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Abstract

Kernels effectively represent nonlocal dependencies and are extensively employed in formu-
lating operators between function spaces. Thus, learning kernels in operators from data is
an inverse problem of general interest. Due to the nonlocal dependence, the inverse prob-
lem is often severely ill-posed with a data-dependent normal operator. Traditional Bayesian
methods address the ill-posedness by a non-degenerate prior, which may result in an unsta-
ble posterior mean in the small noise regime, especially when data induces a perturbation
in the null space of the normal operator. We propose a new data-adaptive Reproducing
Kernel Hilbert Space (RKHS) prior, which ensures the stability of the posterior mean in
the small noise regime. We analyze this adaptive prior and showcase its efficacy through
applications on Toeplitz matrices and integral operators. Numerical experiments reveal
that fixed non-degenerate priors can produce divergent posterior means under errors from
discretization, model inaccuracies, partial observations, or erroneous noise assumptions. In
contrast, our data-adaptive RKHS prior consistently yields convergent posterior means.
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1. Introduction

Kernels are efficient in representing nonlocal or long-range dependence and interaction be-
tween high- or infinite-dimensional variables. Thus, they are widely used to design operators
between function spaces, with numerous applications in machine learning such as kernel
methods (e.g., Belkin et al. (2018); Cucker and Zhou (2007); Darcy et al. (2021); Hofmann
et al. (2008); Sriperumbudur et al. (2011); Owhadi and Yoo (2019)) and operator learning
(e.g., Kovachki et al. (2021); Lu et al. (2021d)), in partial differential equations (PDEs) and
stochastic processes such as nonlocal and fractional diffusions (e.g., Bucur and Valdinoci
(2016); D’Elia et al. (2020); Du et al. (2012); You et al. (2022, 2021)), and in multi-agent
systems (e.g., Carrillo et al. (2019); Lu et al. (2021b, 2019); Motsch and Tadmor (2014)).

Learning kernels in operators from data is an integral part of these applications. We
consider the case when the operator depends on the kernel linearly, and the learning is
a linear inverse problem. However, the inverse problem is often severely ill-posed, due to
the nonlocal dependence and the presence of various perturbations resulting from noise in
data, numerical error, or model error. To address the ill-posedness, a Bayesian approach
or a variational approach with regularization is often used. In either approach, the major
challenge is the selection of a prior or a regularization term since there is limited prior
knowledge about the kernel.

This study examines the selection of the prior in a Bayesian approach. The common
practice is to use a non-degenerate prior. However, we show that a non-degenerate prior
may result in an unstable posterior mean in the small noise regime, especially when data
induces a perturbation in the null space of the normal operator.

We propose a new data-adaptive Reproducing Kernel Hilbert Space (RKHS) prior, which
ensures the stability of the posterior mean in the small noise regime. We analyze this
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adaptive prior and showcase its efficacy through applications on learning kernels in Toeplitz
matrices and integral operators.

1.1 Problem setup

We aim to learn the kernel φ in the operator Rφ : X→ Y in the following model

Rφ[u] + η + ξ = f, (1.1)

by fitting the model to the data consisting of N input-output pairs:

D = {(uk, fk)}Nk=1, (uk, fk) ∈ X× Y. (1.2)

Here X is a Banach space, Y is a Hilbert space, the measurement noise η is a Y-valued white
noise in the sense that E[〈η, f〉2Y] = σ2

η〈f, f〉Y for any f ∈ Y. The term ξ represents unknown
model errors such as model misspecification or computational error due to incomplete data,
and it may depend on the input data u.

The operator Rφ depends non-locally on the kernel φ in the form

Rφ[u](y) =

∫
Ω
φ(y − x)g[u](x, y)µ(dx), ∀y ∈ Ω, (1.3)

where (Ω, µ) is a measure space that can be either a domain in the Euclidean space with
the Lebesgue measure or a discrete set with an atomic measure. For simplicity, we let
Y = L2(Ω, µ) throughout this study. Here g[u] is a bounded (nonlinear) functional of u
and is assumed to be known. Note that the operator Rφ can be nonlinear in u, but it
depends linearly on φ. Such operators are widely seen in PDEs, matrix operators, and
image processing. Examples include the Toeplitz matrix, integral and nonlocal operators;
see Sect.2.1. In these examples, there is often limited prior knowledge about the kernel.

The inverse problem of learning the kernel φ is often ill-posed, due to the nonlocal
dependence of the output data f on the kernel. The ill-posedness, in terms of minimizing
the negative log-likelihood of the data,

E(φ) =
1

Nσ2
η

∑
1≤k≤N

‖Rφ[uk]− fk‖2Y =
1

2σ2
η

[
〈LGφ, φ〉L2

ρ
− 2〈φD, φ〉L2

ρ
+ CfN

]
, (1.4)

appears as the instability of the minimizer LG
−1φD when it exists. Here L2

ρ is space of
square-integrable functions with measure ρ, the normal operator LG is a trace-class operator,
and φD comes from data; see Sect.2.3 for details. Thus, the ill-posedness is rooted in the
unboundedness of LG

−1 and the perturbation of φD.

There are two common strategies to overcome the ill-posedness: a prior in a Bayesian
approach and regularization in a variational approach; see, e.g., Stuart (2010); Hansen
(1994); Bauer et al. (2007) and a sample of the large literature in Sect.1.3).

This study focuses on selecting a prior for the Bayesian approach. The major challenge
is the limited prior information about the kernel and the need to overcome the ill-posedness
caused by a data-dependent normal operator.
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1.2 Proposed: a data-adaptive RKHS prior

Due to the lack of prior information about the kernel, one may use the default prior, a non-
degenerate prior, e.g., a Gaussian distribution N (0,Q0) with a nondegenerate covariance
operator Q0, with the belief that it is a safe choice to ensure a well-defined posterior.

However, we show that the fixed non-degenerate prior has the risk of leading to a
divergent posterior mean in the small noise limit. Specifically, the posterior mean,

µ1 = (LG + σ2
ηQ0)−1φD,

obtained from the prior N (0,Q0) and the likelihood that yields (1.4), blows up when, the
variance of the noise, ση → 0 if φD contains a perturbation in the null space of the normal
operator LG; see Proposition 3.2. Such perturbation can be caused by any of the four
types of errors in data or computation: (a) discretization error, (b) model error, (c) partial
observations, and (d) wrong noise assumption. Thus, a prior adaptive to LG and φD is
needed to remove the risk.

We propose a data-adaptive RKHS prior that ensures a stable posterior mean in the
small noise regime. It is a Gaussian distributionN (0, λ−1

∗ LG) with the parameter λ∗ selected
adaptive to φD. We prove in Theorem 4.2 that it leads to a stable posterior whose mean

µD1 = (LG
2 + σ2

ηλ∗INull(LG)⊥)−1LGφ
D,

always has a small noise limit, and the small noise limit converges to the identifiable parts
of the true kernel. Furthermore, we show that our prior outperforms the non-degenerate
prior in producing a more accurate posterior mean and smaller posterior uncertainty in
terms of the trace of the posterior covariance; see Sect.4.2. The prior is called an RKHS
prior because its Cameron-Martin space LG

1/2L2
ρ is the RKHS with a reproducing kernel

G determined by the operator Rφ and the data. Importantly, the closure of this RKHS is
the space in which the components of the true kernel can be identified from data.

We also study the computational practice of the data-adaptive prior and demonstrate
it on the Toeplitz matrices and integral operators. We select the hyper-parameter by the
L-curve method in Hansen (2000). Numerical tests show that while a fixed non-degenerate
prior leads to divergent posterior means, the data-adaptive prior always attains stable pos-
terior means with small noise limits; see Sect.5.

The outline of this study is as follows. Sect.2 presents the mathematical setup of this
study, and shows the ill-posedness of the inverse problem through the variational approach.
We introduce in Sect.3 the Bayesian approach and show the issue of a fixed non-degenerate
prior. To solve the issue, we introduce a data-adaptive prior in Sect.4, and analyze its
advantages. Sect.5 discusses the computational practice and demonstrates the advantage
of the data-adaptive prior in numerical tests on Toeplitz matrices and integral operators.
Finally, Sect.6 concludes our findings and provides future research directions.

1.3 Related work

Prior selection for Bayesian inverse problems. We focus on prior selection and don’t
consider the sampling of the posterior, which is a main topic for nonlinear Bayesian inverse
problems with a given prior, see, e.g., Dashti and Stuart (2017); Kaipio and Somersalo
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(2005); Spantini et al. (2015); Stuart (2010); Cui and Tong (2022). Prior selection is an
important topic in statistical Bayesian modeling, which dates back to Jeffreys (1961). This
study provides a new class of problems where prior selection is crucial: learning kernels in
operators, which is an ill-posed linear inverse problem. Our data-adaptive RKHS prior re-
discovers the well-known Zellner’s g-prior in Zellner and Siow (1980); Agliari and Parisetti
(1988) when the kernel is finite-dimensional and the basis functions are orthonormal. Impor-
tantly, the stable small noise limit in this study provides a new criterion for prior selection,
a useful addition to many criteria studied in Bayarri et al. (2012).

Regularization in a variational approach. The prior is closely related to Tikhonov or
ridge regularization in a variation approach. The likelihood function provides a loss function,
and the prior often provides a regularization term. Various regularization terms have been
studied, including the widely-used Euclidean norm (see, e.g., Gazzola et al. (2019); Hansen
(1994, 2000); Tihonov (1963)), the RKHS norm with pre-specified reproducing kernel (see,
e.g., Cucker and Zhou (2007); Bauer et al. (2007)), the total variation norm in Rudin et al.
(1992), and the data-adaptive RKHS norm in Lu et al. (2023, 2022). It remains open to
compare these norms. Appealingly, the Bayesian approach provides probabilistic tools for
analyzing regularizations. Thus, to better understand regularization, it is of interest to
study the priors in a Bayesian approach.

Operator learning. This study focuses on learning the kernels, not the operators. Thus,
our focus differs from the focus of the widely-used kernel methods for operator approxima-
tion (see, e.g., Owhadi and Yoo (2019); Darcy et al. (2021)) and the operator learning (see,
e.g., de Hoop et al. (2022a,b); Kovachki et al. (2021); Li et al. (2020b); Lu et al. (2021c,d)).
These methods aim to approximate the operator matching the input and output, not to
identify the kernel in the operator.

Gaussian process and kernel-based regression. Selection of the reproducing kernel
is an important component in Gaussian process and kernel-based regression (see, e.g.,Belkin
et al. (2018); Cucker and Zhou (2007); Hofmann et al. (2008); Sriperumbudur et al. (2011);
Yuan and Cai (2010)). Previous methods often tune the hyper-parameter of a pre-selected
class of kernels. Our data-adaptive RKHS prior provides an automatic reproducing kernel,
adaptive to data and the model, for these methods.

Learning interacting kernels and nonlocal kernels. The learning of kernels in op-
erators has been studied in the context of identifying the interaction kernels in interacting
particle systems (e.g., Feng et al. (2021); He et al. (2022); Della Maestra and Hoffmann
(2022); Lang and Lu (2022); Li et al. (2021); Lu et al. (2021b, 2019, 2021a); Mavridis et al.
(2022); Messenger and Bortz (2022); Yao et al. (2022)) and the nonlocal kernels in homog-
enization of PDEs (e.g., Lu et al. (2023); You et al. (2022, 2021)). This study is the first to
analyze the selection of a prior in a Bayesian approach.

2. The learning of kernels in operators

In this section, we discuss learning kernels in operators as a variational inverse problem
that maximizes the likelihood. In this process, we introduce a few key concepts for the
Bayesian approach in later sections: the function space for the kernel, the normal operator,
the function space of identifiability, and a data-adaptive RKHS.
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2.1 Examples

We first present a few examples of learning kernels in operators. Note that in these examples,
there is little prior information about the kernel.

Example 1 (Kernels in Toeplitz matrices) Consider the estimation of the kernel φ in
the Toeplitz matrix Rφ ∈ Rn×n, i.e., Rφ(i, j) = φ(i− j) for all 1 ≤ i, j ≤ n, from measure-
ment data {(uk, fk) ∈ Rn × Rn}Nk=1 by fitting the data to the model

Rφu+ η + ξ(u) = f, η ∼ N (0, σ2
ηIn), X = Y = Rn, (2.1)

where ξ(u) represents an unknown model error. We can write the Toeplitz matrix as an
integral operator in the form of (1.3) with Ω = {1, 2, . . . , n}, g[u](x, y) = u(y), and µ being
a uniform discrete measure on Ω. The kernel is a vector φ : S → R2n−1 with S = {rl}2n−1

l=1

with rl = l − n.

Example 2 (Integral operator) Let X = Y = L2([0, 1]). We aim to find a function
φ : [−1, 1]→ R fitting the dataset in (1.2) to the model (1.1) with an integral operator

Rφ[u](y) =

∫ 1

0
φ(y − x)u(x)dx, ∀y ∈ [0, 1]. (2.2)

We assume that η is a white noise, that is, E[η(y)η(y′)] = δ(y′ − y) for any y, y′ ∈ [0, 1].
In the form of the operator in (1.3), we have Ω = [0, 1], g[u](x, y) = u(x), and µ being the
Lebesgue measure. This operator is an infinite-dimensional version of the Toeplitz matrix.

Example 3 (Nonlocal operator) Suppose that we want to estimate a kernel φ : Rd → R
in a model (1.1) with a nonlocal operator

Rφ[u](y) =

∫
Ω
φ(y − x)[u(y)− u(x)]dx, ∀y ∈ Ω ⊂ Rd,

from a given data set as in (1.2) with X = L2(Ω) and Y = L2(Ω), where Ω is a bounded
set. Such nonlocal operators arise in Du et al. (2012); You et al. (2021); Lu et al. (2023).
Here η is a white noise in the sense that E[η(y)η(y′)] = δ(y − y′) for any y, y′ ∈ Ω. This
example corresponds to (1.3) with g[u](x, y) = u(y) − u(x). Note that even the support of
the kernel φ is unknown.

Example 4 (Interaction operator) Let X = C1
0 (R) and Y = L2(R) and consider the

problem of estimating the interaction kernel φ : R→ R in the nonlinear operator

Rφ[u](y) =

∫
R
φ(y − x)[u′(y)u(x) + u′(x)u(y)]dx, ∀y ∈ R,

by fitting the dataset in (1.2) to the model (1.1). This nonlinear operator corresponds
to (1.3) with g[u](x, y) = u′(y)u(x) + u′(x)u(y). It comes from the aggression operator
Rφ[u] = ∇· [u∇(Φ∗u)] in the mean-field equation of interaction particles (see, e.g., Carrillo
et al. (2019); Lang and Lu (2022)).
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2.2 Variational approach

To identify the kernel, the variational approach seeks a maximal likelihood estimator:

φ̂ = arg min
φ∈H

E(φ), where E(φ) =
1

Nσ2
η

∑
1≤k≤N

‖Rφ[uk]− fk‖2Y, (2.3)

over a hypothesis space H, where the loss function E(φ) is the negative log-likelihood of the
data (1.2) under the assumption that the noise η in (1.1) is white.

The first step is to find a proper function space for φ, in which one can further specify
the hypothesis space H. Clearly, given a data set, we can only identify the kernel where the
data provides information. Examples 1– 4 show that the support of the kernel φ is yet to
be extracted from data.

We set function space for learning φ to be L2(S, ρ) with S = {x− y : x, y ∈ Ω}, where
ρ is an empirical probability measure quantifying the exploration of data to the kernel:

ρ(dr) =
1

ZN

∑
1≤k≤N

∫
Ω

∫
Ω
δ(y − x− r)

∣∣∣g[uk](x, y)
∣∣∣µ(dx)µ(dy), r ∈ S. (2.4)

Here Z is the normalizing constant and δ is the Dirac delta function. We call ρ an exploration
measure. Its support is the region in which the learning process ought to work, and outside
of which, we have limited information from the data to learn the function φ. Thus, we can
restrict S to be the support of ρ, and we denote L2

ρ := L2(S, ρ) for short. In other words,
the exploration measure is a generalization of the measure ρX in nonparametric regression
that estimates Y = f(X) from data {(xi, yi)}, where ρX is the distribution of X and the
data are samples from the joint distribution of (X,Y ).

The next step is to find the minimizer of the loss function. Note that E(φ) is quadratic
in φ since the operator Rφ depends linearly on φ. We get the minimizer by solving the zero
of the (Fréchet) derivative of the loss function. To compute its derivative, we first introduce
a bilinear form 〈〈·, ·〉〉: ∀φ, ψ ∈ L2

ρ,

〈〈φ, ψ〉〉 =
1

N

∑
1≤k≤N

〈Rφ[uk], Rψ[uk]〉Y,

=
1

N

∑
1≤k≤N

∫ [∫ ∫
φ(y − x)ψ(y − z)g[uk](x, y)g[uk](z, y)µ(dx)µ(dz)

]
µ(dy)

=

∫
S

∫
S
φ(r)ψ(s)G(r, s)ρ(dr)ρ(ds),

(2.5)

where the integral kernel G given by, for r, s ∈ supp(ρ),

G(r, s) =
G(r, s)

ρ(r)ρ(s)
with G(r, s) =

1

N

∑
1≤k≤N

∫
g[uk](x, r + x)g[uk](x, s+ x)µ(dx), (2.6)

in which by an abuse of notation, we also use ρ(r) to denote either the probability of r when
ρ defined in (2.4) is discrete or the probability density of ρ when the density exists.

By definition, the bivariate function G is symmetric and positive semi-definite in the
sense that

∑n
i,j=1 cicjG(ri, rj) ≥ 0 for any {ci}ni=1 ⊂ R and {ri}ni=1 ⊂ S. In the following, we
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assume that the data is continuous and bounded so that G defines a self-adjoint compact
operator which is fundamental for studying identifiability. This assumption holds under
mild regularity conditions on the data {uk} and the operator Rφ.

Assumption 2.1 (Integrability of G) Assume that Ω is bounded and {g[uk](x, y)} in
(1.3) with data {uk} in (1.2) are continuous satisfying max1≤k≤N supx,y∈Ω |g[uk](x, y)| <∞.

Under Assumption 2.1, the integral operator LG : L2
ρ → L2

ρ

LGφ(r) =

∫
S
φ(s)G(r, s)ρ(s)ds, (2.7)

is a positive semi-definite trace-class operator (see Lemma A.1). Hereafter we denote
{λi, ψi} the eigen-pairs of LG with the eigenvalues in descending order, and assume that
the eigenfunctions are orthonormal, hence they provide an orthonormal basis of L2

ρ. Fur-
thermore, for any φ, ψ ∈ L2

ρ, the bilinear form in (2.5) can be written as

〈〈φ, ψ〉〉 = 〈LGφ, ψ〉L2
ρ

= 〈φ,LGψ〉L2
ρ
, (2.8)

and we can write the loss functional in (2.3) as

E(φ) = 〈〈φ, φ〉〉 − 2
1

N

∑
1≤k≤N

〈Rφ[uk], fk〉Y +
1

N

∑
1≤k≤N

‖fk‖2Y

= 〈LGφ, φ〉L2
ρ
− 2〈φD, φ〉L2

ρ
+ CfN ,

(2.9)

where φD ∈ L2
ρ is the Riesz representation of the bounded linear functional:

〈φD, ψ〉L2
ρ

=
1

N

∑
1≤k≤N

〈Rψ[uk], fk〉Y, ∀ψ ∈ L2
ρ. (2.10)

Then, by solving the zero of ∇E(φ) = 2(LGφ − φD), one may obtain the minimizer
LG
−1φD, provided that it is well-defined. However, it is often ill-defined, e.g., when φD

is not in LG(L2
ρ) and LG is compact infinite-rank or rank-deficient. Thus, it is important

to examine the inversion and the uniqueness of the minimizer, for which we introduce the
function space of identifiability in the next section.

2.3 Function space of identifiability

We define a function space of identifiability (FSOI) when one learns the kernel by minimizing
the loss function.

Definition 2.2 The function space of identifiability (FSOI) by the loss functional E in (2.3)
is the largest linear subspace of L2

ρ in which E has a unique minimizer.

The next theorem characterizes the FSOI. Its proof is deferred to Appendix A.1.

Theorem 2.3 (Function space of identifiability) Suppose the data in (1.2) is gener-
ated from the system (1.1) with a true kernel φtrue. Suppose that Assumption 2.1 holds.
Then, the following statements hold.
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(a) The function φD in (2.10) has the following decomposition:

φD = LGφtrue + εξ + εη, (2.11)

where εξ comes from the model error ξ, the random εη comes from the observation
noise and it has a Gaussian distribution N (0, σ2

ηLG), and they satisfy ∀ψ ∈ L2
ρ

〈εξ, ψ〉L2
ρ

=
1

N

∑
1≤k≤N

〈Rψ[uk], ξk〉Y, 〈εη, ψ〉L2
ρ

=
1

N

∑
1≤k≤N

〈Rψ[uk], ηk]〉Y .

(b) The Fréchet derivative of E(φ) in L2
ρ is ∇E(φ) = 2(LGφ− φD).

(c) The function space of identifiability (FSOI) of E is H = span{ψi}i:λi>0 with closure
in L2

ρ. In particular, if φD ∈ LG(L2
ρ), the unique minimizer of E(φ) in the FSOI is

φ̂ = LG
−1φD, where LG

−1 is the pseudo-inverse of LG. Furthermore, if φtrue ∈ H

and there is no observation noise and no model error, we have φ̂ = LG
−1φD = φtrue.

Theorem 2.3 enables us to analyze the ill-posedness of the inverse problems through the
operator LG and φD. When φD ∈ LG(L2

ρ), the inverse problem has a unique solution in the
FSOI H, even when it is underdetermined in L2

ρ due to H being a proper subspace, which
happens when the compact operator LG has a zero eigenvalue. However, when φD /∈ LG(L2

ρ),

the inverse problem ∇E = 0 has no solution in L2
ρ because LG

−1φD is undefined. According
to (2.11), this happens in one or more of the following scenarios:

• when the model error leads to εξ /∈ LG(L2
ρ).

• when the observation noise leads to εη /∈ LG(L2
ρ). In particular, since εη is Gaus-

sian N (0,LG), it has the Karhunen–Loève expansion εη =
∑

i λ
1/2
i εηi ψi with εηi being

i.i.d. N (0, 1). Then, LG
−1εη =

∑
i λ
−1/2
i εηi ψi, which diverges a.s. if

∑
i:λi>0 λ

−1
i di-

verges. Thus, we have εη /∈ LG(L2
ρ) a.s. when

∑
i:λi>0 λ

−1
i diverges.

Additionally, φD only encodes information of φHtrue, and it provides no information about
φ⊥true, where φHtrue and φ⊥true form an orthogonal decomposition φtrue = φHtrue + φ⊥true ∈
H ⊕H⊥. In other words, the data provides no information to recover φ⊥true.

As a result, it is important to avoid absorbing the errors outside of the FSOI when using
a Bayesian approach or a regularization method to mitigate the ill-posedness.

2.4 A data-adaptive RKHS

The RKHS with G as a reproducing kernel is a dense subspace of the FSOI. Hence, when
using it as a prior, which we will detail in later sections, one can filter out the error outside
the FSOI and ensure that the learning takes place inside the FSOI.

The next lemma is an operator characterization of this RKHS (see, e.g., (Cucker and
Zhou, 2007, Section 4.4)). Its proof can be found in (Lu et al., 2022, Theorem 3.3).

Lemma 2.4 (A data-adaptive RKHS) Suppose that Assumption 2.1 holds. Then, the
following statements hold.

9
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(a) The RKHS HG with G in (2.6) as reproducing kernel satisfies HG = LG
1/2(L2

ρ) and
its inner product satisfies

〈φ, ψ〉HG = 〈LG
−1/2φ,LG

−1/2ψ〉L2
ρ
, ∀φ, ψ ∈ HG. (2.12)

(b) Denote the eigen-pairs of LG by {λi, ψi}i with {ψi} being orthonormal. Then, for any
φ =

∑
i ciψi ∈ L2

ρ, we have

〈〈φ, φ〉〉 =
∑
i

λic
2
i , ‖φ‖2L2

ρ
=
∑
i

c2
i , ‖φ‖2HG =

∑
i:λi>0

λ−1
i c2

i , (2.13)

where the last equation is restricted to φ ∈ HG.

The above RKHS has been used for regularization in Lu et al. (2023, 2022). The
regularizer, named DARTR, regularizes the loss by the norm of this RKHS,

Eλ(φ) = E(φ) + λ‖φ‖2HG = 〈(LG + λLG
−1)φ, φ〉L2

ρ
− 2〈φD, φ〉L2

ρ
+ CfN . (2.14)

Selecting the optimal hyper-parameter λ∗ by the L-curve method, it leads to the estimator

φ̂HG = (LG
2 + λ∗IH)−1LGφ

D, (2.15)

where IH is the identity operator on H. Since the RKHS is a subset of the FSOI with more
regular elements, DARTR ensures that the estimator is in the FSOI and is regularized.

We summarize the key terminologies and notations in this section in Table 1.

Table 1: Notations for learning kernels in operators in Sect.2.

Notation Meaning

Exploration measure ρ A probability measure quantifying the
data’s exploration to the kernel (2.4).

L2(S, ρ) or L2
ρ Function space of learning

LG, {(λi, ψi)}i, LG
−1 The normal operator in (2.7), its spectral-

decomposition and pseudo-inverse

E(φ) = 〈LGφ, φ〉L2
ρ
− 2〈φD, φ〉L2

ρ
+ CfN Loss function from the likelihood in (2.9)

FSOI H = span{ψi}λi>0 Function space of identifiability, in which E
has a unique minimizer.

3. Bayesian inversion and the risk in a non-degenerate prior

The Bayesian approach overcomes the ill-posedness by introducing a prior, so the posterior
is stable under perturbations. Since little prior information is available about the kernel,
it is common to use a non-degenerate prior to ensure the well-posedness of the posterior.
However, we will show that a fixed non-degenerate prior may lead to a posterior with a
divergent mean in the small noise limit. These discussions promote the data-adaptive prior
in the next section.

10
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3.1 The Bayesian approach

In this study, we focus on Gaussian priors, so the posterior is also a Gaussian measure in
combination with a Gaussian likelihood. Also, without loss of generality, we assume that
the prior is centered. Recall that the function space of learning is L2

ρ defined in (2.4). For
illustration, we first specify the prior and posterior when the space L2

ρ is finite-dimensional,
then discuss them in the infinite-dimensional case. We follow the notations in Stuart (2010)
and Dashti and Stuart (2017).

Finite-dimensional case. Consider first that the space L2
ρ is finite-dimensional, i.e.,

S = {r1, . . . , rd}, as in Example 1. Then, the space L2
ρ is equivalent to Rd with norm

satisfying ‖φ‖2 =
∑d

i=1 φ(ri)
2ρ(ri). Also, assume that space Y is finite-dimensional, and

the measurement noise in (1.2) is Gaussian N (0, σ2
ηI). Since φ is finite-dimensional, we

write the prior, the likelihood, and the posterior in terms of their probability densities with
respect to the Lebesgue measure.

• Prior distribution, denoted by N (0,Q0), with density

dπ0(φ)

dφ
∝ e−

1
2
〈φ,Q−1

0 φ〉
L2
ρ ,

where Q0 is a strictly positive matrix, so that the prior is a non-degenerate measure.

• Likelihood distribution of the data with density

dπL(φ)

dφ
∝ exp

(
− 1

2σ2
η

E(φ)

)
= exp

(
− 1

2σ2
η

[
〈LGφ, φ〉L2

ρ
− 2〈φD, φ〉L2

ρ
+ CfN

])
, (3.1)

where E(φ) is the loss function defined in (2.3) and the equality follows from (2.9). Note
that this distribution is a non-degenerate Gaussian N (LG

−1φD, σ2
ηLG

−1) when LG
−1

exists, and it can be ill-defined when LG has a zero eigenvalue.

• Posterior distribution with density proportionating to the product of the prior and
likelihood densities,

dπ1(φ)

dφ
∝ exp

(
−1

2
[σ−2
η E(φ) + 〈Q−1

0 φ, φ〉L2
ρ
]

)
= exp

(
−1

2

[
σ−2
η

(
〈LGφ, φ〉L2

ρ
− 2〈φD, φ〉L2

ρ
+ CfN

)
+ 〈φ,Q−1

0 φ〉L2
ρ

])
= exp

(
−1

2
〈Q−1

1 (φ− µ1), φ− µ1〉+ CfN

)
(3.2)

with the constant term CfN may change from line to line and

µ1 = (LG + σ2
ηQ−1

0 )−1φD = σ−2
η Q1φ

D, and Q1 = σ2
η(LG + σ2

ηQ−1
0 )−1. (3.3)

Thus, π1(φ) is a Gaussian measure N (µ1,Q1).

11
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The Bayesian approach is closely related to Tikhonov regularization (see, e.g., Lehtinen
et al. (1989)). Note that a Gaussian prior corresponds to a regularization term R(φ) =
〈φ,Q−1

0 φ〉L2
ρ
, the negative log-likelihood is the loss function, and the posterior corresponds

to the penalized loss:

−2σ2
η log π1(φ) = E(φ) + λ〈φ,Q−1

0 φ〉L2
ρ

with λ = σ2
η.

In particular, the maximal a posteriori, MAP in short, which agrees with the posterior
mean µ1, is the minimizer of the penalized loss using a penalty term σ2

η〈φ,Q−1
0 φ〉L2

ρ
. The

difference is that a regularization approach selects the hyper-parameter according to data.

Infinite-dimensional case. When space L2
ρ is infinite-dimensional, i.e., the set S has

infinite elements, we use the generic notion of Gaussian measures on Hilbert spaces, see
Appendix A.2 for a brief review. Since there is no longer a Lebesgue measure on the
infinite-dimensional space, the prior and the posterior are characterized by their means and
covariance operators. We write the prior and the posterior as follows:

• Prior N (0,Q0), where Q0 is a strictly positive trace-class operator on L2
ρ;

• Posterior N (µ1,Q1), whose Radon–Nikodym derivative with respect to the prior is

dπ1

dπ0
∝ exp(−1

2
σ−2
η E(φ)) = exp

(
−1

2
σ−2
η

[
〈LGφ, φ〉L2

ρ
− 2〈φD, φ〉L2

ρ
+ CfN

])
, (3.4)

which is the same as the likelihood in (3.1). Its mean and covariance are given as in (3.3).

Note that unlike the finite-dimensional case, it is problematic to write the likelihood dis-
tribution as N (LG

−1φD, σ−2
η LG

−1), because the operator LG
−1 is unbounded and LG

−1φD

may be ill-defined.

3.2 The risk in a non-degenerate prior

The prior distribution plays a crucial role in Bayesian inverse problems. To make the ill-
posed inverse problem well-defined, it is often set to be a non-degenerate measure (i.e., its
covariance operator Q0 has no zero eigenvalues). It is fixed in many cases and not adaptive
to data. Such a non-degenerate prior works well for an inverse problem whose function
space of identifiability does not change with data. However, in the learning of kernels in
operators, a non-degenerate prior has a risk of leading to a catastrophic error: the posterior
mean may diverge in the small observation noise limit, as we show in the Proposition 3.2.

Assumption 3.1 Assume that the operator LG is finite rank and commutes with the prior
covariance Q0 and assume the existence of error outside of the FSOI as follows.

(A1) The operator LG in (2.7) has zero eigenvalues. Let λK+1 = 0 be the first zero
eigenvalue, where K is less than the dimension of L2

ρ. As a result, the FSOI is

H = span{ψi}Ki=1.

(A2) The covariance of the prior N (0,Q0) satisfies Q0ψi = riψi with ri > 0 for all i, where
{ψi}i are orthonormal eigenfunctions of LG.

12
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(A3) The term εξ in (2.11), which represents the model error, is outside of the FSOI, i.e.,

εξ =
∑

i ε
ξ
iψi has a component εξi0 6= 0 for some i0 > K.

Assumptions (A1-A2) are common in practice. Assumption (A1) holds because the
operator LG is finite rank when the data is discrete, and it is not full rank for under-
determined problems. It is natural to assume the prior has a full rank covariance Q0 as in
(A2). We assume that Q0 commutes with LG for simplicity and one can extend it to the
general case as in the proof of (Da Prato and Zabczyk, 2014, Theorem 2.25, Feldman–Hajek
theorem). Assumption (A3), which requires φD to be outside the range of LG, holds when
the regression vector b is outside the range of the regression matrix A in (5.3), see Sect.5.2–
5.3 for more discussions.

Proposition 3.2 (Risk in a fixed non-degenerate prior) A non-degenerate prior has
the risk of leading to a divergent posterior mean in the small noise limit. Specifically, under
Assumption 3.1, the posterior mean µ1 in (3.3) diverges as ση → 0.

Proof [Proof of Proposition 3.2.] Recall that conditional on the data, the observation noise-
induced term εη in (2.11) has a distribution N (0, σ2

ηLG). Thus, in the orthonormal basis

{ψi}, we can write εη = ση
∑

i:λi>0 λ
1/2
i εηi ψi, where {εηi } are i.i.d. N (0, 1) random variables.

Additionally, write the true kernel as φtrue =
∑

i φtrue,iψi, where φtrue,i = 〈φtrue, ψi〉L2
ρ

for
all i. Note that φtrue does not have to be in the FSOI. Combining these facts, we have

φD =
∞∑
i=1

φDi ψi, with φDi = λiφtrue,i + σηλ
1/2
i εηi + εξi . (3.5)

Then, the posterior mean µ1 = (LG + σ2
ηQ−1

0 )−1φD in (3.3) becomes

µ1 =
∞∑
i=1

(
λi + σ2

ηr
−1
i

)−1
φDi ψi =

K∑
i=1

(
λi + σ2

ηr
−1
i

)−1
φDi ψi +

∑
i>K

σ−2
η riε

ξ
iψi. (3.6)

Thus, the posterior mean µ1 is contaminated by the model error outside the FSOI, i.e., the
part with components εξi with i > K. It diverges when ση → 0 because

lim
ση→0

(
µ1 −

∑
i>K

σ−2
η riε

ξ
iψi

)
=

∑
1≤i≤K

(
φtrue,i + λ−1

i εξi

)
ψi,

and
∑

i>K σ
−2
η riε

ξ
iψi diverges.

On the other hand, one may adjust the prior covariance by the standard deviation of
the noise in the hope of removing the risk of divergence. However, the next proposition
shows that such a noise-adaptive non-degenerate prior will have a biased small noise limit.

Proposition 3.3 (Risk in a noise-adaptive non-degenerate prior) Let the prior be

N (0, λQ0), where λ = C0σ
2β
η with C0 6= 0 and β ≥ 0. Suppose that Assumption 3.1 holds.
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Then, the corresponding posterior mean µ
ση
1 either blows up or is biased, satisfying

lim
ση→0

µ
ση
1 =


∞ , β < 1 ;

(LG + C−1
0 Q

−1
0 )−1φD , β = 1 ;

0 , β > 1 .

Proof Under the prior N (0, λQ0) with λ = C0σ
2β
η , we have the posterior mean

µ
ση
1 = (LG + σ2

ηλ
−1Q−1

0 )−1φD =
∞∑
i=1

(
λi + σ2

ηλ
−1r−1

i

)−1
φDi ψi

=

K∑
i=1

(
λi + σ2

ηλ
−1r−1

i

)−1
φDi ψi +

∑
i>K

σ−2
η λriε

ξ
iψi

=
K∑
i=1

(
λi + C−1

0 σ2−2β
η r−1

i

)−1
φDi ψi +

∑
i>K

C0σ
2β−2
η riε

ξ
iψi .

Then, the limits for β > 1, β = 1 and β < 1 follow directly. Note that when β ≥ 1, the
limits are biased, not recovering the identifiable component LG

−1φD =
∑K

i=1 λ
−1
i φDi ψi even

when the model error
∑K

i=1 ε
ξ
iψi vanishes.

Propositions 3.2 and 3.3 highlight that the risk of a non-degenerate prior comes from
the error outside the data-adaptive FSOI. Importantly, by definition of the FSOI, there is
no signal to be recovered outside the FSOI. Thus, it is important to design a data-adaptive
prior to restrict the learning to take place inside the FSOI.

4. Data-adaptive RKHS prior

We propose a data-adaptive prior to filter out the error outside of the FSOI, so that its
posterior mean always has a small noise limit. In particular, the small noise limit converges
to the identifiable part of the true kernel when the model error vanishes. Additionally,
we show that this prior, even with a sub-optimal λ∗, outperforms a large class of fixed
non-degenerate priors in the quality of the posterior.

4.1 Data-adaptive prior and its posterior

We first introduce the data-adaptive prior and specify its posterior, which will remove the
risk in a non-degenerate prior as shown in Propositions 3.2–3.3. This prior is a Gaussian
measure with a covariance from the likelihood.

Following the notations in Sect.2.1, the operator LG is a data-dependent positive definite
trace-class operator on L2

ρ, and we denote its eigen-pairs by {λi, ψi}i≥1 with the eigenfunc-
tion forming an orthonormal basis of L2

ρ. Then, as characterized in Theorem 2.3 and Lemma
2.4, the data-dependent FSOI and RKHS are

H = span{ψi}λi>0
‖·‖

L2
ρ , HG = span{ψi}λi>0

‖·‖HG , (4.1)
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where the closure of HG is with respect to the norm ‖φ‖2HG =
∑

i:λi>0 λ
−1
i 〈φ, ψi〉2L2

ρ
. Note

that those two spaces are the same vector space but with different norms. These two spaces
are different unless the operator LG is finite rank (e.g., the cases in Section 3.2). They are
proper subspaces of L2

ρ when the operator LG has a zero eigenvalue.

Definition 4.1 (Data-adaptive RKHS prior) Let LG be the operator defined in (2.7).
The data-adaptive prior is a Gaussian measure with mean and covariance defined by

πD0 = N (µD0 ,QD0 ) : µD0 = 0; QD0 = λ−1
∗ LG, (4.2)

where the hyper-parameter λ∗ > 0 is determined adaptive to data.

In practice, we select the hyper-parameter λ∗ ≥ 0 adaptive to data by the L-curve method
in Hansen (2000), which is effective in reaching an optimal trade-off between the likelihood
and the prior (see Sect.5.1 for more details). We call this prior an RKHS prior because
its covariance operator LG’s Cameron-Martin space is the RKHS HG (see, e.g., (Da Prato,
2006, Section 1.7) and a brief review of the Gaussian measures in Sect.A.2).

This data-adaptive prior is a Gaussian distribution with support in the FSOI H in (4.1).
When H is finite-dimensional, its probability density in H is

dπD0 (φ)

dφ
∝ e−

1
2
〈φ−µD0 ,[QD0 ]−1(φ−µD0 )〉

L2
ρ = e

− 1
2
〈φ,λ∗LG

−1φ〉
L2
ρ , ∀φ ∈ H

by definitions (4.2), where LG
−1 is pseudo-inverse. Combining with the likelihood (3.1),

the posterior becomes{
QD1 = σ2

η(LG + σ2
ηλ∗LG

−1)−1 = σ2
η(LG

2 + σ2
ηλ∗IH)−1LG ; (4.3a)

µD1 = σ−2
η QD1 φD = (LG

2 + σ2
ηλ∗IH)−1LGφ

D. (4.3b)

We emphasize that the operator LG
−1 restricts the posterior to be supported on the FSOI

H, where the inverse problem is well-defined. The posterior mean in (4.3b) coincides with
the minimum norm least squares estimator if there is no regularization, i.e., λ∗ = 0.

When H is infinite-dimensional, the above mean and covariance remain valid, following
similar arguments based on the likelihood ratio in (3.4).

In either case, the posterior is a Gaussian distribution whose support is H, and it is
degenerate in L2

ρ if H is a proper subspace of L2
ρ. In short, the data-adaptive prior is a

Gaussian distribution supported on the FSOI with a hyper-parameter adaptive to data.
Both the prior and posterior are degenerate when the FSOI is a proper subspace of L2

ρ.

Table 2 compares the posteriors of the non-degenerate prior and the data-adaptive prior.

4.2 Quality of the posterior and its MAP estimator

The data-adaptive prior aims to improve the quality of the posterior. Compared with a
fixed non-degenerate prior, we show that the data-adaptive prior improves the quality of
the posterior in three aspects: (1) it improves the stability of the MAP estimator so that
the MAP estimator always has a small noise limit; (2) it improves the accuracy of the MAP
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Table 2: Priors and posteriors on L2
ρ.

Gaussian measure Mean Covariance

Fixed non-degenerate prior and its posterior
π0 = N (µ0,Q0) µ0 = 0 Q0

π1 = N (µ1,Q1) µ1 = σ−2
η Q1φ

D Q1 = σ2
η(LG + σ2

ηQ−1
0 )−1

Data-adaptive prior and its posterior
πD0 = N (µD0 ,QD0 ) µD0 = 0 QD0 = λ−1

∗ LG
πD1 = N (µD1 ,QD1 ) µD1 = σ−2

η QD1 φD QD1 = σ2
η(LG

2 + σ2
ηλ∗IH)−1LG

estimator by reducing the expected mean square error; and (3) it reduces the uncertainty
in the posterior in terms of the trace of the posterior covariance.

We show first that the posterior mean always has a small noise limit, and the limit
converges to the projection of the true function in the FSOI when the model error vanishes.

Theorem 4.2 (Small noise limit of the MAP estimator) Suppose that Assumption 3.1
(A1-A2) holds. Then, the posterior mean in (4.3) with the data-adaptive prior (4.2) always
has a small noise limit. In particular, its small noise limit converges to the projection of
true kernel in the FSOI H in (4.1) when the model error

∑K
i=1 ε

ξ
iψi vanishes.

Proof The claims follow directly from the definition of the new posterior mean in (4.3)
and the decomposition in Eq. (3.5), which says that φD =

∑
i φ
D
i ψi with φDi = λiφtrue,i +

σηλ
1/2
i εηi + εξi . Recall that µD1 = (LG

2 + σ2
ηλ∗IH)−1LGφD, and if i ≥ K + 1, we have

(LG
2 + σ2

ηλ∗IH)−1LGψi = λi(λ
2
i + σ2

ηλ∗)
−1ψi = 0. Thus, we can write

µD1 = (LG
2 + σ2

ηλ∗IH)−1LGφ
D =

K∑
i=1

λi(λ
2
i + σ2

ηλ∗)
−1ψiφ

D
i , (4.4)

since {ψi}i are orthonormal eigenfunctions of LG with eigenvalues {λi}i. Thus, the small
noise limit exists and is equal to

lim
ση→0

µD1 = lim
ση→0

∑
1≤i≤K

λi
(
λ2
i + σ2

ηλ∗
)−1

φDi ψi

= lim
ση→0

∑
1≤i≤K

λi
(
λ2
i + σ2

ηλ∗
)−1

(λiφtrue,i + σηλ
1/2
i εηi + εξi )ψi

=
K∑
i=1

λ−1
i

(
λiφtrue,i + εξi

)
ψi =

K∑
i=1

(
φtrue,i + λ−1

i εξi

)
ψi .

Furthermore, as the model error ‖
∑K

i=1 ε
ξ
iψi‖2L2

ρ
=
∑K

i=1 |ε
ξ
i |2 → 0, this small noise limit

converges to
∑K

i=1 φtrue,iψi, the projection of φtrue in the FSOI.

We show next that the data-adaptive prior leads to a MAP estimator more accurate
than the non-degenerate prior’s.
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Theorem 4.3 (Expected MSE of the MAP estimator) Suppose that Assumption 3.1
(A1-A2) holds. Assume in addition that maxi≤K{λir−1

i } ≤ λ∗ ≤ 1. Then, the expected
mean square error of the MAP estimator of the data-adaptive prior is smaller than the
non-degenerate prior’s, i.e.,

EπD0 Eη
[
‖µD1 − φtrue‖2L2

ρ

]
≤ Eπ0Eη

[
‖µ1 − φtrue‖2L2

ρ

]
, (4.5)

where the equality holds only when the two priors are the same. Here EπD0 and Eπ0 denote

expectation with φtrue ∼ πD0 and φtrue ∼ π0, respectively.

Proof Note that from (3.6) and (4.4), we have

µD1 − φtrue =
∑

1≤i≤K
ψi
(
λi + σ2

ηλ∗λ
−1
i

)−1
[σηλ

1/2
i εηi − σ

2
ηλ∗λ

−1
i φtrue,i + εξi ] +

∑
i>K

φtrue,i,

µ1 − φtrue =
∑
i≥1

ψi
(
λi + σ2

ηr
−1
i

)−1
[σηλ

1/2
i εηi − σ

2
ηr
−1
i φtrue,i + εξi ].

Recall that {εηi } and {φtrue,i} are independent centered Gaussian with εηi ∼ N (0, 1), φtrue,i ∼
N (0, λi) when φtrue ∼ πD0 , and φtrue,i ∼ N (0, ri) when φtrue ∼ π0. Then, the expectations

of the MSEs Eη
[
‖µD1 − φtrue‖2L2

ρ

]
and Eη

[
‖µ1 − φtrue‖2L2

ρ

]
are

EπD0 Eη[‖µ
D
1 − φtrue‖2L2

ρ
] =

∑
1≤i≤K

(λi + σ2
ηλ∗λ

−1
i )−2[σ2

η(λi + σ2
ηλ

2
∗λ
−1
i ) + |εξi |

2], (4.6)

Eπ0Eη[‖µ1 − φtrue‖2L2
ρ
] =

∑
1≤i≤K

(λi + σ2
ηr
−1
i )−2[σ2

ηλi + σ4
ηr
−1
i + |εξi |

2] +
∑
i>K

[ri + σ−4
η r2

i |ε
ξ
i |

2] .

(4.7)

When ri = 0 for all i > K and λi = ri, λ∗ = 1 for all i ≤ K, i.e., when the two priors are
the same, the two expectations are equal.

To prove (4.5), it suffices to compare the summations over 1 ≤ i ≤ k in (4.6) and (4.7).
Note that

λ∗ ≤ 1 =⇒ λi + σ2
ηλ

2
∗λ
−1
i ≤ λi + σ2

ηλ∗λ
−1
i ,

max
1≤i≤K

{λir−1
i } ≤ λ∗ =⇒ λi + σ2

ηλ∗λ
−1
i ≥ λi + σ2

ηr
−1
i .

Then, we have ∑
1≤i≤K

(
λi + σ2

ηλ∗λ
−1
i

)−2
[σ2
η(λi + σ2

ηλ
2
∗λ
−1
i ) + |εξi |

2]

≤
∑

1≤i≤K

(
λi + σ2

ηλ∗λ
−1
i

)−1
σ2
η +

(
λi + σ2

ηλ∗λ
−1
i

)−2 |εξi |
2

≤
∑

1≤i≤K

(
λi + σ2

ηr
−1
i

)−1
σ2
η +

(
λi + σ2

ηr
−1
i

)−2 |εξi |
2

=
∑

1≤i≤K

(
λi + σ2

ηr
−1
i

)−2
[σ2
ηλi + σ4

ηr
−1
i + |εξi |

2] .
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In particular, the first inequality is strict if λ∗ < 1, and the second inequality is strict if
λi < ri for some 1 ≤ i ≤ K. Thus, the inequality in (4.5) is strict if the two priors differ.

Additionally, the next theorem shows that under the condition λ∗ > maxi≤K{λir−1
i },

the data-adaptive prior outperforms the non-degenerate prior in producing a posterior with
a smaller trace of covariance. We note that this condition is sufficient but not necessary,
since the proof is based on component-wise comparison and does not take into account the
part

∑
i>K ri (see Remark 4.7 for more discussions).

Theorem 4.4 (Trace of the posterior covariance) Suppose that Assumption 3.1 (A1-
A2) holds. Recall that QD1 and Q1 are the posterior covariance operators of the data-adaptive
prior and the non-degenerate prior in (4.3) and (3.3), respectively. Then, Tr(QD1 ) < Tr(Q1)
if λ∗ > maxi≤K{λir−1

i }. Additionally, when ri = 0 for all i > K, we have Tr(QD1 ) > Tr(Q1)
if λ∗ < mini≤K{λir−1

i }.

Proof By definition, the trace of the two operators are

Tr(QD1 ) =
∑

1≤i≤K
σ2
η(λi + σ2

ηλ∗λ
−1
i )−1,

T r(Q1) =
∑

1≤i≤K
σ2
η(λi + σ2

ηr
−1
i )−1 +

∑
i>K

ri.
(4.8)

Thus, when λ∗ > maxi{λir−1
i }, we have (λi+σ2

ηλ∗λ
−1
i )−1 < (λi+σ2

ηr
−1
i )−1 for each i ≥ K,

and hence Tr(QD1 ) < Tr(Q1). The last claim follows similarly.

Remark 4.5 (Expected MSE of the MAP and the trace of the posterior covariance)

When there is no model error, we have Eπ0Eη
[
‖µ1 − φtrue‖2L2

ρ

]
= Tr(Q1) in (4.8). That is,

for the prior π0, the expected MSE of the MAP estimator is the trace of the posterior co-
variance (Alexanderian et al., 2016, Theorem 2). However, for the data-adaptive prior πD0 ,

we have EπD0 Eη
[
‖µD1 − φtrue‖2L2

ρ

]
= Tr(QD1 ) if and only if λ∗ = 1, which follows from (4.6)

and (4.8). Thus, if maxi≤K{λir−1
i } ≤ 1, a smaller expected MSE of the MAP estimator in

Theorem 4.3 implies a smaller trace of the posterior covariance in Theorem 4.4.

Remark 4.6 (A-optimality) Theorem 4.4 shows that the data-adaptive prior achieves A-
optimality among all priors with {ri} satisfying λ∗ > maxi≤K{λir−1

i }. Here, an A-optimal
design is defined to be the one that minimizes the trace of the posterior covariance operator
in a certain class (Alexanderian et al. (2016) and Chaloner and Verdinelli (1995)). It is
equivalent to minimizing the expected MSE of the MAP estimator (which is equal to Tr(Q1))
through an optimal choice of the π0. Thus, in our context, the A-optimal design seeks a
prior with {ri}i≥1 in a certain class such that g(r1, . . . , rK) := Tr(Q1) =

∑
i≤K(λi+r−1

i ) is
minimized, and the data-adaptive prior achieves A-optimality in the above class of priors.
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Remark 4.7 (Conditions on the spectra) The condition maxi≤K{λir−1
i } ≤ λ∗ in The-

orems 4.3–4.4 is far from necessary, since their proofs are based on a component-wise com-
parison in the sum and its does not take into account the part

∑
i>K ri. The optimal λ∗ in

practice is often much smaller than the maximal ratio maxi≤K{λir−1
i } and it depends on

the dataset, in particular, it depends nonlinearly on all the elements involved (see Figures
7–8 in Appendix A.3). Thus, a full analysis with an optimal λ∗ is beyond the scope of this
study.

5. Computational practice

We have followed the wisdom of Stuart (2010) on “avoid discretization until the last possible
moment” so that we have presented the analysis of the distributions on L2

ρ using operators.
In the same spirit, we avoid the selection of a basis for the function space until the last
possible moment. The moment arrives now. Based on the abstract theory in the previous
sections, we present the implementation of the data-adaptive prior in computational prac-
tice. We demonstrate it on Toeplitz matrices and integral operators, which represent finite-
and infinite-dimensional function spaces of learning, respectively.

In computational practice, the goal is to estimate the coefficient c = (c1, . . . , cl)
> ∈ Rl×1

of φ =
∑l

i=1 ciφi in a prescribed hypothesis space H = span{φi}li=1 ⊂ L2
ρ with l ≤ ∞, where

the basis functions {φi} can be the B-splines, polynomials, or wavelets. Then, the prior
and posterior are represented by distributions of c ∈ Rl. Note that the pre-specified basis
{φi} is rarely orthonormal in L2

ρ because ρ varies with data. Hence we only require that
the basis matrix

B = [〈φi, φj〉L2
ρ
]1≤i,j≤l (5.1)

is non-singular, i.e., the basis functions are linearly independent in L2
ρ. This simple require-

ment reduces redundancy in basis functions.

In terms of c, the negative log-likelihood in (2.9) for φ =
∑l

i=1 ciφi reads

E(c) = 〈LGφ, φ〉L2
ρ
− 2〈φD, φ〉L2

ρ
+ CfN

= c>Ac− 2c>b+ CfN ,
(5.2)

where the regression matrix A and vector b are given by
A(i, j) =

1

N

∑
1≤k≤N

〈Rφi [u
k], Rφj [u

k]〉Y = 〈LGφi, φj〉L2
ρ
, (5.3a)

b(i) =
1

N

∑
1≤k≤N

〈Rφi [u
k], fk〉Y = 〈φi, φD〉L2

ρ
. (5.3b)

The maximal likelihood estimator (MLE) ĉ = A
−1
b is the default choice of solution when b

is in the range of A. However, the MLE is ill-defined when b is not in the range of A, which
may happen when there is model error (or computational error due to incomplete data, as
we have discussed after Theorem 2.3), and a Bayesian approach makes the inverse problem
well-posed by introducing a prior.
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We will compare our data-adaptive prior with the widely-used standard Gaussian prior
on the coefficient, that is, c ∼ π0 = N (0, Q0) with Q0 = I, the identity matrix on Rl. This
prior leads to a posterior π1 = N (m1, Q1) with

m1 = (A+ σ2
ηI)−1b, Q1 = (A+ σ2

ηI)−1. (5.4)

5.1 Data-adaptive prior and posterior of the coefficient

The next proposition computes the prior and posterior distributions of the random coef-
ficient c = (c1, . . . , cl)

> ∈ Rl×1 of the L2
ρ-valued random variable φ =

∑
i ciφi with the

data-adaptive prior (4.2).

Proposition 5.1 Assume that {φi}i≥1 is a complete basis of L2
ρ that may not be orthonor-

mal, and the basis matrix B of {φi}li=1 in (5.1) is invertible. Denote φ =
∑

i ciφi the
L2
ρ-valued random variable with the data-adaptive prior in (4.2). Then, the prior and pos-

terior distributions of c = (c1, . . . , cl)
> ∈ Rl×1 are N (0, QD0 ) and N (mD1 , Q

D
1 ) with

QD0 = λ−1
∗ B−1AB−1 , (5.5a)

QD1 = σ2
η(A+ σ2

ηλ∗BA
−1
B)−1, mD1 = σ−2

η QD1 b, (5.5b)

where A and b be defined in (5.3).

Proof The prior covariance (5.5a) follows directly from the definition of the data-adaptive
prior in (4.2) and Lemma A.2. The posterior covariance and mean follow from the likelihood
in (5.2) and the QD0 above:

dπD1 (c)

dc
∝ exp

(
−1

2

[
σ−2
η (c>Ac− 2c>b+ CfN ) + c>(QD0 )−1c

])
.

Thus, completing the squares in the exponent, we obtain (5.5b).

Remark 5.2 (Relation between distributions of the coefficient and the function)
The prior and posterior distributions of the coefficient c and the function φ =

∑l
i=1 ciφi

are different: the former depends on the basis {φi}li=1, but the latter is not. The relation
between the distributions of c and φ is characterized by Lemma A.2–A.3. Specifically, if
c ∼ N (0, Q) and φ =

∑l
i=1 ciφi has a Gaussian measure N (0,Q) on H = span{φi}li=1,

then, we have A := (〈φi,Qφj〉) = BQB provided that B in (5.1) is strictly positive definite.
Additionally, when computing the trace of the operator Q, we solve a generalized eigenvalue
problem Av = λBv, which follows from the proof of Proposition 5.6 below.

Remark 5.3 (Relation to the basis matrix of the RKHS) The matrix B−1AB−1 in
the covariance QD0 in (5.5a) is the pseudo-inverse of the basis matrix of {φi} in the RKHS
HG defined in Lemma 2.4, that is, Brkhs(i, j) = 〈φi,LG

−1φj〉L2
ρ

= 〈φi, φj〉HG, assuming

that the basis functions {φi} are in the RKHS. Computation of the matrix Brkhs involves a
general eigenvalue problem to solve the eigenvalues of LG (see Proposition 5.6).
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We select the hyper-parameter λ∗ by the L-curve method in Hansen (2000). The L-

curve is a log-log plot of the curve l(λ) = (y(λ), x(λ)) with y(λ)2 = c>λBA
−1
Bcλ and

x(λ)2 = E(cλ), where cλ = (A+λBA
−1
B)−1b. The L-curve method maximizes the curvature

to balance between the minimization of the likelihood and the control of the regularization:

λ∗ = argmax
λmin≤λ≤λmax

κ(l(λ)), κ(l(λ)) =
x ′y ′′ − x ′y ′′

(x ′ 2 + y ′ 2 )3/2
,

where λmin and λmax are the smallest and the largest generalized eigenvalues of (A,B).
We summarize the priors and posteriors in computation in Table 3.

Table 3: Priors and posteriors of the coefficients c of φ =
∑l

i=1 ciφi ∈ H ⊂ L2
ρ.

Gaussian measure Mean Covariance

π0 = N (m0, Q0) m0 = 0 Q0 = I

π1 = N (m1, Q1) m1 = (A+ σ2
ηI)−1b Q1 = σ2

η(A+ σ2
ηI)−1

πD0 = N (mD0 , Q
D
0 ) mD0 = 0 QD0 = λ−1

∗ B−1AB−1

πD1 = N (mD1 , Q
D
1 ) mD1 = σ−2

η QD1 b QD1 = σ2
η(A+ σ2

ηλ∗BA
−1
B)−1

Remark 5.4 (Avoiding pseudo-inverse of singular matrix) The inverse of the ma-
trix in QD1 in (5.5b) can cause a large numerical error when A is singular or severely

ill-conditioned. We increase the numerical stability by avoiding A
−1

: let D = B−1A
1/2

and
write QD1 as

QD1 = σ2
η(A+ σ2

ηλ∗BA
−1
B)−1 = σ2

ηD(D>AD + λI)−1D>. (5.6)

Remark 5.5 (Relation to Zellner’s g-prior) When the basis of the hypothesis space are
orthonormal in L2

ρ (that is, the basis matrix B = (〈φi, φj〉L2
ρ
)1≤i,j≤l = I), we have QD0 = A.

Thus, we are once again revealing the well-known Zellner’s g-prior Agliari and Parisetti
(1988); Bayarri et al. (2012); Zellner and Siow (1980).

The next proposition shows that the eigenvalues of LG are solved by a generalized
eigenvalue problem. Its proof is deferred to Appendix A.1.

Proposition 5.6 Assume that the hypothesis space satisfies H = span{φi}li=1 ⊇ LG(L2
ρ)

with l ≤ ∞, where LG : L2
ρ → L2

ρ be the integral operator in (2.7). Let A and b be defined in
(5.3). Then, the operator LG has eigenvalues (λ1, . . . , λl) solved by the generalize eigenvalue
problem with B in (5.1):

AV = BV Λ, s.t., V >BV = I, Λ = Diag(λ1, . . . , λl). (5.7)

and the corresponding eigenfunctions of LG are {ψk =
∑l

j=1 Vjkφj}. Additionally, for any

φ =
∑l

i ciφi in LG
1/2(L2

ρ), we have 〈φ,LG
−1φ〉L2

ρ
= c>Brkhsc with

Brkhs = (V ΛV >)−1 = BA
−1
B.
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5.2 Example: discrete kernels in Toeplitz matrices

The Toeplitz matrix in Example 1 has a vector kernel, which lies in a finite-dimensional
function space of learning L2

ρ. It provides a typical example of discrete kernels. We use the
simplest case of a 2× 2 Toeplitz matrix to demonstrate the data-adaptive function space of
identifiability and the advantages of the data-adaptive prior.

We aim to recover the kernel φ ∈ R2n−1 in the Rn×n Toeplitz matrix from measurement
data {(uk, fk) ∈ Rn×Rn}Nk=1 by fitting the data to the model (2.1). The kernel is a vector
φ : S → R2n−1 with S = {rl}2n−1

l=1 with rl = l − n. Since Rφ[u] is linear in φ, there is a
matrix Lu ∈ Rn×(2n−1) such that Rφ[u] = Luφ. Note that Lu is linear in u since Rφ[u] is,
hence only linearly independent data {uk}Nk+1 brings new information for the recovery of φ.

A least squares estimator (LSE) of φ ∈ R2n−1 is

φ̂ = A
−1
b, with A =

1

N

∑
1≤k≤N

L>ukLuk , b =
1

N

∑
1≤k≤N

L>ukf
k,

Here the A
−1

is a pseudo-inverse when A is singular. However, the pseudo-inverse is unstable
to perturbations, and the inverse problem is ill-posed.

We only need to identify the basis matrix B in (5.1) to get the data-adaptive prior
and its posterior in Table 3. The basis matrix requires two elements: the exploration
measure and the basis functions. Here the exploration measure ρ in (2.4) is ρ(rl) =
Z−1

∑
1≤k≤N

∑
0≤i,j≤n δ(i − j − rl)|ukj | with rl ∈ S, where Z = n

∑N
k=1

∑n−1
i=1 |uki | is

the normalizing constant. Meanwhile, the unspoken hypothesis space for the above vec-
tor φ =

∑2n−1
i=1 ciφi with ci = φ(ri) is H = span{φi}2n−1

i=1 = R2n−1 with basis φi(r) =
δ(ri − r) ∈ L2(S,R), where δ is the Kronecker delta function. Then, the basis matrix of
{φi(r) = δ(ri − r)} in L2

ρ, as defined in (5.1), is B = Diag(ρ). Thus, if ρ is not strictly
positive, this basis matrix is singular and these basis functions are linearly dependent (hence
redundant) in L2

ρ. In such a case, we select a linearly independent basis for L2
ρ, which is a

proper subspace of R2n−1, and we use pseudo-inverse of A and B to remove the redundant
rows. Additionally, since vector φ is the same as its coefficient c, the priors and posteriors
in Table 2 and Table 3 are the same.

Toeplitz matrix with n = 2. Table 4 shows three representative datasets for the in-
verse problem: (1) the dataset {u1 = (1, 0)} leads to a well-posed inverse problem in L2

ρ

though it appears ill-posed in R3, (2) the dataset {u1, u2 = (0, 1)} leads to a well-posed
inverse problem, and (3) the dataset {u3 = (1, 1)} leads to an ill-posed inverse problem and
our data-adaptive prior significantly improves the accuracy of the posterior, see Table 5.
Computational details are presented in Appendix A.3.

Table 5 demonstrates the significant advantage of the data-adaptive prior over the non-
degenerate prior in the case of the third dataset. We examine the performance of the
posterior in two aspects: the trace of its covariance operator, and the bias in the posterior
mean. Following Remark 5.2, we compute the trace of the covariance operator of the
posterior by solving a generalized eigenvalue problem. Table 5 presents the means and
standard deviations of the traces and the relative errors of the posterior mean. It consider
two cases: φtrue = ψ1 in the FSOI and φtrue = (1, 0, 1)> = 0.5ψ1 + 0.5ψ3 outside of the
FSOI (see Table 4). We highlight two observations.
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Table 4: The exploration measure, the FSOI and the eigenvalues of LG for learning the
kernel in a 2× 2 Toeplitz matrix from 3 typical datasets.

Data {uk} ρ on {−1, 0, 1} FOSI Eigenvalues of LG
{u1 = (1, 0)>} (0, 1

2 ,
1
2) span{φ2, φ3} = L2

ρ {1, 1}
{u1, u2 = (0, 1)} (1

4 ,
1
2 ,

1
4) span{φ1, φ2, φ3} = L2

ρ {2, 2, 2}
{u3 = (1, 1)>} (1

4 ,
1
2 ,

1
4) span{ψ1, ψ2} ( L2

ρ {8, 4, 0}
∗The basis {φi} are defined as (φ1, φ2, φ3) = I3. For the dataset {u3}, the eigenvectors of LG in L2

ρ

are ψ1 = (1, 1, 1)>, ψ2 = (−
√

2, 0,
√

2)>, and ψ3 = (1,−1, 1)>, see the text for more details.

Table 5: Performance of the posteriors in learning the kernel of Teoplitz matrix.∗

φtrue Bias of m1 Bias of mD1 Tr(Q1) Tr(QD1 )

(1, 1, 1)> ∈ FSOI 0.34± 0.01 0.10 ± 0.11 0.34± 0.00 0.0037 ± 0.00

(1, 0, 1)> /∈ FSOI 0.94± 0.01 0.66 ± 0.09 0.34± 0.00 0.0037 ± 0.00

* We compute the means and standard deviations of the relative errors of the posterior means (“bias of m1”

and “bias of mD
1 ”) and the traces of the covariance of posteriors. They are computed in 100 independent

datasets with f3 observed with random noises, which are sampled from N (0, σ2
η) with ση = 0.1. and the u

data is {u3 = (1, 1)}. The relative bias of each estimator m is computed by ‖m− φtrue‖L2
ρ
/‖φtrue‖L2

ρ
. The

standard deviations of the traces are less than 10−5.

• The posterior mean mD1 is much more accurate than m1. When φtrue is in the FSOI, mD1
is relatively accurate. When φtrue is outside the FSOI, the major bias comes from the
part outside the FSOI, i.e., the part 0.5ψ3 leads to a relatively large error.

• The trace of QD1 is significantly smaller than Q1. Here QD1 has a zero eigenvalue in the
direction outside of the FSOI, while Q1 is full rank.

Discrete inverse problem: stable small noise limit. For the discrete inverse problem
of solving φ ∈ Rm in Lkφ = fk for 1 ≤ k ≤ N , the next proposition shows that Assumption
3.1 (A3) does not hold, regardless of the presence of model error or missing data in fk.
Thus, it has a small noise limit. Numerical tests confirm that b is always in the range of
the operator A and that m1 has a small noise limit regardless of the model error (e.g.,
ξ(u) = 0.01u|u|2) or computational error due to missing data. However, for continuous
inverse problems that estimate a continuous function φ, Assumption 3.1 (A3) holds when
b is computed using different regression arrays from those in A due to discretization or
missing data (see Sect.5.3) or errors in integration by parts Lang and Lu (2022).

Proposition 5.7 Let A =
∑

1≤k≤N L
>
k Lk and b =

∑
1≤k≤N L

>
k fk, where Lk ∈ Rn×m and

fk ∈ Rn×1 for each 1 ≤ k ≤ N . Then, b ∈ Range(A).

Proof First, we show that it suffices to consider Lk’s being rank-1 arrays. The SVD (singu-
lar value decomposition) of each Lk gives Lk =

∑
1≤i≤nk σk,iwk,iv

>
k,i, where {σk,i, wk,i, vk,i}

are the singular values, left and right singular vectors that are orthonormal, i.e., w>k,iwk,j =
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δi,j and v>k,ivk,j = δi,j . Denote Lk,i = σk,iwk,iv
>
k,i, which is rank-1. Note that L>k Lk =∑

1≤i,j≤nk σ
2
k,ivk,iw

>
k,iwk,jv

>
k,j =

∑
1≤i≤nk σ

2
k,ivk,iv

>
k,i =

∑
1≤i≤nk L

>
k,iLk,i. Thus, we can write

A =
∑

1≤k≤N
∑

1≤i≤nk L
>
k,iLk,i and b =

∑
1≤k≤N

∑
1≤i≤nk L

>
k,ifk in terms of rank-1 arrays.

Next, for each k, write the rank-1 array as Lk = σkwkv
>
k with wk ∈ Rm×1 and vk ∈ Rn×1

both being unitary vectors. Then, A =
∑

1≤k≤N σ
2
kvkw

>
k wkv

>
k =

∑
1≤k≤N σ

2
kvkv

>
k , and

Range(A) = span{vk}Nk=1 (where the vk’s can be linearly dependent). Therefore, b =∑
1≤k≤N σkvkv

>
k fk is in the range of A because v>k fk is a scalar.

5.3 Example: continuous kernels in integral operators

For the continuous kernels of the integral operators in Examples 2-4, their function space of
learning L2

ρ is infinite-dimensional. Their Bayesian inversions are similar, so we demonstrate
the computation using the convolution operator in Example 2. In particular, we compare
our data-adaptive prior with a fixed non-degenerate prior in the presence of four types of
errors: (i) discretization error, (ii) model error, (ii) partial observation (or missing data),
and (iv) wrong noise assumption.

Recall that with X = Y = L2([0, 1]), we aim to recover the kernel φ in the operator
in (2.2), Rφ[u](y) =

∫ 1
0 φ(y − x)u(x)dx, by fitting the model (1.1) to an input-output

dataset
{
uk, fk

}3

k=1
. We set {uk}3k=1 to be the probability densities of normal distributions

N (−1.6 + 0.6k, 1/15) for k = 1, 2, 3 and we compute Rψ[uk] =
∫ 1

0 ψ(y − x)uk(x)dx by the

global adaptive quadrature method in Shampine (2008). The data are
{
uk(xj), f

k(yl)
}3

k=1

on uniform meshes {xj}Jj=1 and {yl}Ll=1 of [0, 1] with J = 100 and L = 50. Here fk(yl) is
generated by

fk(yl) = Rφ[uk](yl) + ηkl + ξk(yl), (5.8)

where ηkl are i.i.d. N (0, σ2
η) random variables (unless the wrong noise assumption case to be

specified later) with variance
σ2
η

4y and ξk(y) = σξu(y) |u(y)| are artificial model errors with
σξ = 0 (no model error) or σξ = 0.01 (a small model error).

Figure 1: The exploration measure and the eigenvalues of the basis matrix B, regression
matrix AD and operator LG (computed via the generalized eigenvalue problem of (AD, B)).
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The exploration measure (defined in (2.4)) of this dataset has a density

ρ(r) =
1

ZN

N∑
k=1

∫
[0,1]∩[r,r+1]

∣∣∣uk(y)
∣∣∣ dy, r ∈ [−1, 1],

with Z being the normalizing constant. We set the H = span{φi}li=1, where {φi}li=1 are
B-spline basis functions (i.e., piecewise polynomials) with degree 3 and with knots from a
uniform partition of [−1, 1]. We approximate A and b using the Riemann sum integration,

AD(i, i′) =
1

N

N∑
k=1

J∑
j=1

R̂φi [u
k](yj)R̂φi′ [u

k](yj)4y,

b(i) =
1

N

∑
1≤k≤N

L∑
l=1

R̂φi [u
k](xl)f

k(yl)4y,

where we approximateRψ[uk] via Riemann integration R̂ψ[uk](y) =
∑J

j=1 ψ(y−xj)uk(xj)4x.

Additionally, to illustrate the effects of discretization error, we also compute A in (5.3) using
the continuous {uk} with quadrature integration, and denote the matrix by AC .

Figure 1 shows the exploration measure and the eigenvalues of the basis matrix B, AD
and LG (which are the generalized eigenvalues of (AD, B)). Note that the support S is a
proper subset of [−1, 1], leading to a near singular B. In particular, the inverse problem is
severely ill-posed in L2

ρ since LG has multiple almost-zero eigenvalues.

We consider four types of errors, in addition to the observation noise, in b that often
happen in practice.

1. Discretization Error. We assume that fk in (5.8) has no model error.

2. Partial Observation. We assume that fk misses data in the first quarter of the interval,
i.e. fkl = 0 for l = 0, . . . , L/4. Also, assume that there is no model error.

3. Model Error. Assume there are model errors.

4. Wrong Noise Assumption. Suppose that the measurement noise ηkl is uniformly dis-

tributed on the interval [−
√

3ση√
4y ,

√
3ση√
4y ]. Thus, the model, which assumes a Gaussian

noise, has a wrong noise assumption. Notice that we add a
√

3 to keep the variance
at the same level as the Gaussian.

For each of the four cases, we compute the posterior means in Table 3 with the optimal
hyper-parameter λ∗ selected by the L-curve method, and report the L2

ρ error of the function
estimators. Additionally, for each of them, we consider different levels of observation noise
ση in 10−1 ∼ 10−5, so as to demonstrate the small noise limit of the posterior mean.

We access the performance of the fixed prior and the data-adaptive prior in Table 3
through the accuracy of their posterior means. We report the interquartile range (IQR, the
75th, 50th and 25th percentiles) of the L2

ρ errors of their posterior means in 200 independent
simulations in which φtrue are randomly sampled.
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Two scenarios are considered: φtrue is either inside or outside the FSOI. To draw samples
of φtrue outside the FSOI, we sample the coefficient c∗ of φtrue =

∑l
j=1 c

∗
jφj from the fixed

prior N (0, Il). Thus, the fixed prior is the true prior. To sample φtrue inside the FSOI, we
sample φtrue =

∑l
j=1 c

∗
jψj with c∗ from N (0, I3), where {ψj =

∑l
i=1 vi,jφj} has v·,j being

the j-th eigenvector of AD.
Note that the exploration measure, the matrices AD, AC and B are the same in all these

simulations because they are determined by the data {uk} and the basis functions. Thus,
we only need to compute b for each simulation.

Figure 2: Interquartile range (IQR, the 75th, 50th and 25th percentiles) of the L2
ρ errors of

the posterior means. They are computed in 200 independent simulations with φtrue sampled
from the fixed prior (hence outside the FSOI), in the presence of four types of errors.
Top row: the regression matrix A is computed from continuous {uk}; Bottom row: A is
computed from discrete data. As ση → 0, the fixed prior leads to diverging posterior means
in 6 out of the 8 cases, while the data-adaptive (DA) prior leads to stable posterior means.
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Figure 2 shows the IQR of these simulations in the scenario that the true kernels are
outside the FSOI. The fixed prior leads to diverging posterior means in 6 out of the 8
cases, while the DA-prior has stable posterior means in all cases. The fixed prior leads
to a diverging posterior mean when using the continuously integrated regression matrix
AC , because the discrepancy between b and AC leads to a perturbation outside the FSOI,
satisfying Assumption 3.1 (A3). Similarly, either the model error or partial observation
error in b causes a perturbation outside the FSOI of AD, making the fixed prior’s posterior
mean diverge. On the other hand, the discretely computed AD matches b in the sense that
b ∈ Range(AD) as proved in Proposition 5.7, so the fixed prior has a stable posterior mean
in cases of discretization and wrong noise assumption. In all these cases, the error of the
posterior mean of the DA-prior does not decay as ση → 0, because the error is dominated
by the part outside of the FSOI that cannot be recovered from data.
Figure 3 shows the IQR of these simulations with the true kernels sampled inside the FSOI.
The DA prior leads to posterior means that are not only stable but also converge to small
noise limits, whereas the fixed prior leads to diverging posterior means as in Figure 2.
The convergence of the posterior means of the DA prior can be seen in the cases of “Dis-
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Figure 3: IQR of the L2
ρ errors of the posterior means in 200 independent simulations with

φtrue sampled inside the FSOI.
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cretization” and “Wrong noise” with both continuously and discretely computed regression
matrices. Meanwhile, the flat lines of the DA prior in the cases of “Model error” or “Partial
observations” are due to the error inside the FSOI caused by either the model error or
partial observation error in b, as shown in the proof of Theorem 4.2.
Additionally, we show in Figure 4 and Figure 5 the estimated posterior (in terms of its
mean, the 75th and 25th percentiles) in a typical simulation, when φtrue is outside and in-
side the FSOI, respectively. Here, the percentiles are computed by drawing samples from
the posterior. A more accurate posterior would have a more accurate mean and a narrower
shaded region between the percentiles so as to have a smaller uncertainty. In all cases, the
DA prior leads to a more accurate posterior mean (MAP) than the fixed prior. When the
observation noise has ση = 0.1, the DA prior leads to a posterior with a larger shaded region
between the percentiles than the fixed prior, but when ση = 0.001, the DA prior’s shaded
region is much smaller than those of the fixed prior.

Figure 4: The posterior (its mean, the 75th and 25th percentiles) when φtrue /∈ FSOI.
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Figure 5: The posterior (its mean, the 75th and 25th percentiles) when φtrue ∈ FSOI.
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In summary, these numerical results confirm that the data-adaptive prior removes the
risk in a fixed non-degenerate prior, leading to a robust posterior with a small noise limit.

Remark 5.8 (Increasing data size) We have chosen a low number of data points in the
numerical tests, so that the inverse problems are under-determined and hence are meaningful
for a Bayesian study. In general, the blow-up behavior caused by a fixed non-degenerate
prior will remain when the data size increases as long as the inverse problem satisfies the
conditions in Assumption 3.1 (i.e., under-determined with deficient rank, using a fixed non-
degenerate prior, with error in the null space of the normal operator).

5.4 Limitations of the data-adaptive prior

As stated in Hansen (2000): “every practical method has advantages and disadvantages”.
The major advantage of the data-adaptive RKHS prior is to avoid the posterior being
contaminated by the errors outside of the data-dependent function space of identifiability.

A drawback of the data-adaptive prior is its reliance on selecting the hyper-parameter
λ∗. The L-curve method is state-of-the-art and works well in our numerical tests, yet it has
limitations in dealing with smoothness and asymptotic consistency (see Hansen (2000)). An
improper hyper-parameter can lead to a posterior with an inaccurate mean and unreliable
covariance. Also, the premise is that the identifiable part of the true kernel is in the data-
adaptive RKHS. But this RKHS can be restrictive when the data is smooth, leading to an
overly-smoothed estimator if the true kernel is non-smooth. It remains open to use a prior
with LG

s as its covariance, as introduced in Lang and Lu (2023), with s ≥ 0 to detect the
smoothness of the true kernel. We leave this as potential future work.

Also, the data-adaptive prior in this study is for linear inverse problems, and it does
not apply to nonlinear problems in which the operator depends on the kernel nonlinearly.
However, the covariance of our data-adaptive prior corresponds to a scaled Fisher informa-
tion matrix. Thus, for nonlinear inverse problems, a potential adaptive prior is the scaled
Fisher information, which has been explored as a regularization method in Li et al. (2020a).

28



Data-Adaptive RKHS Prior for Learning Kernels in Operators

6. Conclusion

The inverse problem of learning kernels in operators is often severely ill-posed. We show
that a fixed non-degenerate prior leads to a divergent posterior mean when the observation
noise becomes small if the data induces a perturbation in the eigenspace of zero eigenvalues
of the normal operator.

We have solved the issue by a data-adaptive RKHS prior. It leads to a stable posterior
whose mean always has a small noise limit, and the small noise limit converges to the
identifiable part of the true kernel when the perturbation vanishes. Its covariance is the
normal operator with a hyper-parameter selected adaptive to data by the L-curve method.
Also, the data-adaptive prior improves the quality of the posterior over the fixed prior in
two aspects: a smaller expected mean square error of the posterior mean, and a smaller
trace of the covariance operator, thus reducing the uncertainty.

Furthermore, we provide a detailed analysis of the data-adaptive prior in computational
practice. We demonstrate its advantage on Toeplitz matrices and integral operators in the
presence of four types of errors. Numerical tests show that when the noise becomes small, a
fixed non-degenerate prior may lead to a divergent posterior mean, the data-adaptive prior
always attains stable posterior means.

We have also discussed the limitations of the data-adaptive prior, such as its dependence
on the hyper-parameter selection and its tendency to over-smoothing. It is of interest
to overcome these limitations in future research by adaptively selecting the regularity of
the prior covariance through a fractional operator. Among various other directions to be
further explored, we mention one that is particularly relevant in the era of big data: to
investigate the inverse problem when the data {uk} are randomly sampled in the setting
of infinite-dimensional statistical models (e.g., Giné and Nickl (2015)). When the operator
Rφ[u] is linear in u, the examples of Toeplitz matrices and integral operators show that
the inverse problem will become less ill-posed when the number of linearly independent
data {uk} increases. When Rφ is nonlinear in u, it remains open to understand how the
ill-posedness depends on the data. Another direction would be to consider sampling the
posterior exploiting MCMC or sequential Monte Carlo methodologies (e.g., Robert and
Casella (1999)).
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Appendix A. Appendix

A.1 Identifiability theory

The main theme in the identifiability theory is to find the function space in which the
quadratic loss functional has a unique minimizer. The next lemma shows that the normal
operator LG defined in (2.7) is a trace-class operator. Recall that an operator Q on a
Hilbert space if it satisfies

∑
k〈Qek, ek〉 <∞ for any complete orthonormal basis {ek}∞k=1.

Lemma A.1 Under Assumption 2.1, the operator LG : L2
ρ → L2

ρ defined in (2.7) is a

trace-class operator with Tr(LG) =
∫
S G(r, r)ρ(r)dr.

Proof We have ρ(r) = 1
ZN

∑
1≤k≤N

∫
Ω

∣∣g[uk](x, r + x)
∣∣µ(dx) by (2.4). Then,

G(r, s) =
1

N

∑
1≤k≤N

∫
g[uk](x, r + x)g[uk](x, s+ x)µ(dx) ≤ Cρ(r) ∧ ρ(s)

for and r, s ∈ S, where C = Z max1≤k≤K supx,y∈Ω |g[uk](x, y)|. Thus,

G(r, s) =
G(r, s)

ρ(r)ρ(s)
≤ Cρ(r)−1 ∧ ρ(s)−1,

for each r, s ∈ S. Meanwhile, since Ω is bonded, we have |S| <∞. Hence
∫
S G(r, r)ρ(r)dr ≤

C|S| <∞. Also, note that G is continuous since g[uk] is continuous. Then, by (Lax, 2002,
Theorem 12, p344), the operator LG with integral kernel G has a finite trace Tr(LG) =∫
S G(r, r)ρ(r)dr <∞.

Theorem 2.3 characterizes the FSOI through the normal operator LG.
Proof [Proof of Theorem 2.3] Part (a) follows from the definition of φD in (2.10). In fact,
plugging in fk = Rφtrue [u

k] + ξk + ηk into the right hand side of (2.10), we have, ∀ψ ∈ L2
ρ,

〈φD, ψ〉L2
ρ

=
1

N

∑
1≤k≤N

〈Rψ[uk], Rφtrue [u
k]〉Y + 〈Rψ[uk], ξk]〉Y + 〈Rψ[uk], ηk]〉Y

= 〈ψ,LGφtrue〉L2
ρ

+ 〈ψ, εξ〉L2
ρ

+ 〈ψ, εη〉L2
ρ
,

where the first term in the last equation comes from the definitions of the operator LG
in (2.7), the second and the third term comes from the Riesz representation. Since each
ηk is a Y-valued white noise, the random variable 〈ψ, εη〉L2

ρ
= 1

N

∑
1≤k≤N 〈Rψ[uk], ηk]〉Y is

Gaussian with mean zero and variance σ2
η〈ψ,LGψ〉L2

ρ
for each ψ ∈ L2

ρ. Thus, εη has a

Gaussian distribution N (0, σ2
ηLG).

Part (b) follows directly from loss functional in (2.9).
For Part (c), first, note that the quadratic loss functional has a unique minimizer in

H. Meanwhile, note that H is the orthogonal complement of the null space of LG, and
E(φtrue + φ0) = E(φtrue) for any φ0 such that LGφ0 = 0. Thus, H is the largest such
function space, and we conclude that H is the FSOI.

Next, for any φD ∈ LG(L2
ρ), the estimator φ̂ = LG

−1φD is well-defined. By Part (b),
this estimator is the unique zero of the loss functional’s Fréchet derivative in H. Hence it
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is the unique minimizer of E(φ) in H. In particular, when the data is noiseless and with
no model error, and it is generated from φtrue, i.e. Rφtrue [u

k] = fk, we have φD = LGφtrue
from Part (a). Hence φ̂ = LG

−1φD = φtrue. That is, φtrue ∈ H is the unique minimizer of
the loss functional E .

The proof of Proposition 5.6 is an extension of Theorem 4.1 of Lu et al. (2022).
Proof [Proof of Proposition 5.6] Let ψk =

∑l
j=1 Vjkφj with V >BV = I. Then, ψk is an

eigenfunction of LG with eigenvalue λk if and only if for each i,

〈φi, λkψk〉L2
ρ

= 〈φi,LGψk〉L2
ρ

=
∑

1≤j≤l
〈φi,LGφj〉L2

ρ
Vjk =

∑
1≤j≤l

A(i, j)Vjk,

where the last equality follows from the definition of A. Meanwhile, by the definition of B
we have 〈φi, λkψk〉L2

ρ
=
∑l

j=1B(i, j)Vjkλk for each i. Then, Equation (5.7) follows.

Next, to compute 〈φ,LG
−1φ〉L2

ρ
, we denote Ψ = (ψ1, . . . , ψl)

> and Φ = (φ1, . . . , φl)
>.

Then, we can write

Ψ = V >Φ, φ =
∑

1≤i≤l
ciφi = c>Φ = c>V −>Ψ.

Hence, we can obtain Brkhs = (V ΛV >)−1 in 〈φ,LG
−1φ〉L2

ρ
= c>Brkhsc via:

〈φ,LG
−1φ〉L2

ρ
= 〈c>Φ,LG

−1c>Φ〉L2
ρ

= 〈c>V −>Ψ,LG
−1c>V −>Ψ〉L2

ρ

= c>V −>〈Ψ,LG
−1Ψ〉L2

ρ
V −1c = c>V −>Λ−1V −1c,

where the last equality follows from 〈Ψ,LG
−1Ψ〉L2

ρ
= Λ−1.

Additionally, to prove Brkhs = BA
−1
B, we use the generalized eigenvalue problem.

Since V >BV = I, we have V −1 = V >B. Meanwhile, AV = BV Λ implied that B−1A =
V ΛV −1. Thus, B−1AB−1 = V ΛV −1 = V ΛV >, which is B−1

rkhs.

A.2 Gaussian measures on a Hilbert space

A Gaussian measure on a Hilbert space is defined by its mean and covariance operator
(see (Da Prato, 2006, Chapter 1-2) and Da Prato and Zabczyk (2014)). Let H be a Hilbert
space with inner product 〈·, ·〉, and let B(H) denote its Borel algebra. Let Q be a symmetric
nonnegative trace class operator on H, that is 〈Qx, y〉 = 〈x,Qy〉 and 〈Qx, x〉 ≥ 0 for any
x, y ∈ H, and

∑
k〈Qek, ek〉 <∞ for any complete orthonormal basis {ek}∞k=1. Additionally,

denote {λk, ek}∞k=1 the eigenvalues (in descending order) and eigenfunctions of Q.
A measure on H with mean a and covariance operator Q is a Gaussian measure π =

N (a,Q) iff its Fourier transform π̂(h) =
∫
H e

i〈x,h〉π(dx) is ei〈a,h〉−
1
2
〈Qh,h〉 for any h ∈ H.

The measure is non-degenerate if KerQ = {0}, i.e., λk > 0 for all k. It is a product measure
π =

∏∞
k=1N (ak, λk), where ak = 〈a, ek〉 ∈ R for each k. Note that π(Q1/2H) = 0 if H is

infinite-dimensional, that is, the Cameron-Martin space Q1/2H has measure zero.
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The next lemma specifies the covariance of the coefficient of an H-valued Gaussian
random variable. The coefficient can be on either a full or partial basis.

Lemma A.2 (Covariance operator to covariance matrix) Let H be a Hilbert space
with a complete basis {φi}ni=1 that may not be orthonormal, where n ≤ ∞. For l ≤ n, assume
that the matrix B = 〈φi, φj〉1≤i,j≤l is strictly positive definite. Let φ =

∑n
i=1 ciφi be an H-

valued random variable with Gaussion measure N (m,Q), where Q is a trace class operator.
Then, the coefficient c = (c1, . . . , cl)

> ∈ Rl×1 has a Gaussian distribution N (c,B−1AB−1),
where

c = B−1(〈φ, φ1〉, . . . , 〈φ, φl〉)>

A = [A(i, j)]1≤i,j≤l = [〈φi,Qφj〉]1≤i,j≤l.

Proof Without loss of generality, we assume m = 0: otherwise, we replace φ by φ−m in the
following proof. By definition, for any h ∈ H, the random variable 〈φ, h〉 has distribution
N (0, 〈h,Qh〉). Thus, we have 〈φ, φi〉 ∼ N (0, 〈φi,Qφi〉) for each i. Similarly, we have that
E[〈φ, φi + φj〉2] = 〈φi + φj ,Q(φi + φj)〉. Then, we have

E[〈φ, φi〉〈φ, φj〉] =
1

2

(
E[〈φ, φi + φj〉2]− E[〈φ, φi〉2]− E[〈φ, φj〉2]

)
=

1

2

(
〈φi + φj ,Q(φi + φj)〉 − 〈φi,Qφi〉 − 〈φj ,Qφj〉

)
= 〈φi,Qφj〉.

Hence, the random vector X = (〈φ, φ1〉, . . . , 〈φ, φl〉)> is Gaussian N (0, A) with A(i, j) =
〈φi,Qφj〉. Now, noticing that X = Bc and B = B>, we obtain that the distribu-
tion of c = B−1X is N (0, B−1AB−1), where the covariance matrix can be derived as
E[cc>] = E[B−1XX>B−1] = B−1AB−1.

On the other hand, the distribution of the coefficient only determines a Gaussian measure
on the linear space its basis spans.

Lemma A.3 (Covariance matrix to covariance operator) Let H = span{φi}li=1 with
l ≤ ∞ be a Hilbert space with basis such that the matrix B = 〈φi, φj〉1≤i,j≤l is strictly positive

definite. Assume the coefficient c ∈ Rl of φ =
∑l

i=1 ciφi has a Gaussian measure N (0, Q).
Then, the H-valued random variable φ has a Gaussian distribution N (0,Q), where the
operator Q is defined by 〈φi,Qφj〉 = (BQB)i,j.

Proof Since {φi} is a complete basis, we only need to determine the distribution of the
random vector X = (〈φ, φ1〉, . . . , 〈φ, φl〉)> ∈ Rl. Note that it satisfies X = Bc. Thus, its
distribution is Gaussian N (0, BQB).

A.3 Details of numerical examples

Computation for Toeplitz matrix. Each dataset {uk = (uk0, u
k
1)}k leads to an explo-

ration measure on S = {−1, 0, 1}:

ρ(−1) =

∑
k |uk1|

2
∑

k(|uk1|+ |uk0|)
, ρ(0) =

1

2
, ρ(1) =

∑
k |uk0|

2
∑

k(|uk1|+ |uk0|)
.
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Since each u = (u0, u1) leads to a rank-2 regression matrix

Lu =

[
u1 u0 0
0 u1 u0

]
, L>uLu =

 u2
1 u1u0 0

u1u0 u2
1 + u2

0 u1u0

0 u1u0 u2
0

 ,
the regression matrices A =

∑
k L
>
uk
Luk of the three datasets are

A(1) =

0 0 0
0 1 0
0 0 1

 , A(2) =
1

2

2∑
k=1

L>ukLuk =
1

2

1 0 0
0 2 0
0 0 1

 , A(3) =

1 1 0
1 2 1
0 1 1

 . (A.1)

Additionally, with B = Diag(ρ), the prior covariances λ∗Q
D
0 = B−1AB−1 are

QD0,(1) =

0 0 0
0 4 0
0 0 4

 , QD0,(2) =

8 0 0
0 4 0
0 0 8

 , QD0,(3) =

16 8 0
8 8 8
0 8 16

 . (A.2)

We analyze the well-posedness of the inverse problem in terms of the operator LG, whose
eigenvalues are solved via the generalized eigenvalue problem (see Proposition 5.6).

• For the data set {u1}, the exploration measure ρ is degenerate with ρ(−1) = 0, thus,
we have no information from data to identify φ(−1). As a result, L2

ρ = span{φ2, φ3}
is a proper subspace of R3. The regression matrix A(1) and the covariance matrix
QD0,(1) are effectively the identity matrix I2 and 4I2. The operator LG has eigenvalues

{1, 1}, and the FSOI is L2
ρ. Thus, the inverse problem is well-posed in L2

ρ.

• For the dataset {u1, u2}, the inverse problem is well-posed because the operator LG
has eigenvalues {2, 2, 2}, and the FSOI is L2

ρ. Note that the data-adaptive prior QD0,(2)
assigns weights to the entries of the coefficient according to the exploration measure.

• For the data set {u3}, the inverse problem is ill-defined in L2
ρ, but it is well-posed in the

FSOI, which is a proper subset of L2
ρ. Here the FSOI is span{ψ1, ψ2}, which are the

eigenvectors of LG with positive eigenvalues. Following (5.7), these eigenvectors {ψi}
are solved from the generalized eigenvalue problem A(3)ψ = λDiag(ρ)ψ and they are
orthonormal in L2

ρ. The eigenvalues are {8, 4, 0} and the corresponding eigenvectors

are ψ1 = (1, 1, 1)>, ψ2 = (−
√

2, 0,
√

2)>, and ψ3 = (1,−1, 1)>.

The hyper-parameter selected by the L-curve method. Figure 6 shows a typical
L-curve, where R(λ) = ‖φλ‖HG and E represents the square root of the loss E(φλ). The
L-curve method selects the parameter that attains the maximal curvature at the corner of
the L-shaped curve.

Figures 7–8 present the λ∗ in the simulations in Figures 2–3, respectively. Those hyper-
parameters are mostly similar, and the majority of them are at the scale of 10−4. They
show that the optimal hyper-parameter depends on the spectrum of LG, the four types of
errors in b, the strength of the noise, and the smoothness of the true kernel. Generally,
a large variation of λ∗ suggests difficulty in selecting an optimal hyper-parameter by the
method. Additionally, the error in the numerical computation of matrix inversion or the
solution of the linear systems can affect the result when λ∗ is small. Thus, it is beyond the
scope of this study to analyze the optimal hyper-parameter.
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Figure 6: The L-curve for selecting the hyper-parameter λ∗.

0.738 0.74 0.742 0.744 0.746
-4

-2

0

2

4

6
L-curve

L-curve opt  = 1.0777e-04 curvature max = 1.7725e-02

-15 -10 -5 0
-5

0

5

10

15

20

C
ur

va
tu

re
 

10-3 Curvature

Figure 7: The hyper-parameter λ∗ in the 200 simulations in Figure 2.
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Figure 8: The hyper-parameter λ∗ in the 200 simulations in Figure 3.
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