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Abstract

The local Rademacher complexity framework is one of the most successful general-purpose
toolboxes for establishing sharp excess risk bounds for statistical estimators based on em-
pirical risk minimization. However, applying this toolbox typically requires using the Bern-
stein condition, which often restricts the applicability domain to convex and proper set-
tings. Recent years have witnessed several examples of problems where optimal statistical
performance is only achievable via non-convex and improper estimators originating from
aggregation theory, including the fundamental problem of model selection. These examples
are currently outside the reach of the classical local Rademacher complexity theory.

In this work, we build upon the recent approach to localization via offset Rademacher
complexities, for which a general high-probability theory has yet to be established. Our
main result is an exponential-tail offset Rademacher complexity excess risk upper bound
that yields results at least as sharp as those obtainable via the classical theory. How-
ever, our bound applies under an estimator-dependent geometric condition (the “offset
condition”) instead of the estimator-independent (but, in general, distribution-dependent)
Bernstein condition on which the classical theory relies. Our results apply to improper
prediction regimes not directly covered by the classical theory, such as optimal model se-
lection aggregation for arbitrary classes (including infinite and non-convex classes), and
early-stopping/iterative regularization; the Bernstein condition does not hold in both ex-
amples.

Keywords: excess risk bounds, local Rademacher complexity, improper learning, Bern-
stein condition, concentration inequalities, aggregation

1. Introduction

We study the problem of obtaining statistical performance estimates for a general class of
prediction procedures. Let Sn = (Xi, Yi)

n
i=1 denote an i.i.d. sample of input-output pairs

(Xi, Yi) ∈ X×Y distributed according to some unknown distribution P . A function mapping
X to Y is called a predictor. A statistical estimator is a procedure mapping the observed
random sample Sn to some predictor f̂ = f̂(Sn) ∈ F , where the class F is called the range
of the estimator f̂ . In order to measure the quality of an estimator f̂ , we introduce a loss
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function ` : Y × Y → [0,∞) and define the performance measure called risk as follows:

R(f̂) = E(X,Y )∼P [`(f̂(X), Y )|Sn].

The above performance measure is absolute, and its scale depends on the properties of the
loss function ` as well as the distribution P . In order to obtain a performance measure
whose value can approach zero as the sample size n increases, it is customary to introduce a
class of reference predictors G. The risk incurred by the estimator f̂ , relative to the smallest
risk achievable via predictors in class G, is called excess risk and it is defined as

EP (f̂ ,G) = R(f̂)− inf
g∈G

R(g).

Observe that we have not imposed any restrictions on the distribution P , other than
constraining it to be supported on X × Y. Such a setting is sometimes called agnostic,
distribution-free, model-free or misspecified, and it has been a central object of study in
Statistical Learning Theory since the early works of Vapnik and Chervonenkis (1968, 1971,
1974). This setup should be contrasted with the well-specified setting, where the reference
class of functions G is taken to be F , the range of the estimator f̂ , and the observations are
assumed to follow the distribution Yi = f(Xi) + ξi for some f ∈ F and zero-mean noise ξi.
The present paper focuses on obtaining excess risk bounds that hold for any distribution
P supported on X × Y, henceforth referred to as the agnostic setting.1

1.1 Expected and High-Probability Bounds

Upper bounds on the excess risk EP (f̂ ,G) can be obtained either in expectation or in devi-
ation. The former type of bounds aims to find the smallest remainder term ∆E(n,G) that
depends on properties of the estimator f̂ such as its range F so that for some universal
constant c > 0 the following holds:

ESn

[
EP (f̂ ,G)

]
≤ c∆E(n,G).

Similarly, bounds in deviation aim to find the smallest remainder term ∆Pr that depends
on properties of the estimator f̂ so that the following holds for any δ ∈ (0, 1]:

PSn

(
EP (f̂ ,G) > c′∆Pr(n,G, δ)

)
≤ δ,

where c′ > 0 is some universal constant. Observe that bounds of the above type can be
transformed to in-expectation bounds via tail integration arguments; hence, obtaining sharp
excess risk bounds that hold with high probability is typically a more challenging problem
than obtaining in-expectation guarantees. If the remainder term ∆Pr(n,G, δ) is of order
log(1/δ) as a function of δ, we call such guarantees exponential tail bounds.

1. While our setup is sometimes called distribution-free, notice that we are not entirely free of assumptions
on the distribution P . In particular, we constrain its support to the set X ×Y, which can be considered a
distributional assumption. In what follows, we shall use the term “agnostic” to highlight that beyond the
support set X × Y the observations are otherwise free of any modelling assumptions. We will typically
take Y to be a compact subset of R, however, in some settings, we may allow taking X = Rd, thus being
completely free of any assumptions on the distribution of the covariates (see Section 1.3.2).
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Several frameworks have been developed for obtaining both types of statistical perfor-
mance guarantees. One of the simplest ways to obtain sharp in-expectation guarantees with-
out imposing strong distributional assumptions is via average stability (or leave-one-out)
arguments (Rogers and Wagner, 1978; Devroye and Wagner, 1979; Haussler, Littlestone,
and Warmuth, 1994). Among other approaches are in-expectation guarantees obtainable
via stochastic approximation arguments (e.g., (Robbins and Monro, 1951; Walk and Zsidó,
1989; Nemirovski, Juditsky, Lan, and Shapiro, 2009; Dieuleveut and Bach, 2016)), or by
transporting regret bounds from the framework of prediction of individual sequences (Cesa-
Bianchi and Lugosi, 2006) to the stochastic setting via an online-to-batch conversion (e.g.,
(Cesa-Bianchi, Conconi, and Gentile, 2004; Audibert, 2009)).

Recently, there has been a growing interest in obtaining sharp excess risk bounds that
hold with high probability. One challenge in converting in-expectation guarantees to in-
deviation counterparts is that, typically, simply applying concentration tools results in
extra deviation terms of order n−1/2. Consequently, stochastic conversions of “fast rate”
in-expectation guarantees of order n−1 are converted to in-deviation guarantees with the
“slow rate” n−1/2. To preserve optimal rates, stochastic conversions need to be performed
via probabilistic tools capable of taking some notion of variance into account (e.g., Bern-
stein’s inequality) while, at the same time, extinguishing the resulting variance terms by
exploiting curvature of the loss function, or imposed “niceness” (e.g., low noise) assumptions
on the underlying data-generating distribution. While this conversion has been carried out
successfully in a few important cases of interest, as we are going to describe below, the
wide applicability of this machinery is limited as typically either the variance terms are
too large or because properly bounding them comes at the price of introducing restrictive
assumptions.

For the class of uniformly stable algorithms (which is a more restrictive notion than
average stability; see the work by Bousquet and Elisseeff (2002)), “fast rate” excess risk
bounds that hold with high-probability were recently obtained by Klochkov and Zhivo-
tovskiy (2021), while for online-to-batch conversions see the work by Kakade and Tewari
(2009) and the references therein. In terms of probabilistic tools, the former work builds
on the notion of (weakly) self-bounding functions (Boucheron, Lugosi, and Massart, 2000;
Maurer, 2006), while the latter relies on the tail bound for martingales due to Freedman
(1975). However, both works cited above impose strong assumptions on the loss function –
assumptions that we will not use in the theory we are going to develop in this paper. These
assumptions are typically not satisfied in classical settings of interest, such as in the case
of regression with the squared loss. Specifically, these works assume that the loss function
is strongly convex when the domain of the loss function is taken to be the parameter space
of the predictors. For example, in the setting of linear regression with quadratic loss, such
an assumption would amount to restrictions on the smallest eigenvalue of the empirical
covariance matrix.

One of the most successful general-purpose tool for obtaining sharp excess risk up-
per bounds is the local Rademacher complexity (Bartlett, Bousquet, and Mendelson, 2005;
Koltchinskii, 2006, 2011). This approach automatically comes with exponential-tail in-
deviation guarantees due to the underlying mathematical machinery resting on a powerful
concentration bound for controlling the supremum of empirical processes due to Talagrand
(1994, 1996). At the same time, (localized) Rademacher averages are relatively simple to

3



Kanade, Rebeschini, Vaškevičius

upper bound, with many settings of interest covered in the existing literature; for some
examples, see the textbook by Wainwright (2019, Chapters 13 and 14).

However, due to technical reasons related to the so-called Bernstein condition (see Sec-
tion 2.1 for a detailed discussion), local Rademacher complexity bounds are primarily suit-
able when two conditions hold: the reference class G is convex and the estimator’s range F
is equal to the reference class G. A setup when F = G is called proper.

Our goal is to extend the classical local Rademacher complexity bounds beyond the
analysis of proper procedures. In particular, we aim to obtain exponential-tail excess risk
bounds when the reference class G is possibly non-convex and when the statistical learning
procedure is allowed to be improper. Before summarizing our contributions in Section 1.4,
in Sections 1.2 and 1.3, we explain the boundedness assumptions that enter our analysis and
provide some example problems not covered via the classical local Rademacher complexity
theory.

1.2 The Bounded Setting

In this paper, we consider the setting where the response variable Y and all the predictors
are bounded, both in the reference class of functions G and in the range F of the estima-
tor. However, the space of the covariates X does not necessarily need to be bounded; see
Section 1.3 for an example. In the rest of the paper, we will refer to such a setup as the
bounded setting.

The bounded setting is classical and has been extensively studied since the early days
of Statistical Learning Theory, primarily in the classification setting with the zero-one loss.
When learning with the zero-one loss, the empirical risk minimization (ERM) estimator
satisfies “slow-rate” excess risk bounds, that is, bounds of order 1/

√
n, where n is the

sample size. Such bounds can be obtained via classical symmetrization arguments, and
they are unimprovable2 in the agnostic setting (Vapnik, 1998).

Turning to the regression setting, the main one investigated in this paper, there exist
settings where the ERM estimator satisfies excess risk guarantees that decay faster than
1/
√
n as a function of the sample size. For example, when the loss function is sufficiently

curved and the reference class of functions is convex, the ERM algorithm automatically
favours choosing low variance elements. In other words, the combination of convexity of the
reference class and curvature of the loss function results in a localization effect, effectively
reducing the complexity of the problem. This situation is more formally captured via the
Bernstein condition; see Section 2 for a more detailed discussion.

The localization phenomenon was successfully exploited to obtain “fast-rate” bounds for
empirical risk minimization algorithms via empirical processes theory arguments (van de
Geer, 2000; Massart, 2000b), yielding sharp covering number bounds. Subsequently, local
Rademacher complexity bounds (Bartlett, Bousquet, and Mendelson, 2005; Koltchinskii,
2006) extended the previous arguments to data-dependent complexity measures that are
easier to compute and always result in bounds at least as sharp as those obtainable via

2. When learning with the zero-one loss, it is possible to obtain excess risk bounds that decay faster than
1/
√
n if we impose additional assumptions on the data-generating distribution P . See, for example,

the works by Mammen and Tsybakov (1999); Tsybakov (2004); Massart and Nédélec (2006). In the
classification context, the Bernstein condition is closely related to these works; see the discussion following
the statement of Lemma 13 for further details.
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direct covering number analysis. Concerning the analysis of ERM estimator in the bounded
and convex setting, local Rademacher complexities machinery remains the state-of-the-art
tool. However, we note that even for bounded and convex problems, ERM is not neces-
sarily optimal and obtaining optimal statistical performance is only possible via improper
procedures (Vaškevičius and Zhivotovskiy, 2023), further motivating the need to extend the
classical local Rademacher complexity framework beyond the convex and proper setting
(i.e., when the Bernstein condition fails).

Let us now discuss two research directions that received a lot of attention following the
development of local Rademacher complexities. The first direction continued to build our
understanding of the bounded framework through the analysis of model selection aggrega-
tion procedures, where the classical local Rademacher complexity theory does not apply
due to the non-convexity of the reference class (see Section 1.2.1). The second direction
concerns the analysis of learning algorithms in the setting where the data and the prediction
functions are allowed to be unbounded and heavy-tailed. This setup significantly departs
from the bounded setting considered in this work, and neither setup includes the other as
a sub-problem; we briefly discuss the latter research direction in Section 1.2.2.

1.2.1 Model Selection Aggregation

It was noticed in the discussion paper by Tsybakov (2006) that a very natural problem called
model selection aggregation (Nemirovski, 2000; Tsybakov, 2003) falls outside the scope of
the classical local Rademacher complexity theory developed by Bartlett, Bousquet, and
Mendelson (2005); Koltchinskii (2006). In this problem, the reference class of functions
G is taken to be a finite set of bounded functions; particularly, it is a non-convex set,
and local Rademacher complexity theory does not apply directly. Understanding how to
optimally aggregate statistical models constructed from i.i.d. data, e.g., models arising from
different tuning parameters, or different statistical estimators, is a fundamental problem in
statistics. At the same time, deviation-optimal model selection aggregation procedures have
been used to construct computable procedures (not necessarily computationally efficient) to
demonstrate the achievability of some statistical minimax lower bounds; see, e.g., (Rakhlin,
Sridharan, and Tsybakov, 2017; Mendelson, 2019; Mourtada, Vaškevičius, and Zhivotovskiy,
2022).

One challenge concerning the analysis of optimal model selection aggregation estimators
is that only improper procedures, i.e., ones for which the range F is strictly larger than
the reference class G, can obtain optimal performance (that is, improperness is necessary).
Regarding in-expectation bounds, optimal performance is achievable via exponential weights
(or progressive mixture) algorithms, with different proofs available in the literature; see, e.g.,
the works by Catoni (1997); Yang (2000); Vovk (2001); Juditsky, Rigollet, and Tsybakov
(2008). However, none of the proofs for the in-expectation optimality of exponential weights
algorithm follow traditional strategies based on empirical processes theory, such as those
based on local Rademacher complexities; see Section 3.2.2 in the work by Audibert (2010).
As it turns out, a successful application of such strategies would be impossible because
they would lead to optimal exponential-tail deviation bounds which were shown not to hold
by Audibert (2008). Audibert (2008) also proposed a deviation-optimal method for model
selection aggregation, called the star algorithm. One of the key takeaways from Audibert’s
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analysis is that the excess risk random variable E(f̂ ,G) can take negative values for improper
estimators f̂ . It follows that, in general, in-expectation guarantees for improper methods
cannot be used to derive high-probability bounds because Markov’s inequality does not
apply. For example, Mourtada, Vaškevičius, and Zhivotovskiy (2022, Theorems 1 and 2)
exhibit two different statistical estimators for the problem of linear regression, both of which
satisfy expectation-optimal excess risk bounds obtainable via average stability arguments,
and both of which incur excess risk lower bounded by an absolute constant, with a constant
probability.

The phenomenon concerning deviation-optimality of model selection aggregation esti-
mators has generated a lot of attention; for example, see the works by Lecué and Mendelson
(2009); Rigollet (2012); Dai, Rigollet, and Zhang (2012); Lecué and Rigollet (2014); Winten-
berger (2017); Bellec (2017) for analysis of different model selection aggregation procedures.
More broadly, the analysis of improper statistical estimators is receiving increased atten-
tion, as such procedures were shown to be necessary for optimal statistical performance
in logistic regression, see (Hazan, Koren, and Levy, 2014; Foster, Kale, Luo, Mohri, and
Sridharan, 2018; Mourtada and Gäıffas, 2022), and linear regression, see (Vaškevičius and
Zhivotovskiy, 2023; Mourtada, Vaškevičius, and Zhivotovskiy, 2022).

In the bounded setting, the only known local Rademacher complexity analysis of im-
proper procedures, particularly of Audibert’s star aggregation algorithm, was shown to
be possible by Liang, Rakhlin, and Sridharan (2015), who introduced the notion of offset
Rademacher complexity. In contrast to earlier results in the literature, offset Rademacher
complexity analysis allows us to analyze the star estimator directly applied to infinite classes
of reference functions without any additional discretization steps used to approximate the
infinite class via a finite class. However, the high probability guarantees obtained by Liang,
Rakhlin, and Sridharan (2015) hold under a certain lower isometry assumption, leaving open
the question of obtaining high probability guarantees in the bounded setting, particularly
relevant for model selection aggregation. As a corollary of our main results, we close this
gap by providing an exponential-tail offset Rademacher complexity excess risk bound for
the star estimator (see Appendix A.2) that holds for infinite reference classes of functions.

1.2.2 Comparison With the Heavy-Tailed/Moment-Equivalence Setting

Within the Statistical Learning Theory framework, learning in the presence of heavy-tailed
data has attracted a lot of attention over the past decade, particularly concerning the mean-
estimation problem in the direction initiated by Catoni (2012), and regression problems,
primarily when learning with the quadratic loss; see, e.g., (Audibert and Catoni, 2011;
Mendelson, 2015; Oliveira, 2016; Lugosi and Mendelson, 2019b). The interested reader will
find a detailed account of the progress made on both problems in the recent survey by
Lugosi and Mendelson (2019a).

While the classical localization theory heavily relies on Talagrand’s concentration in-
equality, a two-sided concentration result, the key insight highlighted by Mendelson (2015)
and Oliveira (2016) is that in some cases, one-sided concentration arguments suffice to
provide learning guarantees. The validity of these one-sided concentration inequalities can
be ensured by imposing certain moment-equivalence conditions on the unknown data gen-
erating distribution. Within this setting, localized complexity bounds were first obtained
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by Mendelson (2015, 2018) using the small-ball method and later by Liang, Rakhlin, and
Sridharan (2015) using the slightly stronger lower-isometry condition.

The bounded framework considered in this work differs from the moment-equivalence
framework described above. Indeed, it is well-known that moment-equivalence type assump-
tions do not allow for agnostic treatment of the bounded setting. Let us provide a simple
example in the case of Lq–L2 moment equivalence for some q > 2, a frequently used assump-
tion in the above-cited papers and follow-up work. A family of random variables satisfies
the Lq–L2 moment-equivalence condition if there exists some absolute constant c > 0 such
that any random variable X in this family satisfies E[|X|q]1/q ≤ cE[X2]1/2. However, it is
now easy to see that such an assumption does not include all random variables bounded by
one. For example, a Bernoulli random variable with a small enough parameter p will violate
the above assumption. For further examples and more extensive discussions highlighting
the differences between the two frameworks we refer to the works by Lecué and Mendelson
(2013); Oliveira (2016); Saumard (2018); Vaškevičius and Zhivotovskiy (2023).

Finally, we emphasize that in this paper our aim is to extend the scope of classical local-
ization beyond convex setups, addressing the limitation that arises through the Bernstein
condition on which the classical arguments rely. Such a limitation was recently addressed in
the moment-equivalence framework by Mendelson (2019). The main ingredient that allows
us to handle the bounded setting is a moment generating function bound on an offset multi-
plier process that we obtain in Proposition 7. Consequently, we are able to bypass the steps
used in the classical localization arguments that rely on the Bernstein condition to handle
variance terms arising through an application of Talagrand’s concentration inequality; see
Section 2.1 for further details.

1.3 Motivating Examples

To make our discussions more concrete, we will now discuss three example problems where
the need to analyze improper estimators arises naturally. These examples provide additional
motivation for extending the scope of the classical local Rademacher complexity theory
beyond the Bernstein condition. We revisit each of the three problems in Appendix A.

1.3.1 Model Selection Aggregation

As already discussed in Section 1.2.1, in a model selection aggregation problem the reference
class of functions is finite, and so, non-convex. Therefore, the Bernstein condition needed
to apply the classical local Rademacher complexity bounds fails3, and in fact, the ERM
estimator is a suboptimal procedure for this problem, as well as any other proper procedure
(this happens already when the reference class contains only two functions). Moreover, it is
worth mentioning that using an ERM estimator over the convex hull of the finite reference
class also fails – it results in a “slow-rate” bound of order 1/

√
n as shown by Lecué and

Mendelson (2009).

3. We shall remark that the local Rademacher complexity of a finite class coincides with the minimax-
optimal rate; however, the issue is that the bound involving the local Rademacher complexity is not
applicable to the ERM estimator due to the violation of the Bernstein condition.
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1.3.2 Learning Non-Convex Classes

A natural generalization of the model selection aggregation problem is to consider possibly
infinite non-convex reference classes of functions. Because the model selection aggregation
problem falls outside the scope of the classical localization theory, so does this more general
class of problems.

In the bounded framework, general treatment of non-convex reference classes via cover-
ing number bounds was recently considered by Rakhlin, Sridharan, and Tsybakov (2017).
They construct a rather involved three-stage procedure based on sample splitting and dis-
cretization of the original class and show that this procedure obtains minimax-optimal excess
risk bounds in terms of empirical entropy of the reference class. In the moment-equivalence
framework, localized complexity bounds for non-convex reference classes were obtained by
Mendelson (2019). In the bounded framework, the only local Rademacher complexity bound
applicable for non-convex reference classes is the offset Rademacher complexity bound due
to Liang, Rakhlin, and Sridharan (2015); however, their bound is only valid in expectation.

The need to handle non-convex problems may arise even when the reference class of
predictors is convex. For example, let us consider a special case of the problem analyzed
by Mourtada, Vaškevičius, and Zhivotovskiy (2022). Let the reference class of functions
contain all linear functions G = {〈w, ·〉 : w ∈ Rd} and let P be any distribution supported
on Rd× [−1, 1]. While for arbitrary covariate vectors in Rd the class of linear functions G is
unbounded, the condition that response variable is supported on the bounded interval [−1, 1]
allows us to replace G with a class of truncated linear functions Gtrunc = {trunc(〈w, ·〉) :
w ∈ Rd}, where for any x ∈ Rd we define trunc(〈w, x〉) = min{1,max{−1, 〈w, x〉}}. The
reference class Gtrunc is a class of bounded functions and hence, it falls within the scope of
the bounded framework investigated in this paper. Since Gtrunc is non-convex, the classical
local Rademacher complexity theory does not apply. However, with the results obtained in
our paper we can directly apply the star estimator on the non-convex class Gtrunc, without
relying on any additional discretization/sample-splitting steps. See Appendix A.2.

We remark that in the example problem described above, the marginal distribution of
the covariates PX is arbitrary. In particular, heavy-tailed distributions, even those that
violate moment-equivalence conditions (cf. Section 1.2.2) are allowed within our framework
as long as the response variable is bounded. Moreover, because PX is arbitrary and the
covariates are unbounded, any proper procedure (i.e., any procedure that outputs a linear
function) can incur arbitrarily large excess risk, as shown by Shamir (2015).

1.3.3 Iterative Regularization

Taking its roots in stochastic approximation (Robbins and Monro, 1951) and the theory
of inverse problems (Landweber, 1951), an iterative regularization procedure generates a
sequence of predictors (ft)t≥0 and outputs an estimator ft? based on some stopping rule
that selects the stopping-time t?, for example, by running a model-selection procedure on
held-out data. Compared to the classical way of regularizing via penalized empirical risk
minimization, iterative regularization provides an appealing strategy for carefully balancing
statistical/computational cost by considering procedures tailored to generate successive it-
erates at a low computational cost; see, e.g., (Bühlmann and Yu, 2003; Zhang and Yu, 2005;
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Yao, Rosasco, and Caponnetto, 2007; Raskutti, Wainwright, and Yu, 2014; Wei, Yang, and
Wainwright, 2019; Kanade, Rebeschini, and Vaškevičius, 2023).

One of the simplest iterative regularization procedures is obtained by running gradient
descent on an unregularized empirical risk function. For example, let G = {〈w, ·〉 : w ∈
Rd, ‖w‖2 ≤ 1} be a bounded reference class of linear predictors. Let Rn(w) denote the
empirical risk of the linear predictor 〈w, ·〉, let w0 = 0, and suppose that the sequence
(wt)t≥0 is obtained by recursively applying the update-rule wt+1 = wt − η∇Rn(wt), where
η > 0 is the step size. The difficulty in applying the classical localized complexity tools
to analyze the statistical performance of the suitably stopped iterate wt? comes from the
fact that the linear function 〈wt? , ·〉 does not necessarily belong to the reference class G.
Thus, the early-stopped iterate wt? can be seen as an improper estimator. On the other
hand, it was recently shown by Kanade, Rebeschini, and Vaškevičius (2023) that a large
class of iterative procedures can be analyzed via the offset Rademacher complexity theory
(see Appendix A.3). Thus, the results obtained in this paper automatically extend the
in-expectation offset Rademacher complexity guarantees obtained in that work to their
exponential-tail counterparts.

1.4 Paper Outline and Summary of Main Results

In this paper, we obtain exponential-tail excess risk upper bounds that hold for a general
class of estimators satisfying a certain geometric condition that we call the offset condition
(see Definition 4). This geometric condition can serve as a design principle for statistical
estimators that satisfy sharp excess risk guarantees with high probability. In particular,
arguments based on convex geometry can be used to establish that such a condition holds
for a broad class of known estimators (see the examples in Appendix A). The class of esti-
mators satisfying the geometric condition includes improper learning settings that are not
covered by the classical theory of local Rademacher complexities. In the classical setting of
empirical risk minimization performed over a convex class under boundedness assumptions,
our complexity measure yields results at least as sharp as those obtainable by the classical
theory of local Rademacher complexities (this is made more precise in Section 3.4). The
starting point of our analysis is the work of Liang, Rakhlin, and Sridharan (2015), who were
the first to provide an in-expectation analysis of the star aggregation algorithm based on
offset Rademacher complexity, a modified notion of classical localization that arises from
the analysis of offset empirical processes.

The main contribution of the current paper is obtaining results analogous to the ones
achievable via the classical local Rademacher complexity theory, yet applicable under a
different set of assumptions. In particular, the main element of the classical theory is an
estimator-independent Bernstein condition (see Section 2.1 for details) that ensures a linear
relationship between the variance and expectation of the excess loss class. In contrast, our
results build on an estimator-dependent geometric condition, called the offset condition. The
theory developed in this paper shows that the offset condition is sufficient to ensure sharp
excess risk guarantees for improper estimators. For example, as discussed in Appendix A,
any estimator that satisfies the offset condition while outputting a sparse combination of a
given finite dictionary of functions attains deviation-optimal excess risk rate for the problem
of model selection aggregation, where improperness is necessary for optimality.
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The rest of the paper is organized as follows.

• In Section 1.5, we summarize the notation used in this paper.

• In Section 2, we provide background on local Rademacher complexity measures. Sec-
tion 2.1 contains a sketch of how the classical theory of localization, through its foun-
dation built on Talagrand’s concentration inequality, is applicable in regimes where
the variance of the excess loss class is controlled by a linear function of its expectation
(which results in the use of the Bernstein condition for Lipschitz losses). In Theorem 3,
we formulate an excess risk bound guaranteed via the classical theory for empirical
risk minimization algorithms under the Bernstein condition. This result serves as a
benchmark for our paper, which we aim to match without invoking the Bernstein
condition. We achieve this (to the extent quantified in Section 3) by establishing a
general machinery of localization via offset Rademacher complexities, the background
on which is provided in Section 2.2.

• The main results are presented in Section 3.

– Section 3.1 contains the definition of the geometric condition (called the offset
condition) that serves as our replacement of the Bernstein condition and the
definition of offset Rademacher complexity, which is slightly modified from the
one appearing in prior work by Liang, Rakhlin, and Sridharan (2015). Specifi-
cally, we include additional negative terms, which play an important role in our
concentration arguments and in proving that our notion of complexity is never
worse than the classical notion of local Rademacher complexities (cf. Lemma 11).

– Section 3.2 contains a moment generating function bound for offset multiplier
empirical processes (Proposition 7), which is the main technical contribution
of the present paper. This result serves as our replacement for Talagrand’s
concentration inequality, on which the classical theory of localization is built.
The key feature of our concentration result is the fact that the variance of the
supremum of offset multiplier processes is automatically controlled by a linear
function of their expectations due to the presence of the negative quadratic terms
inside the supremum. In contrast, the classical theory of localization needs to
assume that a certain variance-expectation relationship holds, as elaborated in
Section 2.1. We prove Proposition 7 via an application of an exponential Efron-
Stein inequality as discussed in greater detail in Section 5.

– In Section 3.3, we present our main theorem – an exponential-tail excess risk
bound stated in terms of the offset Rademacher complexity (cf. Theorem 8).
The key difference from the usual theory of localization is that the estimator-
independent Bernstein condition appearing in Theorem 3 is replaced via the
estimator-dependent offset condition. We prove Theorem 8 by bounding the
Laplace transform of the offset empirical processes (arising through the geometric
condition imposed on an estimator) in terms of the Laplace transform of a related
offset multiplier empirical process. We then complete the proof via an application
of Proposition 7, which provides tight control on the Laplace transform of the
obtained offset multiplier process.

10
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– Further connections between the classical theory and the theory developed in
this paper are discussed in Section 3.4. In Lemma 11, we show that the offset
Rademacher complexity is at most as large as the classical local Rademacher
complexity. Thus, the bounds obtained in our paper, when they apply, are
at least as sharp as those obtainable via the classical theory (cf. Corollary 12).
Finally, we discuss the sense in which the offset condition can be interpreted as an
analogue of the Bernstein condition, when the roles of empirical and population
quantities are interchanged. (cf. Lemma 13).

• Appendix A contains several applications of the theory developed in this paper. In
Lemma 16, we bound the offset Rademacher complexity of sparse linear classes; in
Corollary 17, we show how this bound can be applied for non-linear classes via a
change-of-basis argument. As a direct consequence, we show how our theory can yield
deviation-optimal bounds for two different model selection aggregation procedures,
both of which output a sparse combination of dictionary elements and satisfy the
offset condition. Such applications are outside the scope of the classical theory of
localization, due to the necessary improperness of optimal estimators, as discussed
in the introduction. Finally, we discuss how the analysis of iterative regularization
schemes fits within the theory developed in this paper.

• Sections 4, 5 and Appendix B contain the proofs.

1.5 Notation

We denote by P the unknown distribution from which an i.i.d. sample Sn = (Xi, Yi)
n
i=1 is

drawn, where (Xi, Yi) ∈ X×Y. We denote the marginal distribution on X by PX and for the
sample Sn = (Xi, Yi)

n
i=1, let SXn = (Xi)

n
i=1. An estimator f̂ is a mapping between datasets

and some class of predictors F , called the range of the estimator f̂ . The loss function is
denoted by ` : Y×Y → [0,∞). For any function f : X → R, denote `f (X,Y ) = `(f(X), Y ).
The population risk functional is defined by R(f) = E`f (X,Y ), where the expectation is
computed with respect to (X,Y ) ∼ P and f is always assumed to be measurable. We
say that the loss function ` is L-Lipschitz in its first argument if for any y, y1, y2 ∈ Y we
have |`(y1, y)− `(y2, y)| ≤ L|y1 − y2|. As a function of the sample Sn, define the empirical
risk functional Rn by Rn(f) = n−1

∑n
i=1 `f (Xi, Yi). The function class F always denotes

the range of some estimator, while G denotes a set of reference functions. We let g? ∈
argming∈G R(g), assuming without loss of generality that such a function exists; otherwise
g? could be replaced by some function that is arbitrarily close to attaining infg∈G R(g). For
any function class H, denote its star-hull by star(H) = {λh : h ∈ H, λ ∈ [0, 1]}, where
(λh)(x) = λh(x). We say that a function class H is star-shaped (around the origin) if
star(H) = H. For any F and g, the class F − g denotes {f − g : f ∈ F}. Finally, we denote
by a . b the existence of some universal constant c > 0 such that a ≤ cb.

2. Background on Local Complexity Measures

This section provides background on local complexity measures. In Section 2.1, we re-
call the classical notion of local Rademacher averages, developed in the series of works by

11
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Koltchinskii and Panchenko (2000); Koltchinskii (2001); Bartlett, Boucheron, and Lugosi
(2002); Lugosi and Wegkamp (2004); Bartlett, Bousquet, and Mendelson (2005); Koltchin-
skii (2006), among others. In particular, we explain why this theory is primarily applicable
in the proper learning setup, and explain how convexity assumptions enter this theory
through the so-called Bernstein condition. This paper aims to replace such assumptions
and establish a methodology that applies to improper and non-convex problems of interest,
such as model selection aggregation. In Section 2.2, we discuss a more recent approach of
localization via offset Rademacher complexities, introduced in the statistical context with
the quadratic loss by Liang, Rakhlin, and Sridharan (2015); see also (Rakhlin and Sridha-
ran, 2014). The offset Rademacher complexity approach replaces the Bernstein condition
with an estimator-dependent offset condition, and thus paves the way to achieve the goals
set out in this paper – obtaining sharp exponential-tail excess risk guarantees that hold for
improper estimators.

2.1 Local Rademacher Complexity

Let F be the range of some estimator f̂ , G be a reference class of functions, and let g?

denote any population risk minimizer over the class G, i.e., g? ∈ argminf∈GR(f). The first
step in the classical local Rademacher complexity analysis proceeds by noting that

E(f̂ ,G) = (R(f̂)−R(g?))− (Rn(f̂)−Rn(g?)) + (Rn(f̂)−Rn(g?))

≤ sup
f∈F
{(R(f)−R(g?))− (Rn(f)−Rn(g?))}+ (Rn(f̂)−Rn(g?))

The term Rn(f̂) − Rn(g?) is typically controlled by assuming that it is at most 0 almost
surely. This is true, for example, if f̂ is an empirical risk minimizer over F and G ⊆ F .

The supremum term is controlled via Talagrand’s concentration inequality4 for empiri-
cal processes (Talagrand, 1994), a functional Bernstein-type concentration inequality with
variance proxy

σ2(F) = sup
f∈F

{
Var(X,Y )∼P [`f (X,Y )− `g?(X,Y )]

}
.

In particular, denoting Z = supf∈F{(R(f)−R(g?))− (Rn(f)−Rn(g?))} and letting c > 0
be some universal constant, for any δ ∈ (0, 1) with probability at least 1− δ we have

Z ≤ 2EZ + c

√
σ2(F) log(1/δ)

n
+ c

C` log(1/δ)

n
, (1)

where C` is a boundedness constant such that the for any f ∈ F and any (X,Y ) ∈ X × Y
we have |`f (X,Y )− `g?(X,Y )| ≤ C`.

Let us now informally discuss how the above concentration bound leads to a localization
theory via Rademacher complexities. Let ψ(f, g?) ≥ 0 be some measure of distance between
the functions f and g? (for the sake of this high-level presentation, we ignore the properties
that ψ needs to satisfy). The idea of localization is to replace F in (1) by a localized subset

4. We state a version with absolute constants. Of independent interest, various extensions and refinements
of Talagrand’s concentration bound are available in the literature; we refer the interested reader to
(Ledoux, 1997; Massart, 2000a; Bousquet, 2002; Klein and Rio, 2005; Mendelson, 2010; Lederer and
van de Geer, 2014).

12
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F(r) = {f ∈ F : ψ(f, g?) ≤ r} for some radius r > 0. The theory of local Rademacher
complexities then aims to compute the smallest value of r > 0 such that the supremum of
the empirical process computed over the localized class F(r) yields an upper bound on the
excess risk of an estimator of interest (typically the empirical risk minimization estimator).

To allow for an explicit control of the variance proxy σ2(F(r)), it is further assumed
that for any f ∈ F , we have Var(`f − `g?) ≤ ψ(f, g?). There are two consequences of
the above assumed relation between the variance and the distance function. First, it holds
that σ2(F(r)) ≤ r. Second, it is possible to obtain a uniform Bernstein-type concentration
bound on the excess risk over the full class F , such that for each f ∈ F , the variance-proxy
is proportional to

√
ψ(f, g?)/n. For more details and a precise quantification of the above

statements we refer to (Wainwright, 2019, Theorem 14.20, Equation 14.51).

When the obtained uniform Bernstein-type concentration bound is applied to the esti-
mator f̂ of interest, we obtain an upper bound on its excess risk in terms of the supremum
over a localized class F(r) (for some radius r > 0), and the “slow rate” variance term√
ψ(f̂ , g?)/n. To compensate for this variance term and to obtain a “fast rate” excess risk

bound, it is further assumed that for some constant B > 0 the following inequality holds
for any f ∈ F : ψ(f, g?) ≤ BE[`f − `g? ]. Since the left hand side of the above equation is
a non-negative distance, the right hand side also needs to be non-negative. This, in turn,
constrains us to the settings where F , the range of the estimator of interest, cannot be larger
than the reference class G, for otherwise there would exist a data generating distribution P
and a function f ∈ F such that E[`f − `g? ] < 0.

Summing up the above, the theory of local Rademacher complexities is rooted in the fol-
lowing variance-expectation assumption – a widely used condition in the empirical processes
analysis of M-estimators (see, e.g., the works by van de Geer (2000); Massart (2000b)):

Var(`f − `g?) ≤ ψ(f, g?) ≤ BE[`f − `g? ] for any f ∈ F . (2)

In applications in learning theory, a natural choice for the distance function ψ is a
suitably rescaled squared L2(PX) norm. Indeed, if the loss function ` is Cb-Lipschitz in its
first argument, then Var(`f − `g?) ≤ C2

bE(f(X)− g?(X))2. Thus, the remaining question is
what is the smallest allowed value r > 0 such that Talagrand’s concentration inequality (1)
applied to F(r) yields an upper bound on the excess risk E(f̂ ,G). Using a peeling argument
applied to a reweighted excess loss class (cf. Bartlett, Bousquet, and Mendelson (2005,
Section 3)), this value can be shown to equal a solution to a certain fixed-point equation,
leading to the following definition.

Definition 1 (Local Rademacher Complexity) Let PX denote any distribution sup-
ported on X and let H denote any class of functions mapping X to R. For r > 0, let
H(r) = {h ∈ H : EX∼PX [h(X)2] ≤ r}. Let σ = (σi)

n
i=1 be a sequence of i.i.d. Rademacher

(i.e., symmetric and {±1}-valued) random variables and let SXn = (Xi)
n
i=1 denote n in-

dependent random variables distributed according to PX . Then, for any γ > 0, the local
Rademacher complexity of the class H is defined by

Rloc
n (PX ,H, γ) = inf

{
r > 0 : ESXn ,σ

[
sup

h∈H(γ−1r)

{
1

n

n∑
i=1

σih(Xi)

}]
≤ r

}
.
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It now remains to discuss when the second inequality of (2) holds in an agnostic5 sense
(as opposed to, e.g., imposing low-noise assumptions on the underlying distribution, as is
frequently done in the classification setting). The primary application domain where this
is true is when a function class F is convex, g? ∈ G denotes a population risk minimizer
over all functions in F (thus, F ⊆ G, constraining to study the proper learning setting),
and the loss function ` is strongly convex in its first argument (cf. Bartlett, Bousquet, and
Mendelson (2005, Section 5.2)). The second inequality in (2), when ψ is taken to be the
squared L2(PX) norm, is often called the Bernstein condition (cf. Bartlett and Mendelson
(2006)), which we state below.

Definition 2 (Bernstein Condition) Let P be a distribution supported on X × Y and
let ` be a loss function with domain Y × Y. The tuple (P, `,F , g?) satisfies the Bernstein
condition with parameter γ > 0 if the following holds for any f ∈ F :

EX∼PX (f(X)− g?(X))2 ≤ 1

γ
E(X,Y )∼P [`f (X,Y )− `g?(X,Y )] .

Summing up all of the above, let us now state a result obtained by Bartlett, Bousquet,
and Mendelson (2005). In our notation, it reads as follows.

Theorem 3 (Corollary 5.3 in (Bartlett et al., 2005)) Let F be a class of functions
mapping X to [−b, b] for some b > 0. Let P be a distribution supported on X × [−b, b] and
let g? ∈ argming∈GR(g), where G is some reference class of functions. Suppose that the
following three conditions hold:

1. The loss function ` : [−b, b]× [−b, b]→ [0,∞) is Cb-Lipschitz in its first argument;

2. The tuple (P, `,F , g?) satisfies the Bernstein condition with parameter γ > 0;

3. The function class F−g? = {f−g? : f ∈ F} is star-shaped around 0 (cf. Section 1.5).

Let f̂ be an estimator such that Rn(f̂)−Rn(g?) ≤ 0 almost surely. Then, for any δ ∈ (0, 1)
with probability at least 1− δ, we have

E(f̂ ,G) ≤ c1CbR
loc
n (PX ,F − g?, C−1

b γ) + c2
(Cbb+ C2

b γ
−1) log(1/δ)

n
,

where c1, c2 > 0 are universal constants.

Limitations. We conclude this section by briefly summarizing two limitations of the
above framework.

The first limitation is its reliance on the Bernstein condition. As already discussed, a
natural application domain where this condition holds, together with the condition that
Rn(f̂)−Rn(g?) ≤ 0 almost surely, is when F = G and F is a convex class. Since improper
learning settings do not satisfy the Bernstein condition uniformly for all data generating dis-
tributions P , Theorem 3 does not easily lend itself to non-convex and improper application

5. Recall that, as discussed in the introduction, the present paper aims to obtain excess risk bounds that
hold for any distribution P supported on X × Y.
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domains that arise, for instance, in model selection aggregation or iterative regularization
applications (cf. Appendix A). The present paper addresses these limitations (see, in par-
ticular, Theorem 8 and example applications in Appendix A).

The second limitation concerns the boundedness assumptions, also present in our work.
Such assumptions prevent us from capturing unbounded, and in particular, heavy-tailed
problems that have recently received a lot of attention. On the other hand, heavy-tailed
problems are typically analyzed under assumptions that do not cover the bounded frame-
work. Thus, the two setups are different and complementary to each other; see Section 1.2.2
for a comparison between the bounded and heavy-tailed settings.

2.2 Offset Rademacher Complexity

We now describe the offset Rademacher complexity approach due to Liang, Rakhlin, and
Sridharan (2015), an empirical processes theory-based technique shown to yield agnostic in-
expectation guarantees for Audibert’s star algorithm in the bounded setting6. Let us preface
the rest of this section by noting that the analysis in the above-cited paper is constrained
to the case when ` is the quadratic loss, i.e., for any y, y′ we have `(y, y′) = (y − y′)2.

Let G = {g1, . . . , gm} denote a dictionary of m functions mapping X → [−b, b]. Then, as
discussed in the introduction, any estimator whose range F is equal to G (i.e., any proper
estimator) can only yield slow excess risk rates of order n−1/2 instead of the optimal rate
b2 log(m)/n. Hence, due to the necessary improperness of optimal estimators, the model
selection aggregation problem does not easily fit into the classical theory of localization
discussed in the previous section. The optimal in-expectation and in-deviation performance
is attained by the star estimator f̂ (star) due to Audibert (2008), defined as follows:

f̂ (star) = argminf∈G,λ∈[0,1]Rn(λf̂ (ERM) + (1− λ)f), where f̂ (ERM) = argminf∈G Rn(f).

Recall that in the above expressions Rn denotes the empirical risk functional.

The key observation of Liang, Rakhlin, and Sridharan (2015, Lemma 1) is that the star
estimator satisfies a deterministic condition that we state below. For any observed sample
Sn = (Xi, Yi)

n
i=1, the following holds with a constant γ = 1/18:

Rn(f̂ (star))−Rn(g?) ≤ −γ
n

n∑
i=1

(f̂ (star)(Xi)− g?(Xi))
2. (3)

The above condition can be interpreted as an analogue of the Bernstein condition (cf. Defi-
nition 2), with population quantities replaced by its empirical counterparts (see Section 3.4
and Lemma 13); however, the above inequality does not require the estimator f̂ (star) to be
proper (in fact, it is improper), nor does it require its range F to be convex. We defer an
extended discussion to Section 3.4.

6. Liang, Rakhlin, and Sridharan (2015) also develop high-probability bounds for heavy-tailed, unbounded
classes, as long as a certain lower isometry condition holds.
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The condition (3) can be used to upper bound the excess risk as follows:

E(f̂ (star),G)

= (R(f̂ (star))−R(g?))− (Rn(f̂ (star))−Rn(g?)) + (Rn(f̂ (star))−Rn(g?))

≤ (R(f̂ (star))−R(g?))− (Rn(f̂ (star))−Rn(g?))− γ 1

n

n∑
i=1

(f̂ (star)(Xi)− g?(Xi))
2

≤ sup
f∈F

{
(R(f)−R(g?))− (Rn(f)−Rn(g?))− γ 1

n

n∑
i=1

(f(Xi)− g?(Xi))
2
}
.

Taking expectations on both sides and applying classical symmetrization and contraction
arguments, Liang, Rakhlin, and Sridharan (2015, Theorem 3) show that the following holds
for some absolute constants c1, c2 > 0:

ESnE(f̂ (star),G) ≤ c1bESn,σ

[
sup

h∈F−g?

{
1

n

n∑
i=1

σih(Xi)−
γ

b
h(Xi)

2

}]
, (4)

where σ = (σ1, . . . , σn) denotes a sequence of i.i.d. Rademacher random variables. The
right-hand side of the above equation is called the offset Rademacher complexity of the
class F − g?; the negative quadratic terms produce a localization phenomenon similar to
that of Definition 1. As we shall see in Corollary 12, a modified notion of the above com-
plexity measure yields guarantees at least as sharp as those obtainable via local Rademacher
complexities introduced in the previous section.

Limitations. We now discuss the limitations of the existing results based on the above
approach. First, the bound (4) holds only in-expectation. However, the star estimator
was introduced to address the in-deviation optimality for model selection aggregation, and
thus, obtaining in-deviation guarantees for this estimator is of particular interest (Audib-
ert, 2008). As discussed in the introduction, transforming in-expectation guarantees to
in-deviation guarantees for improper statistical estimators presents several technical diffi-
culties. High probability alternatives to the bound (4) have not been obtained before our
work since there is no replacement for Talagrand’s concentration inequality on which the
classical theory of localization resides. We develop such a (one-sided) concentration result
in Proposition 7, using which we obtain an exponential-tail offset Rademacher complexity
deviation bound in Theorem 8.

While high probability bounds featuring offset Rademacher complexity term have not
been previously developed, let us now discuss some deviation bounds that have been ob-
tained using the framework described above. The main high probability result obtained
in (Liang, Rakhlin, and Sridharan, 2015, Theorem 4) holds under a certain lower isometry
condition, which differs from the bounded setting considered in this work, as discussed in
the introduction. Setting aside the difference in assumptions, there is an important qualita-
tive difference between (Liang, Rakhlin, and Sridharan, 2015, Theorem 4) and Theorem 8
proved in this paper. The former result upper bounds excess risk by another random vari-
able, while our theorem features a deterministic quantity (offset Rademacher complexity).
The further control on the random variable in the upper bound of (Liang, Rakhlin, and
Sridharan, 2015, Theorem 4) typically results in looser bounds (e.g., suffering from excess
logarithmic terms for finite classes; see (Liang, Rakhlin, and Sridharan, 2015, Lemma 11)).
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The recent work of Vijaykumar (2021) extends the geometric inequality (3) to general
loss functions. However, the high probability bounds obtained therein are expressed in
terms of empirical covering numbers where the covering is performed with the worst-case
metric. In contrast, local Rademacher complexity (cf. Definition 1) can be upper bounded
using covering number arguments where the covering is performed with the L2(PX) metric,
leading to minimax optimal bounds in many cases (see Wainwright (2019, Chapters 13 and
14) for some examples). Crucially, in general the notion of complexity based on empirical
covering numbers using worst-case metric used by Vijaykumar (2021) does not capture
statistical minimax optimality and results in suboptimal bounds even for the star estimator
applied to a problem with a finite reference class G. In contrast, we show in Appendix A how
the geometric inequality obtained by Vijaykumar (2021), when used with offset Rademacher
complexity bounds developed in this paper, results in minimax optimal bounds for the star
aggregation algorithm.

3. Main Results

The main results of this paper are presented in this section. In Section 3.1, we introduce the
geometric condition (called the offset condition) used to replace the Bernstein condition;
further, we define the offset Rademacher complexity (slightly modified from the one ap-
pearing in prior works) used to replace the classical notion of local Rademacher complexity.
Section 3.2 contains a moment generating function bound for shifted multiplier empirical
processes. This result serves as our replacement for Talagrand’s concentration inequality,
the foundation of the classical theory of localization. Section 3.3 contains a high probabil-
ity excess risk bound in terms of the offset Rademacher complexity; this result applies in
settings where the Bernstein condition does not hold. Finally, in Section 3.4, we provide a
comparison between the offset and Bernstein conditions and demonstrate that the theory
presented in this paper can recover the classical agnostic learning setup bounds overviewed
in Section 2.1.

3.1 Definitions

We begin with the definition of the offset condition. Observe that this condition is estimator-
dependent, as opposed to the Bernstein condition (cf. Definition 2). For corresponding
notions in the context of improper statistical estimators see, e.g., Liang, Rakhlin, and
Sridharan (2015, Lemma 1), Vijaykumar (2021, Section 3), and the analysis of the star
estimator by Audibert (2008).

Definition 4 (Offset Condition) Let G be a class of functions mapping X to [−b, b] for
some b > 0. Fix a loss function ` : [−b, b]× [−b, b]→ [0,∞) and recall that Rn denotes the
induced empirical risk functional. Let ε : [0, 1]→ R be some function and let γ > 0 be some
positive real number. Let P be a distribution supported on X ×Y. An estimator f̂ satisfies
the offset condition with respect to (G, `, ε, γ) for the distribution P , if for any any δ ∈ [0, 1]
the following holds:

PSn

(
Rn(f̂)−Rn(g?) ≤ −γ

n

n∑
i=1

(f̂(Xi)− g?(Xi))
2 + ε(δ)

)
≥ 1− δ,
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where Sn = (Xi, Yi)
n
i=1 is an i.i.d. sample drawn from the distribution P and g? = g?(G, P, `)

denotes any population risk minimizer in the class G.
Whenever the following deterministic inequality holds for any sample Sn = (Xi, Yi)

n
i=1 ∈

(X × Y)n:

Rn(f̂)−Rn(g?) ≤ −γ
n

n∑
i=1

(f̂(Xi)− g?(Xi))
2 + ε,

we say that the estimator f̂ = f̂(Sn) satisfies the deterministic offset condition with respect
to (G, `, ε, γ).

In the above definition the function ε(·) allows for the offset condition to fail with probability
δ, while incurring a penalty ε(δ). As we shall see in Appendix A, such a condition natu-
rally enters the analysis of some improper estimators. Also, we will discuss some example
estimators that satisfy the deterministic offset condition.

In Section 2.1, we described how the Bernstein condition implies local Rademacher
complexity excess risk bounds for empirical risk minimization estimators. Likewise, we
shall see that offset condition implies excess risk bounds expressed in terms of the offset
Rademacher complexity defined below.

Definition 5 (Offset Rademacher Complexity) Let PX be any distribution supported
on X and let H be any class of functions mapping X to R. Let σ = (σi)

n
i=1 denote a

sequence of i.i.d. Rademacher (i.e., symmetric and {±1}-valued) random variables and let
SXn = (Xi)

n
i=1 denote n independent random variables distributed according to PX . Then,

for any γ > 0, the offset Rademacher complexity of the class H is defined by

Roff
n (PX ,H, γ) = ESXn ,σ

[
sup
h∈H

{
1

n

n∑
i=1

σih(Xi)− γh(Xi)
2 − γEX∼PX [h(X)2]

}]
.

Let us remark that our definition above differs from the one presented in Section 2.2
since we include extra negative terms −γEX∼PX [h(X)2] inside the above supremum. This
refinement is necessary for our concentration argument to work, since we establish mo-
ment bounds for shifted multiplier processes that contain negative population terms (cf.
Section 3.2). At the same time, the inclusion of the negative quadratic population terms
allows us to show that the above notion of complexity is at least as sharp as the classical
one introduced in Definition 1 (see Lemma 11 in Section 3.4 for details).

Remark 6 The introduction of the negative term −γEX∼PX [h(X)2] is a necessary compo-
nent for our proof of Proposition 7 and for the proof of Lemma 11, where we show that the
offset Rademacher complexity is never larger than the classical local Rademacher complexity.

On the other hand, when computing specific application-dependent upper bounds on
the offset Rademacher complexity, either the term −γEX∼PX [h(X)2] or −γ 1

n

∑n
i=1 h(Xi)

2

may be dropped. Keeping the term −γEX∼PX [h(X)2] may be interpreted as performing
localizing with respect to population norms ‖ · ‖L2(PX) while keeping the empirical term

−γ 1
n

∑n
i=1 h(Xi)

2 may be seen as localization with respect to the empirical L2 norms. In
the bounded setting, the two forms of localization are known to be equivalent; see (Wain-
wright, 2019, Section 14.5) for details.
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3.2 Concentration of Shifted Multiplier Processes

The primary technical tool in this paper is the following proposition, which proves a
Bernstein-type one-sided concentration bound for the supremum of shifted multiplier pro-
cesses (defined below in Equation (5)). This proposition plays a crucial role in establishing
our main result, Theorem 8 presented in the next section. In particular, provided that an
estimator satisfies the offset condition, we will show that the moment generating function
of its excess risk can be controlled by the moment generating function of a certain shifted
multiplier process. We defer the proof of the below proposition to Section 5.

Proposition 7 Let H be a class of functions mapping X to R. Let P(X,ζ) be a joint distri-
bution on X ×R with marginal distributions PX and Pζ , and let Sn = (Xi, ζi)

n
i=1 be a set of

n i.i.d. samples from P(X,ζ). Fix any positive constant γ > 0 and define a random variable
U = U(Sn) to be the supremum of the offset multiplier process as follows:

U = sup
h∈star(H)

{
n∑
i=1

ζih(Xi)−E(X,ζ)∼P(X,ζ)
[ζh(X)]− γh(Xi)

2 − γEX∼PX [h(X)2]

}
. (5)

Suppose that there exist positive constants κ and σ such that suph∈H ‖h‖L∞(PX) ≤ κ and

‖ζ‖L∞(Pζ) ≤ σ. Then, for η = 8(σ2γ−1 + γκ2) and any λ ∈ (0, 1/η) the following holds:

log Eeλ(U−EU) ≤ λ2ηEU

2(1− ηλ)
.

Before turning to the offset Rademacher complexity upper bounds, let us remark that in
the above moment bound, the variance proxy/variance factor (in the sense of (Boucheron
et al., 2013, Section 2.4)) is equal to ηEU ; thus the variance of the random variable U is
automatically controlled by its expectation. In particular, the above bound can be trans-
formed into deviation bounds of the form U ≤ 2E[U ] + cη log(1/δ), where δ > 0 is the
confidence parameter. To prove the above bound, we leverage a type of self-boundedness
property (through an application of the Exponential Efron-Stein inequality) directly sat-
isfied by the above supremum process (see the proof for more details). In contrast, recall
that the variance proxy in Talagrand’s concentration inequality (1) is not controlled by the
expectation of the corresponding empirical process. In the classical localized complexity
bounds, Talagrand’s inequality is combined with the Bernstein condition and an intricate
peeling argument to induce a similar self-bounding effect. On the other hand, using the
above concentration result, our theory allows us to obtain high probability bounds in terms
of the offset Rademacher complexity without relying on the Bernstein condition as we show
in the following section.

3.3 Exponential-Tail Offset Rademacher Complexity Bound

We now present the main result of this paper, the proof of which can be found in Section 4.
The following theorem provides an alternative to Theorem 3, but with Bernstein condition
replaced via the offset condition. As a consequence, the offset condition can serve as a
design principle for estimators in the regimes where the Bernstein condition fails to hold;
some examples are given in Appendix A.
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Theorem 8 Let f̂ be an estimator with range F , where F denotes a class of functions
mapping X to [−b, b] for some b > 0. Let P be any distribution supported on X × [−b, b]
and denote g? ∈ argming∈GR(g), where G is some reference class of functions mapping X
to [−b, b]. Suppose that the following two conditions hold:

1. The loss function ` : [−b, b]× [−b, b]→ [0,∞) is Cb-Lipschitz in its first argument;

2. The estimator f̂ satisfies the offset condition with respect to (G, `, ε, γ) for the distri-
bution P , where ε is some function mapping [0, 1] to R and γ > 0 is some positive
real number.

Then, for any δ1, δ2 ∈ (0, 1) with probability at least 1− δ1 − δ2, we have

E(f̂ ,G) ≤ c1C
′
bR

off
n (PX , star(F − g?), (C ′b)−1γ) + c2

γ−1(C ′b)
2 log(1/δ1)

n
+ ε(δ2),

where c1, c2 > 0 are some universal constants and C ′b = Cb + γb.

Observe that in the above theorem, to upper bound the excess risk of the estimator f̂ ,
we pay for the complexity of its range F as opposed to the complexity of the reference class
G. Let us comment on why such behaviour is expected in our setup.

First, as discussed in Section 1.3, there are natural problems of interest where any
estimator whose range equals G (i.e., any proper estimator) is bound to incur sub-optimal
excess risk rate. Thus, we are led to consider improper estimators, i.e., estimators such that
G ⊂ F . In the above theorem, we further restrict our attention to those estimators that
satisfy the offset condition. For this family of estimators, their range F necessarily serve as
a natural proxy of their complexity.

For example, let G be a finite reference class of functions. Then, Audibert’s star estima-
tor (see Appendix A.1) satisfies the offset condition while having a relatively small range
{λg1 + (1 − λ)g2 : g1, g2 ∈ G, λ ∈ [0, 1]}. This range is small enough to preserve minimax-
optimal statistical rates for the model selection aggregation problem. On the other hand,
performing empirical risk minimization over the convex hull of G is also an estimator that
satisfies the offset condition. However, the convex hull of G is a much larger set than the
range of the star estimator, and its local Rademacher complexity yields the “slow-rate”
excess risk bound of order 1/

√
n. Indeed, Lecué and Mendelson (2009) prove a matching

lower bound for performing ERM over the convex hull of a finite reference class of functions.

Remark 9 As explained above, when the only property of an estimator exploited in the
analysis is the offset condition, then paying for the complexity of the estimator’s range (as
opposed to the reference class) is unavoidable. However, as we discuss in Appendix A, there
exist several improper estimators of interest that satisfy the offset condition with range F
whose complexity is of the same order of magnitude as that of the reference class G, yielding
minimax-optimal rates (e.g., for model selection aggregation of arbitrary classes). Moreover,
when applied to the ERM estimator over a convex class, the bound of Theorem 8 reduces
to the classical local Rademacher complexity guarantee discussed in Section 2.1. From this
point of view, we may view Theorem 8 as an extension of the classical localization theory to
a broader class of estimators.
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On the other hand, there exist statistical estimators whose excess risk is not governed
solely by the complexity of their range. For example, the Q-Aggregation estimator (Lecué and
Rigollet, 2014) outputs a function from the convex hull of a given finite class, yet it satisfies
a deviation-optimal “fast-rate” excess risk guarantee for the model selection aggregation
problem. This is possible because the Q-Aggregation estimator satisfies a more restrictive
condition than the offset condition. More specifically, it satisfies an offset-type condition
with a different negative term than the one stated in Definition 4. See the PhD thesis
Vaškevičius (2021, Section 3.7) for more details on this example and for suggestions for
future work.

Remark 10 In comparison with Theorem 3, the above result replaces Cb with a worse
constant C ′b = Cb+γb. However, the primary application domain where the above theorems
hold is the setting where for any y ∈ [−b, b], the function `(·, y) is Cb-Lipschitz and γ-
strongly convex in the fist argument (see Appendix A for examples). In such a setting it can
be shown that γb ≤ Cb and hence C ′b ≤ 2Cb.

3.4 Recovering Local Rademacher Complexity Results Without The
Bernstein Condition

In this section, we discuss how Theorem 8 yields excess risk bounds that are no worse than
the ones stated in Theorem 3. We begin by stating the following lemma, which is proved
in Appendix B.1.

Lemma 11 Let PX be any distribution supported on X and let H be any star-shaped class
of functions (i.e., H = star(H)) mapping X to R. Then, for any γ > 0 we have

Roff
n (PX ,H, γ) ≤ Rloc

n (PX ,H, γ).

An immediate consequence of the above lemma is the following corollary, which shows
that the classical local Rademacher complexity bounds hold when the Bernstein condition
is replaced via the estimator-dependent offset condition.

Corollary 12 Consider the setting of Theorem 8. For any δ1, δ2 ∈ (0, 1) with probability
at least 1− δ1 − δ2, we have

E(f̂ ,G) ≤ c1C
′
bR

loc
n (PX , star(F − g?), (C ′b)−1γ) + c2

γ−1(C ′b)
2 log(1/δ1)

n
+ ε(δ2),

where c1, c2 > 0 are some universal constants and C ′b = Cb + γb.

It remains to discuss the relationship between the offset and Bernstein conditions. A
typical example where the Bernstein condition holds for any distribution P is when F = G
is a convex class, and the loss function is strongly convex. In such regimes, any empirical
risk minimizer over F satisfies the offset condition. Thus, when applied to an empirical risk
minimization estimator, the offset condition can be seen as an analogue of the Bernstein
condition, where the roles played by empirical and population quantities are interchanged.
We formalize this observation in the lemma below.
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Lemma 13 Let F be a class of functions mapping X to R. Let ` : Y × Y → [0,∞) be
a loss function and let PX×Y be the set of all distributions P supported on X × Y. Let
f? = f?(F , P, `) be any population risk minimizer over F . Let f̂ (ERM) be an estimator
that returns any empirical risk minimizer in the class F . If for any P ∈ PX×Y the tuple
(P, `,F , f?) satisfies the Bernstein condition with parameter γ, then the estimator f̂ (ERM)

satisfies the deterministic offset condition with respect to (F , `, 0, γ).

Proof Given an i.i.d. sample Sn = (Xi, Yi)
n
i=1 from some distribution P ∈ PX×Y , let Pn

denote a distribution on X × Y assigning equal mass to each (Xi, Yi). Since Pn ∈ PX×Y ,
by the assumption of this lemma (Pn, `,F , f̂ (ERM)(Sn)) satisfies the Bernstein condition
with parameter γ. This is equivalent to saying that f̂ (ERM) satisfies the deterministic offset
condition with respect to (F , `, 0, γ).

Let us conclude this section by highlighting one difference between the offset and Bern-
stein conditions. In some settings, the Berstein condition is used as a distributional as-
sumption, which imposes constraints on the data distribution itself – as opposed to agnostic
learning results, required to hold for any data-generating distribution subject to constrained
support. For example, in the classification setting with zero-one loss, the Bernstein condition
corresponds to bounded noise assumptions (see the discussions in (Boucheron, Bousquet,
and Lugosi, 2005)), under which empirical risk minimization estimator can achieve fast rates
of convergence of the excess risk. For sharp treatment of the classification setting under
the bounded noise assumptions via ideas related to offset Rademacher averages, see (Zhivo-
tovskiy and Hanneke, 2018). At the same time, let us remark that the offset condition can
be exploited to design statistical estimators that achieve fast rates in the classification set-
ting in an agnostic sense (i.e., without bounded noise assumptions), provided an option to
abstain from prediction exists; for an extended discussion see (Bousquet and Zhivotovskiy,
2021).

4. Proof of Theorem 8

Recall that P denotes the underlying distribution of (X,Y ) and let Pn denote its empirical
counterpart supported on the sample Sn so that

P` = E(X,Y )∼P [`(X,Y )] and Pn` =
1

n

n∑
i=1

`(Xi, Yi) for any function ` : X × Y → R;

Ph = EX∼PX [h(X)] and Pnh =
1

n

n∑
i=1

h(Xi) for any function h : X → R.

With the above notation we have R(f) = P`f and Rn(f) = Pn`f . Denote the event

Eδ2 = {Pn`f̂ − Pn`g? ≤ −γPn(f̂ − g?)2 + ε(δ2)}
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Since f̂ satisfies the (G, `, ε, γ)-offset condition we have P(Eδ2) ≥ 1− δ2; on Eδ2 we have

P`
f̂
− P`g? = (P − Pn)(`

f̂
− `g?) + Pn(`

f̂
− `g?)

≤ (P − Pn)(`
f̂
− `g?)− γPn(f̂ − g?)2 + ε(δ2)

≤ sup
f∈F

{
(P − Pn)(`f − `g?)− γPn(f − g?)2

}
︸ ︷︷ ︸

:=Z

+ε(δ2).

The rest of the proof is structured as follows:

1. We first symmetrize a suitably rearranged Laplace transform of the empirical offset
process Z. Since for λ ≥ 0 the map x 7→ eλx is convex and non-decreasing, this step
of the proof follows via standard arguments.

2. Next, we apply Talagrand’s Contraction Lemma to the symmetrized offset empirical
process. This step turns our process into a multiplier-type process of Proposition 7.

3. We conclude the proof via an application of Proposition 7, which yields a Bernstein-
type upper bound on the moment generating function of Z −Roff

n (star(H), γ′), for a
suitably defined constant γ′ > 0. The desired tail bound then follows via Markov’s
inequality.

Remark 14 Our proof strategy is inspired by the work of Lecué and Rigollet (2014), where
symmetrization and contraction arguments are also performed on the Laplace transform of
the empirical process of interest. The contraction step is needed there to make the corre-
sponding complexity measure linear in the model parameters so that the supremum over a
convex hull is attained at a vertex. In contrast, we need to apply the contraction step to put
us in the setting of Proposition 7.

Symmetrization step. We begin by rewriting the random variable Z as follows:

Z = sup
f∈F

{
(P − Pn) (`f − `g?)− γPn(f − g?)2

}
= sup

f∈F

{
(P − Pn)

(
`f − `g? +

3γ

4
(f − g?)2

)
− γ

4
Pn(f − g?)2 − 3γ

4
P (f − g?)2

}
, (6)

where in the last equation above we have added and subtracted (3γ/4)P (f − g?)2. For any
function f ∈ F introduce a shorthand notation

φf : X × Y → R such that φf (X,Y ) = `f (X,Y )− `g?(X,Y ) +
3γ

4
(f(X)− g?(X))2.

Let S′n = (X ′i, Y
′
i )ni=1 denote an independent copy of Sn = (Xi, Yi)

n
i=1 and denote E′ as a

shorthand notation for expectation computed with respect to S′n only, conditionally on all
other random variables. Let P ′n denote a counterpart to Pn with the sample Sn replaced by
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S′n. Carrying on from equation (6) we can rewrite Z as follows:

Z = sup
f∈F

{
(P − Pn)φf −

γ

4
Pn(f − g?)2 − 3γ

4
P (f − g?)2

}
= sup

f∈F

{
(P − Pn)φf −

γ

4
Pn(f − g?)2 − γ

4
P (f − g?)2 − 2γ

4
P (f − g?)2

}
= sup

f∈F

{
(E′P ′n − Pn)φf −

γ

4
Pn(f − g?)2 − γ

4
E′P ′n(f − g?)2 − 2γ

4
P (f − g?)2

}
. (7)

Observe that in the above equation we have left the term (2γ/4)P (f −g?) unchanged. This
is needed to put us in the setting of Proposition 7, as we shall see below.

Let us now introduce a sequence of n independent Rademacher (symmetric and {±1}
valued) random variables σi and let Eσ denote expectation with σ1, . . . , σn only, condition-
ally on all other random variables. Let P σn denote the symmetrized empirical measure so
that for any function ` : X × Y → R and any function h : X → R we have

P σn ` =
1

n

n∑
i=1

σi`(Xi, Yi) and P σn h =
1

n

n∑
i=1

σih(Xi).

For λ > 0 the map x 7→ eλx is convex and non-decreasing; hence, for any λ > 0, using the
identity (7), we can proceed to symmetrize the Laplace transform of Z as follows:

E exp(λZ) ≤ EE′ exp

(
λ sup
f∈F

{
(P ′n − Pn)φf −

γ

4
Pn(f − g?)2

− γ

4
P ′n(f − g?)2 − 2γ

4
P (f − g?)2

})
≤ EEσ exp

(
2λ sup

f∈F

{
P σn φf −

γ

4
Pn(f − g?)2 − γ

4
P (f − g?)2

})
. (8)

Notice that the above moment generating function is almost of the form that can be bounded
via Proposition 7. It remains to replace the term P σn φf with a term ρP σn (f − g?), for some
constant ρ. This is the aim of the contraction step of this proof, which follows below.

Contraction step. Recall that by the assumptions of this theorem, there exists some
constant Cb such that for any f, f ′ ∈ F , x ∈ X , y ∈ Y we have

|`f (x, y)− `f ′(x, y)| ≤ Cb|f(x)− f ′(x)|.

In particular, for any f, f ′ ∈ F and any x ∈ X , y ∈ Y we have

|φf (x, y)− φf ′(x, y)| =
∣∣∣∣`f (x, y) +

3γ

4
(f(x)− g?(x))2 − `f ′(x, y)− 3γ

4
(f ′(x)− g?(x))2

∣∣∣∣
≤ Cb|f(x)− f ′(x)|+ 3γ

4
|(f(x)− f ′(x))(f(x) + f ′(x)− 2g?(x))|

≤ (Cb + 3γb)|f(x)− f ′(x)|
= (Cb + 3γb)|(f(x)− g?(x))− (f ′(x)− g?(x))|.
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Hence, applying Talagrand’s contraction inequality (Ledoux and Talagrand, 2013, Theorem

4.12) (conditionally on the sample Sn) with the set TSn and contraction mappings φ
(i)
Sn

:

TSn = {((f − g?)(X1), . . . , (f − g?)(Xn))T : f ∈ H},

φ
(i)
Sn

(ti) = (2Cb + 6γb)−1 · 2
(
`(ti + g?(Xi), Yi)− `g?(Xi, Yi)−

3γ

4
t2i

)
,

we may proceed upper bounding (8) as follows (cf. (Lecué and Rigollet, 2014, Eq. (3.11))):

E exp (λZ)

≤ EEσ exp

(
λ sup
f∈F

{
P σn 2φf −

γ

2
Pn(f − g?)2 − γ

2
P (f − g?)2

})

≤ EEσ exp

(
λ sup
f∈F

{
(2Cb + 6γb)P σn (f − g?)− γ

2
Pn(f − g?)2 − γ

2
P (f − g?)2

})

= EEσ exp

(
λ sup
h∈H

{
(2Cb + 6γb)P σn h−

γ

2
Pnh

2 − γ

2
Ph2

})
≤ EEσ exp

(
λ

n
· n sup

h∈star(H)

{
(2Cb + 6γb)P σn h−

γ

2
Pnh

2 − γ

2
Ph2

}
︸ ︷︷ ︸

:=U

)
,

where in the penultimate line we introduced H = {f − g? : f ∈ F}, and in the last step the
inequality comes from replacing H by star(H) = {λh : h ∈ H, λ ∈ [0, 1]}.

We will now show that the random variable U is a supremum of an offset multiplier
process satisfying the conditions of Proposition 7. Let ζi = (2Cb + 6γb)σi and denote the
distribution of ζ by Pζ . Then, for any h ∈ H and for (X, ζ) distributed according to the
product distribution PX ⊗ Pζ , we have E[ζh(X)] = 0. Therefore,

U = n · sup
h∈star(H)

{
(2Cb + 6γb)P σn h−

γ

2
Pnh

2 − γ

2
Ph2

}
= sup

h∈star(H)

{
n∑
i=1

ζih(Xi)−E(X,ζ)∼PX⊗Pζ [ζh(X)]− γ

2
h(Xi)

2 − γ

2
EX∼PXh(X)2

}
.

Hence, the moment generating function of the random variable U can be bounded via
Proposition 7, taking P(X,ζ) = PX ⊗ Pζ .

Concluding the proof. Let c3 > 0 be some universal constant such that

η = 8((2Cb + 6γb)2(γ/2)−1 + (γ/2)4b2) ≤ c3(γ−1C2
b + bCb + γb2).

Relabelling λ/n by λ and applying Proposition 7 to the random variable U , the following
holds for any λ ∈ (0, 1/η):

log E exp (λ((nZ)−EEσU)) ≤ log EEσ exp (λ(U −EEσU)) ≤ λ2ηEEσU

2(1− ηλ)
. (9)

The desired tail bound now follows via standard arguments that we sketch below. By
(Boucheron, Lugosi, and Massart, 2013, Section 2.4), the upper bound (9) shows that the
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random variable nZ − EEσU is sub-gamma on the right-tail with variance proxy ηEEσU
and scale parameter η. Hence, via Markov’s inequality, for any δ1 ∈ (0, 1] we have

P
(
nZ −EEσ[U ] ≥

√
2ηEEσ[U ] log(δ−1) + η log(δ−1

1 )
)
≤ δ1.

Subtracting EEσ[U ] from both sides of the inequality defining the event inside P(·) and
optimizing the quadratic function in

√
EEσ[U ], we deduce that

δ1 ≥ P

(
nZ − 2EEσ[U ] ≥

√
2ηEEσ[U ] log(δ−1

1 )−EEσ[U ] + η log(δ−1
1 )

)
≥ P

(
nZ − 2EEσ[U ] ≥ sup

x∈R

{
x
√

2η log(δ−1)− x2
}

+ η log(δ−1
1 )

)
= P

(
nZ − 2EEσ[U ] ≥ (3/2)η log(δ−1

1 )
)
.

Thus, denoting the event

Eδ1 = {nZ − 2EEσ[U ] ≤ (3/2)η log(δ−1
1 )}

we have P(Eδ1) ≥ 1− δ1. Finally, observe that

ESnEσU = n(2Cb + 6γb)Roff
n

(
PX , star(H),

γ

2
· (2Cb + 6γb)−1

)
≤ 74 · n(Cb + γb)Roff

n

(
PX , star(H), γ · (Cb + γb)−1

)
.

The desired result follows by the union bound on the events Eδ1 and Eδ2 . �

5. Proof of Proposition 7

Let us first discuss the key insight into our proof. Without loss of generality, assume that
the supremum in the definition of the random variable U (cf. (5)) is always attained by
some function, and denote this (random) function by h̃ = h̃(Sn). The following lemma
shows that the empirical and population L2 norms of h̃ are upper bounded by c−1U . Thus,
intuitively the supremum over star(H) in the multiplier process is computed over a “self-
localized” (in a random/data-dependent way) subset of star(H). In contrast, we remark
that the classical theory of localization via fixed-point equations proceeds by localizing the
function class star(H) by constraining it to an explicitly chosen subset of functions with
small L2 population or empirical norms.

Lemma 15 Consider the setting of Proposition 7 and let h̃ = h̃(Sn) denote a random
function that attains the supremum of the offset multiplier process U (cf. (5)) given the
sample Sn = (Xi, ζi)

n
i=1. That is, h̃ satisfies

n∑
i=1

(
ζih̃(Xi)−E[ζh̃(X)|Sn]− γh̃(Xi)

2 − γE[h̃(X)2|Sn]
)

= U(Sn).

Then, the following deterministic inequality holds for any realization of Sn:

n∑
i=1

(
E[h̃(X)2|Sn] + h̃(Xi)

2
)
≤ 1

γ
U(Sn).
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Proof Fix any realization Sn = (Xi, ζi)
n
i=1 and in the rest of this proof we work condition-

ally on Sn. For any h ∈ star(H), define A(h) and B(h) as follows:

A(h) =

n∑
i=1

(ζih(Xi)−E[ζh(X)|Sn]) , B(h) = γ
∑
i=1

(
E[h(X)2|Sn] + h(Xi)

2]
)
.

Thus, since h̃ = h̃(Sn) denotes a maximizer of the offset multiplier process, we have

A(h̃)−B(h̃) = sup
h∈star(H)

(A(h)−B(h)) = U(Sn). (10)

For any λ ∈ [0, 1), let λh : x 7→ λh(x). Observe that for any h and λ, the term A(λh) scales
linearly as a function of λ (i.e., A(λh) = λA(h)), while the term B(λh) scales quadratically
(i.e., B(λh) = λ2B(h)) as a function of λ. Fix any λ ∈ [0, 1) and note that by the definition
of star-hulls, the function λh̃ is in the set star(H). Therefore, the identity (10) implies that

λA(h̃)− λ2(B(h̃)) = A(λh̃)−B(λh̃) ≤ sup
h∈star(H)

(A(h)−B(h)) = U(Sn). (11)

Rearranging the identity (10) we also have A(h̃) = U(Sn) + B(h̃), which plugged into the
left hand side of (11) yields

λ(1− λ)B(h̃) ≤ (1− λ)U(Sn).

Dividing both sides by (1−λ) > 0 shows that λB(h̃) ≤ U(Sn). Since the last equation holds
for any λ ∈ [0, 1) it follows that B(h̃) ≤ U(Sn) which completes the proof of this lemma.

With the above lemma in place, we are ready to prove Proposition 7. In the below
proof, we follow the standard approach for obtaining Bernstein-type concentration bounds
for the supremum of empirical processes (see (Boucheron, Lugosi, and Massart, 2013, Section
12.2)). In particular, such bounds often build on the entropy method, which in our case
appears through an application of the exponential Efron-Stein inequality. For a survey
of tail bounds on the supremum of empirical processes, see the bibliographic remarks in
(Boucheron, Lugosi, and Massart, 2013, Chapter 12). We now introduce some additional
notation.

1. Let S
(i)
n be equal to the sample Sn with the i-th element (Xi, ζi) replaced by an

independent copy (X ′i, ζ
′
i) ∼ P(X,ζ).

2. For i = 1, . . . , n, let U ′i = U(S
(i)
n )). Thus U ′i is the supremum of the offset multiplier

process computed on the sample S
(i)
n , which differs from Sn by the i-th sample only.

3. Let E′[·] = E[·|Sn] denote the expectation computed with respect to the random
variables (X ′i, ζ

′
i) only. In particular, we have E′[U ] = U .

The exponential Efron-Stein inequality (Boucheron, Lugosi, and Massart, 2013, Theo-
rem 6.16) asserts that for θ > 0 and any λ ∈ (0, 1/θ) we have

log Eeλ(U−EU) ≤ λθ

1− λθ
log EeλV

+/θ, where V + =

n∑
i=1

E′[(U − U ′i)2
+]. (12)
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To complete the proof of Proposition 7, it remains to upper bound the random variable V +.
This will be achieved via a combination of Lemma 15 and boundedness assumptions on the
function class H and the multipliers ζ. Indeed, let h̃ = h̃(Sn) be a function that attains the
supremum in the definition of U (cf. Lemma 15) Then, evaluating the multiplier process

defined on the sample S
(i)
n with the function h̃ yields a lower bound on Ui. Therefore, for

i = 1, . . . , n we have

U − U ′i ≤ ζih̃(Xi)− γh̃(Xi)
2 − ζ ′ih̃(X ′i) + γh̃(X ′i)

2

and hence,

(U − U ′i)2
+ ≤

(
ζih̃(Xi)− γh̃(Xi)

2 − ζ ′ih̃(X ′i) + γh̃(X ′i)
2
)2
.

Noting that for any a, b, c, d ∈ R we have (a + b + c + d)2 ≤ 4a2 + 4b2 + 4c2 + 4d2 (for
example, by the Cauchy-Schwarz inequality) it follows that

E′[(U − U ′i)2
+] ≤ 4E′[ζ2

i h̃(Xi)
2 + γ2h̃(Xi)

4 + ζ ′2i h̃(X ′i)
2 + γ2h̃(X ′i)

4]

≤ 4E′[(σ2 + γ2κ2)(h̃(Xi)
2 + h̃(X ′i)

2)]

≤ 4(σ2 + γ2κ2)(h̃(Xi)
2 + E[h̃(X)2|Sn]),

where the second line follows by the boundedness assumptions and the last line follows by
noting that h̃(Xi) depends on Sn only and renaming X ′i to X. Hence, we can now obtain
an upper bound on V + defined in (12) via Lemma 15 as follows:

0 ≤ V + ≤ 4(σ2 + γ2κ2)

n∑
i=1

(
h̃(Xi)

2 + E[h̃(X)2|Sn]
)
≤ 4(σ2γ−1 + γκ2)U

Plugging the above upper bound on V + into the exponential Efron-Stein inequality (12)
with the choice θ = 4(σ2γ−1 + γκ2) yields, for any λ ∈ (0, 1/θ):

log Eeλ(U−EU) ≤ λθ

1− λθ
log EeλU =

λθ

1− λθ

(
log Eeλ(U−EU) + λEU

)
.

Rearranging the above inequality, we obtain

1− 2λθ

1− λθ
log Eeλ(U−EU) ≤ λ2θEU

1− λθ
.

For any λ ∈ (0, 1/(2θ)) we have (1− 2λθ)/(1− λθ) > 0, thus for λ ∈ (0, 1/(2θ)) we have

log Eeλ(U−EU) ≤ λ2θE[U ]

1− 2λθ
=
λ2(ηEU)

2(1− ηλ)
,

where η = 2θ. This finishes our proof. �

Acknowledgments
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Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge uni-
versity press, 2006.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of
on-line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057,
2004.

Dong Dai, Philippe Rigollet, and Tong Zhang. Deviation optimal learning using greedy
Q-aggregation. The Annals of Statistics, 40(3):1878–1905, 2012.

Luc Devroye and Terry Wagner. Distribution-free inequalities for the deleted and holdout
error estimates. IEEE Transactions on Information Theory, 25(2):202–207, 1979.

Aymeric Dieuleveut and Francis Bach. Nonparametric stochastic approximation with large
step-sizes. The Annals of Statistics, 44(4):1363–1399, 2016.

Dylan J. Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, and Karthik Sridharan. Logis-
tic regression: The importance of being improper. In Conference On Learning Theory,
volume 75, pages 167–208, 2018.

David A Freedman. On tail probabilities for martingales. the Annals of Probability, pages
100–118, 1975.

David Haussler, Nick Littlestone, and Manfred K Warmuth. Predicting {0, 1}-functions on
randomly drawn points. Information and Computation, 115(2):248–292, 1994.

Elad Hazan, Tomer Koren, and Kfir Y Levy. Logistic regression: Tight bounds for stochastic
and online optimization. In Conference on Learning Theory, pages 197–209, 2014.

Anatoli Juditsky, Philippe Rigollet, and Alexandre B Tsybakov. Learning by mirror aver-
aging. The Annals of Statistics, 36(5):2183–2206, 2008.

Sham M Kakade and Ambuj Tewari. On the generalization ability of online strongly convex
programming algorithms. In Advances in Neural Information Processing Systems, pages
801–808, 2009.

Varun Kanade, Patrick Rebeschini, and Tomas Vaškevičius. The statistical complexity of
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Appendix A. Example Applications

In this section, we discuss some applications of our theory to problems where the Bernstein
condition does not hold, yet there exist estimators that satisfy the offset condition. As a
result, sharp deviation-optimal excess risk rates can be obtained for such estimators via the
theory developed in this paper.

For any function class H mapping X to R and any sample SXn = (Xi)
n
i=1, where Xi ∈ X ,

define

Roff(SXn ,H, γ) = Eσ

[
sup
h∈H

{
1

n

n∑
i=1

σih(Xi)− γh(Xi)
2

}∣∣∣∣SXn
]
,

where σ = (σ1, . . . , σn) denotes a sequence of i.i.d. Rademacher random variables. Observe,
in particular, that for any distribution PX supported on X , we have

Roff
n (PX ,H, γ) ≤ ESXn

[
Roff(SXn ,H, γ)

]
. (13)

Thus, upper bounds on Roff
n (SXn ,H, γ) imply corresponding upper bounds on the offset

Rademacher complexity. Let us now state a bound on Roff
n (SXn ,H, γ) for sparse linear

classes, which will be used to yield sharp bounds for the examples considered in this section.

Lemma 16 For any w ∈ Rd let ‖w‖0 denote the number of non-zero coordinates of w.
Denote a class of k-sparse linear predictors by

Hd,klin = {〈w, ·〉 : w ∈ Rd, ‖w‖0 ≤ k}.

Let SΦ
n = (Φi)

n
i=1, where Φi ∈ Rd are arbitrary. Then, for any γ > 0 we have

Roff(SΦ
n ,H

d,k
lin , γ) .

1

γ
log

(
ed

k

)
k

n
.

The above lemma is proved in Section B.2 via a direct argument involving comparison
inequalities for Rademacher and Gaussian chaos. As an immediate consequence, let us
state the following corollary that will simplify the exposition of the applications to follow.

Corollary 17 Let G = {g1, . . . , gm} denote a finite class of arbitrary functions mapping X
to R. For any positive integer k ∈ {1, . . . ,m} define the function class containing k-sparse
linear combinations of elements of G by

Gklin =

{
gw(·) =

m∑
i=1

wigi(·) : w ∈ Rd and ‖w‖0 ≤ k

}
.
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Let k1, k2 ∈ {1, . . . ,m}, F = Gk1lin, and fix any g? ∈ Gk2lin. Then, for any distribution PX
supported on X and for any γ > 0 we have

Roff
n (PX , star(F − g?), γ) .

1

γ
log

(
em

(k1 + k2)

)
(k1 + k2)

n
.

Proof Let k = k1 + k2 and note that star(F − g?) ⊆ Gklin. Hence, the bound (13) yields

Roff
n (PX , star(F − g?), γ) ≤ Roff

n (PX ,Gklin, γ) ≤ ESXn

[
Roff(SXn ,Gklin, γ)

]
. (14)

For any sample SXn and any i = 1, . . . , n define ΦX
i ∈ Rm by (ΦX

i )j = gj(Xi). Then, for any
w ∈ Rd and gw =

∑m
i=1wigi we have gw(Xi) =

∑m
j=1wjgj(Xi) = 〈w,ΦX

i 〉. Hence, letting

SΦ
n (SXn ) = (ΦX

i )ni=1 and applying Lemma 16 yields

Roff(SXn ,Gklin, γ) = Roff(SΦ
n (SXn ),Fm,klin , γ) .

1

γ
log
(em
k

) k
n
.

Plugging in the above inequality into (14) completes the proof.

We now turn to the example applications.

A.1 Model Selection Aggregation

In a model selection aggregation problem, we are given a finite dictionary G = {g1, . . . , gm}
of functions mapping X to [−b, b]. Given a sample Sn = (Xi, Yi)

n
i=1, a statistical estimator

f̂ aims to construct a new function such that the excess risk E(f̂ ,G) is small with high
probability.

In what follows, we consider loss functions ` : [−b, b] × [−b, b] → [0,∞) that are Cb-
Lipschitz and γ-strongly convex in the first coordinate. More precisely, we assume that for
any y, y1, y2 ∈ [−b, b] we have |`(y1, y)− `(y2, y)| ≤ Cb|y1−y2| and for any λ ∈ [0, 1] we have
`(λy1 + (1− λ)y2, y) ≤ λ`(y1, y) + (1− λ)`(y2, y)− γ

2λ(1− λ)(y1 − y2)2.
An identical setup to the one described above was recently treated by Lecué and Rigollet

(2014); Wintenberger (2017). Optimal model selection aggregation rates γ−1C2
b log(m/δ)/n

were obtained therein for the Q-aggregation and online Bernstein aggregation procedures.
Below, we show how the offset Rademacher complexity analysis yields the same rates for
two other estimators: Audibert’s star algorithm and the midpoint estimator.

Audibert’s Star Algorithm. The star algorithm due to (Audibert, 2008) is defined
by

f̂ (star) = argminf∈G,λ∈[0,1]Rn(λf̂ (ERM) + (1− λ)f), where f̂ (ERM) = argminf∈G Rn(f).

It was shown by Liang, Rakhlin, and Sridharan (2015, Lemma 1), that this estima-
tor satisfies the deterministic offset condition. In more recent work, Vijaykumar (2021,
Proposition 5) shows that f̂ (star) satisfies the (G, `, 0, γ/9)-deterministic offset condition.

Remark 18 While in this section we only consider finite reference classes G, the star
estimator f̂ (star) satisfies the deterministic offset condition for arbitrary classes G; in par-
ticular, G is allowed to be an infinite class. We will return to this point in Appendix A.2 to
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formulate a deviation-optimal local Rademacher complexity excess risk bound for the star
estimator for arbitrary reference classes.

In the view of Corollary 17, the range of the star estimator f̂ (star) is equal to {λg+ (1−
λ)g′ : g, g′ ∈ G, λ ∈ [0, 1]} ⊆ G2

lin. Thus, combining Theorem 8 (see also Remark 10) and
Corollary 17 yields, for any δ ∈ (0, 1) with probability at least 1− δ,

E(f (star),G) . γ−1C2
b

log(m/δ)

n
.

Midpoint Estimator. Let c1 > 0 be some sufficiently large universal constant (as
elaborated in the proof of Lemma 19). For any δ ∈ (0, 1), the midpoint estimator is defined
by

f̂
(mid)
δ = argminf∈Gδ,c1 (Sn)Rn

(
f̂ (ERM) + f

2

)
,

where f̂ (ERM) = f̂ (ERM)(Sn) is any function in G that minimizes the empirical risk Rn(·)
(induced by the sample Sn) and the set Gδ,c1(Sn) is a random (data-dependent) set of almost
empirical risk minimizers defined by

Gδ,c1(Sn) = {g ∈ G : Rn(g) ≤ Rn(f (ERM)) + c1Cbdδ,n(f̂ (ERM), g)}

with the empirical distance function dδ,n given by, for any functions g, g′:

dδ,n(g, g′) =

√
n−1

∑n
i=1(g(Xi)− g′(Xi))2 · log(2m/δ)

n
+
b log(2m/δ)

n
.

In the context of model selection aggregation, the idea of applying empirical risk minimiza-
tion over some set preselected set of almost minimizers goes back to Lecué and Mendelson
(2009). For the recent use of midpoint procedures in statistical literature, see, for example,
(Mendelson, 2019; Bousquet and Zhivotovskiy, 2021; Mourtada, Vaškevičius, and Zhivo-
tovskiy, 2022).

Since f̂ (mid) outputs 2-sparse convex combinations of elements of the dictionary G, simi-
larly to the above analysis of Audibert’s star algorithm, it is enough to establish that f̂ (mid)

satisfies the offset condition. For the midpoint estimator, this fact is already implicit in the
proofs of Puchkin and Zhivotovskiy (2021) in the context of active learning. While, admit-
tedly, the direct analysis of the midpoint estimator is no more difficult than establishing the
below lemma, for exposition purposes, let us demonstrate that f̂ (mid) does indeed satisfy
the offset condition.

Lemma 19 Fix any δ ∈ (0, 1) and any distribution P supported on X × [−b, b]. In the

setup described above, the estimator f̂
(mid)
δ satisfies the (G, `, ε, (64)−1γ)-offset condition for

the distribution P , with ε(δ) . C2
b γ
−1 log(2m/δ)/n.

The proof is deferred to Appendix B.3. An immediate consequence of the above lemma, via
an application of Theorem 8 (with δ1 = δ2 = δ/2) and Corollary 17 is that for any δ ∈ (0, 1)
with probability at least 1− δ the following holds:

E(f̂
(mid)
δ ,G) . γ−1C2

b

log(4m/δ)

n
.
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A.2 Learning Non-Convex Classes

Beyond the model selection aggregation setting, let G be an arbitrary and possibly infinite
class of functions with range [−b, b]. For convex classes G, we may use the classical theory of
localization to obtain sharp bounds for the empirical risk minimization algorithm. However,
when G is allowed to be non-convex, the Bernstein condition no longer holds and alternative
procedures need to be considered.

When learning arbitrary classes of bounded functions, Rakhlin, Sridharan, and Tsybakov
(2017) obtain sharp exponential-tail entropy number bounds for a complicated three-stage
procedure that involves the star algorithm (or any other deviation optimal procedure) as a
sub-algorithm. Upon the introduction of offset Rademacher complexities, Liang, Rakhlin,
and Sridharan (2015) notice that offset Rademacher complexity bounds (which are at least
as sharp as the entropy number bounds obtained in the above-cited paper) can be obtained
for the star estimator as a direct consequence of the offset condition. This provides a
simple alternative to the three-stage procedure of Rakhlin, Sridharan, and Tsybakov (2017);
however, in the bounded setting considered in this paper, the results of Liang, Rakhlin, and
Sridharan (2015) only yield expected excess risk bounds. As a corollary of Theorem 8, we
can obtain the desired exponential-tail bound for the star algorithm that holds for arbitrary
classes of reference functions.

Corollary 20 Let G be an arbitrary class of reference functions with domain X and range
[−b, b] and let ` : [−b, b] × [−b, b] → [0,∞) be a loss function that is Cb-Lipschitz and γ-
strongly convex in its first argument. Let P be any distribution supported on X × [−b, b] and
fix any g? ∈ argming∈GR(g). Then, for any δ ∈ (0, 1), the star estimator f̂ (star) defined in
Appendix A.1 satisfies

E(f̂ (star),G) ≤ c1CbR
off
n (PX , star(F − g?), C−1

b γ) + c2
γ−1C2

b log(1/δ)

n
,

where c1, c2 > 0 are some universal constants and the range of the star estimator is equal
to F = {λg1 + (1− λ)g2 : λ ∈ [0, 1], g1, g2 ∈ G}.

Proof As discussed in Appendix A.1, the star estimator satisfies the deterministic offset
condition with parameters (G, `, 0, γ/9). The result follows from Theorem 8 combined with
Remark 10.

Finally, observe that when the class G is convex, the estimator f̂ (star) becomes the ERM
estimator over the class G. At the same time, the convexity of the set G implies that the
range of the star estimator is equal to G, and thus, the above result reduces to the classical
localized complexity bound for ERM applied to learning a convex class.

A.3 Iterative Regularization

The idea of iterative regularization is to apply some optimization procedure to the unregular-
ized empirical risk function Rn(·) and induce a regularizing effect by early stopping. Thus,
the number of iterations performed acts as a regularization parameter, in a similar way
that the size of penalty acts as a regularization parameter for penalized procedures based
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on empirical risk minimization. Iterative regularization schemes are actively studied since
they have a built-in warm-restart feature: obtaining a new model only costs one iteration of
the optimization algorithm, usually amounting to a gradient descent or stochastic gradient
descent update. In contrast, for explicitly penalized procedures, obtaining new models (cor-
responding to different regularization parameters) amount to solving a new optimization
problem. Let us demonstrate an example of how a general family of such algorithms fit into
the framework of offset Rademacher complexity.

Let X be a compact subset of Rd. In this section, we fix the set of reference functions to
be G = {fw(·) = 〈w, ·〉 : w ∈ G ⊂ Rd}, where the set G is arbitrary. Denote any population
risk minimizer in G by g? = fw? , where w? ∈ G. Further, for any w ∈ Rd, let R(w) = R(fw)
and Rn(fw) = Rn(w).

We consider a family of mirror descent algorithms (Nemirovsky and Yudin, 1983; Beck
and Teboulle, 2003) that admit the more frequently studied gradient descent procedure as a
special case. Let D ⊆ Rd be an open and convex set. Let ψ : D → Rd denote a continuously
differentiable strictly convex function whose gradient diverges at the boundary of D. We
call such a function a mirror map. The associated Bregman divergence Dψ : D × D → R
is defined by Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉; note that for any x, y ∈ D we have
Dψ(x, y) ≥ 0 due to the convexity of ψ. In continuous-time, the mirror descent algorithm
is defined by the following differential equation, where t ≥ 0 is the time parameter:

d

dt
wt = −

(
∇2ψ(wt)

)−1∇Rn(wt). (15)

We now present an argument due to Kanade, Rebeschini, and Vaškevičius (2023), where it
was shown that early-stopped mirror descent algorithms satisfy the offset condition.

Lemma 21 As defined above, let G be any reference class of linear functions and denote
g? = fw?. Let ` be a differentiable and γ-strongly convex loss function in its first argument
(cf. Appendix A.1). Fix an arbitrary initialization point w0 ∈ Rd and let (wt)t>0 be gener-
ated by the mirror descent flow (15). Then, for any ε > 0 there exists a (random) stopping
time t? = t?(Sn, w

?, w0) such that the following three deterministic conditions hold:

1. The stopping time satisfies the deterministic bound t? ≤ 2Dψ(w?, w0)/ε;

2. The early-stopped iterate wt? satisfies wt? ∈ {w ∈ Rd : Dψ(w?, w) ≤ Dψ(w?, w0)};

3. The estimator f̂ = fwt? satisfies the (G, `, ε, γ2 )-deterministic offset condition.

Proof For any t ≥ 0, let δ(t) = Rn(wt) − Rn(w?) + γ
2

∑n
i=1(fwt(Xi) − fw?(Xi))

2. Let
t? := inf{t ≥ 0 : δ(t) ≤ ε} A direct computation shows the following well-known identity:
− d
dtDψ(w?, wt) = 〈−Rn(wt), w

? − wt〉. By the γ-strong convexity assumption, it hence fol-

lows that for any t ≥ 0 we have − d
dtDψ(w?, wt) ≥ δ(t). Integrating both sides, it follows

that the following infimum is well defined and it satisfies all the conditions of this theorem:
t? = inf{0 ≤ t ≤ 2Dψ(w?, w0)/ε : δ(t) ≤ ε}.

Remark 22 Notice that the stopping time t? depends on the unknown reference point w?.
Thus, the above lemma establishes the existence of a point that satisfies the offset condition
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along the mirror descent flow. To obtain a procedure that recovers the excess risk guaran-
tees satisfied by this optimally stopped point, we could adopt a sample-splitting and model
selection approach, for instance, selecting the stopping time by running the star algorithm
on held out data.

At the same time, we remark that tuning the stopping time plays an analogous role to
tuning regularization parameters in explicitly penalized procedures such as ridge regression
or the lasso, where the optimal regularization parameter also depends on unknown properties
of the problem. For more detailed discussions, we refer to the below-cited references.

Observe that the above argument only involves the tools from convex optimization, yet
Theorem 8 readily implies probabilistic performance bounds for the estimator considered
above. Condition 1 in the above lemma establishes a statistical-computational trade-off.
Condition 2 determines the range of the early-stopped estimator. Condition 3 shows that the
early-stopped mirror descent estimator can be analyzed via offset Rademacher complexities;
indeed, this is the only known approach for obtaining sharp guarantees for this general class
of iterative regularization schemes (see (Kanade, Rebeschini, and Vaškevičius, 2023) for
further discussion and for discrete-time results). For more examples and further background
on iterative regularization, see, for example, (Bühlmann and Yu, 2003; Yao, Rosasco, and
Caponnetto, 2007; Raskutti, Wainwright, and Yu, 2014; Lin, Rosasco, and Zhou, 2016; Wei,
Yang, and Wainwright, 2019).

Appendix B. Deferred Proofs

B.1 Proof of Lemma 11

Fix any ε > 0 and let λ = (1 + ε)−1 ∈ (0, 1). Let λH = {λh : h ∈ H} and observe that by
the star-shapedness assumption we have λH ⊆ H. It follows that

Roff
n (PX ,H, γ) = λ−1Roff

n (PX , λH, λ−1γ) ≤ λ−1Roff
n (PX ,H, λ−1γ). (16)

We now proceed via a peeling argument. For any r1 ≥ 0, r2 > 0 denote H(r1, r2) = {h ∈ H :
EX∼PX [h(X)2] ∈ [r1, r2]}. Denote Rloc

n = Rloc
n (PX ,H, γ). Let H0 = H(0, γ−1Rloc

n ) and for
k = 1, 2, . . . , let Hk = H(λ1−kγ−1Rloc

n , λ−kγ−1Rloc
n )∪{h0}, where h0 denotes the identically

zero function. Since H = ∪k≥0Hk, by (16) we have

Roff
n (PX ,H, γ) ≤ λ−1

∑
k≥0

Roff
n (PX ,Hk, λ−1γ). (17)

Observe that by the definition of Rloc
n (cf. Definition 1) we have

Roff
n (PX ,H0, λ

−1γ) ≤ Roff
n (PX ,H0, 0) ≤ Rloc

n .

At the same time, for any k ≥ 1 we have h0 ∈ Hk and hence Roff
n (PX ,Hk, λ−1γ) ≥

0. Also, by (Bartlett, Bousquet, and Mendelson, 2005, Lemmas 3.2 and 3.4) we have
Roff
n (PX ,H(0, λ−kγ−1Rloc

n ), 0) ≤ λ−kRloc
n and consequently

0 ≤ Roff
n (PX ,Hk, λ−1γ) ≤ Roff

n (PX ,Hk, 0)− λ−1γ · λ1−kγ−1Rloc
n

= Roff
n (PX ,Hk, 0)− λ−kRloc

n ≤ Roff
n (PX ,H(0, λ−kγ−1Rloc

n ), 0)− λ−kRloc
n ≤ 0.
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Hence, using the two display equations above, the inequality (17) simplifies to

Roff
n (PX ,H, γ) ≤ λ−1Rloc

n = (1 + ε)Rloc
n .

Since the choice of ε > 0 is arbitrary, our proof is complete. �

B.2 Proof of Lemma 16

Let Φ ∈ Rn×d denote a matrix such that Φi,j = (Φi)j for any i ∈ {1, . . . , n} and j ∈
{1, . . . , d}. To simplify the notation let F = Fd,klin . For any S ⊆ {1, 2, . . . , d}, let ΦS ∈ Rn×|S|
denote the matrix obtained by keeping only the columns of Φ indexed by the set S and let

Sd,k = {S ⊆ {1, . . . , d} : |S| ≤ k}.

Observe that for any λ > 0 by Jensen’s inequality, the fact that x 7→ eλx is increasing, and
replacing maximum by a sum, we have

nRoff(SΦ
n ,F , γ)

= Eσ sup
〈w,·〉∈F

{
n∑
i=1

σi 〈w,Φi〉 − γ 〈w,Φi〉2
}

= Eσ sup
〈w,·〉∈F

{
〈Φw, σ〉 − γw>(Φ>Φ)w

}
= Eσ max

S∈Sd,k
sup

w∈R|S|

{
〈ΦSw, σ〉 − γw>(Φ>SΦS)w

}
≤ 1

λ
log Eσ exp

(
λ max
S∈Sd,k

sup
w∈R|S|

{
〈ΦSw, σ〉 − γw>(Φ>SΦS)w

})

≤ 1

λ
log

∑
S∈Sd,k

Eσ exp

(
λ sup
w∈R|S|

{
〈ΦSw, σ〉 − γw>(Φ>SΦS)w

})

≤ 1

λ
log

(∣∣∣Sd,k∣∣∣ max
S∈Sd,k

Eσ exp

(
λ sup
w∈R|S|

{
〈ΦSw, σ〉 − γw>(Φ>SΦS)w

}))
. (18)

We now proceed to upper bound the expectation inside the logarithm. For any matrix
A, denote its Moore-Penrose inverse by A†. Fix any S ∈ Sd,k. For any vector σ ∈ Rn,
the vector Φ>S σ belongs to the orthogonal complement of the null space of Φ>SΦS . Hence,
following (Rockafellar, 1970, Section 12, page 108), the following identity holds:

sup
w∈R|S|

{
〈ΦSw, σ〉 − γw>(Φ>SΦS)w

}
= sup

w∈R|S|

{〈
w,Φ>S σ

〉
− γw>(Φ>SΦS)w

}
= (4γ)−1σ>ΦS(Φ>SΦS)†Φ>S σ.

To simplify the notation, denote by H = ΦS(Φ>SΦS)†Φ>S the hat matrix, keeping the de-
pendence on an arbitrary fixed S ∈ Sd,k implicit. By the above equation, it follows that

Eσ exp

(
λ sup
w∈R|S|

{
〈ΦSw, σ〉 − γw>(Φ>SΦS)w

})
= Eσ exp

 λ

4γ

n∑
i,j=1

σiσjHi,j

 .
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We will now control the moment generating function of the above Rademacher chaos by
decoupling and comparison with Gaussian chaos. Let σ′ = (σ′1, . . . , σ

′
n)> be an independent

copy of σ. Let g = (g1, . . . , gn)> ∈ Rn be a vector of independent standard Normal random
variables and let g′ be an independent copy of g. Then, for some universal constant c1 > 0
we have

Eσ exp

 λ

4γ

n∑
i,j=1

σiσjHi,j


≤ Eσ,σ′ exp

λ
γ

n∑
i,j=1

σiσ
′
jHi,j

 (Vershynin, 2018, (Decoupling) Theorem 6.1.1)

≤ Eg,g′ exp

c1λ

γ

n∑
i,j=1

gig
′
jHi,j

 (Vershynin, 2018, (Comparison) Lemma 6.2.3).

Let ‖ ·‖op denote the operator norm and let ‖ ·‖F denote the Frobenius norm. Then, by the
Gaussian chaos moment generating function bound (Vershynin, 2018, Lemma 6.2.2), there
exist some universal constants c2, c3 > 0 such that for any λ ∈ (0, γc2/‖H‖op] we have

Eg,g′ exp

c1λ

γ

n∑
i,j=1

gig
′
jHi,j

 ≤ exp

(
c3λ

2

γ2
‖H‖2F

)
.

We will now plug in the above bound into (18). Notice that the hat matrix H has at most
|S| non-zero eigenvalues, all of which are equal to 1; hence,‖H‖op = 1 and ‖H‖2F ≤ |S|. It
follows that for any λ ∈ (0, γc2] we have

Eσ sup
w∈Rd,‖w‖0≤k

{
〈Φw, σ〉 − γw>(Φ>Φ)w

}
≤ 1

λ
log |Sd,k|+ c3λk

γ2
. (19)

Recalling the standard bound

|Sd,k| =
k∑
i=1

(
d

i

)
≤
(
ed

k

)k
and plugging in λ = γc2 in (19) yields the desired result

nRoff(SΦ
n ,F , γ) ≤ 1

γ

(
c−1

2 k log
ed

k
+ c2c3k

)
.

1

γ
log

(
ed

k

)
k.

�

B.3 Proof of Lemma 19

For any g, g′ ∈ G define the event

E(g, g′) =

{
R(g)−R(g′) ≤ Rn(g)−Rn(g′) + c1Cbdδ,n(g, g′)

}
.
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By the empirical Bernstein inequality (Maurer and Pontil, 2009, Thereom 11) applied to
the random variables (2bCb)

−1(`g(Xi, Yi) − `g′(Xi, Yi)) we have P(E(g, g′)) ≥ 1 − δ/m2.
Hence, defining the event E = ∪g,g′∈GE(g, g′), by the union bound P(E) ≥ 1− δ.

We will now show that on the event E, the estimator f̂ (mid) satisfies the offset condition.
First observe that on the event E(f̂ (ERM), g?) ⊆ E, the population risk minimizer g? belongs
to the set Gδ,c1(Sn) of the empirical almost minimizers. Define the diameter

Dmax
n = max

g,g′∈Gδ,c1 (Sn)
‖g − g′‖2n, where ‖g − g′‖2n =

1

n

n∑
i=1

(g(Xi)− g′(Xi))
2.

We may assume without loss of generality that Dmax
n > 0 since otherwise the offset condition

is trivially satisfied. Since g? ∈ Gδ,c1(Sn), it follows that ‖f̂ (mid)− g?‖2n ≤ Dmax
n . Also, since

Dmax
n > 0, there exists some function g′ ∈ Gδ,c1(Sn) such that ‖f̂ (ERM) − g′‖ ≥ Dmax

n /4.
Hence, on the event E it holds that

Rn(f̂ (mid))−Rn(g?)

≤ Rn

(
f̂ (ERM) + g′

2

)
−Rn(g?)

≤ 1

2
(Rn(f̂ (ERM))−Rn(g?)) +

1

2
(Rn(g′)−Rn(g?))− γ

32
Dmax
n ,

≤

(
1

2
c1Cb

√
Dmax
n log(2m/δ)

n
− γ

64
Dmax
n

)
+

1

2
c1bCb

log(2m/δ)

n
− γ

64
Dmax
n ,

≤
(

4c2
1C

2
b γ
−1 +

1

2
c1bCb

)
log(2m/δ)

n
− γ

64
‖f̂ (mid) − g?‖2n,

where the third line follows by the strong convexity of the loss function; the fourth line
follows by the fact that g′ ∈ Gδ,c1(Sn) and Rn(f̂ (ERM)) − Rn(g?) ≤ 0; the fifth line follows
by optimizing the quadratic function in

√
Dmax
n in the brackets and replacing Dmax

n by

‖f̂ (mid) − g?‖2n. By Remark 10, we have bCb ≤ γ−1C2
b and thus our proof is complete. �
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