξk,N ) creates a Bernoulli
random sequence with kth success probability αN (xk,N , ξk,N ). We may view the Bernoulli

random variable as γk,N = 1{Uk<αN (xk,N ,ξk,N )} where Uk
D∼ Uniform(0, 1) is independent

from xk,N and ξk,N .

In summary, the Markov chain that we have described in Hs is, when projected onto
XN , equivalent to a proximal MALA algorithm on RN for the Lebesgue density (36). Recall
that the target measure π in (18) is the invariant measure of the SPDE (19). Our goal is
to obtain an invariance principle for the continuous interpolant (5) of the Markov chain
xN = {xk,N}k≥0 started in stationarity, i.e, to show weak convergence in C([0, T ];Hs) of
zN (t) to the solution z(t) of the SPDE (19), as the dimension N →∞.

5. Main Result

In this section, we present the main result of this paper. Consider the constant α(`) =

E
[
1 ∧ eZ`

]
where Z`

D∼ N(− `3

4 ,
`3

2 ) and define the speed function

h(`) = `α(`). (53)

The quantity α(`) represents the limiting expected acceptance probability of the MALA
algorithm while h(`) is the asymptotic speed function of the limiting diffusion.

Theorem 10 Let the initial condition x0,N of the proximal MALA algorithm be such that
x0,N ∼ πN and let zN (t) be a piecewise linear, continuous interpolant of the proximal
MALA algorithm (52) with ∆t = N−1/3. Then, for any T > 0, zN (t) converges weakly in
C([0, T ],Hs) to the diffusion process z(t) given by

dz

dt
= −h(`)

(
z + C∇Ψ(z)

)
+
√

2h(`)
dW

dt
, z(0) = z0 ∼ π (54)

with the constant h(`) as given in (53). Choosing ` so as to maximize the speed function
h(`) leads to the acceptance probability of 0.574 for the proximal MALA algorithm.

Remark 11 The fact that choosing ` so as to maximize the speed function h(`) leads to
the optimal universal acceptance probability of 0.574 is known since Roberts and Rosenthal
(1998), and is also shown in Pillai et al. (2012). Thus to prove Theorem 10, we need only
establish the diffusion limit.

5.1 Proof Strategy

The acceptance probability of the proposal (49) is equal to αN (x, ξN ) = 1∧eQN (x,ξN ) and the
quantity αN (x) = Ex[αN (x, ξN )] given by (51) represents the mean acceptance probability
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when the Markov chain xN stands at x. Recall the quantity QN in Equation (50). This
quantity may be expressed as

QN (x, ξN ) = −1

2

(
‖y‖2CN − ‖x‖

2
CN
)
−
(

ΨN (y)−ΨN (x)
)

− 1

4δ

{
‖x− y − δµN (y)− RN (y, δ)‖2CN − ‖y − x− δµ

N (x)− RN (x, δ)‖2CN
}
.

(55)

The main observation (also used in Pillai et al. (2012)) is that QN (x, ξN ) can be ap-
proximated by a Gaussian random variable

QN (x, ξN ) ≈ Z` (56)

where Z`
D∼ N(− `3

4 ,
`3

2 ). These approximations are made rigorous in Lemma 16 and
Lemma 17. Therefore, the Bernoulli random variable γN (x, ξN ) with success probabil-

ity 1 ∧ eQN (x,ξN ) can be approximated by a Bernoulli random variable, independent of x,
with success probability equal to

α(`) = E
[
1 ∧ eZ`

]
. (57)

Thus, the limiting acceptance probability of the MALA algorithm is as given in Equation
(57).

Recall that ∆t = N−
1
3 . With this notation we introduce the drift function dN : Hs → Hs

given by

dN (x) =
(
h(`)∆t

)−1E
[
x1,N − x0,N |x0,N = x

]
(58)

and the martingale difference array {Γk,N : k ≥ 0} defined by Γk,N = ΓN (xk,N , ξk,N ) with

Γk,N =
(
2h(`)∆t

)− 1
2

(
xk+1,N − xk,N − h(`)∆t dN (xk,N )

)
. (59)

The normalization constant h(`) defined in Equation (53) ensures that the drift function
dN and the martingale difference array {Γk,N} are asymptotically independent from the
parameter `. The drift-martingale decomposition of the Markov chain {xk,N}k then reads

xk+1,N − xk,N = h(`)∆tdN (xk,N ) +
√

2h(`)∆t Γk,N . (60)

Lemma 19 and Lemma 20 exploit the Gaussian behaviour of QN (x, ξN ) described in Equa-
tion (56) in order to give quantitative versions of the following approximations,

dN (x) ≈ µ(x) and Γk,N ≈ N(0, C) (61)

where µ(x) = −
(
x+C∇Ψ(x)

)
. From Equation (60) it follows that for large N the evolution

of the Markov chain ressembles the Euler discretization of the limiting diffusion (19). The
next step consists of proving an invariance principle for a rescaled version of the martingale
difference array {Γk,N}. The continuous process WN ∈ C([0;T ],Hs) is defined as

WN (t) =
√

∆t
k∑
j=0

Γj,N +
t− k∆t√

∆t
Γk+1,N for k∆t ≤ t < (k + 1)∆t. (62)
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The sequence of processes {WN} converges weakly in C([0;T ],Hs) to a Brownian motion
W in Hs with covariance operator equal to Cs. Indeed, Proposition 21 proves the stronger
result

(x0,N ,WN ) =⇒ (z0,W )

where =⇒ denotes weak convergence in Hs×C([0;T ],Hs) and z0 D∼ π is independent of the
limiting Brownian motion W . Once we have the invariance principle and the converge of
the drift and diffusion terms, the “Master Theorem” in Pillai et al. (2012) (see Proposition
3.1 of Pillai et al. (2012)) gives the required diffusion limit.

6. Proof of the Main Result

In this section, we give the proof of the Theorem 10. To this end, we use Proposition 3.1 of
Pillai et al. (2012). According to Proposition 3.1 of Pillai et al. (2012), to show the diffusion
limit, we must show the following three conditions.

1. Convergence of initial conditions: πN converges in distribution to the probability
measure π where π has a finite first moment, that is Eπ[‖x‖s] <∞.

2. Invariance principle: the sequence (x0,N ,WN ) defined by Equation (62) converges

weakly in Hs×C([0, T ],Hs) to (z0,W ) where z0 D∼ π and W is a Brownian motion in
Hs, independent from z0, with covariance operator Cs.

3. Convergence of the drift: there exists a globally Lipschitz function µ : Hs → Hs
that satisfies

lim
N→∞

Eπ
N [‖dN (x)− µ(x)‖s

]
= 0.

Item (1.) above follows from Lemma 4.3 of Pillai et al. (2012)); also see Section 7.1
below. Item (2.) is proved in Proposition 21. Item (3.) is proved in Lemma 19. Thus we
have established all three conditions required by Proposition 3.1 of Pillai et al. (2012) and
thus the proof of our main result is finished.

7. Key Estimates

In this section, we prove some key estimates for the proximal operator, and and also collect
some key approximation properties of µN and πN from Pillai et al. (2012). These properties
will be repeatedly used throughout.

7.1 Approximation properties of µN and πN

• For π0-almost every function x ∈ Hs, the approximation µN (x) ≈ µ(x) holds as N
goes to infinity. Indeed, under Assumption 4, the sequences of functions µN : Hs → Hs
satisfies (see Lemma 4.1 of Pillai et al. (2012)),

π0

({
x ∈ Hs : lim

N→∞
‖µN (x)− µ(x)‖s = 0

})
= 1. (63)
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• Under the Assumptions 4 the normalization constants MΨN are uniformly bounded
so that for any measurable functional f : H 7→ R, we have from Lemma 4.3 of Pillai
et al. (2012) that

Eπ
N [|f(x)|

]
. Eπ0

[
|f(x)|

]
.

Moreover, the sequence of probability measure πN satisfies πN =⇒ π where =⇒
denotes weak convergence in Hs.

• By Fernique’s theorem G. Da Prato and J. Zabczyk (1992), for any exponent p ≥ 0
we have

Eπ
0[‖x‖ps] <∞.

We also have that for any p ≥ 0

sup
N∈N

Eπ
N [‖x‖ps] < ∞.

7.2 Estimates involving proximal functions and the remainder term

Recall the constant M6 from (39).

Lemma 12 For any x ∈ Hs and N ∈ N and for all δ < 1
2M6

,

‖ProxδΨN (x)− x‖s . δ(1 + ‖x‖s).

Proof Set x∗ = ProxδΨN (x). Since x∗ minimizes the map:

y 7→
(

ΨN (y) +
1

2δ
‖y − x‖2s

)
,

from our assumptions in (39) and (32), it follows that

1

2δ
‖x∗ − x‖2s ≤ ΨN (x)−ΨN (x∗) = |ΨN (x∗)−ΨN (x)|

≤ |〈∇ΨN (x), x∗ − x〉|+M6‖x∗ − x‖2s
≤M3(1 + ‖x‖s)‖x∗ − x‖s +M6‖x∗ − x‖2s.

Dividing by the term ‖x∗ − x‖s throughout and simplifying yields

‖x∗ − x‖s ≤ δ
M3

(1− 2δM6)
(1 + ‖x‖s) . δ(1 + ‖x‖s)

and the proof is done.

Lemma 13 Recall the remainder term RN (x, δ) from (48). For any x ∈ Hs, N ∈ N and
for all δ < 1

2M6
,

‖RN (x, δ)‖CN . δ2(1 + ‖x‖s), ‖RN (x, δ)‖s . δ2(1 + ‖x‖s).
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Proof Set x∗ = ProxδΨN (x). Then RN (x, δ) = δ CN (x∗ − x). Thus

‖RN (x, δ)‖2CN = 〈RN (x, δ), (CN )−1RN (x, δ)〉
= δ2〈CN (x∗ − x), (x∗ − x)〉
. δ2‖x∗ − x‖2s . δ4(1 + ‖x‖2s)

where the last inequality follows from Lemma 12 showing the first inequality. The second
inequality follows similarly:

‖RN (x, δ)‖2s = δ2‖CN (x∗ − x)‖2s . δ2‖x∗ − x‖2s . δ4(1 + ‖x‖2s)

and the proof is done.

Next lemma shows that the size of the jump y − x is of order
√

∆t.

Lemma 14 Consider y given by (49). Under Assumptions 4, for any p ≥ 1 we have

Eπ
N

x

[
‖y − x‖ps

]
. (∆t)

p
2 · (1 + ‖x‖ps).

Proof Under Assumption 4 the function µN is globally Lipschitz on Hs, with Lipschitz
constant that can be chosen independent from N . Thus using Lemma 13 we obtain that

‖y − x‖s . ∆t(1 + ‖x‖s) + ‖RN (x, δ)‖s +
√

∆t ‖C
1
2 ξN‖s

. ∆t(1 + ‖x‖s) + (∆t)2(1 + ‖x‖s) +
√

∆t ‖C
1
2 ξN‖s

. ∆t(1 + ‖x‖s) +
√

∆t ‖C
1
2 ξN‖s.

We have Eπ0
[
‖C

1
2 ξN‖ps

]
≤ Eπ0

[
‖ζ‖ps

]
<∞, where ζ

D∼ N(0, C). Consequently, Eπ0
[
‖C

1
2 ξN‖ps

]
is uniformly bounded as a function of N , proving the lemma.

Consider y given by (49) and recall from (47) that

y = xMALA + RN (x, δ).

Lemma 15 We have

aN (x, δ) ≡ ‖y‖2CN − ‖xMALA‖2CN
Eπ

N
aN (x, δ) . δ2

Proof From (47) we have

‖y‖2CN − ‖xMALA‖2CN = aN (x, δ)

aN (x, δ) ≡ 2〈xMALA,R
N (x)〉CN + ‖RN (x, δ)‖2CN . (64)

From (48), we obtain

|〈xMALA,R
N (x, δ)〉CN | = |〈xMALA, (CN )−1RN (x, δ)〉|

≤ ‖xMALA‖s‖RN (x, δ)‖CN .
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From Lemma 14 we deduce that

‖xMALA‖s . (1 + δ)(1 + ‖x‖s) +
√
δ‖C

1
2 ξN‖s .

Combining this with Lemma 13 yields that

|〈xMALA,R
N (x, δ)〉CN | . δ2(1 + ‖x‖2s)(1 +

√
δ‖C

1
2 ξN‖s) .

Thus

Eπ
N

(|〈xMALA,R
N (x, δ)〉CN |) . δ2 Eπ

N
(1 + ‖x‖2s)(1 +

√
δ‖C

1
2 ξN‖s) . δ2. (65)

Thus from (64), (65) and Lemma 13 we deduce that

Eπ
N

(aN (x, δ) . δ2

and the proof is finished.

7.3 Gaussian approximation of QN

Recall the quantity QN defined in Equation (55). This section proves that QN has a
Gaussian behavior in the sense that

QN (x, ξN ) = ZN (x, ξN ) + iN (x, ξN ) + eN (x, ξN ) (66)

where the quantities ZN and iN are equal to

ZN (x, ξN ) = −`
3

4
− `

3
2

√
2
N−

1
2

N∑
j=1

λ−1
j ξjxj (67)

iN (x, ξN ) =
1

2
(`∆t)2

(
‖x‖2CN − ‖(C

N )
1
2 ξN‖2CN

)
(68)

with iN and eN small. Thus the principal contributions to QN comes from the random
variable ZN (x, ξN ). Notice that, for each fixed x ∈ Hs, the random variable ZN (x, ξN ) is
Gaussian. Furthermore, the Karhunen-Loève expansion of π0 shows that for π0-almost every
choice of function x ∈ H the sequence

{
ZN (x, ξN )

}
N≥1

converges in law to the distribution

of Z`
D∼ N(− `3

4 ,
`3

2 ). The next lemma rigorously bounds the error terms eN (x, ξN ) and

iN (x, ξN ): we show that iN is an error term of order O(N−
1
6 ) and eN (x, ξ) is an error term

of order O(N−
1
3 ). In Lemma 17 we then quantify the convergence of ZN (x, ξN ) to Z`.

Lemma 16 (Gaussian Approximation) Let p ≥ 1 be an integer. Under Assumptions 4,
QN (x, ξN ) has the expansion given in (66) and the error terms iN and eN in the Gaussian
approximation (66) satisfy(

Eπ
N [|iN (x, ξN )|p

]) 1
p

= O(N−
1
6 ) and

(
Eπ

N [|eN (x, ξN )|p
]) 1

p
= O(N−

1
3 ). (69)
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Proof As in Lemma 4.4 of Pillai et al. (2012), without loss of generality, we suppose p = 2q.
The quantity QN is defined in Equation (55) and expanding terms leads to

QN (x, ξN ) = I1 + I2 + I3 + I4

where the quantities I1, I2, I3 and I4 are given by

I1 = −1

2

(
‖y‖2CN − ‖x‖

2
CN
)
− 1

4`∆t

(
‖x− y(1− `∆t)‖2CN − ‖y − x(1− `∆t)‖2CN

)
I2 = −

(
ΨN (y)−ΨN (x)

)
− 1

2

(
〈x− y(1− `∆t), CN∇ΨN (y)〉CN − 〈y − x(1− `∆t), CN∇ΨN (x)〉CN

)
I3 = − 1

4`∆t

{
‖`∆t CN∇ΨN (y) + RN (y, δ)‖2CN − ‖`∆t C

N∇ΨN (x) + RN (x, δ)‖2CN
}

I4 = − 1

2`∆t

{
〈x− y(1− `∆t),RN (y, δ)〉CN − 〈y − x(1− `∆t),RN (x, δ)〉CN

}
.

The term I1 arises purely from the Gaussian part of the target measure πN and from
the Gaussian part of the proposal. The other terms come from the change of probability
involving the functional ΨN . By the calculation identical to page 2343 of Pillai et al. (2012),
we can simplify the the term I1 to be:

I1 = −`∆t
4

(
‖y‖2CN − ‖x‖

2
CN
)
. (70)

The term I1 is shown to be O(1) and constitutes the main contribution to QN . Before

analyzing I1 in more detail, we show that I2, I3 and I4 are O(N−
1
3 ):(

Eπ
N

[I2q
2 ]
) 1

2q
+
(
Eπ

N
[I2q

3 ]
) 1

2q
+
(
Eπ

N
[I2q

4 ]
) 1

2q
= O(N−

1
3 ). (71)

• By a calculation nearly identical to the one in Lemma 4.4 of Pillai et al. (2012) (the
only change being the use of our Lemma 14 instead of their Lemma 4.2) we obtain
that (

Eπ
N

[I2q
2 ]
) 1

2q
= O(N−

1
3 ). (72)

• Using the definition of RN (x, δ) from (48), we obtain that

Eπ
N [
I2q

3

]
. ∆t2q Eπ

N
[
|〈∇ΨN (x), CN∇ΨN (x)〉|q + |〈∇ΨN (y), CN∇ΨN (y)〉|q

]
+ ∆t−2q Eπ

N
[
‖RN (x, δ)‖2qCN + ‖RN (y, δ)‖2qCN

]
.

Lemma 8 states CN∇ΨN : Hs → Hs is globally Lipschitz, with a Lipschitz constant
that can be chosen uniformly in N . Therefore,

‖CN∇ΨN (z)‖s . 1 + ‖z‖s. (73)

Since ‖CN∇ΨN (z)‖2CN = 〈∇ΨN (z), CN∇ΨN (z)〉, the bound (32) gives

Eπ
N [
I2q

3

]
. ∆t2q E

[
〈∇ΨN (x), CN∇ΨN (x)〉q + 〈∇ΨN (y), CN∇ΨN (y)〉q

]
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. ∆t2q Eπ
N
[
(1 + ‖x‖s)2q + (1 + ‖y‖s)2q

]
. ∆t2q Eπ

N
[
1 + ‖x‖2qs + ‖y‖2qs

]
. ∆t2q =

(
N−

1
3

)2q
. (74)

Similarly, from Lemma 13 and 14,

∆t−2q Eπ
N
[
‖RN (x, δ)‖2qCN + ‖RN (y, δ)‖2qCN

]
. ∆t6q Eπ

N
[
1 + ‖x‖2qs + ‖y‖2qs

]
. ∆t6q

.
(
N−

1
3

)6q
.
(
N−

1
3

)2q
. (75)

Thus from (74) and (75), we conclude that(
Eπ

N
[I2q

3 ]
) 1

2q
.
(
N−

1
3

)2q
. (76)

• Finally, we tackle the term I4:

Eπ
N [
I2q

4

]
. ∆t−2q E

[
‖x− y(1− `∆t)‖2qs ‖(CN )−1RN (y, δ)‖2qs

+ ‖y − x(1− `∆t)‖2qs ‖(CN )−1RN (x, δ)‖2qs
]
.

From Lemma 14, we obtain that EπN
(‖y − x(1− `∆t)‖4qs ) . (∆t)2q · (1 + ‖x‖4qs ) and

EπN
(‖x− y(1− `∆t)‖2qs ) . (∆t)2q · (1 + ‖x‖4qs ). Similarly, from Lemma 13 we gather

that EπN ‖RN (x, δ)‖4qCN . δ8q(1 + ‖x‖4qs ). Putting these two together and using the
Cauchy-Schwartz inequality gives,

Eπ
N [
I2q

4

]
. ∆t3q Eπ

N
[
1 + ‖x‖2qs + ‖y‖2qs

]
.
(
N−

1
3

)2q
. (77)

Equations (72), (76) and (77) imply the requisite estimate in (71).

Next, we tackle the term I1. Recall from from (70) that

I1 = −`∆t
4

(
‖y‖2CN − ‖x‖

2
CN
)
.

From Lemma 15 we obtain that

‖y‖2CN = ‖xMALA‖2CN + aN (x, `∆t), Eπ
N
aN (x, `∆t) . (∆t)2. (78)

Consequently,

I1 = −`∆t
4

(
‖xMALA‖2CN − ‖x‖

2
CN
)
− `∆t

4
aN (x, `∆t).

From Lemma 4.4 of Pillai et al. (2012), we deduce that

−`∆t
4

(
‖xMALA‖2CN − ‖x‖

2
CN
)

= ZN (x, ξN ) + iN (x, ξN ) + bN (x, ξN ) (79)
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with ZN (x, ξN ) and iN (x, ξN ) given by Equation (67) and (68) and

(
Eπ

N [
bN (x, ξN )2q

]) 1
2q

= O(N−
1
3 ).

Lemma 4.4 of Pillai et al. (2012) also shows that

(
Eπ

N [
iN (x, ξN )2q

]) 1
2q

= O(N−
1
6 ). (80)

The proof of the lemma now follows from (71), (78) and (79).

We recall Lemma 4.5 of Pillai et al. (2012):

Lemma 17 Pillai et al. (2012)(Lemma 4.5) (Asymptotic independence) Let p ≥ 1 be
a positive integer and f : R → R be a 1-Lipschitz function. Consider error terms eN? (x, ξ)
satisfying

lim
N→∞

Eπ
N

[eN? (x, ξN )p] = 0.

Define the functions f̄N : R→ R and the constant f̄ ∈ R by

f̄N (x) = Ex
[
f
(
ZN (x, ξN ) + eN? (x, ξN )

)]
and f̄ = E[f(Z`)].

Then the function fN is highly concentrated around its mean in the sense that

lim
N→∞

Eπ
N
[
|f̄N (x)− f̄ |p

]
= 0.

Corollary 18 Let p ≥ 1 be a positive. The local mean acceptance probability αN (x) defined
in Equation (51) satisfies

lim
N→∞

Eπ
N [|αN (x)− α(`)|p

]
= 0.

Proof The function f(z) = 1 ∧ ez is 1-Lipschitz and α(`) = E[f(Z`)]. Also,

αN (x) = Ex
[
f(QN (x, ξN ))

]
= Ex

[
f(ZN (x, ξN ) + eN? (x, ξN )

]
with eN? (x, ξN ) = iN (x, ξN ) + eN (x, ξN ). Lemma 16 shows that

lim
N→∞

Eπ
N

[eN? (x, ξ)p] = 0

and therefore Lemma 17 gives the conclusion.
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7.4 Drift approximation

This section proves that the approximate drift function dN : Hs → Hs defined in Equation
(58) converges to the drift function µ : Hs → Hs of the limiting diffusion (54).

Lemma 19 (Drift Approximation) Let Assumptions 4 hold. The drift function dN :
Hs → Hs converges to µ in the sense that

lim
N→∞

Eπ
N
[
‖dN (x)− µ(x)‖2s

]
= 0.

Proof Now that we have established the relevant estimates, the proof of this lemma is
nearly identical to that of Lemma 4.7 of Pillai et al. (2012), but also needs to account for
the extra error term induced by the proximal operator. The approximate drift dN is given
by Equation (58). The definition of the local mean acceptance probability αN (x) given by
Equation (51) shows that dN can also be expressed as

dN (x) =
(
αN (x)α(`)−1

)
µN (x) +RNProx(x,∆t) +

√
2`h(`)−1(∆t)−

1
2 εN (x) (81)

where µN (x) = −
(
PNx+ CN∇ΨN (x)

)
; the term εN (x) is defined by

εN (x) = Ex
[
γN (x, ξN ) C

1
2 ξN

]
= Ex

[(
1 ∧ eQN (x,ξN )

)
C

1
2 ξN

]
and the term RNProx(x,∆t) is the error term induced by the proximal approximation:

RNProx(x,∆t) =
αN (x)

h(`)

Rn(x, `∆)

∆t
.

To prove Lemma 19 it suffices to verify that

lim
N→∞

Eπ
N
[∥∥(αN (x)α(`)−1

)
µN (x)− µ(x)

∥∥2

s

]
= 0 (82)

lim
N→∞

Eπ
N ‖RNProx(x,∆t)‖2s = 0 (83)

lim
N→∞

(∆t)−1 Eπ
N
[
‖εN (x)‖2s

]
= 0. (84)

• Equation (82) follows directly from Lemma 4.7 of Pillai et al. (2012).

• Next, using the fact that |αN (x)| ≤ 1 and Lemma 13,

‖RNProx(x,∆t)‖2s .
(
αN (x)

)2∥∥∥Rn(x, `∆t)

∆t

∥∥∥2

s

. (∆t)2(1 + ‖x‖2s)

and thus we have

lim
N→∞

Eπ
N ‖RNProx(x,∆t)‖2s = lim

N→∞
N−2/3Eπ

N
(1 + ‖x‖2s) = 0

establishing (83).
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• Let us prove Equation (84). If the Bernoulli random variable γN (x, ξN ) were in-

dependent from the noise term (CN )
1
2 ξN , it would follow that εN (x) = 0. In gen-

eral γN (x, ξN ) is not independent from (CN )
1
2 ξN so that εN (x) is not equal to zero.

Nevertheless, as quantified by Lemma 17, the Bernoulli random variable γN (x, ξN )
is asymptotically independent from the current position x and from the noise term
(CN )

1
2 ξN . Consequently, we can prove in Equation (86) that the quantity εN (x) is

small. To this end, we establish that each component 〈ε(x), ϕ̂j〉2s satisfies

Eπ
N [〈εN (x), ϕ̂j〉2s

]
. N−1Eπ

N
[〈x, ϕ̂j〉2s] +N−

2
3 (jsλj)

2. (85)

Summation of Equation (85) over j = 1, . . . , N leads to

Eπ
N
[
‖εN (x)‖2s

]
. N−1Eπ

N [‖x‖2s]+N−
2
3 TrHs(Cs) . N−

2
3 ,

(86)

which gives the proof of Equation (84). To prove Equation (85) for a fixed index
j ∈ N, the quantity QN (x, ξ) is decomposed as a sum of a term independent from ξj
and another remaining term of small magnitude. To this end we introduce{

QN (x, ξN ) = QNj (x, ξN ) +QNj,⊥(x, ξN )

QNj (x, ξN ) = − 1√
2
`
3
2N−

1
2λ−1

j xjξj − 1
2`

2N−
2
3λ2

jξ
2
j + eN (x, ξN ).

(87)

The definitions of ZN (x, ξN ) and iN (x, ξN ) in Equation (67) and (68) readily show that

QNj,⊥(x, ξN ) is independent from ξj . The noise term satisfies C
1
2 ξN =

∑N
j=1(jsλj)ξjϕ̂j .

Since QNj,⊥(x, ξN ) and ξj are independent and z 7→ 1∧ ez is 1-Lipschitz, it follows that

〈εN (x), ϕ̂j〉2s = (jsλj)
2
(
Ex
[(

1 ∧ eQN (x,ξN )
)
ξj
])2

= (jsλj)
2
(
Ex
[
[
(
1 ∧ eQN (x,ξN )

)
−
(
1 ∧ eQ

N
j,⊥(x,ξN ))] ξj])2

. (jsλj)
2Ex
[
|QN (x, ξN ))−QNj,⊥(x, ξN )|2

]
= (jsλj)

2Ex
[
QNj (x, ξN )2

]
.

By Lemma 16 EπN [
eN (x, ξN )2

]
. N−

2
3 . Therefore,

(jsλj)
2Eπ

N [
QNj (x, ξN )2

]
. (jsλj)

2
{
N−1λ−2

j Eπ
N [
x2
jξ

2
j

]
+N−

4
3Eπ

N [
λ4
jξ

4
j

]
+ Eπ

N [
eN (x, ξ)2

]}
. N−1 Eπ

N [
(jsxj)

2ξ2
j

]
+ (jsλj)

2(N−
4
3 +N−

2
3 )

. N−1 Eπ
N [〈x, ϕ̂j〉2s]+ (jsλj)

2N−
2
3

. N−1 Eπ
N [〈x, ϕ̂j〉2s]+ (jsλj)

2N−
2
3 ,

which finishes the proof of Equation (85).

Thus we have established (82), (83) and (84) and the proof is finished.
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7.5 Noise approximation

Recall the definition (59) of the martingale difference Γk,N . In this section we estimate
the error in the approximation Γk,N ≈ N(0, Cs). To this end we introduce the covariance
operator

DN (x) = Ex
[
Γk,N ⊗Hs Γk,N |xk,N = x

]
.

For any x, u, v ∈ Hs the operator DN (x) satisfies

E
[
〈Γk,N , u〉s〈Γk,N , v〉s |xk,N = x

]
= 〈u,DN (x)v〉s.

The next lemma gives a quantitative version of the approximation DN (x) ≈ Cs.

Lemma 20 Let Assumptions 4 hold. For any pair of indices i, j ≥ 0 the operator DN (x) :
Hs → Hs satisfies

lim
N→∞

Eπ
N ∣∣〈ϕ̂i, DN (x)ϕ̂j〉s − 〈ϕ̂i, Csϕ̂j〉s

∣∣ = 0 (88)

and, furthermore,

lim
N→∞

Eπ
N ∣∣TrHs(DN (x))− TrHs(Cs)

∣∣ = 0. (89)

Proof This lemma follows directly from Lemma 4.8 of Pillai et al. (2012), since the only
estimate needed for the proof of Lemma 4.8 of Pillai et al. (2012) is the Gaussian approxi-
mation and the estimate for eN (x, ξN ) established in Lemma 16. Thus the proof is finished.

7.6 Martingale Invariance Principle

This section proves that the process WN defined in Equation (62) converges to a Brownian
motion.

Proposition 21 Let Assumptions 4 hold. Let z0 ∼ π and WN (t) the process defined in

equation (62) and x0,N D∼ πN the starting position of the Markov chain xN . Then

(x0,N ,WN ) =⇒ (z0,W ), (90)

where =⇒ denotes weak convergence in Hs × C([0, T ];Hs), and W is a Hs-valued Brown-
ian motion with covariance operator Cs. Furthermore the limiting Brownian motion W is
independent of the initial condition z0.

Proof
This proof involves verifying three conditions of Proposition 5.1 of Berger (1986) and is

identical to that of Proposition 4.10 of Pillai et al. (2012). The only change required is to
use our Lemma 20 instead of their Lemma 4.8. Therefore we omit the details of the rest of
the proof.
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8. Closing Comments

There are a number of related issues that are of great practical interest:

• In Theorem 1 of Crucinio et al. (2023), the authors extended Theorem 2 to a general
class of product measures.

• As mentioned in the introduction, we choose λ = δ. In Crucinio et al. (2023), it is
shown that for differentiable targets, this choice is optimal. When δ → 0 quicker than
λ, proximal MALA is less efficient than MALA.

• Of course, the most interesting case is when the log-target is not differentiable. In
this scenario, Crucinio et al. (2023) show that the applicability of proximal MALA

comes at a cost – the algorithm scales smaller than O(N−
1
3 ) and is less efficient than

its smooth counterpart.

• A similar result should be of interest when proximal functions are used for implement-
ing the Hybrid Monte Carlo algorithm; see Chaari et al. (2016).
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