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Abstract

Tensor Gaussian graphical models (GGMs), interpreting conditional independence struc-
tures within tensor data, have important applications in numerous areas. Yet, the available
tensor data in one single study is often limited due to high acquisition costs. Although
relevant studies can provide additional data, it remains an open question how to pool
such heterogeneous data. In this paper, we propose a transfer learning framework for
tensor GGMs, which takes full advantage of informative auxiliary domains even when non-
informative auxiliary domains are present, benefiting from the carefully designed data-
adaptive weights. Our theoretical analysis shows substantial improvement of estimation
errors and variable selection consistency on the target domain under much relaxed condi-
tions, by leveraging information from auxiliary domains. Extensive numerical experiments
are conducted on both synthetic tensor graphs and brain functional connectivity network
data, which demonstrates the satisfactory performance of the proposed method.

Keywords: brain functional connectivity, Gaussian graphical models, precision matrix,
tensor data, transfer learning.

1. Introduction

The development of modern science facilitates the collection of high-order tensor data in var-
ious research areas, ranging from molecular biology, neurophysiology, to signal processing.
For examples, in cancer staging studies, multi-stage, multi-tissue, and multi-omics obser-
vations will be analyzed, which are organized as order-3 tensors (Krishnan et al., 2018); in
brain functional connectivity analysis, the functional magnetic resonance imaging (fMRI)
data is also considered as an order-2 tensor, which includes blood oxygen level signals in
different brain regions at different time points (Bellec et al., 2017; Zhang et al., 2019).

In light of the importance of tensor data in modern science, tensor data analysis has
received increasing attention in recent years, such as supervised learning represented by
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tensor regression and classification (Zhou et al., 2013; Sun and Li, 2017; Pan et al., 2018)
and unsupervised learning represented by tensor clustering and principal component anal-
ysis (Hopkins et al., 2015; Luo and Zhang, 2022). In addition, the Gaussian graphical
model (GGM) interpreting conditional independence structures within tensor data is also
an essential topic but relatively understudied in literature. A straightforward approach for
describing conditional independence in tensor data is to vectorize the tensor and fit multi-
variate GGMs (Friedman et al., 2008; Lam and Fan, 2009; Zhang and Zou, 2014; Liu and
Luo, 2015), which is considered, however, to largely ignore the tensor structure and require
almost unrealistic estimation of a tremendous number of parameters (He et al., 2014). For
example, in the brain fMRI tensor data, if modeling the vectorized tensor with 200 time
points and 116 widely studied brain regions of interest using multivariate GGMs, it requires
estimation of

(
200×116+1

2

)
parameters, which is more than 269 million. Instead, the proposed

tensor normal distribution only needs to estimate
(

201
2

)
+
(

117
2

)
parameters, which is less

than 27 thousands, thanks to the Kronecker decomposition of the covariance matrix. More
severely, simply vectorizing the tensor data may dilute our concern on the conditional inde-
pendence between brain regions, corresponding to the functional brain connectivity, which
is important for exploring the neurophysiological etiology. Tensor GGMs (He et al., 2014;
Lyu et al., 2019) and related efficient algorithms (Min et al., 2022) are proposed in recent
literature and have been widely reported their success. The models usually assume that the
covariance matrix of the tensor data is separable, in the sense that it can be decomposed
as the Kronecker product of multiple much smaller covariance matrices, each corresponding
to one mode of the tensor data.

In many medical applications, high-dimensional and high-order tensor data are often
extremely limited in one medical institution, due to the high acquisition costs and the rarity
of certain diseases (Westin et al., 2002). Fortunately, relevant data may be collected by
other institutions, which may be helpful for the tasks studied at the target institution. Our
motivation is to investigate the brain fMRI scans of attention deficit hyperactivity disorder
(ADHD) patients from various sites, in which the data in NeuroIMAGE site consists only
17 samples, but other sites can further provide more than ten times of relevant data. To
pool these heterogeneous data from different sites, transfer learning is a promising solution
with growing popularity, which aims at transferring the information from different auxiliary
domains to help with the specific task on the target domain of interest (Pan and Yang, 2009).

Transfer learning has been studied in many branches of machine learning, including im-
age recognition (Gao and Mosalam, 2018), natural language processing (Ruder et al., 2019),
and drug discovery (Cai et al., 2020). More discussion on transfer learning can be found
in Zhuang et al. (2020) and the references therein. Despite significant successes of trans-
fer learning in algorithm developments and real-life applications, it is recognized that the
existing studies on their statistical theory guarantees are still insufficient and are also gain-
ing attention. Recently, Cai and Wei (2021) proposes some minimax and adaptive transfer
learning-based classifiers, Bastani (2021) derives the estimation error bound of linear models
in the single auxiliary domain case. Li et al. (2022a) proposes the Trans-Lasso method under
high-dimensional linear models with multiple auxiliary domains and establishes its minimax
optimality. This transfer learning framework is extended to high-dimensional generalized
linear models (Tian and Feng, 2022), federated learning (Li et al., 2021), and functional
linear regression (Lin and Reimherr, 2022). However, transfer learning for unsupervised
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tasks, such as GGMs, is still in its infancy. It was only until very recently that Li et al.
(2022b) proposes a Trans-CLIME method for transfer learning on high-dimensional GGMs
and it is subsequently extended to semiparametric graphical models (He et al., 2022), but
these approaches are still restricted to vector-value data.

In this paper, we propose a transfer learning framework for tensor GGMs. It introduces
a type of divergence matrix to measure the similarity between the target and auxiliary
domains for each mode benefiting from the separability of the tensor covariance matrix, as
well as some novel data-adaptive weights on the auxiliary domains based on the divergence
matrices. The divergence matrix is first estimated based on a carefully designed regularized
loss function by combining information from both target and auxiliary domains, and then
the estimates of precision matrices can be better constructed based on the auxiliary domain
and the well-estimated divergence matrices. The efficient algorithm and rigorous theoretical
analysis of the proposed method are also conducted.

This paper advances the current research on transfer learning in a number of ways. First,
the proposed transfer learning method provides a more flexible modeling framework for high-
order tensor GGMs, which also includes Li et al. (2022b) as a special case. Second, to prevent
the negative transfer phenomenon (Shu et al., 2019), data-adaptive weights for auxiliary
domains are constructed to minimize the interference from the non-informative auxiliary
domains. Third, the established theoretical analysis shows that the estimation error can
be improved using the data-adaptive weights as long as there is at least one informative
auxiliary domain that is close enough to the target domain. This is significantly different
from the results in Li et al. (2022b); He et al. (2022), which require all auxiliary domains
to be informative for the improvement of error. Our theoretical analysis also demonstrates
that transfer learning can help improve variable selection performance by weakening the
regular minimum signal condition in literature (Lyu et al., 2019). Last but not least, the
proposed method is applied to analyze the ADHD brain functional connectivity, which
provides interesting neurophysiological insights into the pathogenesis.

The rest of the paper is organized as follows. Section 2 introduces some necessary no-
tations and brief backgrounds on tensor GGMs. Section 3 introduces the proposed transfer
learning framework for the tensor GGMs and its implementing algorithm. The consistency
of estimation and variable selection is established in Section 4. Numerical simulations and
the application on ADHD brain fMRI data and breast cancer gene interaction study are
conducted in Sections 5 and 6, respectively. Section 7 contains a brief discussion, and all
technical details are provided in Appendix.

2. Preliminaries

In this section, we introduce necessary notations that will be used throughout the paper
and some brief backgrounds on the tensor graphical model.

2.1 Notations

Denote ‖u‖q as the lq-norm of a vector u, for q > 0. For a matrix A = [A(j1,j2)]16j1,j26p,
let A(j) be its j-th column, ‖A‖q,∞ = max16j6p ‖A(j)‖q, ‖A‖1 =

∑p
j=1 ‖A(j)‖1, ‖A‖max =

max16j1,j26p |A(j1,j2)|, ‖A‖1,off =
∑

16j1 6=j26p |A(j1,j2)|, and ‖A‖F be the Frobenius norm
of A. When A is symmetric, we further denote ψmin(A) and ψmax(A) as the smallest
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and largest eigenvalues of A, respectively. A multidimensional array X = (xj1,··· ,jM ) ∈
Rp1×···×pM is called a tensor of order-M . The vectorization of X is defined by vec(X ) ∈ Rp
with p =

∏M
m=1 pm. The mode-m matricization of X is denoted by X (m) ∈ Rpm×(p/pm),

which is obtained by arranging the mode-m fibers of X to be the columns of the re-
sulting matrix. Herein, a mode-m fiber of X refers to a vector from X by fixing all
the indexes but the m-th mode. The mode-m product between a tensor X and a ma-
trix Ω ∈ Rd×pm is defined as X ×m Ω ∈ Rp1×···pm−1×d×pm+1×···×pM , whose entry is de-
fined as (X ×m Ω)j1,··· ,jm−1,j′m,jm+1··· ,jM =

∑pm
jm=1 xj1,··· ,jM Ωj′m,jm . In addition, for a list

of matrices {Ω1, · · · ,ΩM} with Ωm ∈ Rdm×pm , we define X × {Ω1, · · · ,ΩM} = X ×1

Ω1 · · · ×M ΩM . Similar to the matrix case, the Frobenius norm of X is denoted as
‖X‖F = (

∑
j1,··· ,jM x2

j1,··· ,jM )1/2. More detailed tensor algebra can be found in Kolda and
Bader (2009).

Next, let card(S) be the cardinality of a set S and [K] = {1, · · · ,K} be the K-set for
any positive integer K. For sequences an and bn, define an . bn if there exists a positive
constant C such that an 6 Cbn, and an � bn if an . bn and bn . an. For two real numbers
a and b, define a∧ b = min{a, b} and a∨ b = max{a, b}. The superscript ∗ of the parameter
marks its true value.

Finally, some frequently used notations are summarized in the following table

Table 1: Table of Notation
Symbol Description Symbol Description

n sample size in the target domain nk sample size in the k-th auxiliary domain

K number of auxiliary domains N
∑K

k=1 nk
M the order of the data tensor pm the m-th mode dimension of the data tensor

p ΠM
m=1pm p̄ maxm∈[M ] pm

X An tensor normal object in general X (m−sub)
(j) the j-th mode-m sub-tensor of X

X i observation i from target domain X (k)
i observation i in the k-th auxiliary domain

Σm Targeted mode-m covariance matrix Σ(k) The k-th auxiliary mode-m covariance matrix

Ωm Targeted mode-m precision matrix Ω
(k)
m The k-th auxiliary mode-m precision matrix

{Σ−1/2} {Σ−1/2
1 , . . . ,Σ

−1/2
M } {Ω1/2} {Ω1/2

1 , . . . ,Ω
1/2
M }

TN centered tensor normal distribution TNΣ TN with covariance matrices {Σ1, . . . ,ΣM}
αk weight associated to the k-th auxiliary domain ΣA

m

∑K
k=1 αkΣ

(k)
m

0 zero tensor of appropriate dimension Ipm pm-dimensional identity matrix

∆
(k)
m ΩmΣ

(k)
m − Ipm ∆m

∑K
k=1 αk∆

(k)
m

det(·) determinant of a matrix tr(·) trace of a matrix

λ1m turning parameter for estimating ∆m λ2m tuning parameter for estimating Ωm

h informative threshold for the auxiliary domains A informative auxiliary domains

smj sparsity parameter: ||Ω∗m(j)||0 s̄ maxm∈[M ],j∈[pm] smj

2.2 Tensor GGMs

Suppose that an order-M tensor X = (xj1,··· ,jM ) ∈ Rp1×···×pM follows a zero-mean tensor
normal distribution, denoted as X ∼ TN(0; Σ1, · · · ,ΣM ), its probability density function
is then defined as

p (X | Σ1, . . . ,ΣM ) = (2π)−p/2

(
M∏
m=1

det(Σm)−p/(2pm)

)
exp

(
−1

2

∥∥∥X × {Σ−1/2}
∥∥∥2

F

)
, (1)
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where Σm ∈ Rpm×pm is the mode-m covariance matrix, and {Σ−1/2} = {Σ−1/2
1 , · · · ,Σ−1/2

M }.
Clearly, the tensor normal distribution extends the multivariate normal distribution (Ghurye
and Olkin, 1962; Stein, 1981; Tong and Tong, 1990) with M = 1 or matrix normal distribu-
tion (Dawid, 1981) with M = 2 to a tensor random variable with general order-M . It can
be shown that X ∼ TN(0; Σ1, · · · ,ΣM ) if and only if vec(X ) ∼ N(vec(0); ΣM ⊗ · · · ⊗Σ1),
where ⊗ stands for the Kronecker product. We remark that the Kronecker decomposition
ΣM ⊗ . . . ⊗Σ1 is readily identifiable only up to scalar multiplication as the dimensions of
the data tensor are given. Precisely, if ΣM ⊗ . . . ⊗ Σ1 = Σ̃M ⊗ . . . ⊗ Σ̃1, we must have
Σm = cmΣ̃m for m ∈ [M ], and the positive cm’s satisfying ΠM

m=1cm = 1. Importantly, the
graphical structures, or equivalently the conditional independent relationship of the random
variables in each mode remain unchanged under such scalar multiplications. To account for
such scalar multiplication issue, the naive way is to fix M − 1 factor covariance matrices
to have unit Frobenius norm, while allowing the remaining one to have varying Frobenius
norm.

We consider sparse estimation of {Ωm}Mm=1 to characterize the conditional indepen-

dence relation among the features of any given mode of X . Specifically, let X (m-sub)
(j) ∈

Rp1×...pm−1×pm+1×...×pM denote the j-th sub-tensor extracted from X by fixing the index in

the m-th mode as j, then [Ωm](j,j′) = 0 if and only if X (m-sub)
(j) is independent of X (m-sub)

(j′)

given all other X (m-sub)
(j′′) with j′′ 6= j, j′. For example, in an order-3 tendor X , xj1,j2,j3

denotes the activation level at region j1 of subject j2 in the j3-th fMRI scan over the lat-
eral prefrontal cortex, [Ω1](j1,j′1) indicates the regularity strength of regions j1 and j′1 given
the activation levels of all other regions of interests across different subjects and scans,
and the activation levels of the region j1 and j′1 are conditional independent if and only if
[Ω1](j1,j′1) = 0.

Estimation of Ωm amounts to maximizing the likelihood function of {X i}ni=1 that are
independently sampled from (1), which is block multi-convex (Lyu et al., 2019) with re-
spect to {Ωm}Mm=1. Leveraging the multi-convex property, Lyu et al. (2019) proposed to
alternatively update one precision matrix with others fixed. Specifically, one can minimize

`(Ωm) = − 1

pm
log[det(Ωm)] +

1

pm
tr(SmΩm) + λm ‖Ωm‖1,off , (2)

where Sm = pm
np

∑n
i=1 Vi(m)V

>
i(m), Vi(m) = [X i](m)(Ω

1/2
M ⊗ · · ·⊗Ω

1/2
m+1⊗Ω

1/2
m−1⊗ · · ·⊗Ω

1/2
1 ),

and det(Ωm) is the determinant of Ωm. This optimization task can be efficiently solved
via the graphical lasso algorithm (Friedman et al., 2008), and the obtained estimates of
Ωm’s enjoy the asymptotic consistency following standard treatment of penalized maximum
likelihood estimation (Lyu et al., 2019). Yet, the applicability of such consistency results
requires a sufficiently large sample size, which is usually not realistic in practice. To this
end, we propose a transfer learning method to leverage information from auxiliary domains
so as to enhance the learning performance in the target domain.

3. Proposed method

Suppose that besides observations {X i}ni=1 from the target domain, observations {X (k)
i }

nk
i=1;

k ∈ [K] from some auxiliary domains are also available. For example, in the ADHD brain
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functional network dataset, {X i}ni=1 are the dynamic activation levels of many brain regions

of interests collected from some fMRI scans at one neuroscience institute, and {X (k)
i }

nk
i=1

are collected from K = 6 other neuroscience institutes for better data analysis in the target

institute. That is, X i’s are independently generated from TN(0; Σ1, · · · ,ΣM ) and X (k)
i ’s

are independently generated from TN(0; Σ
(k)
1 , · · · ,Σ(k)

M ) with Σm ∈ Rpm×pm and Σ
(k)
m ∈

Rpm×pm . Particularly, we are interested in estimating the precision matrix Ωm = (Σm)−1

in the target domain for m ∈ [M ] via transfer learning on the tensor GGMs.

3.1 Divergence matrix

The key to transfer learning is to construct a similarity measure between parameters
of interest in the auxiliary and target domains. Particularly, let TNΣ(k) and TNΣ de-

note TN(0; Σ
(k)
1 , · · · ,Σ(k)

M ) and TN(0; Σ1, · · · ,ΣM ) for short, and we consider the Kull-
back–Leibler (KL) divergence between TNΣ(k) and TNΣ,

KL(TNΣ(k) ||TNΣ) = −
M∑
m=1

p

2pm
log[det(ΩmΣ(k)

m )]

+
1

2

{
E
(
‖X (k) × {Ω1/2}‖2F

)
− E

(
‖X (k) × {(Ω(k))1/2}‖2F

)}
,

where {Ω1/2} = {Ω1/2
1 , · · · ,Ω1/2

M } and {(Ω(k))1/2} = {(Ω(k)
1 )1/2, · · · , (Ω(k)

M )1/2}.
Define the divergence matrix as ∆

(k)
m = ΩmΣ

(k)
m −Ipm , where Ipm is the pm-dimensional

identity matrix. Clearly, it gets closer to 0 when Σ
(k)
m gets closer to Σm, and thus it provides

a natural measure of the similarity between Σ
(k)
m and Σm. More interestingly, if Ωm′ = Ω

(k)
m′

for all m′ 6= m, it follows that

KL(TNΣ(k) ||TNΣ) = − p

2pm
log[det(∆(k)

m + Ipm)] +
p

2pm
tr[∆(k)

m ],

which is solely parametrized by ∆
(k)
m .

To leverage information of all auxiliary domains, we consider the weighted average of
the covariance and divergence matrices as follows,

ΣAm =
K∑
k=1

αkΣ
(k)
m and ∆m =

K∑
k=1

αk∆
(k)
m , with

K∑
k=1

αk = 1,

where the choice of weights {αk}Kk=1 shall depend on the contribution of each auxiliary
domain and will be discussed in detail in Section 3.3. Also, it holds true that ΩmΣAm −
∆m − Ipm = 0.

3.2 Separable transfer estimation

For each m ∈ [M ], we first estimate ∆m via samples from both the auxiliary and target
domains and then estimate Ωm by leveraging only the auxiliary samples. Accordingly, we
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design two specific loss functions for ∆m and Ωm as

L∆(∆m; {Σ(k)
m }Kk=1,Ωm) =

1

2
tr{∆>m∆m} − tr{

(
ΩmΣAm − Ipm

)>
∆m},

LΩ(Ωm; {Σ(k)
m }Kk=1,∆m) =

1

2
tr{Ω>mΣAmΩm} − tr{(∆>m + Ipm)Ωm},

where ΣAm =
∑K

k=1 αkΣ
(k)
m for any {αk}Kk=1 satisfying

∑K
k=1 αk = 1. The two loss functions

are expressed as the difference of two trace operators, which share similar spirit with the
D-trace loss (Zhang and Zou, 2014).

Lemma 1 Both loss functions L∆(∆m; {Σ(k)
m }Kk=1,Ωm) and LΩ(Ωm; {Σ(k)

m }Kk=1,∆m) are
convex with respect to ∆m and Ωm, respectively. Furthermore, ∆∗m and Ω∗m are unique

minimizers of L∆(∆m; {Σ(k)∗
m }Kk=1,Ω

∗
m) and LΩ(Ωm; {Σ(k)∗

m }Kk=1,∆
∗
m), respectively.

By Lemma 1, the two empirical loss functions are suitable to get an accurate estimation of
∆∗m and Ω∗m. Furthermore, both empirical losses can be equipped with various regulariza-
tion terms if additional structures are desired.

In view of the above discussion, for each mode, a multi-step method can be proposed to
realize the transfer learning of tensor graphical models.

Step 1. Initialization. Estimate {Ω̂(0)
m }Mm=1 based on target samples {X i}ni=1, and

{Ω̂(k)
m }Mm=1 based on auxiliary samples {X (k)

i }
nk
i=1, for k ∈ [K], using the separable esti-

mation approach (Lyu et al., 2019). Then, define

Σ̂Am =
K∑
k=1

αkΣ̂
(k)
m , where Σ̂(k)

m =
pm
nkp

nk∑
i=1

V̂
(k)
i,m V̂

(k)>
i,m ,

V̂
(k)
i,m = [X (k)

i ](m)

[
(Ω̂

(k)
M )1/2 ⊗ · · · ⊗ (Ω̂

(k)
m+1)1/2 ⊗ (Ω̂

(k)
m−1)1/2 ⊗ · · · ⊗ (Ω̂

(k)
1 )1/2

]
.

Step 2. For each m ∈ [M ], perform the following two estimation steps separately.
(a). Estimate the divergence matrix of mode-m,

∆̂m = arg minQ1(∆m), (3)

where Q1(∆m) = 1
2 tr{∆>m∆m} − tr

{
(Ω̂

(0)
m Σ̂Am − Ipm)>∆m

}
+ λ1m‖∆m‖1.

(b). Estimate the precision matrix of mode-m,

Ω̂m = arg minQ2(Ωm), (4)

where Q2(Ωm) = 1
2 tr{Ω>mΣ̂AmΩm} − tr{(∆̂>m + Ipm)Ωm}+ λ2m‖Ωm‖1,off .

In Step 2(a), ∆̂m can be considered as an adaptive thresholding of a naive estimate,

Ω̂
(0)
m Σ̂Am−Ipm , which is inspired by the definition of ∆̂m. If the difference between the target

and auxiliary domains in mode-m precision matrices are small enough, some elements of
∆̂m can shrink to zero with appropriate λ1m. The thresholding can improve the estimation
of ∆̂m with the help of the auxiliary samples. Correspondingly, Ωm can also be better
estimated via ∆̂m by leveraging only the auxiliary samples in Step 2(b). We note that in
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the proposed transfer learning procedure, the separable transfer estimation is performed for
each mode in turn. This procedure is mainly designed for high-order tensor GGMs, but can
be naturally applied to vector-valued data thanks to the fact that a vector can be regarded
as the simplest tensor with only one mode. Therefore, the transfer learning method for
vector-valued GGMs (Li et al., 2022b) can be accommodated as a special case.

Moreover, the similarity between the target and auxiliary domains may be weak in some
scenarios, so that the learning performance in the target domain may be deteriorated due
to information transfer, which is so-called “negative transfer”. Under supervised cases,
some excellent solutions utilizing label information have been proposed (Shu et al., 2019).
However, handling the negative transfer in unsupervised models remains challenging. One
practical solution is to further perform a model selection step following Li et al. (2022b),
which guarantees that transfer learning is no less effective than using only the target domain.

To this end, we can first randomly split the data from the target domain into two
folds N and NC , such that N

⋃
NC = {1, · · · , n} and card(N ) = cn, for some fraction

0 < c < 1. As suggested in Li et al. (2022b), the value of c might not be sensitive in
practice, and we thus set c = 0.6 in all of our numerical experiments. Second, we use the
subjects in N to construct the initialization of the separable transfer estimation according

to Step 1, and we denote the resulting initializers as {Ω̃(0)
m }Mm=1. Third, we apply the

data in NC for model selection. Specifically, we compute Σ̃m = pm
(1−c)np

∑
i∈NC Ṽi,mṼ

>
i,m

with Ṽi,m = [X i](m)

[
(Ω̃

(0)
M )1/2 ⊗ · · · ⊗ (Ω̃

(0)
m+1)1/2 ⊗ (Ω̃

(0)
m−1)1/2 ⊗ · · · ⊗ (Ω̃

(0)
1 )1/2

]
, for i ∈

NC and m ∈ [M ]. For each j ∈ [pm], the j-th column selector ω̂m,j for the mode-m
precision matrix is defined as

ŵm,j = arg min
w∈{(0,1)>,(1,0)>}

‖Σ̃m(Ω̂
(0)
m(j), Ω̂m(j))w − Ipm(j)‖22,

where Ω̂
(0)
m is the initialization result from Step 1 before transfer learning and Ω̂m is the

transfer learning estimator from (4), both of which are estimated using all the data in

N
⋃
NC , and Ω̂

(0)
m(j), Ω̂m(j), and Ipm(j) are the j-th columns of Ω̂

(0)
m , Ω̂m, and Ipm , respec-

tively. Then the j-th column of the final estimator is constructed as

Ω̂
(f)
m(j) = (Ω̂

(0)
m(j), Ω̂m(j))ŵm(j), (5)

for j ∈ [pm] and m ∈ [M ]. Note that Ω̂
(f)
m is not symmetric in general, and (Ω̂

(f)
m +[Ω̂

(f)
m ]>)/2

can be used as a symmetrization estimate.

The selection step realizes a model selection between the Ω̂
(0)
m(j) and Ω̂m(j), which yields

satisfactory theoretical and numerical performance (Li et al., 2022b). Furthermore, it can
be theoretically guaranteed that the final estimate is positive definite (Liu and Luo, 2015;
Li et al., 2022b).
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3.3 Construction of weights

How to aggregate multiple auxiliary domains is an important initial part of transfer learning.
A natural choice of the weights is to set

Σ̂Am =

K∑
k=1

αkΣ̂
(k)
m , with αk = nk/N and N =

K∑
k=1

nk, (6)

following from the fact that the auxiliary domain with larger sample size shall be more
important, which is similar to Li et al. (2022b). Yet, it does not take into account the sim-
ilarities between the target and auxiliary domains. If there are some large non-informative
auxiliary domains that are extremely different from the target domain, the final model
selection step can force the initial estimator using only the target domain to be selected.
In this sense, although the model selection can guarantee that transfer learning is no less
effective than using the target domain only, it may also offset the potential improvement
benefiting from the informative auxiliary domains with a positive impact.

To address this challenge, we further design some data-adaptive weights for auxiliary
covariance matrices, in which weights are constructed by combining both sample sizes and
the estimated differences between the target and auxiliary domains. Particularly, we set

Σ̂Am =
K∑
k=1

αkΣ̂
(k)
m , with αk =

nk/ĥk∑K
k=1(nk/ĥk)

, (7)

where ĥk = maxm∈[M ] ‖∆̂
(k)
m ‖1,∞ and ∆̂

(k)
m = Ω̂

(0)
m Σ̂

(k)
m −Ipm . Clearly, for auxiliary domains

with similar sample sizes, the weight for the one with a smaller difference from the target
domain is larger, while the weight for the one with an extremely large difference can tend to
zero to adaptively the negative transfer. Here we note that the type of norm for measuring
similarity is not critical, and the specified L1-norm is only for keeping with the form of
theoretical analysis and may be replaced by other norms with slight modification. It is
also interesting to note that even with such data-adaptive weights, the model selection step
in (5) is still necessary to safeguard the extreme case where all the auxiliary domains are
non-informative.

3.4 Computing algorithm

For Step 2(a), define B̂m = Ω̂
(0)
m Σ̂Am− Ipm for each m ∈ [M ], and then (3) can be rewritten

as

Q1(∆m) =
1

2

∑
16i,j6pm

[∆m]2(i,j) −
∑

16i,j6pm

[B̂m](i,j)[∆m](i,j) + λ1m

∑
16i,j6pm

|[∆m](i,j)|,

where [∆m](i,j) and [B̂m](i,j) are the (i, j) entries of ∆m and B̂m, respectively. It can be
separated into p2

m lasso-type optimizations; that is, for any i and j,

[∆̂m](i,j) = arg min
∆

{
1

2
(∆− [B̂m](i,j))

2 + λ1m|∆|
}

= T ([B̂m](i,j), λ1m),

9
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where T (z, λ) = sign(z) max(0, |z| − λ).
For Step 2(b), note that (4) can be rewritten as

Q2(Ωm) =
∑

16j6pm

{
1

2
Ω>m(j)Σ̂

A
mΩm(j) −Ω>m(j)(∆̂m(j) + Ipm(j)) + λ2m‖Ωm(j)‖1 − λ2m|[Ωm](j,j)|

}
,

where Ωm(j) and Ipm(j) are the j-th columns of Ωm and Ipm , respectively. It can be
separated into pm optimizations; that is, for any j,

Ω̂m(j) = arg min
θ

{
1

2
θ>Σ̂Amθ − θ>(∆̂m(j) + Ipm(j)) + λ2m‖θ(−j)‖1

}
, (8)

where θ(−j) is the sub-vector of θ with the j-th component removed.
For the optimization of (8), we adopt the coordinate descent algorithm. Particularly,

at iteration t+ 1, the updating formula of θi, i-th component of θ, with other components

{θ(t+1)
i′ , i′ < i; θ

(t)
i′ , i

′ > i} fixed, are

θ
(t+1)
i = [Σ̂Am]−1

(i,i)T (ξ(t), λ2mI(i 6= j)), for i = 1, · · · , pm,

where ξ(t) = [∆̂m + Ipm ](i,j) −
∑

i′<i θ
(t+1)
i′ [Σ̂Am](i,i′) −

∑
i′>i θ

(t)
i′ [Σ̂Am](i,i′).

As computational remarks, explicit solutions can be derived in each step of the al-

gorithm, which makes it very efficient. The initial values of θ are set as Ω̂
(0)
m(j). Note

that these developments are specifically for the Lasso penalty, and optimization with other
penalties may require minor modifications. Convergence properties of the algorithm can
be guaranteed, thanks to the convexity of the objective function. As for the tuning pa-

rameter selection, we set λ1m = 2‖Ω̂(0)
m ‖1,∞

√
pm log pm

np for mode-m, following Li et al.

(2022b). For λ2m, it is suggested to be determined via minimizing a BIC-type criterion,
1
2 tr{Ω̂>mΣ̂AmΩ̂m} − tr{(∆̂>m + Ipm)Ω̂m}+ logN

N ‖Ω̂m‖0, for each mode.

4. Statistical properties

In this section, we establish some theoretical properties of the proposed transfer learning
method. The following technical conditions are made.

Condition 1 For each m ∈ [M ] and k ∈ [K], ‖Ω∗m‖1,∞ and ‖Ω(k)∗
m ‖1,∞ are bounded,

and there is a constant C1, satisfying 1/C1 6 ψmin(Σ∗m) 6 ψmax(Σ∗m) 6 C1 and 1/C1 6

ψmin(Σ
(k)∗
m ) 6 ψmax(Σ

(k)∗
m ) 6 C1.

Condition 2 Denote Γ∗m = Σ∗m ⊗Σ∗m, Sm = {(i, j) : [Ω∗m](i,j) 6= 0}, and [Γ∗m](Sm,Sm) the
sub-matrix with rows and columns of Γ∗m indexed by Sm and Sm, respectively. For each
m ∈ [M ], ‖Σ∗m‖1,∞ and ‖([Γ∗m](Sm,Sm))

−1‖1,∞ are bounded, and there exists some constant
C2 ∈ (0, 1] such that maxe∈SC

m
‖[Γ∗m](e,Sm)([Γ

∗
m](Sm,Sm))

−1‖1 6 1− C2.

Condition 1 has been commonly assumed in the literature of Gaussian graphical models
(Lam and Fan, 2009; Zhang and Zou, 2014). Condition 2 limits the influence of the non-
connected terms in SCm on the connected edges in Sm, which is also widely assumed to
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establish theoretical properties of lasso-type estimators (Ravikumar et al., 2011; Zhang and
Zou, 2014; Lyu et al., 2019). Denote p = maxm∈[M ] pm, and s = maxm∈[M ],j∈[pm] smj with
smj = ‖Ω∗m(j)‖0 that may diverge with n. We first state some existing result in Lyu et al.

(2019), which quantifies the asymptotic behavior of the initial estimate Ω̂
(0)
m .

Lemma 2 (Lyu et al., 2019) If Condition 1 holds, then ‖Σ̂m−Σ∗m‖max = Op

(√
pm log pm

np

)
,

for m ∈ [M ]. If Condition 2 holds, s
√

pm log pm
np � 1, and p1 � · · · � pm, then ‖Ω̂(0)

m −

Ω∗m‖max = Op

(√
pm log pm

np

)
. Furthermore, for m ∈ [M ], if the minimal signal of Ω∗m

satisfies that
√

pm log pm
np . min(i,j)∈Sm

|[Ω∗m](i,j)|, then with probability tending to 1, Ŝ
(0)
m =

{(i, j) : [Ω̂
(0)
m ](i,j) 6= 0} = Sm.

To describe the similarity between the target domain and auxiliary domains, we define

the set of informative auxiliary domains asAh = {k : maxm∈[M ]{‖∆
(k)∗
m ‖1,∞+‖(∆(k)∗

m )>‖1,∞} 6
h} for some positive h. Clearly, h measures the difference between the precision matrices
of each mode in the target and the k-th auxiliary domain.

4.1 All auxiliary domains are informative

We first consider an ideal scenario where all available auxiliary domains are informative.

Condition 3 Assume that Ah = [K].

Theorem 1 Suppose all the conditions of Lemma 2 and Condition 3 are met, n 6 N with

N =
∑K

k=1 nk, and λ1m = C(1 + h)
√

p log p
np for a sufficiently large constant C. For Σ̂Am in

(6), it holds true that ‖∆̂m−∆∗m‖22,∞ = Op(δh) for m ∈ [M ], where δh = (1+h)h
√

p log p
np ∧h

2.

Theorem 2 If the conditions of Theorem 1 hold, and λ2m = C

(√
δh
s +

√
p log p
Np

)
for a

sufficiently large constant C, then ‖Ω̂m −Ω∗m‖22,∞ ∨ 1
pm
‖Ω̂m −Ω∗m‖2F = Op

(
sp log p
(N+n)p + δh

)
for m ∈ [M ].

Remark 1 Note that Lemma 2 implies that ‖Ω̂(0)
m −Ω∗m‖22,∞∨ 1

pm
‖Ω̂(0)

m −Ω∗m‖2F = Op(
sp log p
np )

for m ∈ [M ]. It is thus clear that the proposed transfer learning method achieves a faster

convergence rate when N � n and h� s
√

p log p
np .

We next establish the variable selection consistency of the proposed transfer learning
method in terms of exactly recovering the tensor graphical model. Some additional condi-
tions are necessary.

Condition 4 Define ΣA∗m =
∑K

k=1 αkΣ
(k)∗
m with

∑K
k=1 αk = 1, then for each m ∈ [M ],

‖ΣA∗m ‖1,∞ and maxj∈[pm] ‖([ΣA∗m ](Smj ,Smj))
−1‖1,∞ are bounded, and there exists some con-

stant C3 ∈ (0, 1] such that maxj∈[pm],e∈SC
mj
‖[ΣA∗m ](e,Smj)([Σ

A∗
m ](Smj ,Smj))

−1‖1 6 1−C3, where

Smj = {i ∈ [pm] : [Ω∗m](i,j) 6= 0} and SCmj = {i ∈ [pm] : [Ω∗m](i,j) = 0}.

11



REN, ZHEN and WANG

Condition 5 Assume that maxm∈[M ],k∈[K] ‖∆
(k)∗
m ‖max . h/s.

Condition 4 imposes the irrepresentability condition on the auxiliary domains, to quantify
the behavior of Q2(Ωm) in Step 2(b). Condition 5 is necessary for establishing estimation
error of Ω̂m in max norm, which is mild due to the fact that s < p.

Theorem 3 If the conditions of Theorem 2 and Conditions 4 to 5 hold, and h is bounded,

then ‖Ω̂m − Ω∗m‖max = Op

(√
δh
s +

√
p log p

(N+n)p

)
for m ∈ [M ]. Furthermore, if

√
δh
s +√

p log p
(N+n)p . min(i,j)∈Sm

|[Ω∗m](i,j)|, then with probability tending to 1, Ŝm = {(i, j) : [Ω̂m](i,j) 6=
0} = Sm for m ∈ [M ].

It is interesting to note that
√

δh
s +

√
p log p

(N+n)p �
√

p log p
np , if N � n and h� s

√
p log p
np , thus

it can be concluded that the minimum signal condition required for eatablishing the variable
selection consistency for the proposed transfer learning method is much weaker than that
when using the target domain only.

4.2 At least one informative auxiliary domain

We now turn to a more complex case where some non-informative auxiliary domains dom-
inates, so that the model selection step may force the final estimator to become the initial
estimate based on the target domain only, and then another part of information on the
informative auxiliary domains will be offset. At this point, it only ensures that the trans-
fer learning does not deteriorate, but does not make full use of positive information from
informative auxiliary domains. Therefore, we further consider the theoretical properties of
the proposed method based on Σ̂Am constructed by the data-adaptive weights.

Condition 6 There exists a h . s
√

p log p
np such that the positive set Ah ⊆ [K] is non-empty.

Condition 7 Re-define ΣA∗m =
∑

k∈Ah
αkΣ

(k)∗
m with

∑
k∈Ah

αk = 1, then for each m ∈
[M ], ‖ΣA∗m ‖1,∞ and maxj∈[pm] ‖([ΣA∗m ](Smj ,Smj))

−1‖1,∞ are bounded, and there exists some

constant C3 ∈ (0, 1] such that maxj∈[pm],e∈SC
mj
‖[ΣA∗m ](e,Smj)([Σ

A∗
m ](Smj ,Smj))

−1‖1 6 1 − C3,

where Smj = {i ∈ [pm] : [Ω∗m](i,j) 6= 0} and SCmj = {i ∈ [pm] : [Ω∗m](i,j) = 0}.

Condition 8 Assume that maxm∈[M ],k∈Ah
‖∆(k)∗

m ‖max . h/s.

Conditions 6 to 8 are weakened forms of Conditions 3 to 5, respectively, in which the
assumption of similarity is only imposed on informative auxiliary domains.

Theorem 4 Suppose all the conditions of Lemma 2 and Condition 6 are met, n1 � · · · �
nK , n 6 NA with NA =

∑
k∈Ah

nk, K = O(1), λ1m = C(1 + h)
√

p log p
np , and λ2m =

C

(√
δh
s +

√
p log p
pNA

)
for a sufficiently large constant C. For Σ̂Am in (7), it holds true

that ‖Ω̂m − Ω∗m‖22,∞ ∨ 1
pm
‖Ω̂m − Ω∗m‖2F = Op

(
sp log p

(NA+n)p + δh

)
for m ∈ [M ], where δh =

12
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(1 + h)h
√

p log p
np ∧ h2. Furthermore, if Conditions 7 to 8 hold, and assume that

√
δh
s +√

p log p
(NA+n)p . min(i,j)∈Sm

|[Ω∗m](i,j)|, then with probability tending to 1, ‖Ω̂m − Ω∗m‖max =

Op

(√
δh
s +

√
p log p

(NA+n)p

)
and Ŝm = Sm for m ∈ [M ].

It is clear that as long as there is at least one informative auxiliary domain, satisfying

NA � n and h� s
√

p log p
np , the proposed transfer learning method based on data-adaptively

defined Σ̂Am can improve estimation errors benefiting from its information, and is not affected
by the possible presence of non-informative auxiliary domains, which shows the powerful
robustness to complex scenarios.

Remark 2 If the ideal assumption about informative auxiliary domains is violated in prac-
tice, the transfer learning may be counterproductive. As suggested in Li et al. (2022b), the

selection step (5) can theoretically guarantee that the final estimator Ω̂
(f)
m is as effective as

Ω̂m if h . s
√

p log p
np , and Ω̂

(f)
m is still no less effective than Ω̂

(0)
m if h� s

√
p log p
np for Σ̂Am in

(6), or the informative set Ah is empty for Σ̂Am in (7).

5. Simulation

We consider two types of target graphs.

• Chain graph. For each m ∈ [M ], the (i, j)-th entry of Ω∗m is set as 1 if i = j;
exp(−ρij/2) with ρij = ρji generated from Unif(0.5, 1), if |i − j| = 1; and 0, if
|i− j| > 1.

• Nearest neighbor graph. For each m ∈ [M ], we randomly generate pm points in a unit
square and locate four nearest neighbors for each point. The corresponding entries
in Ωm are uniformly sampled from [−1,−0.5] ∪ [0.5, 1]. The final precision matrix is
generated as Ω∗m = Ωm + |ψmin(Ωm) + 0.2|Ipm to ensure the positive definiteness.

For each target graph, we set M = 3 with dimensions (p1, p2, p3) = (10, 10, 20) or M = 2
with dimensions (p1, p2) = (100, 100), and set the size of the target graph as n = 50. We also
consider two different simulation scenarios. The subscript h of Ah is removed for simplicity
in this section.

Scenario 1. We consider A = [K] and vary K ∈ {1, · · · , 5}, that is, all auxiliary

domains are informative with size nk = 80 for k ∈ [K], where [∆
(k)
m ](i,j) = 0 with probability

0.9 or randomly generated from Unif[−h01, h01] with probability 0.1, and h01 =
√

p log p
np .

Scenario 2. We fix K = 5 with size nk = 100 for k ∈ [K] and vary card(A) ∈
{0, 1, · · · ,K}. The informative auxiliary domains with k ∈ A are generated similarly as

Scenario 1. For k /∈ A, [∆
(k)
m ](i,j) = 0 with probability 0.75, or randomly generated from

Unif[−h02, h02] with probability 0.25, where h02 = 10s
√

p log p
np .

We compare three methods in Scenario 1, including the single task tensor graphical
model using the target domain only, which is implemented in the R package “Tlasso”, and

13



REN, ZHEN and WANG

the proposed methods with the auxiliary covariance in (6) and (7), denoted as “proposed”
and “proposed.v”, respectively. In Scenario 2, we further consider another “oracle” method,
which applies “proposed” on the target domain and the known informative auxiliary do-
mains.

The performances of the competing methods are measured by a number of metrics:
(1) estimation error in Frobenius norm of Kronecker product of precision matrices, defined

as ‖Ω̂(K) − Ω(K)∗‖F , where Ω̂(K) = Ω̂
(f)
1 ⊗ · · · ⊗ Ω̂

(f)
M and Ω(K)∗ = Ω∗1 ⊗ · · · ⊗ Ω∗M ; (2)

averaged estimation errors in Frobenius norm of all modes 1
M

∑M
m=1 ‖Ω̂

(f)
m − Ω∗m‖F ; (3)

averaged estimation errors in max norm of all modes 1
M

∑M
m=1 ‖Ω̂

(f)
m − Ω∗m‖max; (4) the

true positive rate (TPR) and the true negative rate (TNR) of the Kronecker product of
precision matrices; (5) the averaged TPRs and TNRs of all modes. All metrics are averaged
based on 100 independent replications.
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Figure 1: Averaged metrics of estimation errors over 100 replications for Scenario 1 with
M = 3. The top and bottom rows correspond to the chain and nearest neighbor
graph, respectively.

The first three estimation errors are summarized in Figures 1 to 4, whereas the parameter
selection metrics are summarized in Tables A1 and A2 in Appendix. Observations made
under different settings are very similar. For example, in Scenario 1 where all auxiliary
domains are informative, as the number of auxiliary domains K increases, all estimation
errors of the two proposed transfer learning-based methods decrease with no significant
difference from each other and both are better than Tlasso as expected. In Scenario 2,
the two proposed methods are not significantly inferior to Tlasso thanks to the model
selection step, when there is no informative auxiliary domain. It is interesting to remark that
the two proposed methods have different performance paths as the number of informative
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Figure 2: Averaged metrics of estimation errors over 100 replications for Scenario 1 with
M = 2. The top and bottom rows correspond to the chain and nearest neighbor
graph, respectively.

auxiliary domains card(A) increases. Specifically, the estimation errors of “proposed.v”,
whose weights are constructed based on both sample sizes and differences between the
target and auxiliary domains, decrease so fast that it can dominate Tlasso even when there
is only one informative auxiliary domain, and its overall performance is comparable to
“oracle”. However, “proposed” is more affected by the non-informative auxiliary domains,
whose estimation errors are much larger than “proposed.v” and sometimes only outperform
Tlasso when there are relatively large number of informative auxiliary domains. As for the
performances of variable selection, all methods have achieved 100% TPR in all settings, and
the TNRs of the two proposed methods are significantly improved compared with Tlasso,
thanks to the informative auxiliary domains.

6. Real data analyses

6.1 ADHD brain functional networks

In this section, we apply the proposed method to study functional connectivity behaviors
among brain regions in the attention deficit hyperactivity disorder (ADHD) disease datasets
across multiple sites. In the brain functional network, typically, a node corresponds to an
anatomically defined brain region, and the present of connectivity between a pair of nodes
to a measure of inter-regional dependency. Resting-state functional magnetic resonance
imaging (rs-fMRI) is widely used to measure spontaneous low-frequency blood oxygen level
dependent (BOLD) signal fluctuations within several minutes in some brain regions, so
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Figure 3: Averaged metrics of estimation errors over 100 replications for Scenario 2 with
M = 3. The top and bottom rows correspond to the chain and nearest neighbor
graph, respectively.

that the functional synchronization of brain systems, that is, the connections of the brain
network, can be characterized. There is growing evidence that the brain functional connec-
tivity network is altered in response to ADHD and is important to explore the pathogenesis
and diagnosis, while Gaussian graphical model is an important statistical tool to detect this
brain functional connectivity (Zhu and Li, 2018).

The analyzed dataset is part of the ADHD-200 repository (Bellec et al., 2017), which
is collected from seven sites, containing demographic information, phenotypic data, and
rs-fMRI of two groups consisting of typically developing controls (TDC) and ADHD. The
names of the seven sites and their sample sizes of TDC and ADHD groups are summarized
in Table 2. Only those rs-fMRI scans that pass the quality control are included in our
analysis. All rs-fMRIs are pre-processed following the standard Athena pipeline Bellec
et al. (2017), and the processed data is publicly available at https://www.nitrc.org/

plugins/mwiki/index.php/neurobureau:AthenaPipeline#Whole_Brain_Data. Readers
may refer to Bellec et al. (2017) for more details about the raw brain imaging data. In
the processed data, following the Anatomical Automatic Labeling (AAL) atlas, each brain
image is parcellated into 116 regions of interest (ROIs), so that each sample has been re-
organized into a T× 116 matrix, representing BOLD signal fluctuations of 116 ROIs at T
time points. Note that the number of time points T varies in different sites. To explore brain
functional connectivity, we are only interested in the second mode, that is, the spatial mode
corresponding to ROIs. Here we note that although the first mode, which is the temporal
mode corresponding to the time series, is not the target of the analysis, its existence leads
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Figure 4: Averaged metrics of estimation errors over 100 replications for Scenario 2 with
M = 2. The top and bottom rows correspond to the chain and nearest neighbor
graph, respectively.

to the necessity of tensor instead of multivariate Gaussian graphical model (Zhu and Li,
2018).

Table 2: Sample sizes and test errors when different data sites become the target domain
The target domain

KKI NeuroIMAGE Peking Pittsburgh NYU OHSU WashU

TDC sample size 58 22 114 66 91 40 37
absolute error TransCLIME 2.5381 2.7226 3.3326 3.2099 0.0835 1.8884 3.6907

Tlasso 0.6444 0.2960 0.4638 0.3793 0.0106 0.4653 0.3762
proposed 0.5816 0.2913 0.4506 0.3568 0.0144 0.4179 0.3428

proposed.v 0.5829 0.2910 0.4498 0.3514 0.0112 0.4074 0.2939
relative error proposed 0.9026 0.9843 0.9715 0.9406 1.3673 0.8981 0.9113

proposed.v 0.9046 0.9833 0.9699 0.9265 1.0575 0.8756 0.7813

ADHD sample size 20 17 90 0 96 30 0
absolute error TransCLIME 1.2891 0.5517 3.2591 - 0.1477 2.4494 -

Tlasso 0.4769 0.3506 0.578 - 0.0119 0.335 -
proposed 0.4461 0.3415 0.5754 - 0.0166 0.3072 -

proposed.v 0.4465 0.3423 0.5754 - 0.0165 0.3059 -
relative error proposed 0.9354 0.9742 0.9955 - 1.3911 0.9169 -

proposed.v 0.9362 0.9763 0.9955 - 1.3833 0.9132 -

To compare competitors fairly and comprehensively, we rotated one site as the target
domain and other sites as auxiliary domains, and TDC and ADHD groups are considered
separately. In addition to the proposed methods and Tlasso, we also consider a naive
baseline by applying TransCLIME (Li et al., 2022b) after flattening the tensor into a vector.
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Note that the underlying true parameters of precision matrices are unavailable, so we use
the negative log-likelihood based on five-fold cross-validation as an indicator to evaluate
the performance of all competitors when a site is fixed as the target domain. Specifically,
samples of the target domain are randomly divided into five parts, one of which is used as
the test sample to calculate the covariance matrices of all modes {Σ̂test

m }Mm=1 and the rest is
the training sample. The out-of-sample absolute prediction error of an arbitrary estimator
Ω̂o
m for the m-th mode, estimated using the training sample, is defined as

PE(Ω̂o
m) = − 1

pm
log[det(Ω̂o

m)] +
1

pm
tr(Σ̂test

m Ω̂o
m).

Note that the negative log-likelihood are widely used to evaluate method effectiveness for
unsupervised graph model problems (Li et al., 2022b), especially when the underlying net-
work structure is unknown. For the estimator of proposed method Ω̂m and its variant Ω̂v

m,

their relative prediction errors are defined as PE(Ω̂m)

PE(Ω̂
(0)
m )

and PE(Ω̂v
m)

PE(Ω̂
(0)
m )

, respectively, where Ω̂
(0)
m

is Tlasso estimator. Here we only consider the m = 2-th mode corresponding to ROIs of
interest. Average errors of five-fold cross-validation are summarized in Table 2. Here, con-
sidering the possible sensitivity of the TLasso to hyperparameters, we vary hyperparameters
and report its minimum absolute prediction error under all hyperparameters (that is, the
minimum test error) for a more convincing comparison. It is clear that the two proposed
methods outperform Tlasso under almost all sites as target domains.

As a byproduct of the above procedure, we are also able to reasonably select OHSU, the
target site with the lowest relative prediction error in both TDC and ADHD groups, as the
target domain to further demonstrate the performance of the proposed transfer learning-
based method by conducting more in-depth biomedical exploration. The detected brain
networks of TDC and ADHD groups using the proposed method are provided in Figure A1
of Appendix, and it is clear that the two groups are substantially different. To scrutinize
their differences, we plot the differential networks between TDC and ADHD groups in
Figure 5, with ROIs labeled as the SRI24 code. A cross-reference between the SRI24 code
and full names of ROIs can be found in Table A4 of Appendix. The top 10% important
hub nodes and their degrees in differential networks are placed in Table A3 and highlighted
in Figure 5, many of which have been widely recognized as relevant to ADHD.

It is evident that the superior frontal gyrus, labeled as 25, has more connections in the
TDC group. In fact, it has been found that in the ADHD group, reduced gray matter vol-
umes occurred in this region, and there was a decrease in functional connections between the
superior frontal gyrus and other brain regions comparing with the TDC group (Zhao et al.,
2020). The functional connectivity mechanism of the inferior occipital gyrus, labeled as 53
and 54, has been recognized significantly different between TDC and ADHD groups, and
inattention improvement is related to increased intrinsic brain activity in this region (Zhang
et al., 2020). It has been reported that disturbed microstructure of the supramarginal gyrus,
labeled as 64, in children with ADHD (Griffiths et al., 2021). In the detected brain network,
the cerebellum inferior, labeled as 108, has more connections in the ADHD group. Actually,
the cerebellum has been recognized as an important structure in ADHD pathophysiology,
and its abnormalities have been reported in patients with ADHD (Stoodley, 2016). In ad-
dition, the decreased cerebellar activation in ADHD has been revealed in many cognitive
tasks (Valera et al., 2010). Moreover, it has been reported that patients with ADHD have
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Figure 5: The differential networks of brain functional connectivity between ADHD and
TDC groups. The top rows shows the the edges in the TDC group but not the
ADHD group, whereas the bottom rows shows the edges in the ADHD group but
not the TDC group. In each row, three different views are also provided: sagittal
(left), axial (middle), and coronal (right). Nodes with the top 10% of degrees are
marked by red.

a larger probability of activation in the paracentral lobule compared to TDC (Dickstein
et al., 2006), and this region plays an important role in brain functional networks by con-
trolling sensory nerves of the contralateral lower limb. In conclusion, the analysis results
are basically consistent with the evidence of a large number of neuroscience studies.

6.2 Breast cancer gene interaction study

In this example, we consider the breast cancer gene expression data, which can be down-
loaded using R package brca.data (https://github.com/averissimo/brca.data/releases/
download/1.0/brca.data_1.0.tar.gz). The breast cancer samples can be divided into 6
domains based on race (Asian, Black, and White) and age (> 60 and 6 60), and the sam-
ple size for each domain is summarized in Table 3. We aim to conduct the tensor GGMs
for gene interaction data. Specifically, we focus on interactions formed by two gene path-
ways, hsa05224 and hsa04310, which contain 147 and 119 genes respectively and have been
reported to be related to breast cancer. In other words, each sample is re-organized as
147× 119-dimensional tensor.
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Similar to ADHD real data analysis, we rotated one domain as the target domain and
other domains as auxiliary domains, and use the negative log-likelihood based on five-fold
cross-validation as an indicator to evaluate the performance of all competitors when a site
is fixed as the target domain. Average errors of five-fold cross-validation are summarized
in Table 3. Clearly, the two proposed transfer learning methods outperform Tlasso under
all cases.

Table 3: Summary of test errors for each domain as the target domain and their sample
sizes in breast cancer gene interaction study.

The target domain: race(age)

ASIAN(> 60) ASIAN(6 60) BLACK(> 60) BLACK(6 60) WHITE(> 60) WHITE(6 60)

sample size 10 37 45 71 293 314
absolute error Tlasso 0.680396 0.601356 0.992349 0.964175 0.773465 0.713554

proposed 0.667352 0.578745 0.922713 0.920674 0.744267 0.691949
proposed.v 0.645611 0.574723 0.922197 0.917455 0.742158 0.68931

relative error proposed 0.980829 0.962399 0.929827 0.954882 0.96225 0.969722
proposed.v 0.948875 0.955711 0.929307 0.951544 0.959524 0.966024

In order to explore the biological significance of the detected gene network, some hub
genes are observed. For example, the gene LEF-1 in the hsa05224 pathway is an important
hub node, and there is biological evidence to suggest a pivotal role of LEF-1 in the regulation
of proliferation in breast cancer cells. Moreover, it has been reported that the hub gene Sp1
may participate in the invasion and metastasis of breast cancer and is one of the valuable
markers indicating poor prognosis of breast cancer.

7. Discussion

This paper proposes a transfer learning method for tensor GGMs leveraging the separability
of its covariance. For each mode, a two-step algorithm is performed to improve the esti-
mation in the target domain by making full use of the information from auxiliary domains,
in which we design data-adaptive weights on auxiliary domains that can detect informa-
tive auxiliary domains and free from the interference of non-informative auxiliary domains.
Theoretically, it has been shown that the estimation error of the proposed transfer learn-
ing method can be improved with the increasing sample size from informative auxiliary
domains. The condition required for the recovery of graph structures has been relaxed in
terms of variable selection. Numerical simulations have been performed to verify the sta-
tistical theory and to demonstrate the dominant advantages of the proposed method. The
conclusions of real data analysis are also consistent with the existing biological knowledge.

This work has some potential extensions. The development of semi-parametric tensor
graphical models is an important refinement to address the non-Gaussian property fre-
quently found in biomedical tensor data. Moreover, it is also worthwhile to explore the
tensor-valued differential network model to perform inferential analysis on different edges
between two networks, which can replace the current descriptive contrastive patterns be-
tween two groups in the ADHD brain network analysis.
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Appendix

A1. Technical proofs

We use c to denote a universal constant whose value may vary from place to place.
Proof of Lemma 1.
Note that

∂L∆(∆m; {Σ(k)
m }Kk=1,Ωm)

∂∆m
= ∆m −ΩmΣAm + Ipm ,

∂LΩ(Ωm; {Σ(k)
m }Kk=1,∆m)

∂Ωm
= ΣAmΩm − (∆m + Ipm)>,

∂2L∆(∆m; {Σ(k)
m }Kk=1,Ωm)

∂vec2(∆m)
= Ipm ⊗ Ipm ,

∂2LΩ(Ωm; {Σ(k)
m }Kk=1,∆m)

∂vec2(Ωm)
= Ipm ⊗ΣAm.

By the definition of ∆∗m,
∂L∆(∆m;{Σ(k)∗

m }Kk=1,Ω
∗
m)

∂∆m
|∆m=∆∗m = 0,

∂LΩ(Ωm;{Σ(k)∗
m }Kk=1,∆

∗
m)

∂Ωm
|Ωm=Ω∗m =

0, and the Hessian matrices
∂2L∆(∆m;{Σ(k)

m }Kk=1,Ωm)

∂vec2(∆m)
and

∂2LΩ(Ωm;{Σ(k)
m }Kk=1,∆m)

∂vec2(Ωm)
are positive

definite for any fixed positive definite ΣAm. Therefore, Lemma 1 holds.
Proof of Theorem 1.
Considering that {λ1m}Mm=1 for all modes are of the same order, we omit the subscript m

and denote λ1m by λ1 for simplicity. Define B̂m = Ω̂
(0)
m Σ̂Am − Ipm , and recall that

Q1(∆m) =
1

2
tr{∆>m∆m} − tr

{
B̂>m∆m

}
+ λ1‖∆m‖1

=
1

2

∑
16i,j6pm

[∆m]2(i,j) −
∑

16i,j6pm

[B̂m](i,j)[∆m](i,j) + λ1

∑
16i,j6pm

|[∆m](i,j)|,

where [∆m](i,j) is the (i, j) entry of the matrix ∆m. It can be separated into p2
m independent

single-lasso optimizations, that is, for any i and j,

[∆̂m](i,j) = arg min
[∆m](i,j)

{
1

2
([∆m](i,j) − [B̂m](i,j))

2 + λ1|[∆m](i,j)|
}
.

Here, we note that ∆m is not necessarily symmetric by its definition. Then it can be
obtained that

[∆̂m](i,j) = sign([B̂m](i,j)) max(0, |[B̂m](i,j)| − λ1). (A.1)
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We first consider ‖∆̂m−∆∗m‖max, which needs to establish the bound of ‖∆∗m− B̂m‖max.

‖∆∗m − B̂m‖max = ‖∆∗m − (Ω̂(0)
m Σ̂Am − Ipm)‖max

6 ‖∆∗m − (Ω̂(0)
m ΣA∗m − Ipm)‖max + ‖Ω̂(0)

m (ΣA∗m − Σ̂Am)‖max

6 ‖(Ω̂(0)
m −Ω∗m)ΣA∗m ‖max + ‖Ω̂(0)

m (ΣA∗m − Σ̂Am)‖max

:= q1 + q2,

where ΣA∗m =
∑K

k=1 αkΣ
(k)∗
m . For q2, we have

q2 6 ‖Ω̂(0)
m ‖1,∞‖ΣA∗m − Σ̂Am‖max

6 (‖Ω∗m‖1,∞ + ‖Ω̂(0)
m −Ω∗m‖1,∞)‖ΣA∗m − Σ̂Am‖max

6 (‖Ω∗m‖1,∞ + ‖Ω̂(0)
m −Ω∗m‖1,∞)‖ΣA∗m − Σ̂Am‖max

6 (c+ s

√
pm log pm

np
)

√
pm log pm

Np
,

with probability tending to 1. The last inequality is from Condition 1 and Lemma 2. It is

clear that q2 = Op

(√
pm log pm

np

)
.

For q1, it can be further decomposed as follows.

q1 = ‖(Ω̂(0)
m −Ω∗m)Σ∗m(∆∗m + Ipm)‖max

6 ‖Ω̂(0)
m Σ∗m − Ipm‖max‖∆∗m + Ipm‖1,∞

6
[
‖Ω̂(0)

m Σ̂m − Ipm‖max + ‖Ω∗m(Σ∗m − Σ̂m)‖max + ‖(Ω̂(0)
m −Ω∗m)(Σ∗m − Σ̂m)‖max

]
‖∆∗m + Ipm‖1,∞

6 c

√
pm log pm

np
(1 + h).

with probability tending to 1. The last inequality is from Condition 1 and Lemma 2.

Therefore, ‖∆∗m−B̂m‖max 6 c(1+h)
√

pm log pm
np := δ′h 6 λ1. Note that ‖∆̂m−B̂m‖max 6 λ1

by (A.1), then,

‖∆̂m −∆∗m‖max 6 ‖∆̂m − B̂m‖max + ‖B̂m −∆∗m‖max 6 2λ1. (A.2)

Then we consider ‖∆̂m −∆∗m‖1,∞.

(i) If ‖∆∗m‖max . δ′h, we have ‖B̂m‖max 6 ‖∆∗m‖max +‖B̂m−∆∗m‖max 6 λ1. Therefore,

∆̂m = 0, then ‖∆̂m −∆∗m‖1,∞ 6 ‖∆∗m‖1,∞ 6 h.

(ii) If ‖∆∗m‖max � δ′h, we have |[B̂m](i,j)| 6 |[∆∗m](i,j)|+‖B̂m−∆∗m‖max 6 |[∆∗m](i,j)|+δ′h.

For any fixed 1 6 i, j 6 p, if |[∆∗m](i,j)| . δ′h, then |[B̂m](i,j)| 6 λ1, so |[∆̂m](i,j)| = 0; if

|[∆∗m](i,j)| � δ′h, then |[∆̂m](i,j)| 6 |B̂m(i,j)| 6 c|[∆∗m](i,j)|. Therefore, for any fixed 1 6 j 6

p, ‖∆̂m(j)‖1 6 c‖∆∗m(j)‖1 6 ch. It follows that ‖∆̂m −∆∗m‖1,∞ 6 ‖∆∗m‖1,∞ + ‖∆̂m‖1,∞ 6
(c+ 1)h.

Combining (i) and (ii),

‖∆̂m −∆∗m‖1,∞ 6 (c+ 1)h. (A.3)
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Note that

‖∆̂m −∆∗m‖22,∞ 6 ‖∆̂m −∆∗m‖1,∞‖∆̂m −∆∗m‖max,

‖∆̂m −∆∗m‖22,∞ 6 ‖∆̂m −∆∗m‖21,∞.
(A.4)

By (A.2), (A.3), (A.4), and λ1 = C(1 + h)
√

p log p
np , we have

‖∆̂m −∆∗m‖22,∞ = Op

(
(1 + h)h

√
p log p

np
∧ h2

)
.

It concludes Theorem 1.

Proof of Theorem 2.
Considering that {λ2m}Mm=1 for all modes are of the same order, we omit the subscript m
and denote λ2m by λ2 for simplicity. Recall that

Q2(Ωm) =
1

2
tr{Ω>mΣ̂AmΩm} − tr{(∆̂>m + Ipm)Ωm}+ λ2‖Ωm‖1

=
∑

16j6pm

{
1

2
Ω>m(j)Σ̂

A
mΩm(j) −Ω>m(j)(∆̂m(j) + Ipm(j)) + λ2‖Ωm(j)‖1

}
,

where Ωm(j) and Ipm(j) are the j-th columns of Ωm and Ipm , respectively. It can be
separated into pm independent optimizations, that is, for any j,

Ω̂m(j) = arg min
Ωm(j)

{
1

2
Ω>m(j)Σ̂

A
mΩm(j) −Ω>m(j)(∆̂m(j) + Ipm(j)) + λ2‖Ωm(j)‖1

}
.

Note that

1

2
Ω̂>m(j)Σ̂

A
mΩ̂m(j) 6

1

2
(Ω∗m(j))

>Σ̂AmΩ∗m(j) + (Ω̂m(j) −Ω∗m(j))
>(∆̂m(j) + Ipm(j))

− λ2‖Ω̂m(j)‖1 + λ2‖Ω∗m(j)‖1, (A.5)

pr
(
‖Σ̂AmΩ∗m(j) − (Ipm(j) + ∆∗m(j))‖∞ 6 λ2/2

)
→ 1. (A.6)

The inequality (A.5) is from the definition of Ω̂m(j), and the (A.6) is from Condition 1, the
definition of λ2, and

‖Σ̂AmΩ∗m(j) − (Ipm(j) + ∆∗m(j))‖∞ = ‖Σ̂AmΩ∗m(j) −ΣA∗m Ω∗m(j)‖∞ = ‖(Σ̂Am −ΣA∗m )Ω∗m(j)‖∞

= ‖Σ̂Am −ΣA∗m ‖max‖Ω∗m(j)‖1 = Op

(√
pm log pm

Np

)
.
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Therefore, with probability tending to 1, we have

1

2

(
Ω̂m(j) −Ω∗m(j)

)>
Σ̂Am

(
Ω̂m(j) −Ω∗m(j)

)
=

1

2
Ω̂>m(j)Σ̂

A
mΩ̂m(j) −

1

2
(Ω∗m(j))

>Σ̂AmΩ̂m(j) −
1

2
Ω̂>m(j)Σ̂

A
mΩ∗m(j) +

1

2
(Ω∗m(j))

>Σ̂AmΩ∗m(j)

6
(
Ω∗m(j) − Ω̂m(j)

)>
Σ̂AmΩ∗m(j) + (Ω̂m(j) −Ω∗m(j))

>(∆̂m(j) + Ipm(j))− λ2‖Ω̂m(j)‖1 + λ2‖Ω∗m(j)‖1

6

∣∣∣∣(Ω∗m(j) − Ω̂m(j)

)>
[Σ̂AmΩ∗m(j) − (∆̂m(j) + Ipm(j))]

∣∣∣∣− λ2‖Ω̂m(j)‖1 + λ2‖Ω∗m(j)‖1

6
∣∣∣(Ω∗m(j) − Ω̂m(j))

>[Σ̂AmΩ∗m(j) − (∆∗m(j) + Ipm(j))]
∣∣∣+
∣∣∣(Ω∗m(j) − Ω̂m(j))

>(∆̂m(j) −∆∗m(j))
∣∣∣

− λ2‖Ω̂m(j)‖1 + λ2‖Ω∗m(j)‖1

6
λ2

2
‖Ω̂m(j) −Ω∗m(j)‖1 +Rm,j + λ2‖[Ω̂m](Smj ,j) − [Ω∗m](Smj ,j)‖1 − λ2‖[Ω̂m](SC

mj ,j)
− [Ω∗m](SC

mj ,j)
‖1

6 Rm,j +
3λ2

2
‖[Ω̂m](Smj ,j) − [Ω∗m](Smj ,j)‖1 −

λ2

2
‖[Ω̂m](SC

mj ,j)
− [Ω∗m](SC

mj ,j)
‖1.

where the first inequality is from (A.5), the fourth inequality is from (A.6), Rm,j = |(Ω∗m(j)−
Ω̂m(j))

>(∆̂m(j)−∆∗m(j))|, Smj = {i ∈ [pm] : [Ω∗m](i,j) 6= 0}, SCmj = {i ∈ [pm] : [Ω∗m](i,j) = 0},
and [Ω̂m](Smj ,j) is a vector consisting of the elements in Ω̂m(j) labeled by Smj .

(i) If Rm,j 6
3λ2
2 ‖[Ω̂m](Smj ,j) − [Ω∗m](Smj ,j)‖1, then

3λ2‖[Ω̂m](Smj ,j) − [Ω∗m](Smj ,j)‖1 −
λ2

2
‖[Ω̂m](SC

mj ,j)
− [Ω∗m](SC

mj ,j)
‖1

>
1

2

(
Ω̂m(j) −Ω∗m(j)

)>
Σ̂Am

(
Ω̂m(j) −Ω∗m(j)

)
> 0, (A.7)

‖[Ω̂m](SC
mj ,j)

− [Ω∗m](SC
mj ,j)
‖1 6 6‖[Ω̂m](Smj ,j) − [Ω∗m](Smj ,j)‖1. (A.8)

By (A.8) and the restricted strong convexity property of Σ̂Am (Raskutti et al., 2010), for a
positive constant φ0,(

Ω̂m(j) −Ω∗m(j)

)>
Σ̂Am

(
Ω̂m(j) −Ω∗m(j)

)
> φ0‖Ω̂m(j) −Ω∗m(j)‖

2
2. (A.9)

Then by (A.7) and (A.9),

‖Ω̂m(j) −Ω∗m(j)‖
2
2 6 6φ−1

0 λ2‖[Ω̂m](Smj ,j) − [Ω∗m](Smj ,j)‖1
6 6φ−1

0
√
smjλ2‖[Ω̂m](Smj ,j) − [Ω∗m](Smj ,j)‖2

6 6φ−1
0
√
smjλ2‖Ω̂m(j) −Ω∗m(j)‖2.

It follows that

‖Ω̂m(j) −Ω∗m(j)‖2 6 6φ−1
0
√
smjλ2. (A.10)

(ii) If

3λ2

2
‖[Ω̂m](Smj ,j) − [Ω∗m](Smj ,j)‖1 6 Rm,j , (A.11)
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then

2Rm,j −
λ2

2
‖[Ω̂m](SC

mj ,j)
− [Ω∗m](SC

mj ,j)
‖1 >

1

2

(
Ω̂m(j) −Ω∗m(j)

)>
Σ̂Am

(
Ω̂m(j) −Ω∗m(j)

)
> 0.

It follows that

λ2‖[Ω̂m](SC
mj ,j)

− [Ω∗m](SC
mj ,j)
‖1 6 4Rm,j , (A.12)(

Ω̂m(j) −Ω∗m(j)

)>
Σ̂Am

(
Ω̂m(j) −Ω∗m(j)

)
6 4Rm,j , (A.13)

λ2‖Ω̂m(j) −Ω∗m(j)‖1 6
14

3
Rm,j , (A.14)

where (A.14) is from (A.11) and (A.12). Therefore,

‖Ω̂m(j) −Ω∗m(j)‖
2
2 6 c

(
Ω̂m(j) −Ω∗m(j)

)>
ΣA∗m

(
Ω̂m(j) −Ω∗m(j)

)
6 c

(
Ω̂m(j) −Ω∗m(j)

)>
Σ̂Am

(
Ω̂m(j) −Ω∗m(j)

)
+ c‖Σ̂Am −ΣA∗m ‖max‖Ω̂m(j) −Ω∗m(j)‖

2
1

6 c1Rm,j + c2
‖Σ̂Am −ΣA∗m ‖max

λ2
2

R2
m,j ,

(A.15)
where the last inequality is from (A.13) and (A.14). Applying Cauchy-Schwartz inequality
to Rm,j , we have Rm,j 6 ‖Ω̂m(j)−Ω∗m(j)‖2‖∆̂m(j)−∆∗m(j)‖2. Then, combining (A.15) and

the fact that c2δh‖Σ̂Am −ΣA∗m ‖max 6 λ2
2 when s

√
p log p
Np . 1, we have

‖Ω̂m(j) −Ω∗m(j)‖2 6 c‖∆̂m(j) −∆∗m(j)‖2. (A.16)

Combining (A.10) and (A.16), it can be obtained that

‖Ω̂m(j) −Ω∗m(j)‖
2
2 6 c

[
smjλ

2
2 + ‖∆̂m(j) −∆∗m(j)‖

2
2

]
= c(smjλ

2
2 + δh).

with probability tending to 1. It concludes Theorem 2.

Proof of Theorem 3.

The following two lemmas are useful for the proof of theorem 3, and their proofs are
placed after this section.

Lemma A3 If Conditons 1 and 4 hold, and s
√

p log p
Np . 1, then for each m ∈ [M ],

(i)

max
j∈[pm]

‖([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1‖max = Op

(√
p log p

Np

)
,

max
j∈[pm]

‖([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1‖1,∞ = Op

(
s

√
p log p

Np

)
.
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(ii)

max
j∈[pm],i∈SC

mj

‖[Σ̂Am](i,Smj)([Σ̂
A
m](Smj ,Smj))

−1 − [ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1‖∞ = Op

(√
p log p

Np

)
,

max
j∈[pm],i∈SC

mj

‖[Σ̂Am](i,Smj)([Σ̂
A
m](Smj ,Smj))

−1 − [ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1‖1 = Op

(
s

√
p log p

Np

)
.

(iii) pr
(

maxj∈[pm],i∈SC
mj
‖[Σ̂Am](i,Smj)([Σ̂

A
m](Smj ,Smj))

−1‖1 6 1− C3/2
)
→ 1.

Lemma A4 If the conditions of Theorem 1 hold, and h is bounded, then ‖∆̂m−∆∗m‖max =

Op

(√
p log p
np ∧ h0

)
, where h0 = maxm∈[M ],k∈[K] ‖∆

(k)∗
m ‖max.

Now we begin the proof of Theorem 3. First, we verify that Ŝm ⊆ Sm. Recall that Step
2(b) can be separated into pm independent optimizations, that is, for any j,

Ω̂m(j) = arg min
Ωm(j)

Q2j(Ωm(j)), (A.17)

where Q2j(Ωm(j)) = 1
2Ω>m(j)Σ̂

A
mΩm(j) −Ω>m(j)(∆̂m(j) + Ipm(j)) + λ2‖Ωm(j)‖1. Consider

Ω̃m(j) = arg min
[Ωm]

(SC
mj

,j)
=0
Q2j(Ωm(j)), (A.18)

where [Ωm](SC
mj ,j)

is a vector consisting of the elements in Ω̂m(j) labeled by SCmj . By its

directional derivative, we obtain the equality[
Σ̂AmΩ̃m(j) − (∆̂m(j) + Ipm(j)) + λ2Ẑm(j)

]
Smj

= 0, (A.19)

where

[Ẑm](i,j)


= 0, i ∈ SCmj ,
= sign

(
[Ω̃m](i,j)

)
, i ∈ Smj , [Ω̃m](i,j) 6= 0,

∈ [−1, 1], i ∈ Smj , [Ω̃m](i,j) = 0.

Note that [Ω̃m](SC
mj ,j)

= 0, then (A.19) is equivalent to [Σ̂Am](Smj ,Smj)[Ω̃m](Smj ,j)−([∆̂m](Smj ,j)+

[Ipm ](Smj ,j)) + λ2[Ẑm](Smj ,j) = 0, and the explicit solution to (A.18) is

[Ω̃m](Smj ,j) = ([Σ̂Am](Smj ,Smj))
−1{[∆̂m](Smj ,j) + [Ipm ](Smj ,j) − λ2[Ẑm](Smj ,j)}. (A.20)

Now we verify that Ω̃m(j) is also the solution to (A.17). Since the objective function in

(A.17) is convex, combining (A.19), it is sufficient to check that, for any i ∈ SCmj ,∣∣∣[Σ̂Am](i,Smj)[Ω̃m](Smj ,j) − ([∆̂m](i,j) + [Ipm ](i,j))
∣∣∣ 6 λ2. (A.21)
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According to the fact that [Ipm ](SC
mj ,j)

= 0, [ΣA∗m ](Smj ,Smj)[Ω
∗
m](Smj ,j) = [∆∗m](Smj ,j) +

[Ipm ](Smj ,j), and [ΣA∗m ](i,Smj)[Ω
∗
m](Smj ,j) = [∆∗m](i,j) + [Ipm ](i,j), then for i ∈ SCmj ,

[∆∗m](i,j) = [ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1([∆∗m](Smj ,j) + [Ipm ](Smj ,j)). (A.22)

Combining (A.20) and (A.22), then the left part of (A.21) can be decomposed as∣∣∣[Σ̂Am](i,Smj)[Ω̃m](Smj ,j) − ([∆̂m](i,j) + [Ipm ](i,j))
∣∣∣

6
∣∣∣[Σ̂Am](i,Smj)([Σ̂

A
m](Smj ,Smj))

−1([∆̂m](Smj ,j) + [Ipm ](Smj ,j))

−[ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1([∆∗m](Smj ,j) + [Ipm ](Smj ,j))

−λ2[Σ̂Am](i,Smj)([Σ̂
A
m](Smj ,Smj))

−1[Ẑm](Smj ,j) − [∆̂m](i,j) + [∆∗m](i,j)

∣∣∣
6
∣∣∣[Σ̂Am](i,Smj)([Σ̂

A
m](Smj ,Smj))

−1([∆̂m](Smj ,j) − [∆∗m](Smj ,j))
∣∣∣

+
∣∣∣{[Σ̂Am](i,Smj)([Σ̂

A
m](Smj ,Smj))

−1 − [ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1
}

([∆∗m](Smj ,j) + [Ipm ](Smj ,j))
∣∣∣

+ λ2

∣∣∣[Σ̂Am](i,Smj)([Σ̂
A
m](Smj ,Smj))

−1[Ẑm](Smj ,j)

∣∣∣+
∣∣∣[∆̂m](i,j) − [∆∗m](i,j)

∣∣∣ .
(A.23)

By the fact that ‖[Ẑm](Smj ,j)‖∞ 6 1, then∣∣∣[Σ̂Am](i,Smj)[Ω̃m](Smj ,j) − ([∆̂m](i,j) + [Ipm ](i,j))
∣∣∣

6 ‖[Σ̂Am](i,Smj)([Σ̂
A
m](Smj ,Smj))

−1‖1‖[∆̂m](Smj ,j) − [∆∗m](Smj ,j)‖∞
+ ‖[Σ̂Am](i,Smj)([Σ̂

A
m](Smj ,Smj))

−1 − [ΣA∗m ](i,Smj)(([Σ
A∗
m ](Smj ,Smj))

−1‖1‖[∆∗m](Smj ,j)‖∞
+ ‖[Σ̂Am](i,Smj)([Σ̂

A
m](Smj ,Smj))

−1 − [ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1‖∞
+ λ2‖[Σ̂Am](i,Smj)([Σ̂

A
m](Smj ,Smj))

−1‖1 + ‖[∆̂m](i,j) − [∆∗m](i,j)‖∞.
(A.24)

By Lemma A3, Lemma A4, and (A.24), we have∣∣∣[Σ̂Am](i,Smj)[Ω̃m](Smj ,j) − ([∆̂m](i,j) + [Ipm ](i,j))
∣∣∣

6 c(1− C3/2)

(√
p log p

np
∧ h0

)
+ ch0s

√
p log p

Np

+ c

√
p log p

Np
+ λ2(1− C3/2) + c

(√
p log p

np
∧ h0

)
,

with probability tending to 1. By Condition 5 (i.e., h0 = O(h/s)), the assumption that

h is bounded, and λ2 = C

(√
δh
s +

√
p log p
Np

)
, we have c(2 − C3/2)

(√
p log p
np ∧ h0

)
+ c(1 +

h0s)
√

p log p
Np 6 λ2C3/2 for a sufficiently large constant C. Therefore, (A.21) holds with

probability tending to 1. It concludes that Ŝm ⊆ Sm.
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Next, we verify that Sm ⊆ Ŝm, which requires establishing the bound of ‖Ω̂m−Ω∗m‖max.
By the fact that Ω̃m(j) = Ω̂m(j), (A.20), and [Ω∗m](Smj ,j) = ([ΣA∗m ](Smj ,Smj))

−1([∆∗m](Smj ,j) +
[Ipm ](Smj ,j)), we have

‖Ω̂m(j) −Ω∗m(j)‖∞

=
∥∥∥([Σ̂Am](Smj ,Smj))

−1([∆̂m](Smj ,j) − [∆∗m](Smj ,j) + [Ipm ](Smj ,j) − [Ipm ](Smj ,j))

+{([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1}([∆∗m](Smj ,j) + [Ipm ](Smj ,j))

−λ2([Σ̂Am](Smj ,Smj))
−1[Ẑm](Smj ,j)

∥∥∥
∞

6 ‖([Σ̂Am](Smj ,Smj))
−1‖1,∞‖[∆̂m](Smj ,j) − [∆∗m](Smj ,j)‖∞

+ ‖([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1‖1,∞‖[∆∗m](Smj ,j)‖∞
+ ‖([Σ̂Am](Smj ,Smj))

−1 − ([ΣA∗m ](Smj ,Smj))
−1‖max + λ2‖([Σ̂Am](Smj ,Smj))

−1‖1,∞.

Note that ‖([Σ̂Am](Smj ,Smj))
−1‖1,∞ = ‖([Σ̂Am](Smj ,Smj))

−1−([ΣA∗m ](Smj ,Smj))
−1‖1,∞+‖([ΣA∗m ](Smj ,Smj))

−1‖1,∞,
then

‖Ω̂m(j) −Ω∗m(j)‖∞
6 ‖([ΣA∗m ](Smj ,Smj))

−1‖1,∞(λ2 + ‖[∆̂m](Smj ,j) − [∆∗m](Smj ,j)‖∞)

+ ‖([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1‖1,∞(λ2 + ‖[∆̂m](Smj ,j) − [∆∗m](Smj ,j)‖∞ + ‖[∆∗m](Smj ,j)‖∞)

+ ‖([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1‖max.

By Lemma A3, Lemma A4, and Condition 4, we have

‖Ω̂m(j) −Ω∗m(j)‖∞

6 c

(
λ2 +

√
p log p

np
∧ h0

)
+ cs

√
p log p

Np

(
λ2 +

√
p log p

np
∧ h0 + h0

)
+ c

√
p log p

Np

6 c′λ2

for a sufficiently large constant c′, with probability tending to 1. The last line is from the

fact that λ2 = C

(√
δh
s +

√
p log p
Np

)
. Note that n 6 N , therefore, for any m ∈ [M ],

‖Ω̂m −Ω∗m‖max = Op

(√
δh
s

+

√
p log p

(N + n)p

)
. (A.25)

Combining (A.25) and the minimal signal condition of Ω∗m, we have Sm ⊆ Ŝm. It concludes
Theorem 3.
Proof of Lemma A3.
First, we consider (i) of Lemma A3. For any m ∈ [M ] and j ∈ [pm], define

D ={[ΣA∗m ](Smj ,Smj) + [Σ̂Am](Smj ,Smj) − [ΣA∗m ](Smj ,Smj)}−1 − ([ΣA∗m ](Smj ,Smj))
−1

+ ([ΣA∗m ](Smj ,Smj))
−1{[Σ̂Am](Smj ,Smj) − [ΣA∗m ](Smj ,Smj)}([ΣA∗m ](Smj ,Smj))

−1.
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Following the proof of Lemma 5 in Ravikumar et al. (2011), it can be obtained that

‖D‖max

6
3

2
‖[ΣA∗m ](Smj ,Smj)‖31,∞‖[Σ̂Am](Smj ,Smj) − [ΣA∗m ](Smj ,Smj)‖max‖[Σ̂Am](Smj ,Smj) − [ΣA∗m ](Smj ,Smj)‖1,∞.

(A.26)
Therefore,

‖([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1‖max

6 ‖D‖max + ‖([ΣA∗m ](Smj ,Smj))
−1{[Σ̂Am](Smj ,Smj) − [ΣA∗m ](Smj ,Smj)}([ΣA∗m ](Smj ,Smj))

−1‖max

6 ‖D‖max + ‖[Σ̂Am](Smj ,Smj) − [ΣA∗m ](Smj ,Smj)‖max‖([ΣA∗m ](Smj ,Smj))
−1‖21,∞

6 cD1s
p log p

Np
+ cD2

√
p log p

Np

6 cD

√
p log p

Np
,

(A.27)
for some constants cD1 and cD2 , with probability tending to 1. The penultimate line is from

(A.26), Condition 4, and Lemma 2. The last line is from the assumption that s
√

p log p
Np . 1.

It follows that

‖([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1‖1,∞ 6 cDs

√
p log p

Np
, (A.28)

with probability tending to 1. It concludes (i) of Lemma A3 by (A.27) and (A.28).

For (ii) of Lemma A3, note that

[Σ̂Am](i,Smj)([Σ̂
A
m](Smj ,Smj))

−1 − [ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1

= ([Σ̂Am](i,Smj) − [ΣA∗m ](i,Smj))([Σ
A∗
m ](Smj ,Smj))

−1

+ [ΣA∗m ](i,Smj){([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1}

+ ([Σ̂Am](i,Smj) − [ΣA∗m ](i,Smj)){([Σ̂Am](Smj ,Smj))
−1 − ([ΣA∗m ](Smj ,Smj))

−1},

(A.29)

for any m ∈ [M ] and j ∈ [pm]. It follows that

‖[Σ̂Am](i,Smj)([Σ̂
A
m](Smj ,Smj))

−1 − [ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1‖∞
6 ‖[Σ̂Am](i,Smj) − [ΣA∗m ](i,Smj)‖∞‖([ΣA∗m ](Smj ,Smj))

−1‖1,∞
+ (‖[ΣA∗m ](i,Smj)‖1 + ‖[Σ̂Am](i,Smj) − [ΣA∗m ](i,Smj)‖1)‖([Σ̂Am](Smj ,Smj))

−1 − ([ΣA∗m ](Smj ,Smj))
−1‖max

6 cA1

√
p log p

Np
,

(A.30)
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for some constant cA1 , with probability tending to 1. The last line is from Condition 4,

Lemma 2, (i) of Lemma A3, and the assumption that s
√

p log p
Np . 1. It follows that

‖[Σ̂Am](i,Smj)([Σ̂
A
m](Smj ,Smj))

−1 − [ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1‖1 6 cA1s

√
p log p

Np
, (A.31)

with probability tending to 1. It concludes (ii) of Lemma A3 by (A.30) and (A.31).

As for (iii) of Lemma A3, for any m ∈ [M ] and j ∈ [pm], we have

‖[Σ̂Am](i,Smj)([Σ̂
A
m](Smj ,Smj))

−1‖1
6 ‖[Σ̂Am](i,Smj)([Σ̂

A
m](Smj ,Smj))

−1 − [ΣA∗m ](i,Smj)([Σ
A∗
m ](Smj ,Smj))

−1‖1
+ ‖[ΣA∗m ](i,Smj)([Σ

A∗
m ](Smj ,Smj))

−1‖1

6 cA1s

√
p log p

Np
+ 1− C3 6 1− C3/2,

(A.32)

with probability tending to 1. The last line is from Condition 4 and (ii) of Lemma A3. It
concludes Lemma A3.

Proof of Lemma A4.

By (A.2) in the proof of Theorem 1, with probability tending to 1,

‖∆̂m −∆∗m‖max 6 c′1

√
pm log pm

np
,

for a sufficiently large constant c′1. Similar to the discussion of (i) and (ii) in the proof of

Theorem 1, it can be obtained that ‖∆̂m −∆∗m‖max 6 c′2h0 with probability tending to 1,
for a sufficiently large constant c′2. It follows that

‖∆̂m −∆∗m‖max 6 Op

(√
pm log pm

np
∧ h0

)
.

Proof of Theorem 4.

Recall that

Σ̂Am =

K∑
k=1

αkΣ̂
(k)
m , with αk =

nk/ĥk∑K
k=1(nk/ĥk)

,

where ĥk = maxm∈[M ] ‖∆̂
(k)
m ‖1,∞ and ∆̂

(k)
m = Ω̂

(0)
m Σ̂

(k)
m − Ipm . Combing K = O(1) and the

proofs of Theorems 2 to 3, it is sufficient to show that

αk → 0, if k /∈ Ah. (A.33)
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In fact, for k ∈ Ah, with probability tending to 1,

ĥk = max
m∈[M ]

‖Ω̂(0)
m Σ̂(k)

m − Ipm‖1,∞

6 h+ max
m∈[M ]

‖Ω̂(0)
m Σ̂(k)

m −Ω∗mΣ(k)∗
m ‖1,∞

6 h+ max
m∈[M ]

‖(Ω̂(0)
m −Ω∗m)Σ̂(k)

m ‖1,∞ + max
m∈[M ]

‖Ω∗m(Σ̂(k)
m −Σ(k)∗

m )‖1,∞

6 cs

√
p log p

np
,

for a sufficiently large constant c, where the last inequality is from Lemma 2 and Condition

6. Note that ĥk′ � s
√

p log p
np for k′ /∈ Ah, so ĥ−1

k � ĥ−1
k′ for any k ∈ Ah, k′ /∈ Ah. Combining

n1 � · · · � nK , it concludes (A.33).

A2. Additional numerical results

A2.1 Additional simulation results: Tables A1 and A2

Table A1: Averaged TNRs over 100 replications and their standard deviation in parenthesis
for Scenario 1.

M = 3 M = 2

TNRs of Ω̂(K) Averaged TNRs of all modes TNRs of Ω̂(K) Averaged TNRs of all modes

Methods K chain nearest chain nearest chain nearest chain nearest

proposed.v 1 0.939(0.006) 0.932(0.012) 0.746(0.027) 0.735(0.035) 0.973(0.008) 0.997(0.000) 0.851(0.004) 0.949(0.002)
2 0.952(0.008) 0.937(0.009) 0.763(0.029) 0.744(0.032) 0.985(0.006) 0.998(0.000) 0.879(0.004) 0.951(0.002)
3 0.961(0.007) 0.944(0.009) 0.778(0.027) 0.760(0.031) 0.986(0.006) 0.998(0.000) 0.889(0.005) 0.952(0.002)
4 0.968(0.007) 0.950(0.009) 0.801(0.030) 0.777(0.030) 0.986(0.005) 0.999(0.000) 0.892(0.005) 0.956(0.002)
5 0.977(0.007) 0.955(0.011) 0.811(0.030) 0.796(0.033) 0.986(0.005) 0.999(0.000) 0.899(0.003) 0.956(0.001)

proposed 1 0.939(0.006) 0.932(0.012) 0.746(0.027) 0.735(0.035) 0.973(0.008) 0.997(0.000) 0.851(0.004) 0.949(0.002)
2 0.953(0.006) 0.938(0.008) 0.764(0.029) 0.742(0.034) 0.984(0.006) 0.998(0.000) 0.877(0.003) 0.950(0.002)
3 0.960(0.007) 0.945(0.011) 0.780(0.027) 0.763(0.028) 0.984(0.006) 0.999(0.000) 0.886(0.004) 0.952(0.002)
4 0.969(0.008) 0.949(0.010) 0.798(0.029) 0.776(0.034) 0.985(0.006) 0.999(0.000) 0.891(0.003) 0.955(0.002)
5 0.976(0.008) 0.953(0.010) 0.809(0.028) 0.793(0.031) 0.986(0.004) 0.999(0.000) 0.898(0.004) 0.956(0.001)

Tlasso 1 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
2 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
3 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
4 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
5 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)

oracle 1 0.939(0.006) 0.932(0.012) 0.746(0.027) 0.735(0.035) 0.973(0.008) 0.997(0.000) 0.851(0.004) 0.949(0.002)
2 0.953(0.006) 0.938(0.008) 0.764(0.029) 0.742(0.034) 0.984(0.006) 0.998(0.000) 0.877(0.003) 0.950(0.002)
3 0.960(0.007) 0.945(0.011) 0.780(0.027) 0.763(0.028) 0.984(0.006) 0.999(0.000) 0.886(0.004) 0.952(0.002)
4 0.969(0.008) 0.949(0.010) 0.798(0.029) 0.776(0.034) 0.985(0.006) 0.999(0.000) 0.891(0.003) 0.955(0.002)
5 0.976(0.008) 0.953(0.010) 0.809(0.028) 0.793(0.031) 0.986(0.004) 0.999(0.000) 0.898(0.004) 0.956(0.001)

∗ All methods have achieved 100% TPR and hence not shown in the table.

A2.2 Additional results and information for ADHD brain network data:
Tables A3 and A4 and Figure A1
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Table A2: Averaged TNRs over 100 replications and their standard deviation in parenthesis
for Scenario 2.

M = 3 M = 2

TNRs of Ω̂(K) Averaged TNRs of all modes TNRs of Ω̂(K) Averaged TNRs of all modes

Methods card(A) chain nearest chain nearest chain nearest chain nearest

proposed.v 0 0.926(0.010) 0.869(0.015) 0.717(0.023) 0.639(0.029) 0.969(0.002) 0.994(0.001) 0.847(0.006) 0.950(0.006)
1 0.928(0.008) 0.883(0.016) 0.756(0.020) 0.674(0.031) 0.974(0.001) 0.994(0.000) 0.858(0.001) 0.953(0.001)
2 0.954(0.005) 0.914(0.01) 0.787(0.017) 0.725(0.025) 0.976(0.001) 0.994(0.000) 0.863(0.004) 0.953(0.001)
3 0.964(0.004) 0.936(0.008) 0.823(0.013) 0.770(0.023) 0.984(0.001) 0.997(0.000) 0.897(0.003) 0.961(0.001)
4 0.969(0.003) 0.947(0.007) 0.841(0.013) 0.794(0.021) 0.986(0.001) 0.998(0.000) 0.897(0.003) 0.964(0.001)
5 0.974(0.003) 0.953(0.007) 0.860(0.013) 0.810(0.022) 0.989(0.001) 0.999(0.000) 0.903(0.004) 0.966(0.002)

proposed 0 0.925(0.010) 0.846(0.018) 0.718(0.025) 0.628(0.033) 0.969(0.002) 0.993(0.000) 0.846(0.006) 0.935(0.001)
1 0.928(0.011) 0.862(0.014) 0.741(0.027) 0.662(0.026) 0.972(0.001) 0.994(0.000) 0.858(0.000) 0.936(0.001)
2 0.933(0.011) 0.879(0.016) 0.775(0.026) 0.709(0.031) 0.974(0.000) 0.994(0.000) 0.861(0.002) 0.948(0.001)
3 0.942(0.01) 0.883(0.016) 0.808(0.024) 0.743(0.031) 0.981(0.002) 0.996(0.000) 0.891(0.002) 0.960(0.001)
4 0.954(0.011) 0.913(0.016) 0.822(0.024) 0.774(0.031) 0.982(0.001) 0.996(0.000) 0.897(0.003) 0.962(0.002)
5 0.974(0.003) 0.958(0.006) 0.861(0.013) 0.815(0.021) 0.990(0.004) 0.998(0.000) 0.905(0.003) 0.963(0.001)

Tlasso 0 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
1 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
2 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
3 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
4 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
5 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)

oracle 0 0.923(0.017) 0.863(0.017) 0.724(0.026) 0.718(0.029) 0.965(0.004) 0.985(0.002) 0.842(0.002) 0.938(0.003)
1 0.941(0.007) 0.936(0.003) 0.752(0.024) 0.739(0.015) 0.979(0.004) 0.999(0.000) 0.854(0.003) 0.950(0.001)
2 0.956(0.006) 0.941(0.004) 0.772(0.022) 0.748(0.018) 0.984(0.003) 0.999(0.000) 0.881(0.005) 0.951(0.001)
3 0.968(0.008) 0.948(0.005) 0.793(0.022) 0.772(0.018) 0.986(0.004) 0.999(0.000) 0.890(0.004) 0.955(0.001)
4 0.974(0.008) 0.955(0.005) 0.812(0.023) 0.799(0.018) 0.987(0.005) 0.999(0.000) 0.900(0.004) 0.957(0.001)
5 0.979(0.006) 0.958(0.006) 0.861(0.023) 0.815(0.021) 0.990(0.004) 0.998(0.000) 0.905(0.003) 0.963(0.001)

∗ All methods have achieved 100% TPR and hence not shown in the table.

Table A3: The top 10% important hub nodes and their degrees in differential networks of
brain functional connectivity between ADHD and TDC groups.

SRI24 code Full name Degree

TDC-ADHD 25 Superior frontal gyrus, medial orbital 20
27 Gyrus rectus 16
43 Calcarine fissure and surrounding cortex 15
45 Cuneus 15
49 Superior occipital gyrus 15
35 Posterior cingulate gyrus 14
53 Inferior occipital gyrus 14
54 Inferior occipital gyrus 14
59 Superior parietal gyrus 13
64 Supramarginal gyrus 13
83 Temporal pole: superior temporal gyrus 13
7 Middle frontal gyrus 12

ADHD-TDC 87 Temporal pole: middle temporal gyrus 29
108 Cerebellum Inferior 26
113 Vermis 25
54 Inferior occipital gyrus 23
80 Heschl gyrus 23
93 Cerebellum Inferior 23
40 Parahippocampal gyrus 21
110 Vermis 21
111 Vermis 21
42 Amygdala 20
53 Inferior occipital gyrus 20
70 Paracentral lobule 20

∗TDC-ADHD: the differential network consisting of the edges in the TDC group but not the ADHD group;
ADHD-TDC: the differential network consisting of the edges in the ADHD group but not the TDC group.
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Table A4: The detailed information of 116 ROIs defined by the AAL atlas.
SRI24 code Tzourio Mazoyer name∗ Full name SRI24 code Tzourio Mazoyer name∗ Full name

1 Precentral-L Precentral gyrus 59 Parietal-Sup-L Superior parietal gyrus
2 Precentral-R Precentral gyrus 60 Parietal-Sup-R Superior parietal gyrus
3 Frontal-Sup-L Superior frontal gyrus, dorsolateral 61 Parietal-Inf-L Inferior parietal, but supramarginal and angular
4 Frontal-Sup-R Superior frontal gyrus, dorsolateral 62 Parietal-Inf-R Inferior parietal, but supramarginal and angular
5 Frontal-Sup-Orb-L Superior frontal gyrus, orbital part 63 SupraMarginal-L Supramarginal gyrus
6 Frontal-Sup-Orb-R Superior frontal gyrus, orbital part 64 SupraMarginal-R Supramarginal gyrus
7 Frontal-Mid-L Middle frontal gyrus 65 Angular-L Angular gyrus
8 Frontal-Mid-R Middle frontal gyrus 66 Angular-R Angular gyrus
9 Frontal-Mid-Orb-L Middle frontal gyrus, orbital part 67 Precuneus-L Precuneus
10 Frontal-Mid-Orb-R Middle frontal gyrus, orbital part 68 Precuneus-R Precuneus
11 Frontal-Inf-Oper-L Inferior frontal gyrus, opercular part 69 Paracentral-Lobule-L Paracentral lobule
12 Frontal-Inf-Oper-R Inferior frontal gyrus, opercular part 70 Paracentral-Lobule-R Paracentral lobule
13 Frontal-Inf-Tri-L Inferior frontal gyrus, triangular part 71 Caudate-L Caudate nucleus
14 Frontal-Inf-Tri-R Inferior frontal gyrus, triangular part 72 Caudate-R Caudate nucleus
15 Frontal-Inf-Orb-L Inferior frontal gyrus, orbital part 73 Putamen-L Lenticular nucleus, putamen
16 Frontal-Inf-Orb-R Inferior frontal gyrus, orbital part 74 Putamen-R Lenticular nucleus, putamen
17 Rolandic-Oper-L Rolandic operculum 75 Pallidum-L Lenticular nucleus, pallidum
18 Rolandic-Oper-R Rolandic operculum 76 Pallidum-R Lenticular nucleus, pallidum
19 Supp-Motor-Area-L Supplementary motor area 77 Thalamus-L Thalamus
20 Supp-Motor-Area-R Supplementary motor area 78 Thalamus-R Thalamus
21 Olfactory-L Olfactory cortex 79 Heschl-L Heschl gyrus
22 Olfactory-R Olfactory cortex 80 Heschl-R Heschl gyrus
23 Frontal-Sup-Medial-L Superior frontal gyrus, medial 81 Temporal-Sup-L Superior temporal gyrus
24 Frontal-Sup-Medial-R Superior frontal gyrus, medial 82 Temporal-Sup-R Superior temporal gyrus
25 Frontal-Mid-Orb-L Superior frontal gyrus, medial orbital 83 Temporal-Pole-Sup-L Temporal pole: superior temporal gyrus
26 Frontal-Mid-Orb-R Superior frontal gyrus, medial orbital 84 Temporal-Pole-Sup-R Temporal pole: superior temporal gyrus
27 Rectus-L Gyrus rectus 85 Temporal-Mid-L Middle temporal gyrus
28 Rectus-R Gyrus rectus 86 Temporal-Mid-R Middle temporal gyrus
29 Insula-L Insula 87 Temporal-Pole-Mid-L Temporal pole: middle temporal gyrus
30 Insula-R Insula 88 Temporal-Pole-Mid-R Temporal pole: middle temporal gyrus
31 Cingulum-Ant-L Anterior cingulate and paracingulate gyri 89 Temporal-Inf-L Inferior temporal gyrus
32 Cingulum-Ant-R Anterior cingulate and paracingulate gyri 90 Temporal-Inf-R Inferior temporal gyrus
33 Cingulum-Mid-L Median cingulate and paracingulate gyri 91 Cerebelum-Crus1-L Cerebellum-Superior
34 Cingulum-Mid-R Median cingulate and paracingulate gyri 92 Cerebelum-Crus1-R Cerebellum-Superior
35 Cingulum-Post-L Posterior cingulate gyrus 93 Cerebelum-Crus2-L Cerebellum-Inferior
36 Cingulum-Post-R Posterior cingulate gyrus 94 Cerebelum-Crus2-R Cerebellum-Inferior
37 Hippocampus-L Hippocampus 95 Cerebelum-3-L Cerebellum-Superior
38 Hippocampus-R Hippocampus 96 Cerebelum-3-R Cerebellum-Superior
39 ParaHippocampal-L Parahippocampal gyrus 97 Cerebelum-4-5-L Cerebellum-Superior
40 ParaHippocampal-R Parahippocampal gyrus 98 Cerebelum-4-5-R Cerebellum-Superior
41 Amygdala-L Amygdala 99 Cerebelum-6-L Cerebellum-Superior
42 Amygdala-R Amygdala 100 Cerebelum-6-R Cerebellum-Superior
43 Calcarine-L Calcarine fissure and surrounding cortex 101 Cerebelum-7b-L Cerebellum-Inferior
44 Calcarine-R Calcarine fissure and surrounding cortex 102 Cerebelum-7b-R Cerebellum-Inferior
45 Cuneus-L Cuneus 103 Cerebelum-8-L Cerebellum-Inferior
46 Cuneus-R Cuneus 104 Cerebelum-8-R Cerebellum-Inferior
47 Lingual-L Lingual gyrus 105 Cerebelum-9-L Cerebellum-Inferior
48 Lingual-R Lingual gyrus 106 Cerebelum-9-R Cerebellum-Inferior
49 Occipital-Sup-L Superior occipital gyrus 107 Cerebelum-10-L Cerebellum-Inferior
50 Occipital-Sup-R Superior occipital gyrus 108 Cerebelum-10-R Cerebellum-Inferior
51 Occipital-Mid-L Middle occipital gyrus 109 Vermis-1-2 Vermis
52 Occipital-Mid-R Middle occipital gyrus 110 Vermis-3 Vermis
53 Occipital-Inf-L Inferior occipital gyrus 111 Vermis-4-5 Vermis
54 Occipital-Inf-R Inferior occipital gyrus 112 Vermis-6 Vermis
55 Fusiform-L Fusiform gyrus 113 Vermis-7 Vermis
56 Fusiform-R Fusiform gyrus 114 Vermis-8 Vermis
57 Postcentral-L Postcentral gyrus 115 Vermis-9 Vermis
58 Postcentral-R Postcentral gyrus 116 Vermis-10 Vermis

∗L: left hemisphere, R: right hemisphere.
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Figure A1: The networks of brain functional connectivity of TDC (top) and ADHD (bot-
tom) groups. In each row, three different views are also provided: sagittal (left),
axial (middle), and coronal (right).

A2.3 Additional comparative results on Tlasso and TransCLIME

1. Sensitivity analysis for Tlasso. In simulations of the main text, we followed the
treatment in Lyu et al. (2019) for selecting the tuning parameters {λm;m = 1, . . . ,M} in
TLasso. Specifically, it is set as λm = C

√
(pm log pm)/(np) with C = 20 as suggested in

all the numerical experiments in Lyu et al. (2019). Moreover, we also conduct a sensitivity
analysis on the choice of the tuning parameter under M = 3 with dimensions (p1, p2, p3) =
(10, 10, 20) and M = 2 with dimensions (p1, p2) = (100, 100), which is shown in Figure
A2. A similar observation has also been made in Lyu et al. (2019). More importantly, the
smallest error of TLasso is still larger than that of the proposed method with at least one
informative auxiliary domain.

2. Additional comparative results on TransCLIME. We conduct a comparison with
vector-valued methods, including the transfer learning method TransCLIME (Li et al.,
2022b) and the CLIME method (Cai et al., 2011) using only the target domain, in two
ways.

In the first way, we still follow Scenario 1 in the main text to generate tensor data
(all auxiliary domains are informative by setting the informative set A = [K] and varying
K ∈ {1, · · · , 5}), then we can apply the TransCLIME and CLIME after flattening the
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Figure A2: Estimation errors of Tlasso under the choices of C ∈ {5, 10, 15, 20, 25, 30}. The
top and bottom rows correspond to the M = 3 and M = 2, respectively.

tensor into a vector. We modify the dimensions (p1, p2, p3) = (5, 5, 10) considering the huge
computational cost after flattening the tensor. The estimation error in Frobenius norm
of Kronecker product of precision matrices, defined as ‖Ω̂(K) − Ω(K)∗‖F , where Ω̂(K) =
Ω̂1 ⊗ · · · ⊗ Ω̂M and Ω(K)∗ = Ω∗1 ⊗ · · · ⊗ Ω∗M , of all competitors are shown in Figure A3.
Note that the estimation errors in Frobenius or max norm of all modes are not available
using TransCLIME and CLIME with the flattened data.

Figure A3: Averaged estimation errors in F-norm of Kronecker product for Scenario 1 with
(p1, p2, p3) = (5, 5, 10). The left and right columns correspond to the chain and
nearest neighbor graph, respectively.
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Some interesting results can be observed. First, CLIME is far inferior to TLasso, which is
consistent with the existing literature Lyu et al. (2019). More interestingly, as the number of
informative auxiliary domains increases, even though TransCLIME is gradually improved
compared to CLIME, it is still inferior to TLasso. This observation reflects that when
the tensor structure is ignored, even with auxiliary information (while the data in the
auxiliary domains is also flattened), the transfer learning method with the flattened data
cannot improve the estimation efficiency sufficiently. Despite being a popular treatment for
handling tensorial data, flattening data may suffer from information loss and can completely
destroy certain intrinsic structures of the tensor data, which seriously reduces estimation
efficiency as well as computational efficiency.

In the second way, we directly generate vector-valued data (i.e., M = 1), which is the
main focus of the TransCLIME (Li et al., 2022b). We fix the data dimension p = 100
and the number of auxiliary domains K = 5 with size nk = 200 for k ∈ [K], and vary the
numbers of informative auxiliary domains card(A) ∈ {1, · · · ,K}. The informative auxiliary
domains with k ∈ A are generated similarly as Scenario 2. To perform a positive comparison
to demonstrate the powerful effectiveness of our method in dealing with negative transfer
problems, we consider non-informative auxiliary domains that are further away from the
target domain and more challenging than Scenario 2. Specifically, for k /∈ A, [∆(k)](i,j) =
0 with probability 0.5, or randomly generated from Unif[−h02, h02] with probability 0.5,

where h02 = 20s
√

log p
n . In this simulation, we also consider the CLIME using only the

target domain as a naive benchmark and the “oracle” method by applying TransCLIME
on the target domain and the known informative auxiliary domains. The performances of
competitors are shown in Figure A4.
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Figure A4: Averaged estimation errors in F-norm for vector-valued data with varying
card(A). The left and right columns correspond to the chain and nearest neigh-
bor graph, respectively.

Some important results can be observed. If there are some non-informative auxiliary
domains with strong influence (even if only one), the performance of TransCLIME is similar
to that of the benchmark CLIME using only the target domain, and it hardly shows the
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improvement of transfer learning. This is due to the fact that TransCLIME adopts naive
sample-size-based weights in the aggregation step for multiple auxiliary domains, that is,

Σ̂Am =
∑K

k=1 αkΣ̂
(k)
m , with αk = nk/N and N =

∑K
k=1 nk. Yet, it does not take into

account the similarities between the target and auxiliary domains. If there are some non-
informative auxiliary domains that are extremely different from the target domain, it will
result in the negative transfer. Although Li et al. (2022b) adopts the model selection
between the transfer learning estimator and the initial estimator, this step may force the
initial estimator to be selected. In this sense, TransCLIME can guarantee that transfer
learning is no less effective than using the target domain only, but it may also offset the
potential improvement benefiting from the informative auxiliary domains with a positive
impact. Naturally, the significant improvement of TransCLIME compared to CLIME may
rely on the fact that all auxiliary domains are informative. In sharp contrast, the estimation
errors of the proposed method decrease so fast that it can dominate TransCLIME even when
there is only one informative auxiliary domain, and its overall performance is comparable to
“oracle”, thanks to the data-adaptive weighting scheme for the auxiliary domains combining
both sample sizes and the similarities between the target and auxiliary domains.
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