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Abstract

High dimensional and heterogeneous count data are collected in various applied fields. In
this paper, we look closely at high-resolution sequencing data on the microbiome, which
have enabled researchers to study the genomes of entire microbial communities. Revealing
the underlying interactions between these communities is of vital importance to learn how
microbes influence human health. To perform structural learning from multivariate count
data such as these, we develop a novel Gaussian copula graphical model with two key
elements. Firstly, we employ parametric regression to characterize the marginal distribu-
tions. This step is crucial for accommodating the impact of external covariates. Neglecting
this adjustment could potentially introduce distortions in the inference of the underlying
network of dependences. Secondly, we advance a Bayesian structure learning framework,
based on a computationally efficient search algorithm that is suited to high dimensionality.
The approach returns simultaneous inference of the marginal effects and of the dependence
structure, including graph uncertainty estimates. A simulation study and a real data anal-
ysis of microbiome data highlight the applicability of the proposed approach at inferring
networks from multivariate count data in general, and its relevance to microbiome analyses
in particular. The proposed method is implemented in the R package BDgraph.
Keywords: Copula graphical models, Discrete Weibull, Link prediction, Structure learn-
ing, Microbiome

1. Introduction

Graphical modelling approaches allow to learn statistical dependences from multivariate
data. Among these, Gaussian graphical models are by far the most popular, thanks also
to their efficient implementations for high dimensional problems (Friedman et al., 2008;
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Mohammadi et al., 2023). In many applied fields, however, data are far from Gaussian. In
this paper, we consider the case of count data, such as the high-resolution sequencing data
collected routinely in genomic studies. It is not uncommon for these data to feature marginal
distributions that are skewed and with a large mass at zero. For this reason, transformations,
such as the logarithm or the centered log ratio, are typically applied to genomic data,
followed by Gaussian graphical modelling approaches on the transformed data. This is for
example the case of the two most used methods for microbiome data, SparCC (Friedman
and Alm, 2012) and SPIEC-EASI (Kurtz et al., 2015). These transformations require a
pseudo-count adjustment to be able to handle zeros and may therefore impact also the
network inference conducted downstream.

In the literature, extensions of Gaussian graphical models to non-Gaussian data can take
different forms but there is generally little research for the case of unbounded count data,
such as the genomic data that we discuss above. Roy and Dunson (2020) have recently pro-
posed a pairwise Markov random field model with flexible node potentials, while Cougoul
et al. (2019) have proposed a Gaussian copula graphical model to couple the contribution
from the marginal distributions with that of the underlying dependence structure. Con-
sidering microbiota systems as the specific application, they propose zero-inflated negative
Binomial marginals. Our work is linked to this second paper. On the one hand the use of a
Gaussian copula facilitates the integration of novel approaches with existing ones that rely
on Gaussianity, without the need for ad-hoc transformations. On the other hand, the use of
parametric marginal distributions, rather than the non-parametric empirical distributions
as in the popular non-paranormal approach (Liu et al., 2009), facilitates the inclusion in
the model of additional covariates, which are, for example, typically available in genomic
studies but often ignored due to methodological restrictions. These marginal effects, if left
unaccounted for, could distort the inference of the underlying network of dependences.

While there are no specific constraints in the choice of the parametric marginal model,
in this paper, we advocate the use of discrete Weibull regression for linking the marginal
distributions to external covariates (Klakattawi et al., 2018; Haselimashhadi et al., 2018;
Peluso et al., 2019). The simplicity of this distribution (a two-parameter distribution),
combined with the fact that the two parameters can jointly capture broad levels of dispersion
(from under to over), makes it quite an appealing candidate for multivariate count data with
a high number of random variables and/or external covariates, such as the microbiota data
that we consider in the real data example. This is because, firstly, for a large number of
count variables, one wants to avoid tuning the type of distribution for each variable, and,
secondly, for a large number of external covariates, a global requirement of over dispersion
at all levels of the covariates could prove too restrictive. Finally, an important feature of the
discrete Weibull distribution in the context of Gaussian copula graphical models, is the fact
that it is generated as a discretized form of a continuous Weibull distribution (see Figure
1). This creates a latent non-Gaussian space in the vicinity of the data, with a one-to-one
mapping with the latent Gaussian data, where the conditional independence graph resides.

A fundamental problem of copula graphical models for discrete data, bounded or un-
bounded, is the fact that the marginal distributions are not strictly monotonic. In this
setting, while the existence of a copula can still be guaranteed by Sklar’s theorem (Sklar,
1959), its uniqueness can not. In fact, the class of copulas compatible with a given dis-
crete dataset can be quite large, leading to potential biases in the inferential procedure
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(Genest and Neslehové, 2007). On the one hand, this problem is alleviated by the pres-
ence of covariate dependent marginals, particularly when the covariates are continuous and
the underlying network does not depend on the covariates (Yang et al., 2020). This can
be seen as a second advantage of incorporating covariates in the marginal models, when
the objective is to perform structural learning for count data. On the other hand, more
advanced inferential procedures are required, that account for the fact that each observed
count is associated with an interval in the latent Gaussian space. This relies on the ideas
of extended rank likelihood (Hoff, 2007) and has been used also in the context of Gaussian
copula graphical models, both in a frequentist setting (Behrouzi and Wit, 2019) and in a
Bayesian setting (Dobra and Lenkoski, 2011; Dobra and Mohammadi, 2018; Mohammadi
et al., 2017; Murray et al., 2013). While extended rank likelihood has been developed for
ordinal (bounded) data, in this paper we develop these approaches for Gaussian copula
graphical models on unbounded count data with parametric marginals. The use of these
approaches avoids the need for ad-hoc data transformation procedures that condense each
interval into one point, with choices such as the right-most point of the interval (essentially
using the non-paranormal approach of Liu et al. (2009, 2012) on count data) or the point
corresponding to the median of the distribution function at the two extremes of the inter-
val (Cougoul et al., 2019). These choices, while efficient, may not work well with skewed
distributions, or generally distribution functions that are highly stepwise.

Finally, we conduct inference in a Bayesian framework, leading to a novel Bayesian
structure learning procedure in the context of Gaussian copula graphical models with para-
metric marginals, extending the efficient computational approaches that have been recently
proposed for this class of models (Mohammadi and Wit, 2015; Mohammadi et al., 2023),
and providing an alternative to frequentist approaches (Cougoul et al., 2019). Appropriate
choices of a prior distribution on the graphs can be made to encourage sparsity. Impor-
tantly, uncertainty on the graph learning is fully quantified by the procedure and can be
summarized in various ways, such as by calculating posterior probabilities for each edge
via Bayesian averaging. This plays a crucial role, particularly in high dimensional settings,
where model selection methods for regularized approaches do not work well and where there
is typically a large uncertainty around the optimal graph.

In conclusion, this paper presents a novel methodology for structural learning from high
dimensional heterogeneous count data. Section 2 will describe the details of the methodology
proposed, whose implementation has been included in the R package BDgraph (Mohammadi
and Wit, 2019). A simulation study in Section 3 and a real data analysis of microbiome data
from the Human Microbiome Project (HMP Consortium, 2012) in Section 4 will show the
usefulness of the proposed approach at inferring networks from high dimensional count data
in general, and in the context of microbiota data analyses in particular. Finally, Section 5
will draw some conclusions and point to future research directions.

2. Methods

In this section, we present the technical details of the proposed method, starting with the
definition of a Gaussian copula graphical model and of the discrete Weibull (DW) regression
used for the marginal components, followed by the Bayesian inferential procedure.
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2.1 Gaussian copula graphical model with DW marginals

Let Y = (Y1,...,Y,) be a vector of count variables. In the case of microbiota systems
that we consider in Section 4, these are abundances of the individual microbes or, more
commonly, of the Operating Taxonomic Units (OTUs) into which they are clustered, e.g.,
bacterial species. Let Fj(-), j = 1,...,p, be the cumulative distribution functions associated
to the p variables, respectively. In a copula graphical model, the joint distribution of the
variables is described via a copula function C(-) that couples the marginal distributions
F;(-) into their joint dependence. Formally,

P(Yi S ylv"' 7)/}3 S yp) = C(Fl(y1)7 7Fp(yp) ’@)7

where © are the parameters describing the copula function C(+). In the case of a Gaussian
copula (Hoff, 2007; Mohammadi et al., 2017)

PYy<wy1,....Y, <y = q)p(q)_l(Fl(yl))a ceey @_I(Fp(yp))‘R)»

where ®,(-) is the cumulative distribution function of a p-dimensional multivariate normal
with a zero mean vector and correlation matrix R, while ®(-) is the standard univariate
normal distribution function.

The dependence structure is captured by the inverse of the correlation matrix K = R™!,
typically called the precision or concentration matrix. In particular, the zero patterns
in this matrix define the conditional independence graph in the latent Gaussian space,
following from the theory of Gaussian graphical models (Lauritzen, 1996). In general, the
Markov properties of the discrete variables Y cannot be recovered fully from the Markov
properties of the latent Gaussian variables. Indeed, discrete data are characterized by
higher-order dependences than the second-order dependences that characterize Gaussian
variables. Abegaz and Wit (2015) show formally how the closer the discrete marginal
distributions are to continuous distributions, the better the recovery of the conditional
independence structure of Y from the Gaussian copula. In the presence of highly discrete
data, additional dependences among the discrete data that are not modelled by the Gaussian
copula can be considered as being less relevant, since they emerge from the marginals (Dobra
and Lenkoski, 2011).

In the context of copula graphical models, the marginal distributions F}j(-) are typically
considered as nuisance parameters and estimated by their empirical counterpart. However,
in real-world applications, such as in genomic studies, external covariates are often available
and there is an interest in estimating their effect on the outcome while accounting for the
multivariate nature of the data. In this paper, we argue how, accounting for external
covariates at the marginal level is important also for structural learning. Indeed, when the
dependence structure does not vary with the covariates, adjusting for marginal effects has
the two benefits of widening the range of the marginal distributions at each discrete point
and of correcting for the bias in the estimation of multivariate dependences induced by the
marginal effects, respectively.

In this paper, we propose to model the marginal components, and their link with covari-
ates, via a discrete Weibull regression (Peluso et al., 2019), although other count distribu-
tions can be used at this stage. Formally, let X = (1, X1,..., X4)! be a vector of covariates.
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Then, the conditional distribution of Y; given X is modelled by:

Bj(x)
)

Fi(yj|X =2) =1 — gj(z)¥tD y; =0,1,..., (1)

where the function ¢;(-), corresponding to the parameter g of the distribution, takes values
between 0 and 1, while 3;(-) is associated to the parameter 3 and takes values in the positive
real line. We link the parameters to the external covariates using the logit and the log links,
respectively, that is

(@) = 226

" TTep@e) M@= exp(z';)), (2)

with 6; and «; denoting the regression coefficients associated to the Y; marginal component
of the model. For other choices of link functions, see Haselimashhadi et al. (2018). The
simplest case of only the intercept in each model corresponds to the case of no external
covariates, i.e., simply discrete Weibull marginal distributions. In the real data analysis, we
also consider a model with an additional zero inflation component 7;(2). This is common
in the microbiome literature due to the sparsity of the data (Cougoul et al., 2019), although
we find that this zero-inflated model is rarely selected against the simpler model.

A few properties of a discrete Weibull distribution make it an ideal candidate for mod-
elling high dimensional count data. In particular:

1. F;(0|X =) = P(Y; =0|X =x) =1 — gj(x), thus the parameter ¢ models directly
the proportion of zeros in the data and the effect of covariates on this. This may
be useful for datasets with a large percentage of zeros. In the case of a zero-inflated
model, F;(0|X =) = m;j(x) + (1 — mj(x))(1 — gj(x)), with 7;(x) accounting for the
excess of zeros not contemplated by the discrete Weibull distribution.

2. The two parameters of the distribution are sufficient to capture both under and over
dispersion levels, while still being a parsimonious choice (e.g., same number of param-
eters as the commonly used negative Binomial distribution). This has been shown
to be useful on real data analyses of count data, particularly in the case of under
dispersion (Peluso et al., 2019). Although micriobiome data are typically highly over
dispersed, the presence of a large number of external covariates could make a global re-
quirement of over dispersion at all levels of the covariates @ too restrictive. Moreover,
capturing both over and under dispersion is appealing when modelling any generic
high dimensional multivariate count data, as it avoids the fine tuning of the most
appropriate marginal distribution for each variable.

3. The quantiles of the distribution have a closed-form expression, with the 7 quantile,
for 7 > 1 — g, given by Peluso et al. (2019),

o) -7 1/8
o (570

where [-] denotes the ceiling function. This means that a re-parametrization based
on the median is also possible, e.g., when quantification of the covariate effects is of
primary interest (Burger et al., 2020).
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4. The distribution is developed as a discretized form of the continuous Weibull distribu-
tion (Chakraborty, 2015). Namely, by defining the cumulative distribution function
(cdf) of a continuous Weibull distribution by

Y

ﬁ)ﬁ]a y >0,

Few(y;q,8) =1 —exp [— (( og
—logq

one can easily show that the probability mass function of the discrete Weibull distri-
bution, associated to the cdf in Equation 1, is given by

y+1
Fwia,8) = ¢ —qV = Fow(y+1)— Fow (y) = / few(t)dt  y=0,1,2,...
y

This creates a one-to-one connection between the latent continuous Weibull space,
with the same parameters as the discrete Weibull distribution, and the Gaussian
space, as depicted schematically in Figure 1.

3 ° 1 = o4 —
3 3 e o
B I|I | )
s D. o — ER S
o 1 2 3 4 5 6 7 0 2 4 6 8 -3 -2 -1 o 1 2 3
y y z
(a) Discrete Weibull (b) Latent Continuous Weibull (¢) Latent Gaussian

Figure 1: Schematic connection between (a) the discrete Weibull probability mass function
fly;q = 0.7, 8 = 1.5), (b) the underlying continuous Weibull density fow (y;q, ) and (c)
the latent Gaussian z = ® ! (Fcow (y; ¢, 3)). Each colour relates to the probability associated
to the corresponding value (here microbial abundance) of the discrete random variable.

As it is clear also from the figure, each discrete observation is linked to an interval in
the continuous space. This is the case for copula models on discrete data in general and
will require special attention when it comes to inference, as we will discuss more in details
in the next section.

2.2 Bayesian inference for a DW graphical model

Inference for copula graphical models involves estimation of the marginals and of the network
component. A copula formulation enables us to learn the marginals separately from the
dependence structure of the p random variables.



BAYESIAN STRUCTURAL LEARNING WITH PARAMETRIC MARGINALS

We first concentrate on the marginal components, that is the estimation of the regression
coefficients 6; and v;, j = 1,...,p. Given n observations on component Y;, denoted with
the vector y;, and on the d-dimensional vector of covariates, stored in the n x d matrix x
with &; the vector corresponding to the it" row, the likelihood for component j is given by

(ea‘%j ) )<e$$7j )

n xtl.; Yij xl0; (wij +1
evri’J e’
Li(yj, = | 0;,7) =[] (M) - (HM) ’

=1

where we consider the logit and log links on the ¢ and 3 parameters, respectively. Based
on this likelihood, we perform inference on the marginal components using an adaptive
Metropolis-Hastings scheme, as in Haselimashhadi et al. (2018). For the simulations and
real data analysis in this paper, we set standard Gaussian priors on the regression coefficients
0; and «;. This step of marginal fitting is conducted offline, prior to the next steps for the
fitting of the copula. The two-step procedure is an efficient approximation of the joint
estimation problem and is often used in copula graphical modelling (Joe, 2005).

Once the marginals are estimated, inference of the network component requires an in-
verse mapping from the observed to the latent Gaussian space. As depicted visually in
Figure 1, each observed discrete value corresponds to an interval in the latent Gaussian
space with the same associated probability. Formally, given the n x p observed data y and
the fitted marginals, the Gaussian latent variables z are constrained in the intervals

Dr(y) = {z € R : &7 (F(yi; — 1)) < 25 < 27 (Fy (i) } (3)

where we indicate with Fj; the cdf of Y; when X = x;. Rather than condensing these
intervals into a single point, as in Cougoul et al. (2019), we retain this information within
the MCMC sampling scheme, similar to the approach of Dobra and Lenkoski (2011) and
Mohammadi et al. (2017) for ordinal data.

In particular, the extended rank likelihood function for a given graph G and associated
precision matrix K = R™! is defined as

Lg(z € Dr(y); K,G) :/ Pz | K,QG) dz
Dr(y)

where P(z|K,G) is the profile likelihood in the Gaussian latent space:
1
P(z|K,G) x |K|"/? exp{—zTr(KU)}

with U = z'z the sample moment. The likelihood is combined to priors to lead to the
posterior

P(K,G | z€Dp(y)) x Lp(z € Dr(y); K,G) P(K | G) P(G) (4)

where P(K | G) denotes the prior distribution on the precision matrix K for a given graph
structure G and P(G) denotes a prior distribution for the graph G. Similar to Mohammadi
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et al. (2017), one can show that the posterior distribution of each marginal Z; conditional
on the other Z and on the precision matrix K is given by a Gaussian distribution

Kjkzk 1 >
Kj; " Kj/

Zj’K,ZV\{j} =z NN(—

truncated on the interval
(@7 (F5(v; = 1) < 2 < &7 (F(¥))]

with Fj(-) the discrete Weibull cdf linking Y; to «.

As regards to the prior specification on the graph G, we consider an Erdos-Rényi random
graph with a link inclusion probability set to 0.2, representing the case of a sparse graph,
unless stated otherwise. For other options, see Dobra and Lenkoski (2011) and Mohammadi

and Wit (2015). As for the precision matrix K, conditional on a given graph G, we consider
a G-Wishart distribution, defined by

1

PIKIC) = 125 D)

|K|6=2/2 exp {;Tr(DK)} :

where b > 2 is the degree of freedom, D is a symmetric positive definite matrix, and I (b, D)
is a normalizing constant (Roverato, 2002). For the simulations and real data analysis in
this paper, we set b = 3 and D = I, following Mohammadi et al. (2023).

As the space of possible graphs is very large, computationally efficient search algorithms
are needed to sample from the posterior distribution (4). To efficiently explore the graph
space, we consider the birth-death Markov chain Monte Carlo (BDMCMC) search algo-
rithm developed by Mohammadi and Wit (2015). In particular, the algorithm explores the
graph space by either adding (birth) or deleting (death) an edge to a graph G = (V, E),
independently of the rest and via a Poisson process with birth/death rates given by

P(G*, K*|z)

R.(G,K) = min{ PG K|z

,1}, for each e € {EUE}, (5)

where G* = (V, EU{e}) for the birth of an edge e € E, while G* = (V, E\ {e}) for the death
of an edge e € E, and K* is the corresponding precision matrix. Since the birth/death
events are independent Poisson processes, the time between two successive events has a
mean waiting time given by

1
Zee{EUE} R(G,K) .

Based on the above birth/death rates and waiting times, the birth and death probabilities
that govern the move to a new graph are given by

W(G,K) = (6)

P(birth/death of edge e € {F U E}) = R.(G,K) x W(G, K). (7)

The pseudo-code for the BDMCMC search algorithm for sampling from the target pos-
terior distribution (4) is reported in Algorithm 1. The first step of Algorithm 1 is to update
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Algorithm 1: BDMCMC search algorithm for GCGM with DW marginals

Input: A graph G = (V, E) with a precision matrix K and data y and x.

for N iteration do

Step 1: Sample the latent data for each marginal j, updating the latent n
values z; from their full conditional distribution:

Kz, 1
Zi\ K, Zy\ i = ~N<— i )
iIKS Zy\gjy = 2 K, K;;)

k

each truncated on its corresponding interval in D, (y) from Equation (3);
Step 2: for all the possible jumps in parallel do
L Compute the birth and death rates by Equation 5;

Compute the waiting time by Equation 6;
Sample the graph based on the birth/death probabilities in Equation 7;
Step 3: Sample the precision matrix, according to the updated graph;

Output: Samples from the target posterior distribution (4).

the latent variables given the observed data. Then, in step 2, on the basis of the sampled
latent data, the algorithm computes the birth/death rates. This is done in parallel since
the rates associated to each edge can be calculated independently of each other. For details
on how to calculate the birth/death rates see (Mohammadi et al., 2023, Section 2), while
Figure 2 provides a visualization of the algorithm. Finally, step 3 of the algorithm can be

Target distribution BDMCMC search algorithm Estimated distribution
G G G
G ﬁ}‘,ﬁﬁﬁﬁﬁ ::: S -Gy
Gyt \)vz -Gy
—
- Ggow Gyl—
Gs —|\ > Gg
— Gef : Ge—
Il I i | | | |
P(G|data) ty tz 3 ty tstg t7  time P(G|data)

Figure 2: Graphical representation of the BDMCMC search algorithm over the graph space
for the Step 2 of Algorithm 1. The left panel shows the target posterior distribution of the
graphs, while the right panel represents its estimation based on the total waiting times of
the graphs visited by the algorithm. The middle panel visualizes how the algorithm explores
the graph space, where {W7, Wa, ...} are the waiting times and {¢;,t2,...} are the jumping
times of the algorithm. This figure is adapted from Mohammadi et al. (2023).

done by exact sampling from a G-Wishart distribution, as in Lenkoski (2013).



VINCIOTTI, BEHROUZI, MOHAMMADI

Following from the Bayesian inference of the Gaussian copula graphical model with
discrete Weibull marginals, one can extract any information of interest for the analysis.
In particular, from the marginal components, one obtains the posterior distribution of
the regression coefficients and can investigate any effect of interest, while from the graph
posterior, one can calculate the posterior edge inclusion probabilities:

YR e e GOYW(@GED, KW)

P(ed E |data) = 8
(edge e € B ldata) = SELG= 0 8)

where N denotes the MCMC iterations (after burn-in) and 1(e € G®) = 1 if e € G®
and zero otherwise. These probabilities capture the full uncertainty on the graph learning,
which is particularly useful in high dimensional settings such as the micriobiome data.

3. Simulation study

The main objective of the proposed method is that of learning the underlying structure of
dependence from complex and heterogeneous count data, which are routinely generated in
genomic studies. We therefore conduct a simulation study to measure the performance of
the method in this setting.

For the simulations, we consider networks with p nodes and a sparse random graph
structure. Given a graph G and marginals Fj(-), j = 1,...,p, we use the following procedure
to simulate count data. We first generate a precision matrix from a G-Wishart distribution
with b = 3 and D = I,, and standardize it to the inverse of a correlation matrix. We
then draw n multivariate normal samples from N,(0, K~1). This generates a matrix z
of dimension n x p. Finally, we obtain the discrete data using y;; = F ;1(<I>(zij)), for
i =1,...,nand j = 1,...,p, with ®(-) the standard normal distribution and Fj(-) a
distribution function of a specified shape as detailed in each study below.

We evaluate the performance of the method in terms of parameter estimation and graph
recovery. For the first, we compare the true precision matrix K with the posterior mean
estimate K using the Kullback-Leibler divergence between the corresponding mean-zero
multivariate Gaussian distributions. This is available in closed form and is given by (Pardo,
2018):

KL(K)=05(Tr(KK ') + Tr(KK ') — p).

Instead, for graph recovery, we use the function auc in the pROC R package to calculate the
area under the Receiver Operating Characteristic (ROC) curve. The latter is obtained by
setting cutoffs on the posterior edge inclusion probabilities in Equation (8). At each cutoff,
the z and y coordinates of the point on the curve are given by the false positive rate and
the true positive rate, respectively, of the estimated graph for that cutoff and with respect
to the true graph structure.

3.1 Effect of increase in p, graph density and zero inflation

In a first simulation study, we evaluate the performance of the proposed Gaussian copula
graphical model with discrete Weibull marginals, which we abbreviate to DWGM. In particular,
we test how the performance of the method is affected by the dimensionality p, the sparsity
of the graph G and the level of zero inflation .

10
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We generate data as described before, with marginals F}j(-) given by discrete Weibull
distributions linked to one external covariate. In particular, we consider a binary covari-
ate X drawn from a Bernoulli(0.5), e.g., observations split into two groups (like the two
environments, stool and saliva, in the real application in Section 4). For the regression
parameters in Equation (2), we set a constant log(5(z)) = 7o = log(0.7) for all p variables,
while ¢ values that differ across the two conditions and the p variables are obtained by set-
ting log(q(x)/(1 —q(x)) = Oy + 01z, with 6y drawn from a N(0,0.1) and 6; from a N(2,0.01).
This choice of parameters leads to generally over-dispersed data (Peluso et al., 2019).

We set n = 100, p = 50, a link inclusion probability in G equal to 0.05 and no zero
inflation (v = 0). We then measure how the performance of the method varies when
increasing p to 100, the graph density to 20% or « to 0.2 for all predictors. Figure 3
shows the AUC and KL values across 50 simulated datasets. For each dataset, we run the
Bayesian inferential procedures for 1000 iterations for each marginal and 10k iterations for
the structure learning (Algorithm 1), and set the priors as specified in the description of
the method. As expected, and in line with similar studies in the literature, we find that
the performance deteriorates as p increases, both in terms of graph recovery (Figure 3, top
left) and parameter estimation (Figure 3, top right). Similarly, we find a deterioration in
both performance measures as the link inclusion probability increases from 0.05 to 0.2, i.e.,
the denser the graph becomes (Figure 3, middle panel), and as the level of zero inflation
increases from 0 to 0.2 (Figure 3, bottom panel). Indeed, an increase in zero inflation results
in an increase in the percentage of zeros, which goes on average from 32% when m = 0 to
45% when m = 0.2 across the 50 predictors. This induces a weaker signal on the dependence
structure.

Zero inflation is expected to have an effect also on the estimation of the marginal effects.
Figure 4 shows how estimation of the marginal effect 8, is more accurate the lower the level
of zero inflation, with a bias that decreases the larger the sample size n is. The bias has
an effect also on the identification of the covariate X as an important predictor. When
7 = 0.8 and n = 100, 2.8% of the times the predictor is not included in the marginal model
according to the 90% High Posterior Density (HPD) interval on 6; across the 50 predictors.
This percentage reduces to 0.01% when there is no zero inflation (7 = 0), and goes down
to 0% when n = 1000 for all cases.

The computational time of this simulation study is mostly affected by p. In particular,
an analysis on one of the datasets with p = 50, n = 100, link inclusion probability equal to
0.2 and zero inflation m = 0 required approximately 80 seconds, compared to 333 seconds
when p = 100.

3.2 Effect of covariate adjustment on structural learning

In a second simulation study, we evaluate the effect of covariate adjustment on structural
learning. To this end, we consider the same generative process as in the previous section and
concentrate on the case p = 50, n = 100 and 0.2 link inclusion probability. As a benchmark,
we also consider the case of no covariates in the marginal models, i.e., ; = 0. We then
compare the proposed DWGM with the Gaussian copula graphical model (GCGM) for ordinal
data of Mohammadi et al. (2017), implemented in the R package BDgraph. We use 10k
iterations also in this case and the same prior specifications. In the absence of covariates,
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Figure 3: Performance of DWGM, in terms of accuracy of network recovery (left) and
parameter estimation (right), decreases with increasing dimensions (top), graph density
(middle) and zero inflation (bottom). Data are simulated from a Gaussian copula graphical
model with DW marginals. Boxplots are the result of 50 simulations.

the GCGM method is similar to our approach, the only difference being the (non-parametric)
empirical marginal distributions used in GCGM versus the parametric distributions with an
unbounded support for the marginals in DWGM. Clearly, being non-parametric, GCGM does
not lend itself easily to the inclusion of external covariates in the marginals.
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Figure 4: Performance of DWGM, in terms of estimation of the marginal effects, increases
with sample size n and decreases with zero inflation 7. Data are simulated from a Gaussian
copula graphical model with DW marginals with zero inflation (7 = 0.2) and without
(m = 0), under two sample sizes (n € {100,1000}). Boxplots are for the mean posterior
estimates of #; across the p predictors and 50 simulations. The dotted horizontal line
corresponds to the average true value of 6; across the 50 predictors.

Figure 5 evaluates the two approaches in terms of graph recovery (left) and parameter
estimation (right) across 50 simulations. As expected, in the absence of covariates (¢; = 0),

DWGM vs GCGM (AUC) DWGM vs GCGM (KL)
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Figure 5: Performance of DWGM, in terms of accuracy of network recovery (left) and
parameter estimation (right), is compared with a Gaussian copula graphical model with
non-parametric marginals (GCGM). Data are simulated from a Gaussian copula graphical
model with n = 100, p = 50, a link inclusion probability of 0.2 and DW marginals without
(01 = 0) and with (6; = 2, on average across the p variables) the presence of an external
covariate X. Boxplots are the result of 50 simulations.
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the two approaches perform similarly, although the correctly specified parametric marginals
lead to a better estimation of the precision matrix. In contrast to this, the improvement
in structural learning after adjusting for covariate effects is clear when data are simulated
with a 6; marginal effect equal to 2 on average across the p variables, both in terms of graph
recovery and parameter estimation. Looking closely at graph recovery, and estimating a
graph structure by setting a 0.5 cutoff on the posterior edge probabilities, we find that the
GCGM estimated graph is in general denser (14% density on average versus 9% for DWGM),
with a worse false positive rate (9% on average versus 3% for DWGM) and only a marginally
better false negative rate (66% versus 67% for DWGM). This suggests that not correcting for
the covariates at the marginal level may result in the detection of spurious dependences
between the variables, as noted also in other studies (Vinciotti et al., 2016, 2023).

The computational time for one of the datasets was about 79 seconds for DWGM and 36
seconds for GCGM. The difference is mostly attributed to the fitting of the marginal distri-
butions. This has a negligible computational time in GCGM, while MCMC sampling for the
marginal fitting in DWGM required about 45 seconds. Future versions of the BDgraph package
will consider a parallel implementation for the marginal fitting across the p variables.

3.3 Effect of miss-specified marginal distributions

In a third simulation study, we evaluate the robustness of DWGM to count data simulated
with negative Binomial marginals. We consider a similar setting to the first simulation, i.e.,
one binary covariate, a constant dispersion parameter ¢ = 0.5 and a mean p dependent on
X, with log(u(x) = 6 + 61z, with 6y drawn from a N(0,0.1) and #; from a N(2,0.01) across
the p variables. As with the second simulation, we fix n = 100, p = 50 and a link inclusion
probability equal to 0.2.

We compare our proposed method with a Gaussian copula graphical model with negative
Binomial regression marginals, implemented in the R package rMAGMA (Cougoul et al., 2019).
As well as using a different distribution for the marginals, inference in rMAGMA is conducted
using a frequentist paradigm and, in addition, it does not make use of the extended rank
likelihood approach. Indeed, the fitted marginals are used to transform the data into the

Fi(yi; — 1) + F](yl]))
2 )

latent variables by taking the mean of the interval, i.e., z;; = <I>_1(

and then graphical lasso is used on the transformed data.

Figure 6 reports the accuracy of the methods in terms of graph recovery (left) and
parameter estimation (right). For rMAGMA, which is based on penalised inference, the ROC
curve is constructed across the path of solutions generated by the tuning penalty parameter,
while the Kullback-Leibler is calculated based on the optimal model selected using the
stability approach for regulation selection (stars) criterion (Liu et al., 2010).

The results show, firstly, similar results for DWGM compared to the previous simulations
(Figure 3 and Figure 5 for p = 50, n = 100 and 20% graph density), suggesting a robustness
of DWGM against the marginal model specification. Secondly, DWGM has a better performance
than rMAGMA, particularly when it comes to the accuracy of the estimated precision matrix
K of the optimal model. Since rMAGMA is in fact correctly specified in this simulation, we
speculate that the posterior edge probabilities of a Bayesian structural learning procedure
lead to a better separation between the presence/absence of links than the edge weights
calculated across the penalised path of the frequentist rMAGMA approach.
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Figure 6: Performance of DWGM, in terms of accuracy of network recovery (left) and
parameter estimation (right), is compared with a Gaussian copula graphical model with
parametric NB marginals (rMAGMA). Data are simulated from a Gaussian copula graphical
model with n = 100, p = 50, a link inclusion probability of 0.2 and NB marginals. Boxplots
are the result of 50 simulations.

4. Inferring the network of the microbiota

In this section, we use Gaussian copula graphical models with discrete Weibull marginals
to recover the network of interactions between microbial species. Interactions between
microbes are fundamental in shaping the structure and functioning of the human microbiota,
and their malfunctioning has been linked to a number of medical conditions. A lack of
understanding of how these interactions shape and evolve makes it difficult to predict their
relevance in biomedical fields. For these reasons, microbiota systems have been intensively
studied in recent years. Large consortia have developed technologies for the collection
of high-throughput data of the microbiome, e.g., the Human Microbiome Project (HMP
Consortium, 2012) and the Metagenomics of the Human Intestinal Tract (MetaHIT) project
(Qin et al., 2010). These have paved the way for further studies investigating the association
of the micriobiota functioning with a number of medical conditions, such as obesity (Le
Chatelier et al., 2013) and diabetes (Pedersen et al., 2016), as well as with the response to
certain treatments, such as immunotherapy (Lee et al., 2022).

In this illustration, we focus in particular on the gut and oral microbiome. The microbial
communities in the mouth and colon are connected anatomically via the saliva. However,
the extent to which oral microbes reach and colonize the gut is yet under debate (Rashidi
et al., 2021). To resolve this long-standing controversy, many studies have been devoted
to study jointly the human stool and saliva microbiome profiles. To this end, we apply
our methodology to recover a core network of interactions between microbes across the two
different environments. Crucially, the method that we have developed takes into account
both the fact that the OTU abundances may differ marginally between the body sites (stool
and saliva) and that the data may be affected by potential experimental effects.

As in Cougoul et al. (2019), we retrieve the 16S variable region V3-5 data from the
Human Microbiome Project (HMP Consortium, 2012) and perform the analysis at the level
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of Operating Taxonomic Units (OTUs). After filtering samples with less than 500 reads, we
consider micriobiomes from 663 healthy individuals, with microbial concentration measured
from either stool or saliva. We then restrict our attention to the 155 OTUs which are present
in at least 25% of the samples and with more than two distinct observed values in both the
saliva and stool samples. Finally, in order to account for varying sequencing depths change
significantly between samples, we estimate the library size of each sample by the geometric
mean of pairwise ratios of OTU abundances of that sample with all other samples (Cougoul
et al., 2019).

In the next sections, we use the proposed approach on the micriobiome data with p = 155
OTUs (the nodes of the network) and n = 663 samples, accounting for the marginal effects
of the location in the body (stool or saliva) and the library size of each biological sample.

4.1 Accounting for covariates via DW regression marginals

We fit discrete Weibull marginal models, linking both parameters ¢ and S to body site and
sequencing length. We take sequencing length in the log scale, which is more in line with
its use in the literature as an offset of a negative Binomial model (Cougoul et al., 2019).
Including also an interaction between the two covariates leads to 8 regression parameters
per marginal component. As the data are sparse (with on average a percentage of zeros per
OTU equal to 62%, and ranging from 40.7% to 75%), we fit also a zero-inflated discrete
Weibull distribution, with a zero inflation parameter m;(x) for component j, which we let
vary between the two body sites. On each of the two additional parameters, we place a
Beta(1,1) prior distribution.

For each marginal and for each of the two models (discrete Weibull and zero-inflated
discrete Weibull), we use 10k MCMC iterations, retaining the last 25% as samples from the
posterior distribution. Trace plots of the regression parameters showed that this number of
iterations was sufficient to reach convergence. A comparison of the zero-inflated versus the
standard DW regression model using the Bayesian Information Criterion (BIC) showed that
24 out of the 155 OTUs necessitated the zero-inflated component of the model. As a matter
of comparison, we also fitted negative Binomial, using its most common formulation with a
mean dependent on the covariates and a constant dispersion parameter, as in Cougoul et al.
(2019). Here we found that 15 out of the 155 OTUs were better fitted with a zero-inflated
NB model. These results show how using a zero-inflated model upfront because the data are
very sparse, as done in most of the literature on micriobiome analyses, may not necessarily
be the best option and that conducting model selection between the two models, as done
in this paper, is a better choice.

Figure 7 reports the results, whereby for each OTU we consider the best model between
the zero-inflated and the non-zero inflated version. The BIC comparison shows similar per-
formance between discrete Weibull and negative Binomial models, with some cases showing
a significantly better fit for discrete Weibull. The top right plot shows the dispersion ratio
(i.e., the variance divided by the mean) from the fitted DW marginals for each observation
and each OTU. The plot shows how the data are highly over-dispersed in both conditions,
a setting where NB is typically the default choice. Finally, the bottom plots show the OTU
with the largest BIC difference (left plot), i.e., the OTU best fitted by DW when compared
to NB, and the OTU with the lowest BIC difference (right plot). In both cases, we plot the
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Figure 7: Top: Boxplot of BIC differences between the NB model and the DW model
across all 155 OTUs (left) and dispersion levels from the fitted DW model for each OTU
and each observation, split by body site (right). Bottom: Cumulative distribution functions
(empirical and fitted) corresponding to a specific body site for the OTU best fitted by DW
(BIC difference = 68.26235, left) and by NB (BIC difference = -31.07967, right) .

cumulative distribution functions of DW and NB associated to the body site which shows
the biggest difference, while taking an average of the parameters across the normalizing
factor. Superimposing these fitted distributions on the empirical cumulative distribution
functions associated to the two groups shows the extent of the discrepancy between the two
models.

Including covariates in the inference of micribiota systems has the advantage that analy-
ses that are typically conducted on a microbe by microbe basis, such as Lee et al. (2020), are
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now naturally embedded in the overall joint model. Indeed, one can inspect the estimation
and inference of any marginal effect of interest. In this particular analysis, there is interest
in detecting the OTUs that are differentially expressed between the two different body sites.
Figure 8 shows how all 155 OTUs differ significantly between the two body sites. Further-
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Figure 8: 90% High Posterior Density (HPD) intervals of the 6 (left) and + (right) regression
parameter corresponding to the body site covariate, sorted according to the median of the
0 regression coefficient across the posterior samples. Intervals that do not contain the zero
are coloured in red.

more, the plots show how the regression coefficient of the ¢ parameter is highly significant,
suggesting large differences between the proportion of zeros in the two environments for
most OTUs. In contrast to this, the regression coeflicient of the  parameter is less signif-
icant. This may in fact indicate that a simpler DW regression model, with a constant 3
parameter, may be sufficient for some of the OTUs. As shown in the simulation (Figure
5), these marginal effects, if left unaccounted for, could significantly distort the inference of
the micriobiota system, which we discuss in the next section.

4.2 Bayesian structure learning of the microbiota system

We now turn to the main task of recovering the underlying network of dependencies between
the OTUs. The space of possible graphs among 155 nodes is huge, creating a statistical and
computational challenge at a level that has not been considered before in the context of
Bayesian structure learning. Thus a few checks and considerations were made. Firstly, we
start the MCMC chain by setting the initial graph to the empty graph, as we expect a sparse
graph. Secondly, we perform the structure learning for a long number of iterations, namely
10 million MCMC iterations. Thirdly, we check the trace of the posterior edge probabilities
and graph sizes for convergence. We also check the sensitivity to the graph prior, by setting
the link inclusion probability once to 0.2, the default value in BDgraph, and a second time to
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0.04, which is the sparsity level of the graph detected by rMAGMA using zero-inflated negative
Binomial as marginals and the stability selection criterion stars for model selection (Liu
et al., 2010). Overall, we observe a high correlation among the edge posterior probabilities
from the two chains (0.97). For the rest of the analysis, we consider the chain with link
inclusion probability 0.04, which resulted in the highest log-likelihood when evaluated at
the posterior estimates of the marginal distributions and precision matrix.

We firstly investigate the impact that the inclusion of covariates has on the inference
of the underlying graph. To this end, we compare our proposed approach with a Gaussian
copula graphical model that uses the empirical distribution for the marginals (GCGM), i.e.,
a model that does not make use of covariate information. We run also GCGM using 10
million iterations for the structure learning part and using the same prior on the graph
(link inclusion probability 0.04). Figure 9 shows how the posterior distribution on graph
sizes from the DWGM model (left) is concentrated on a sparser graph compared with the
posterior distribution from the GCGM model. This was found also in the simulation study
(Figure 5) and suggests that spurious links may have been detected by this second analysis
where covariates have been omitted.
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Figure 9: Posterior distribution of graph sizes for the model DWGM that accounts for covariates
(left) versus the Gaussian copula graphical model that does not make use of covariates (GCGM,
right).

Setting a cutoff of 0.5 on the edge posterior probabilities, the network contains 359
edges. Figure 10 shows the overlap between these edges and the optimal graph detected by
TMAGMA (Cougoul et al., 2019). There is a moderate (178 edges) overlap with the total of
414 edges detected by rMAGMA. One of the major advantages of DWGM, which has not been
considered before in the context of microbiome analyses, is that the uncertainty around the
optimal graph is also measured. This is particularly important for structure learning in high
dimensions, as noticed also in the simulation (Figure 6). Indeed, the right plot of Figure
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Figure 10: Left: Venn diagram comparing the optimal graph estimated by rMAGMA using
the stars criterion and the optimal graph estimated by DWGM by setting a cutoff of 0.5
on the posterior edge probabilities. Right: Histogram of DWGM posterior edge probabilities
associated to the 414 edges detected by rMAGMA.

10 shows how many of the edges detected by rMAGMA have a low posterior edge probability
calculated by DWGM.

Finally, Figure 11 plots the network inferred by DWGM, with nodes coloured according to
their phyla association (firmicutes, proteobacteria, bacteroidetes, actinobacteria, fusobacte-
ria) and edges coloured according to their partial correlations, computed from the Bayesian
averaging estimate of the precision matrix. The information on phyla association is useful in
distinguishing between the stool and saliva microbiota. Indeed, firmicutes and bacteroidetes
represent more than 90% of the total human gut microbiota (Qin et al., 2010) and have
been found associated with several pathological conditions affecting the gastrointestinal
tract, obesity and type 2 diabetes (Magne et al., 2020; Indiani et al., 2018). So we take
this group of OTUs as representative of the gut microbiota. The remaining OTUs, with a
mix of phylum levels, are instead associated to the saliva microbiota (Choi et al., 2020). In
the optimal network (Figure 11), more connections are found within each group (average
posterior edge probability equal to 4.7% in gut and 10% in saliva) than between the two
groups (average posterior edge probability equal to 1.6% between gut and saliva). While
the connections are particularly strong within each group (average of posterior edge prob-
abilities larger than 0.5 equal to 89% in gut and 87% in saliva, with associated average
absolute partial correlation equal to 0.23 and 0.21, respectively), strong connections are
detected also between the two groups (average of posterior edge probabilities larger than
0.5 between gut and saliva equal to 86%, with associated average absolute partial correla-
tions equal to 0.17), suggesting the presence of interactions between the two systems and
supporting existing knowledge that oral microbes have the capacity to spread throughout
the gastrointestinal system.
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Figure 11: The inferred mibrobiota system with posterior edge probabilities greater than
0.5. Node colours are associated to OTU phyla, with @ Firmicutes, @ Bacteobacteria, o
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— and negative — partial correlations, and width of the edges to their absolute values.

5. Conclusion

In this paper, we have presented a copula graphical modelling approach that is able to re-
cover the core dependence structure from high dimensional and heterogeneous count data.
We have shown the usefulness of this approach in learning interactions between microbes
from count data provided by the latest micriobiome experiments, featuring high dimension-
ality, sparsity, heterogeneity and compositionality. The approach has three key features.

Firstly, it allows to adjust for the effect of covariates in the marginal components of
the model. This is useful, both in quantifying the effect of covariates of interest on the
count variables and in aiding network recovery. The latter is down to two reasons: on one
hand, the inclusion of covariates removes spurious dependencies that may be induced by
the effect of the covariates on the variables of interest; on the other hand, the inclusion of
(particularly continuous) covariates at the marginal level expands the region of support for
consistent estimation of the copula in the case of discrete variables.

Secondly, discrete Weibull regression is used for modelling the marginal distributions
conditional on the covariates and is shown to be a simple (two parameters) yet flexible (broad
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dispersion levels) choice compared to more commonly used distributions for count data.
Moreover, its definition as a discretized continuous Weibull distribution provides a latent
continuous space in the vicinity of the data with a one-to-one mapping with the inferred
conditional independence graph. This may be useful in deriving theoretical properties of the
proposed approach. The connection between discrete and continuous Weibull distributions
may also be useful in defining novel multivariate rounded kernels (Canale and Dunson, 2011)
and in using these to develop a mixture model for multivariate count data with parametric
marginals.

Thirdly, a Bayesian inferential procedure based on the extended rank likelihood and on
an efficient continuous-time birth-death process allows to account for the full uncertainty
both in the marginals, and thus in the covariate effects, and in the graph component. The
latter is important, particularly in high dimensional settings where model selection methods
for regularized approaches do not work well and where there is typically a large uncertainty
around the optimal graph. The method proposed captures this uncertainty at the level of
the graph structure (via posterior probabilities of each link) and intensity of the interactions
(via posterior estimates of partial correlations), but any other graph statistics of interest
can be estimated via Bayesian averaging.

The simulation study and the real data analysis of microbiome data show the useful-
ness of the proposed approach at inferring networks from high-dimensional count data in
general, and its relevance in the context of microbiota data analyses in particular. Indeed,
the inferred interactions between firmicutes and bacteroidetes in the gut microbiota can
create an opportunity for microbiome research to develop new microbial targets for the
nutritional or therapeutic prevention and management of pathological conditions affecting
the gastrointestinal tract, such as inflammatory bowel diseases, obesity and type 2 diabetes.
At the same time, the analysis proposed has shown the potential to detect crucial interac-
tions between the gut and oral microbiota, which has been suggested only recently in the
literature.

Software

The method proposed in this paper is implemented in the R package BDgraph which is
freely available from the Comprehensive R Archive Network (CRAN) at http://cran.
r-project.org/packages=BDgraph.
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