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Abstract

Simple random sampling has been widely used in traditional stochastic optimization algo-
rithms. Although the gradient sampled by simple random sampling is a descent direction in
expectation, it may have a relatively high variance which will cause the descent curve wig-
gling and slow down the optimization process. In this paper, we propose a novel stochastic
optimization method called grafting gradient descent (GGD), which combines the strength
from minibatching and importance sampling, and provide the convergence results of GGD.
We show that the grafting gradient possesses a doubly robust property which ensures
that the performance of GGD method is superior to the worse one of SGD with impor-
tance sampling method and mini-batch SGD method. Combined with advanced variance
reduction techniques such as stochastic variance reduced gradient and adaptive stepsize
methods such as Adam, these composite GGD-based methods and their theoretical bounds
are provided. The real data studies also show that GGD achieves an intermediate per-
formance among SGD with importance sampling and mini-batch SGD, and outperforms
original SGD method. Then the proposed GGD is a better and more robust stochastic
optimization framework in practice.

Keywords: stochastic optimization, importance sampling, minibatching, variance reduc-
tion, adaptive stepsize method

1. Introduction

One fundamental problem studied in machine learning is how to fit the model to large data
set. The most popular approach is via the empirical risk minimization (ERM), that is,

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
,

where x is the d parameters in a pre-defined model, and fi(x) is the loss function of the
sample i, i = 1, 2, ..., n, such as the square error loss or hinge error loss. Optimizing the
objective function f is of paramount importance. The most well-known method is via the
stochastic gradient descent, whose update rule for the model parameters x can be written
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as

xk+1 = xk − γ∇fik(xk),

where ik is sampled from [n] = {1, 2, ...n} uniformly, γ is a suitable stepsize, ∇fik(xk) =(
∂fik
∂x1

(xk), ...,
∂fik
∂xd

(xk)
)>

. SGD has played a central role in large-scale machine learn-

ing (Robbins and Monro, 1951; Shalev-Shwartz et al., 2011; Hardt et al., 2016; Bottou
et al., 2018; Gorbunov et al., 2020), since it tremendously reduces the computational cost
compared with the gradient descent (GD). Unfortunately, SGD suffers from the variance
brought by the sample gradient ∇fik(x). In terms of practice, main problem with SGD is
countering its variance to accelerate the training process.

1.1 Direct Approaches

Some techniques can be used to directly tackle the problem of variance. They mainly fall
into three categories.

Minibatching. Minibatching can reduce the variance by a constant factor. Using this
strategy does not result in an improvement of convergence rate (Shalev-Shwartz et al., 2011;
Bottou et al., 2018), but can lead to acceleration. Minibatching is commonly used in modern
deep learning settings since it can be running in a parallel fashion which is computational
friendly for implementation.

Importance sampling. Importance sampling refers to the technique of assigning
carefully designed non-uniform probabilities to data samples and using these probabilities
to select the data point during the iterative training process (Needell et al., 2014; Zhao and
Zhang, 2015; El Hanchi and Stephens, 2020). Although effective, it often requires more
computational resources to set up the sampling mechanism. With the help of importance
sampling, the variance of stochastic gradient can be reduced by a factor as well.

Variance reduction methods Although above two primitive techniques can be imple-
mented easily and reduce the variance to some extent, they can not eliminate the variance
completely. To improve the convergence rate of stochastic optimization methods with fixed
stepsize, lots of advanced algorithms concerning the variance reduction have been proposed
in recent years (Gower et al., 2020), such as stochastic average gradient (SAG, Le Roux
et al., 2012; Schmidt et al., 2017), SAGA (Defazio et al., 2014), stochastic variance re-
duced gradient (SVRG, Johnson and Zhang, 2013), stochastic recursive gradient algorithm
(SARAH, Nguyen et al., 2017), Katyusha (Allen-Zhu, 2017), variance reduced stochastic
gradient descent (VR-SGD, Shang et al., 2018), and the simple stochastic variance reduced
algorithm (MiG, Zhou et al., 2018). All of those methods have modified the original stochas-
tic sample gradient ∇fik(x) in each step to progressively reduce its variance as an estimator
of the full gradient. Among them, SVRG first introduces the bi-loop structure where the
parameters are updated in the inner loop and the reference point and the full gradient
are updated in the outer loop. Compared with the concurrently proposed methods SAG
and SAGA, SVRG does not require storing a Jacobian matrix in the training process and
produces an unbiased estimator of the full gradient in each step. It is worth noting that an-
other weakness of variance reduction methods is that they are inefficient and the reduction
in variance is insignificant for deep learning (Defazio and Bottou, 2019).
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Minibatching, importance sampling and advanced variance reduction methods are often
combined to be used for achieving an amplification effect. Thought of combining these
techniques is by no means new. We list some examples as follows.

Minibatching and importance sampling. The most natural way is to predefine
a sampling probability of each data sample and uses a mini batch of sampled gradients
(averaging multiple sampled gradients) to update the model parameters (Zhao and Zhang,
2015; Qian et al., 2019). Csiba and Richtárik (2018) propose importance sampling for
mini-batches, which gives the answer to the problem which subset should we choose in
every iteration. A key characteristic of those proposed methods is that they will define a
sampling probability on the entire data set and then do the sampling step to accelerate the
training process.

Minibatching and variance reduction. Reddi et al. (2016) give the experiment
and convergence results for mini-batch nonconvex SVRG, and concurrently Allen-Zhu and
Hazan (2016) provide the convergence results for non-convex SVRG and claim that their
convergence results can be extended to the mini-batch setting. Yang et al. (2021) study
the mini-batch SARAH with random Barzilai-Borwein method. Gazagnadou et al. (2019)
study the optimal mini-batch size for SAGA. mS2GD proposed by Konečnỳ et al. (2015) is
another example of this kind of hybrid.

Minibatching, importance sampling and variance reduction. Horváth and
Richtárik (2019) pioneer the study of variance reduction method with minibatching and
importance sampling in the nonconvex problem.

1.2 Indirect Approaches

Different from the methods which directly reduce the variance of stochastic gradient. An-
other way to accelerate the training process is tunning the stepsize. Diminishing stepsize
sequences and adaptive stepsize methods are two representative examples of this kind. They
are introduced as follows.

Diminishing stepsize sequences. Although using a diminishing stepsize sequence
(Cotter et al., 2011) can eliminate the variance gradually through iterations, it also slows
down the convergence rate of an algorithm as what we illustrate in Section 4. Moreover,
the performance of SGD algorithm can be deteriorated by a wrongly hand-picked sequence.
A suitable stepsize sequence can not be obtained without the trial and error.

Adaptive stepsize methods. Unlike the diminishing stepsize sequences which put
the same stepsize on each dimension of the model parameters. Adaptive stepsize methods
assign different stepsizes for each dimension of the model parameters and update them
separately. Many stochastic first-order optimization methods with adaptive stepsize and
momentum has been proven both theoretically and empirically that they can accelerate
the training process such as SGD with momentum (Liu et al., 2020), RMSprop (Tieleman
et al., 2012; Zou et al., 2019), Adadelta (Zeiler, 2012), Adagrad (Duchi et al., 2011; Ward
et al., 2020), Adam (Kingma and Ba, 2014) and AMSgrad (Reddi et al., 2019; Tran et al.,
2019). Among them, Kingma and Ba (2014) decide to use exponential moving average to
cumulate the past gradients with heavy-ball style momentum which is used to determine
the direction and the original magnitude of the update, and as well cumulate their element-
wise square with the corrective terms to modify the original magnitude of the update so
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that the element-wise second moment of the update can be regularized to approximate 1.
The proposed Adam is now one of the most popular adaptive stepsize method used in deep
learning community.

1.3 Our Contributions

Motivated by these composite methods, we propose a novel stochastic optimization method,
grafting gradient descent (GGD), which borrows the strength from minibatching and im-
portance sampling. Since stochastic sample gradient has intrinsic high variance, we replace
the stochastic gradient with a brand new grafting gradient to update the model parame-
ters, and integrate the grafting gradient with the high-level variance reduction methods and
adaptive stepsize methods respectively. Our contributions of this work are as follows:

• Grafting gradient has a smaller noise variance compared with the stochastic sample
gradient and can be calculated in a parallel fashion to speed up the training process.

• Two types of GGD methods are proposed, GGD using sampling with replacement
and GGD using sampling without replacement. For the former one, we prove that the
noise variance of grafting gradient can be written as the weighted sum of the noise
variance of SGD with importance sampling and the noise variance of mini-batch SGD
which guarantees grafting gradient a doubly robust estimator with respect to the full
gradient.

• For the latter one, we show that vanilla SGD, SGD with importance sampling, mini-
batch SGD can all be regarded as the special cases of GGD using sampling without
replacement. A unified bound is obtained through the convergence analysis of GGD
using sampling without replacement.

• Two types of GGD methods both have a sublinear rate of convergence under strongly-
convex assumption when using a diminishing stepsize sequence and a linear conver-
gence rate up to some noise level with the fixed stepsize. We also provide the conver-
gence analysis for GGD in the general convex and non-convex cases.

• Grafting gradient is also compatible with advanced variance reduction method and
adaptive stepsize method respectively. The convergence analysis of GGD-based vari-
ance reduction method and GGD-based adaptive stepsize method are provided and we
show that these methods converge much faster than the original GGD-based methods.

The rest of this paper is organized as follows. Section 2 presents some definitions and
notations for further convergence analysis. Section 3 introduces the grafting gradient and
the detail of two type GGD algorithms. Section 4 gives the convergence results of GGD
for strongly-convex, convex and non-convex objective function respectively. In Section 5,
we hybridize SVRG and Adam with the grafting gradient using sampling with replacement
(WR), introduce GGD-WR-SVRG and GGD-WR-Adam methods, and provide their theo-
retical properties. Section 6 gives the experimental results. Section 7 gives some conclusions
and discussions for the future research. All the proofs are listed in the Appendix. All the
codes are available at https://github.com/oo0mmmm/GGD.
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2. Background and Problem Setup

We first introduce some notations which are repeatedly used in the rest of this paper. Let

fS(x) =
1

|S|
∑
i∈S

fi(x), LS =
1

|S|
∑
i∈S

Li, and fS,min =
1

|S|
∑
i∈S

fi,min,

where S is a subset of training set, Li is the smoothness constant and fi,min is a lower bound
of fi(x). To proceed with the convergence analysis, we also presents some basic definitions
which are widely used in stochastic optimization as follows.

Definition 1 (L-smoothness) Function f : Rd → R, is L-smooth if it is continuously
differentiable and the gradient function of f , namely, ∇f : Rd → Rd, is Lipschitz continuous
with Lipschitz constant L > 0, i.e.,

‖∇fi(x)−∇fi(x̄)‖2 ≤ L‖x− x̄‖2, for all (x, x̄) ∈ Rd × Rd.

Intuitively, Definition 1 says that the gradient of function f does not change arbitrarily
quickly with respect to the parameters. Smoothness assumption is essential for the con-
vergence analysis of the most gradient-based methods. For simplicity, we will use ‖ · ‖ to
represent the L2-norm throughout this paper.

Definition 2 (µ-strongly convex) Function f : Rd → R, is µ-strongly convex if there
exists a constant µ > 0 such that

f(x̄) ≥ f(x) +∇f(x)T (x̄− x) +
µ

2
‖x̄− x‖2, for all (x̄, x) ∈ Rd × Rd.

Definition 3 (convex) Function f : Rd → R, is convex if

f(x̄) ≥ f(x) +∇f(x)T (x̄− x), for all (x̄, x) ∈ Rd × Rd.

The convexity assumptions are also essential for the most of convergence analysis in this
paper. Note that µ-strongly convexity implies convexity but not vice versa. Throughout
the rest of this paper, we assume that under strongly-convex or convex assumptions, there
exists an optimal solution x∗ such that

x∗ = arg min
x∈Rd

f(x).

3. Grafting Gradient Descent Algorithm

The key insight of our work is that minibatching and importance sampling can collaborate
in a different way. This new technique is called importance resampling which successively
employs importance sampling on batch of the subsampled sets. Let Dm = {Sm | Sm ⊂
{1, 2, ..., n}, |Sm| = m}. Technically importance resampling consists of three steps:

• First sample a batch of sets Smr ∈ Dm. Denote this batch of subsets by Sbm =
{Sm1 , Sm2 , ..., Smb}.
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Algorithm 1: Grafting Gradient Descent

Input: The batch size b, subsampled set size m and the learning rate γ.
Initialize: x0

for k = 0, 1, 2, ..., T − 1 do
Option (a): Sample Sbm = {Sm1 , ..., Smb} with replacement from Dm.
Option (b): Sample Sbm = {Sm1 , ..., Smb} without replacement from Dm.

Compute PSmi =

(
fSmi

(xk)−fSmi ,min
)

∑b
j=1

(
fSmj

(xk)−fSmj ,min
) for i = 1, 2, ..., b.

Denote P = (PSm1
, ..., PSmb )

>.

Resample {Smr1 , ..., Smrd} from Sbm based on the resampling distribution P.
Compute the grafting gradient as

gm,b(x
k) =


1

bPSmr1

(
1
m

∑
i∈Smr1

∂fi
∂x1

(xk)
)

...
1

bPSmrd

(
1
m

∑
i∈Smrd

∂fi
∂xd

(xk)
)


Update:
xk+1 = xk − γgm,b(xk)

end

• Put a probability measure P on each element of set Sbm based on some values.

• Use this probability measure P to resample d (equals to the dimension of model
parameters x) examples from set Sbm.

The resampling result actually indicates which subset we should use when calculating the
partial derivatives in each dimension. As an illustration, assuming that the resampling
result is {Smr1 , Smr2 , ..., Smrd} which means that for all k = 1, 2, ..., d, we need to calculate
the k-th component of the sample average gradient with respect to the subset Smrk , that
is, ∂fSmrk

/∂xk. Combining these total d average partial derivatives, we now construct a
grafting gradient which can be used to update the model parameters. The word grafting
means that this gradient is synthesis and the components of this gradient are determined
in a particular way for the purpose of variance reduction. If set Smr is sampled from Dm

without replacement, then the corresponding algorithm is called grafting gradient descent
using sampling without replacement (GGD-WoR). Its counterpart is called grafting gradi-
ent descent using sampling with replacement (GGD-WR) when Smr is sampled from Dm

independently. The detailed procedure of GGD is shown in Algorithm 1.
From Algorithm 1, intuitively we can get some insights on why GGD may outperform

mini-batch SGD and SGD with importance sampling. For the one hand, mini-batch SGD
only select one batch of data samples whereas GGD uses important subsets from candidate
set Sbm, which may provide more useful estimations of the full gradient. On the other hand,
importance resampling injects additional randomness into GGD compared with SGD with
importance sampling, and promotes the diversity of selected data samples, which may profit
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(a) (b)

Figure 1: Toy example illustrates the effectiveness of importance resampling

the estimation of the full gradient as well. To get a comprehensive view of GGD method,
let us set aside the discussion and focus on a toy example where we have a set of univariate
functions Fs = {f1(x), ..., f22(x)} which are defined as

fi(x) = (0.15 + 0.1(i− 1))x2 , for i = 1, ..., 20 and fi(x) = −11x , for i = 21, 22,

and our goal is to minimize the average of these functions which is depicted in Figures 1(a)
and 1(b) by black quadratic curves, that is,

f(x) =
1

22

22∑
i=1

fi(x) = x2 − x.

Suppose that the initial starting point is x = 1/4 and the learning rate is γ = 1/2. The
best approach that we can take is gradient descent which calculate the full gradient ∇f(x)
at x = 1/4 and update x by x← x−γ∇f(x) = 1/4+(1/2)∗ (1/2) = 1/2 as shown by violet
solid line with arrow in Figure 1(a). It is obvious that after one gradient step, we easily
find the global minimum of f(x) with the proper learning rate as indicated by the violet
dash line in Figure 1(b). Except for gradient descent, we can achieve this goal by other
approaches such as mini-batch SGD, mini-batch SGD with important sampling and GGD
at a lower computational cost. Now let us dive a little deeper to see how these method will
perform in this toy example.

Suppose that for these three methods, we are only allowed to use a size 2 subset of
function set Fs. Then for mini-batch SGD, by sampling without replacement, we are likely
obtaining a mini batch without f21(x) and f22(x) such like S0 = {f4(x), f17(x)}. Based on
that, mini-batch SGD calculate the gradient with respect to S0 at x = 1/4 and update x
by x ← x − γ∇fS0(x) = 1/4 − 11/40 = −1/40 as shown by green solid line with arrow
in Figure 1(a). It moves x in the opposite way of the descent direction and increases the
objective function value as indicated by green dash line in Figure 1(b).

For mini-batch SGD with importance sampling, supposing that f21(x) and f22(x) are
of great importance so that for a randomly selected index ir ∈ {1, ..., 22}, P21 = P (ir =
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21) = 0.45, P22 = P (ir = 22) = 0.45 and Pj = P (ir = j) = 0.005 for j = 1, ..., 20. Based on
that, through importance sampling we are likely obtaining {f21(x), f22(x)} and as shown
by cyan solid line with arrow in Figure 1(a), SGD with importance sampling may update
x following

x← x− γ 1

2

(
1

nP21
∇f21(x) +

1

nP22
∇f22(x)

)
=

1

4
+

11

22 ∗ 0.45
=

29

36
.

Although SGD with importance sampling moves x along the descent direction, it takes a
giant step so that x arrives at 29/36 which is even more far from the optimum point x = 1/2
as indicated by cyan dash line in Figure 1(b).

The reason why these two methods fail to minimize the objective function in one step is
that sampling without replacement used by mini-batch SGD ignores the valuable informa-
tion contained by important compenents such as f21(x) and f22(x) which determines the
descent direction, and importance sampling lacks the randomness to some extent so that the
selected components are individually very informative but not necessarily so jointly. Using
importance sampling may form a batch of important but redundant components which lacks
diversity and may negatively impact the performance of mini-batch SGD with importance
sampling.

For GGD, if we implement importance resampling which only resamples one subset out
of b = 10 randomly selected subsets {Sm1 , ..., Sm10} in our toy example, then 10 randomly
selected subsets may contain only one subset such like Sm3 = {f11(x), f21(x)} with impor-
tant component f21(x) since the probability of 10 randomly selected subsets containing at
least one important component is

P
(
∃Smj ∈ {Sm1 , ..., Sm10} s.t. f21(x) ∈ Smj or f22(x) ∈ Smj

)
= 1−

(
C2

20

C2
22

)10

≈ 0.8582,

where Ck
n = n!/(k!(n−k)!) is the number of k-combinations from a given set of n elements.

Then through the resampling procedure, this subset {f11(x), f21(x)} is likely to be the
chosen one which is used to calculate the grafting gradient, and as shown by red solid line
with arrow in Figure 1(a) GGD may update x following

x← x− γ 1

10PSm3

(
1

2
∇f11(x) +

1

2
∇f21(x)

)
≈ 0.5629.

Although GGD fails to find the global minimizer in one gradient step, it moves x quite near
to the optimum point and decreases the objective function value most compared with mini-
batch SGD and SGD with important sampling as indicated by red dash line in Figure 1(b).
Importance resampling can guarantee us a subset which contains important and diverse
components with high probability, and consequently GGD can provide more informative and
accurate estimation of the full gradient. The relationship among mini-batch SGD, SGD with
importance sampling and GGD reminds us of the notion of exploration vs exploitation in
many other domains. From this perspective, GGD can be regarded as the trade off between
the “exploitation” and “exploration”, and we hope that GGD could achieve comparable
results when applying to more complex and high-dimensional problems.
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Now let us get back to technical work and put some remarks on the resampling distribu-
tion. In the GGD method, the noise variance comes from E‖gm,b(xk)‖2 which is equivelant
to

E‖gm,b(xk)‖2 = E

E
 1

b2

d∑
j=1

(
1

PSmrj

)2(∂fSmrj
∂xj

)2

| Sbm


= E

 1

b2

d∑
j=1

b∑
i=1

1

PSmi

(
∂fSmi
∂xj

)2


= E

[
1

b2

b∑
i=1

1

PSmi
‖∇fSmi (x

k)‖2
]

Given xk and Sbm = {Sm1 , ..., Smb}, denoting that ∆b is the b-dimensional simplex, we know
that the solution of

min
P∈∆b

b∑
i=1

1

PSmi
‖∇fSmi (x

k)‖2 (1)

is

P optSmi
=

‖∇fSmi (x
k)‖∑b

j=1 ‖∇fSmj (x
k)‖

, i = 1, 2, ..., b. (2)

The optimal resampling distribution defined in (2) minimizes the noise variance of grafting
gradient. However, deriving this optimal resampling distribution requires evaluations of
bmd partial derivatives. In analogy with Zhao and Zhang (2015), if we assume that the
individual loss function fi is Li-smooth, bounded below by fi,min, then ‖∇fSmi (x

k)‖2 can
be bounded by

‖∇fSmi (x
k)‖2 ≤ 2LSmi

(
fSmi (x

k)− fSmi ,min
)
≤ 2Lmax

(
fSmi (x

k)− fSmi ,min
)
,

where Lmax = maxi∈[n]{Li}. fSmi ,min can be easily estimated if we know a uniform

lower bound for fi(x
k) and fortunately if loss function fi is non-negative, then we can

let fSmi ,min = 0 although it may rather be pessimistic. Noting that ‖∇fSmi (x
k)‖2 can be

bounded by 2Lmax

(
fSmi (x

k)− fSmi ,min
)

, then we can relax the optimization problem (1)

following the analysis provided by Zhao and Zhang (2015) as

min
P∈∆b

b∑
i=1

1

PSmi
‖∇fSmi (x

k)‖2 ≤ min
P∈∆b

b∑
i=1

2Lmax
PSmi

(
fSmi (x

k)− fSmi ,min
)
.

Since Lmax is independent of timestep and subset selection, the optimal resampling proba-

bility can be approximated by P ′Smi
∝
(
fSmi (x

k)− fSmi ,min
)1/2

. To simplify our analysis,

we use a resampling probability in “square” form instead, that is,

PSmi =

(
fSmi (x

k)− fSmi ,min
)

∑b
j=1

(
fSmj (x

k)− fSmj ,min
) . (3)
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It is clear that in one iteration, Algorithm 1 only requires evaluations of mb loss function val-
ues and md partial derivatives which is computationally cheaper than deriving the optimal
resampling probability. We do not adopt the one-shot resampling probability such as Zhao
and Zhang (2015) where PSmi ∝ LSmi because one drawback of the one-shot resampling
probability, which is defined in terms of the L-smoothness constants, is that it may not be
applicable in neural network setting where the individual L-smoothness constant does not
has a closed form and requires additional techniques to estimate. On the contrary, since the
individual loss function value can be explicitly obtained through the forward-propagtion of
neural network, the resampling probability PSmi redresses the flaw of one-shot resampling
probability albeit at a higher computational cost.

For numerical stability, without loss of generality, we assume that PSmi > 0 for i =

1, ..., b. If there exist some Smp ∈ {Sm1 , ..., Smb} such that fSmp (xk) − fSmp ,min = 0, then
the corresponding sample will not show up in the grafting gradient. When such a situation
happens, we should remove this sample and add a new one until we put non-zero mass
on every element in the set Sbm. Furthermore, if there is no set Sbm which satisfies this
constraint, we just put equal mass on every sample and resample them to construct the
grafting gradient. We also notice that the components of the grafting gradient in Algorithm
1 are reweighted by the batch size and corresponding probabilities to ensure the unbiasedness
of grafting gradient with respect to the full gradient.

4. Convergence Results for GGD

Now we can present the convergence results for Algorithm 1 under different assumptions.
Convergence results for GGD-WR and GGD-WoR are presented in tandem.

4.1 Convergence Result for GGD-WR under Strongly-convex Assumption

Under the assumptions of strong convexity and L-smoothness, a theoretical bound can be
obtained as follows.

Theorem 4 Suppose that the objective function f is L-smooth, the individual loss function
fi is µ-strongly convex, Li-smooth, bounded below by fi,min for all i ∈ [n]. When Algorithm
1 is run with the fixed stepsize where γ < min{2/µ, 2b/

(
C + 2L̄(b− 1)

)
} and option (a),

the iterates generated by Algorithm 1 satisfy

E
[∥∥xT − x∗∥∥2

]
≤ (1− µγ)T

∥∥x0 − x∗
∥∥2

+
2γR

µbD
,

where L̄ = (1/n)
∑n

i=1 Li, R = f(x∗)− fmin, fmin = (1/n)
∑n

i=1 fi,min,

C =

(
2Lmax(n−m) + 2n(m− 1)L

m(n− 1)

)
and D =

(
Lmax(n−m)

m(n− 1)
+ (b− 1)L̄

)−1

,

are constants which are independent of iteration number T .

From Theorem 4, we know that the iterates generated by GGD-WR with the fixed
stepsize converge at a linear rate up to some noise level. Let us take a deep look at the
noise level 2γR/µbD. It seems that some constants may explode such as C and D since they
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show dependence on the size of training set n, but actually not for any reasonable values
of m and b. For fixed n, C is monotonically decreasing with respect to the subsampled set
size m, thus C can be bounded by 2Lmax. As for D, since (n −m)/m is decreasing with
respect to m, then 1/bD can be bounded by Lmax + L̄, which proves that 2γR/µbD does
not explode for any possible values of m and b. To see the superiority and robustness of
GGD-WR method, we derive the theoretical bounds for vanilla SGD, mini-batch SGD and
SGD with importance sampling under the same assumptions. For the iterates generated by
SGD, they satisfy

E‖xTSGD − x∗‖2 ≤ (1− µγ)TE‖x0 − x∗‖2 +
2γLmaxR

µ
. (4)

The derivation for equation (4) can be found in Appendix A.2. After some straightforward
calculations, we know that 2R/bD ≤ 2LmaxR holds for any b and m ∈ N, which implies that
by importance resampling, variance brought by the grafting gradient is always less than the
variance brought by the stochastic gradient in every iteration. Hence the training process
can be boosted when replacing stochastic gradient with grafting gradient in each step.
Although GGD-WR has the same convergence rate as SGD, it reduces the noise variance to
some extent. In other words, the solution path found by the GGD-WR algorithm fluctuates
in a smaller neighborhood of the optimum value compared with the vanilla SGD method.
Batch size b and the size of subsampled sets m influences the radius of this neighborhood.
The largerm is, the smaller the radius is. The effect brought by b depends on the relationship
between Lmax(n − m)/m(n − 1) and L̄. That is, if L̄ ≥ Lmax(n − m)/m(n − 1), then
increasing b will enlarge the radius of this neighborhood, otherwise, increasing b leads to
narrowing the radius of this neighborhood. We also derive the bounds for mini-batch SGD
and SGD with importance sampling. For the latter one, the sampling probability is given
by Pi = Li/

∑n
j=1 Lj for all i ∈ [n]. Under the same assumptions, their convergence bounds

are given as follows.

• For mini-batch SGD, the iterates satisfy

E‖xTmSGD − x∗‖2 ≤ (1− µγ)TE‖x0 − x∗‖2 +
2γRLmax(n−m)

m(n− 1)µ
. (5)

• For SGD with importance sampling, the iterates satisfy

E‖xTISSGD − x∗‖2 ≤ (1− µγ)TE‖x0 − x∗‖2 +
2γL̄R

µ
. (6)

From (5), (6) and Theorem 4, we can see that the noise variance variance of GGD-WR is
the weighted sum of the noise variance of mini-batch SGD and the noise variance of SGD
with importance sampling with weights (1/b, (b− 1)/b). This result implies two properties
of GGD-WR.

• Robustness: 2R/bD is not greater than max{2LmaxR(n−m)/m(n− 1), 2L̄R}.

• Tendency: Batch size b controls the weights. The larger b is, the closer the noise
variance of GGD approaches to the noise variance of SGD with importance sampling.

11
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For the former one, we say that grafting gradient is a doubly robust estimator with
respect to the full gradient in sense that its theoretical bound is superior to the worse one
of mini-batch SGD and SGD with importance sampling. Doubly robust property may be of
great help when we do not know whether mini-batch SGD or SGD with importance sampling
will surpass for real problems. In section 6, we empirically compare these four method
(vanilla SGD, GGD, mini-batch SGD and SGD with importance sampling) and bring out
more discussions about their superiorities and applicabilities. For the latter one, Although
in GGD-WR algorithm b can be arbitrarily large so that the tremendous computational
cost brought by loss function evaluation may be unaffordable, the tendency property of
GGD suggests that GGD does not benefit and even can be harmed from blindly increasing
batch size b when the noise variance of mini-batch SGD is smaller than the noise variance
of SGD with importance sampling. Thus for the rest of our paper, unless specifying, batch
size b is assigned by default a relatively small value such like b ∈ {2, 3, 4} which balances
the trade off between the computational cost and the performance, and moreover implies
that the computational cost of loss function evaluations is insignificant compared with the
computational cost of partial derivatives evaluations.

The convergence analysis would be incomplete without considering how theoretical re-
sults impact on the computational workload when the stochastic optimization methods
are applied for the real problems. Complexity results give the bound for the total num-
ber of partial derivatives evaluations as the main computational complexity to achieve the
ε-optimality in expectation. The ε-optimality in expectation is defined as a point x satisfies

E‖∇f(x)‖2 ≤ ε, or E‖x− x∗‖2 ≤ ε, or E [f(x)− f(x∗)] ≤ ε,

where x∗ is assumed to be the global minimizer of f . Unless specifying, convergence and
complexity results will be provided in tandem for the rest of this paper.

Corollary 5 If we choose stepsize γ = min{2/µ, 2b/
(
C + 2L̄(b− 1)

)
, εµbD/4R}, then to

achieve ε-optimality, the total iteration number T should satisfy

T ≥ max

{
1

2
,
(C + (b− 1)2L̄)

2bµ
,

4R

εµ2bD

}
ln

(
2E‖x0 − x∗‖2

ε

)
.

Hence the total complexity to achieve ε-optimality is

md ·max

{
1

2
,
(C + (b− 1)2L̄)

2bµ
,

4R

εµ2bD

}
ln

(
2E‖x0 − x∗‖2

ε

)
.

Suppose that m � n, then the iteration complexity result will be O (d/ε ln(1/ε)). Com-
bining this result with Theorem 4, we know that compared with vanilla SGD method, the
noise variance of GGD-WR method shrinks by a constant factor so that GGD-WR improves
a non-dominant term in complexity. A diminishing stepsize sequence is another choice to
reduce the noise variance. Its convergence result is shown as follows.

Theorem 6 Suppose that the objective function f is L-smooth, the individual loss function
fi is µ-strongly convex and Li-smooth, bounded below by fi,min for all i ∈ [n]. When

12
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Algorithm 1 is run with option (a) and a stepsize sequence which satisfies for all k =
0, 1, 2, ...,

γk =
p

q + k
for some p >

1

µ
and q > 0 such that

p

q
<

2b

(C + 2(b− 1)L̄)
.

Then for each k, the expected optimality gap satisfies

E‖xk − x∗‖2 ≤ v

q + k
,

where v = max{2p2R/(pµ− 1)bD, pE
[
‖x0 − x∗‖2

]
}.

Since 1/bD can be bounded for any possible values of m and b, v will not explode and the
expected optimality gap can be controlled with large enough iteration number T . Theorem 6
shows that when using a diminishing stepsize sequence, the iterates generated by Algorithm
1 with option (a) can converge to the optimum point x∗ at a sublinear rate. Although
the convergence rate is much slower than we have obtained in Theorem 4, it eliminates
the variance brought by grafting gradient and reduces the training time. Theorem 6 also
indicates that the total iteration number T should satisfy T ≥ (v/ε) − q to achieve ε-
optimality.

Corollary 7 ∀ε > 0, the total complexity to achieve ε-optimality is

md ·
(v
ε
− q
)

Again if m � n, then the complexity result will be O(d/ε) which indicates that using the
grafting gradient only improves a non-dominant term in complexity. Although the con-
vergence rate is sublinear, the complexity bound improves from O ((d/ε) ln 1/ε) to O (d/ε),
which means that GGD-WR with the diminishing stepsize sequence requires less iterations
to achieve the same level ε-optimality. The cause behind this counterintuitive phenomenon
is that to achieve ε-optimality, the fixed stepsize should keep the same order as ε, while for
the diminishing stepsize sequence, it begins with p/q and gradually decreases.

4.2 Convergence Result for GGD-WR under Convex Assumption

In this section, we study the convergence property of the GGD-WR method for the general
convex individual loss function. For simplicity, we do not compare the theoretical bounds
of GGD-WR, SGD, mini-batch SGD and SGD with importance sampling under convex or
non-convex assumptions.

Theorem 8 Suppose that the objective function f is L-smooth, the individual loss function
fi is Li-smooth and convex, bounded below by fi,min for all i ∈ [n]. When Algorithm 1 is run

with γ < 3b/2
(
C + 2L̄(b− 1)

)
and option (a), denoting x̂ = 1

T

∑T−1
k=0 x

k, then it satisfies

E [f(x̂)− f(x∗)] ≤ 2E‖x0 − x∗‖2

Tγ
+

4γR

bD
. (7)

13
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We notice that when strongly-convex assumption does not hold, the expected difference in
objective function value between any iterate and the optimum point x∗, E

[
f(xk)− f(x∗)

]
,

does not have a quadratic lower bound, that is, can not be bounded below byO
(
E‖xk − x∗‖2

)
.

The non-existence of a quadratic lower bound influences the convergence property of GGD-
WR method. As derived in Theorem 8, when a fixed stepsize is used, the GGD-WR method
only converges at a sublinear rate up to some noise level for general convex objective func-
tion. Consequently, we have the complexity result in the general convex case.

Corollary 9 If we take the stepsize which satisfies

γ = min{3b/2(C + (b− 1)2L̄), εbD/8R},

to achieve ε-optimality, then total iteration number T should satisfy

T ≥ 4E‖x0 − x∗‖2

εmin{3b/2(C + (b− 1)2L̄), εbD/8R}
.

Thus the total complexity is

md · 4E‖x0 − x∗‖2

εmin{3b/2(C + (b− 1)2L̄), εbD/8R}
.

From Corollary 5 and 9, we see how the convergence results impact on the complexity
results. Since the GGD method does not possess a linear convergence rate under general
convex assumption, for m� n, the complexity is O(d/ε2) which is far larger than O(d/ε).

4.3 Convergence Result for GGD-WR under Non-convex Assumption

Following the analysis provided by Khaled and Richtárik (2020), we can take a step towards
the theoretical bound for GGD-WR method without any additional assumption at all and
provide the following convergence results.

Theorem 10 Suppose that objective function f is L-smooth, the individual loss function fi
is Li-smooth, bounded below by fi,min for all i ∈ [n]. When Algorithm 1 is run with option
(a) and fixed stepsize γ ≤ (2b− 1)/L, then the iterates generated by Algorithm 1 satisfy

min
k=0,1,...,T−1

E‖∇f(xk)‖2 ≤ 2γL

D

(
1 +

bD

γ2LT

)
δ0,

where δ0 = E
[
f(x0)

]
− fmin is a constant.

Non-convex GGD-WR shows a sublinear convergence rate up to some noise level as well.
Difference between convex GGD-WR and non-convex GGD-WR is that the theoretical
bound of non-convex GGD-WR shows possible divergence since 1/D is monotonically in-
creasing with respect to b. However, the minimum of expected gradient norm can be
controlled arbitrarily small by manually assigning b a small value and using a designated
stepsize. This bound is in fact optimal for GGD-WR without additional assumptions on
second-order smoothness such like Polyak- Lojasiewicz condition since the convergence rate
of non-convex GGD-WR can not exceed the convergence rate of convex GGD-WR. The
following corollary states the complexity results to attain the ε-stationary point.
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Corollary 11 With the stepsize

γ = min

{
2b− 1

L
,
εD

4Lδ0

}
,

Algorithm 1 with option (a) can still achieve ε-optimality as long as the iteration number T
satisfies

T ≥ 4δ0b

ε
max

{
L

2b− 1
,
4Lδ0

εD

}
.

Hence to achieve ε-optimality, the total complexity is

md · 4δ0b

ε
max

{
L

2b− 1
,
4Lδ0

εD

}
.

When the strongly convex assumption does not hold, for m � n, the complexity bound
degrades from O(d/ε) to O(d/ε2). In other words, it takes more time to achieve the same
level ε-optimality for general convex or non-convex functions. Although the complexity
bounds of convex GGD-WR and non-convex GGD-WR are identical for m� n, the average
objective function value can be bounded under convex assumption, while we can only control
the minimum expected gradient norm for non-convex objective function.

4.4 Convergence Result for GGD-WoR under Strongly-convex Assumption

In the rest of Section 4, we mainly focus on the convergence results of GGD-WoR under
different assumptions. Through the analysis of GGD-WoR, we find that while the doubly
robust property does not hold anymore, GGD-WoR can be considered as a more general
framework since it can include vanilla SGD, mini-batch SGD and SGD with importance
sampling as special cases. We first derive the unified theoretical bound under strongly-
convex assumption and show how GGD-WoR connects those classic stochastic optimization
methods.

Theorem 12 Suppose that the objective function f is L-smooth, the individual loss function
fi is µ-strongly convex, Li-smooth, bounded below by fi,min for all i ∈ [n]. When Algorithm
1 is run with the fixed stepsize where γ ≤ min

{
2/µ, b2m2/M

}
and option (b), the iterates

generated by Algorithm 1 satisfy

E
[∥∥xT − x∗∥∥2

]
≤ (1− µγ)T

∥∥x0 − x∗
∥∥2

+
2γRM

µb2m2
, (8)

where M =
(
n2 ·M2 · L̄+ n(M1 −M2) · L̃

)
,

M1 =
mb

n
+
mb(Cm−1

n−1 − 1)(b− 1)

n(Cm
n − 1)

, M2 =
mb(b− 1)Cm−1

n−1

n(Cm
n − 1)

+
mb(m− 1)(Cm

n − b)
n(n− 1)(Cm

n − 1)
,

L̃ = I{M1≥M2} · Lmax + I{M1<M2} · Lmin and Lmin = mini∈[n] Li are constants which are
independent of iteration number T .
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Theorem 12 suggests that the iterates generated by GGD-WoR converge at a linear rate
up to some noise level similar to that of GGD-WR algorithm. To see whether M/b2m2 will
explode for any reasonable values of m, b and n, we first study two quantities M1 and M2.
M1 = O(m2b2/n2) and M2 = O(m2b2/n2) implies that M/b2m2 = O (1 + 1/n), thus the
noise variance does not explode under any circumstances. It is also clear that since the noise
variance of GGD-WoR is related to the minimum of the individual smoothness constants,
doubly robust property does not hold for an arbitrary choice of m ∈ N+, b ∈ [Cm

n ]. Luckily,
we find that for certain configurations of b and m, the procedures of GGD-WoR are identical
to that of vanilla SGD, mini-batch SGD and the theoretical bound of GGD-WoR is identical
to that of SGD with importance sampling in expectation. We first verify the case for vanilla
SGD.

Proposition 13 If m = 1 and b = 1, then the bound given by Theorem 12 is equivalent to
(4).

When m = 1 and b = 1, intuitively, this configuration indicates that there is no resampling
at all and only one stochastic sampled gradient can be used, which is exactly how vanilla
SGD works in practice. By some straightforward calculations, we can also obtain that
M1 = 1/n and M2 = 0, then the theoretical upper bound for the noise variance of GGD-
WoR is 2γRLmax/µ, the same as the result derived in (4).

Proposition 14 If m ∈ N+ and b = 1, then the bound given by Theorem 12 is an upper
bound of (5).

We use N+ to represent the positive natural numbers. Likewise, for any m ∈ N+ and
b = 1, the procedure of GGD-WoR algorithm is identical to the procedure of mini-batch
SGD with size m. As for the theoretical bounds, they are not identical since if we substitute
M1 = m/n, M2 = m(m− 1)/n(n− 1) into (8), then we have

E
[∥∥xT − x∗∥∥2

]
≤ (1− µγ)T

∥∥x0 − x∗
∥∥2

+
2γR

µm2

(
nm(m− 1)

n− 1
L̄+

m(n−m)

n− 1
Lmax

)
(9)

Apparently, the right side of (9) is an upper bound for the right side of (5). From Lemma
32 in Appendix, we know that if we further bound ‖∇f(xk)‖2 by 2L̄

(
f(xk)− fmin

)
, then

we can derive the same bound as (9). Under this configuration, (8) gives the sub-optimal
upper bound for the expected optimality gap, this bound can be greatly improved by some
technical tricks as provided by proof of Theorem 4 in Appendix.

Proposition 15 If m = 1 and b = n, then the bound given by Theorem 12 is equivalent to
(6).

Although the sampling probability given in Algorithm 1 and even the procedure of GGD-
WoR are different from that of SGD with importance sampling, the theoretical bound
given by (8) and (6) are identical since M1 = M2 = 1. In that sense, GGD-WoR with
m = 1 and b = n is identical to SGD with importance sampling in expectation. These
three special cases prove that GGD-WoR can be regarded as a more general stochastic
optimization framework. The following statement gives the complexity result for GGD-
WoR under strongly-convex assumption.
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Corollary 16 If we choose stepsize

γ = min

{
2

µ
,
b2m2

M
,
εµb2m2

4RM

}
,

then to achieve ε-optimality, the total iteration number T should satisfy

T ≥ max

{
1

2
,

M

b2m2µ
,

4RM

εµ2b2m2

}
ln

(
2E‖x0 − x∗‖2

ε

)
.

Hence the total complexity to achieve ε-optimality is

md ·max

{
1

2
,

M

b2m2µ
,

4RM

εµ2b2m2

}
ln

(
2E‖x0 − x∗‖2

ε

)
.

The unified complexity result also include vanilla SGD, mini-batch SGD and SGD with
importance sampling as special cases. For example, if m = 1, b = 1, then the complexity
result will be O ((d/ε) ln(1/ε)) which is identical to that of vanilla SGD in other literatures
(Gower et al., 2019). It is worth noting that although Corollary 16 give the right complexity
of SGD with importance sampling, it does not give the proper complexity for GGD-WoR
itself. In contrast with one-shot sampling probability given by Zhao and Zhang (2015), the

resampling probability PSmi ∝
(
fSmi (x

k)− fSmi ,min
)

, which is iterate-dependent, needs to

be calculated in every iteration. Hence when m = 1, b = n, the computational cost for
evaluating n loss function values in one iteration can not be ignored and thus for extremely
large b, the complexity results of GGD should be the bound for partial derivatives and loss
function evaluations. Under this definition, the complexity results of GGD with b = n and
m = 1 should be

(n+ d) ·max

{
1

2
,
L̄

µ
,
4RL̄

εµ2

}
ln

(
2E‖x0 − x∗‖2

ε

)
,

which is far larger than the bound obtained by Corollary 16. In analogy with GGD-WR, the
noise variance can be further reduced by a diminishing stepsize sequence. For simplicity, we
do not present the convergence and complexity results for GGD-WoR using a diminishing
stepsize sequence. Similar result can be obtained following the analysis provided in Theorem
6.

4.5 Convergence Result for GGD-WoR under Convex Assumption

In analogy with Theorem 12, we can obtain a unified theoretical bound for GGD-WoR
under convex assumption.

Theorem 17 Suppose that the objective function f is L-smooth, the individual loss function
fi is Li-smooth and convex, bounded below by fi,min for all i ∈ [n]. When Algorithm 1 is

run with γ < b2m2/2M and option (b), denoting x̂ = 1
T

∑T−1
k=0 x

k, then it satisfies

E [f(x̂)− f(x∗)] ≤ E‖x0 − x∗‖2

Tγ
+

2γRM

b2m2
.
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Theorem 17 shows that under convex assumption, GGD-WoR can converge at a sublinear
rate up to some noise level. Likewise from Theorem 17, we can also obtain the convergence
resuls for vanilla SGD, mini-batch SGD and SGD with importance sampling under convex
assumption. For simplicity, we do not illustrate these results in detail. The corresponding
complexity result for GGD-WoR method is given as follows.

Corollary 18 If we take the stepsize which satisfies

γ =
b2m2

2M
min

{
1,

ε

2R

}
,

to achieve ε-optimality, then the total iteration number T should satisfy

T ≥ 4ME‖x0 − x∗‖2

εb2m2 min{1, ε/2R}
.

Thus the total complexity is

d · 4ME‖x0 − x∗‖2

εb2mmin{1, ε/2R}
.

Corollary 18 shows that for m � n, the complexity result for GGD-WoR will be O(d/ε2)
which is same as that of vanilla SGD, mini-batch SGD with same mini batch size m and SGD
with importance sampling since these improved methods all shrink the noise variance of the
stochastic sampled gradient by some constant factors and only improve some non-dominant
terms in complexity.

4.6 Convergence Result for GGD-WoR under Non-convex Assumption

Finally, we can formally give the convergence result for GGD-WoR under non-convex as-
sumption.

Theorem 19 Suppose that objective function f is L-smooth, the individual loss function
fi is Li-smooth, bounded below by fi,min for all i ∈ [n]. When Algorithm 1 is run with
option (b) and fixed stepsize γ ≤ εb2m2/2LMδ0 where ε > 0, then the iterates generated by
Algorithm 1 satisfy

min
k=0,1,...,T−1

E‖∇f(xk)‖2 ≤ ε

2
+

δ0

γT
,

where δ0 = E
[
f(x0)

]
− fmin is a constant.

Theorem 19 shows that with a hand-picked stepsize, GGD-WoR can still converge at a
sublinear rate up to an arbitrary small noise level, which indicates that the minimum
expected gradient norm can be effectively controlled by increasing iteration number T . The
complexity results for GGD-WoR can be directly derived from the above theoretical bound.

Corollary 20 With the stepsize

γ =
εb2m2

2LMδ0
,
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Algorithm 1 with option (b) can still achieve ε-optimality as long as the iteration number T
satisfies

T ≥ 4LMδ2
0

ε2b2m2
.

Hence to achieve ε-optimality, the total complexity is

d · 4LMδ2
0

ε2b2m
.

For m� n, the complexity result of GGD-WoR will be O(d/ε2), which indicates that it is
much slower for GGD-WoR method to reach the ε-optimality without convexity and any
extra asuumption on smoothness. Combining all the theorems and corollaries provided in
Section 4, we find that although GGD-WR and GGD-WoR have idiosyncratic noise levels
with the fixed stepsize, their convergence rates and corresponding complexity results are
identical under same assumptions: O((d/ε) ln(1/ε)) for strongly-convex objective function
and O(d/ε2) for convex or non-convex objective function. These results suggest that the
performances of GGD-WR and GGD-WoR methods may be quite indistinguishable for
identical m and b when solving the real problems.

5. Variance Reduction Method and Adaptive Stepsize Method

In Section 4, we know that to achieve ε-optimality, GGD-WR and GGD-WoR methods
rely on a small stepsize or diminishing stepsize sequence which results in a pretty slow
convergence in practice. If we insist on using the fixed stepsize, then a better technique
that reduces the variance with a fixed stepsize is required. Recalling that based on the
SGD framework, lots of advanced variance reduction methods like SVRG can significantly
improve the performance compared with the vanilla SGD method. In the first part of
this section, we give one example to show the compatibility of variance reduction method
and grafting gradient, and illustrate the convergence results of this composite method. If
the fixed stepsize is abnegated, another way to accelerate the training process is through
adaptive stepsize methods like Adam. We hybridize GGD-WR with Adam, propose GGD-
WR-Adam method and provide its convergence results with additional assumptions in the
other part of this section.

5.1 GGD-WR-SVRG Method

The key idea of SVRG adopts from a variance reduction technique which is commonly used
in sampling theory called control variates. In the SVRG method, control variates is used
to modify the stochastic sample gradient so that SVRG method shows a linear convergence
rate. Since the grafting gradient can play the same role as stochastic gradient, we can
bring out a modified grafting gradient to update the parameters as well. The proposed
GGD-WR-SVRG is shown in Algorithm 2. Option (a) was first proposed in Free-SVRG
(Sebbouh et al., 2019) and pk, k ∈ {0, ..., q − 1} are defined as follows.

Vq =

q−1∑
k=0

(1− γµ)q−1−k and pk =
(1− γµ)q−1−k

Vq
, for k = 0, ..., q − 1, (10)
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Algorithm 2: GGD-WR-SVRG method

Input: Batch size b, subsampled set size m, learning rate γ and update period q.
Initialize: xq0 and set x̄0 = xq0, x0

1 = xq0
for s = 1, 2, ..., T do

x̄ = x̄s−1

Compute µ̄ = ∇f(x̄)
for k = 0, ..., q − 1 do

Sample Sbm = {Sm1 , ..., Smb} with replacement from Dm

Compute PSmi =
‖∇fSmi (x

k
s )−∇fSmi (x̄)‖∑b

j=1 ‖∇fSmj (xks )−∇fSmj (x̄)‖
for i = 1, 2, ...b. Denote

P = (Pr1 , ..., Prb)
>

Resample {Smr1 , ..., Smrd} from Sbm based on the resampling distribution P
Compute the grafting gradient as

gm,b(x) =


1

bPSmr1

(
1
m

∑
i∈Smr1

∂fi
∂x1

(x)
)

...
1

bPSmrd

(
1
m

∑
i∈Smrd

∂fi
∂xd

(x)
)


Update:

xk+1
s = xks − γ

(
gm,b(x

k
s)− gm,b(x̄) + µ̄

)
, xks − γg̃km,b

end

Option (a): Set x̄s =
∑q−1

k=0 pkx
k
s and set x0

s+1 = xqs
Option (b): Set x̄s = xks for randomly chosen k ∈ {0, ..., q − 1} and set
x0
s+1 = xqs

Option (c): Set x̄s = xqs and set x0
s+1 = xqs

end

where γ is the fixed learning rate and µ is the strong convexity constant. Among these three
options, we prefer option (c) at the end of the inner loop since it is easier to implement
and more intuitive for practitioners applying to real problems. These three options are all
indispensable for the convergence analysis of the GGD-WR-SVRG method.

Similar to SVRG, the bi-loop (inner loop and outer loop) structure and the modified
grafting gradient g̃km,b are the key ingredients of variance reduction property. Without

the outer loop, the noise variance of the modified grafting gradient E‖g̃km,b‖2 deems to

diverge. If PSmi = 1/b for Smi ∈ Sbm, then the noise variance of modified grafting gradient

E‖g̃km,b‖2 equals to the noise variance of mini-batch stochastic variance reduced gradient

E‖∇fSmri (x
k
s) − ∇fSmri (x̄) + µ̄‖2 proposed by Johnson and Zhang (2013). This result

suggests that since the resampling distribution P provided in Algorithm 2 is optimal in
sense of minimizing E‖g̃km,b‖2, the noise variance of the modified grafting gradient is further
reduced compared with the original mini-batch stochastic variance reduced gradient. It is
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also worth noting that using resampling probability given in Algorithm 2 results in a heavier
computational burden as we have to calculate bmd partial derivatives in one iteration.

As always, the convergence result of GGD-WR-SVRG under strongly-convex assumption
is provided at the first place following the analysis provided by Sebbouh et al. (2019).

Theorem 21 Suppose that the objective function f and the individual loss function fi are
L-smooth and fi is µ-strongly convex for all i ∈ [n]. When Algorithm 2 is run with option
(a), the fixed stepsize γ < 1/16L and the update period q, then the iterates generated by the
outer loop satisfy

E‖xqs − x∗‖2 ≤ ρs(1 + 12L2γ2Vq)E‖xq0 − x
∗‖2,

where

ρ = max

{
(1− γµ)q ,

1

2

}
.

Theorem 21 indicates that the iterates generated by GGD-WR-SVRG converge to the op-
timal point x∗ at a linear rate since ρ ≤ 1/2. The bound we obtained here is comparable
to those in Johnson and Zhang (2013) and Sebbouh et al. (2019). Denote by κ = L/µ the
conditional number of objective function f . We next give the total complexity result of
GGD-WR-SVRG method.

Corollary 22 If we set the stepsize γ = 1/16L and the update period q = n. Then to
achieve ε-optimality, the iteration number for the outer loop T should satisfy

T ≥ max

{
16κ

n
, 2

}
ln

(
(64 + 3Vq)E‖xq0 − x∗‖2

64ε

)
thus the total complexity is

2(1 + bm)d ·max {8κ, n} ln

(
(64 + 3Vq)E‖xq0 − x∗‖2

64ε

)
.

From Theorem 21 and Corollary 22, we can see that GGD-WR-SVRG method can achieve
ε-optimality with a pretty large fixed stepsize 1/16L compared with the stepsize used in
Corollary 5. But this improvement comes with a price which is that we have to evaluate
the full gradient ∇f(x) once at the begining of the outer loop. This evaluation influences
the complexity which is now related to the training set size n. In other words, when using
a large data set, GGD-WR-SVRG algorithm may take longer time to achieve ε-optimality.
Supposing that m � q and b � q, then the complexity will be O ((n+ κ)d ln(1/ε)) which
is same as the complexity of the original SVRG method. The convergence results can also
be obtained in the general convex case.

Theorem 23 Suppose that the objective function f and the individual loss function fi are
L-smooth. When Algorithm 2 is run with option (b) and the fixed stepsize γ < 1/10L.
Denoting x̂ = 1

qT

∑T
s=1

∑q−1
k=0 x

k
s , then it satisfies

E [f(x̂)− f(x∗)] ≤ P 0

2qTγ(1− 10Lγ)

where P 0 = E‖x̄0 − x∗‖2 + 12Lγ2qE [f(x̄0)− f(x∗)].
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The GGD-WR-SVRG algorithm has a sublinear convergence rate in the general convex
case with the fixed stepsize. We can also find that if the outer loop did not exist, then
the convex GGD-WR-SVRG would converge at sublinear rate up to some noise level like
the convergence results of original GGD methods. This result suggests that the bi-loop
structure is responsible for the variance reduction property. From Theorem 23, we can give
the total complexity as follows.

Corollary 24 If we set the stepsize γ = 0.05/L and the update period q = n, the iteration
number of the outer loop T to achieve ε-optimality should satisfy

T ≥ max

{
40LE‖x̄0 − x∗‖2

nε
,
1.2E [f(x̄0)− f(x∗)]

ε

}
,

then the complexity is

nd(1 + bm) ·max

{
40LE‖x̄0 − x∗‖2

nε
,
1.2E [f(x̄0)− f(x∗)]

ε

}
.

If the conditional number κ is not ill-conditioned, b � n and m � n, then the complexity
result is O(nd ln 1/ε) for strongly convex functions and O(nd/ε) for general convex functions
with relatively large stepsize γ = 0.05/L. It is also worth noting that if we set the fixed
stepsize γ = 1/n1/2 and the update period q = n, then from Theorem 23, we can derive
an improved bound for the complexity, that is, O(n1/2d/ε) for m � n, b � n. Recall the
complexity results for the GGD method with small fixed stepsize which is dependent on ε:
O((d/ε) ln 1/ε) for strongly convex functions and O(d/ε2) for general convex functions. We
can see that if the training set size n is not extremely large, GGD-WR-SVRG may require
less iterations to achieve ε-optimality with fixed stepsize. Finally we state the convergence
result for non-convex GGD-WR-SVRG.

Theorem 25 Suppose that the objective function f and the individual loss function fi are
L-smooth, the objective function f is also bounded below by fmin. Define a decreasing
sequence {ηk}qk=0,

ηk = 3γ2L3 + ηk+1(6γ2L2 + 1 + τγ), with ηq = 0, (11)

where fixed stepsize γ and constant τ > 0 satisfying

τ >
η0

1− 2γL− 4γη0
.

When Algorithm 2 is run with option (c) and fixed stepsize, then the iterates generated by
Algorithm 2 satisfy

min
k=0,1,...,q−1
s=1,2,...,T

E‖∇f(xks)‖2 ≤
E
[
f(x0

1)− fmin
]

qTγ(1− 2γL− 4γη0 − η0/τ)
.

Theorem 25 indicates that as qT increasing, the minimum expected square L2-norm of
the full gradient can not stay bounded away from zero, which implies that the non-convex
GGD-WR-SVRG has a sublinear convergence rate. With proper choice of γ and τ , we can
derive the complexity result for non-convex GGD-WR-SVRG.
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Corollary 26 If we set the stepsize γ = ψ/(Ln2/3), constant τ = L/n1/3 and update period
q = dn/7ψe, where ψ is a constant satisfying

ψ ≤ min

{
1

12(e− 1)
,
1

4

(
2

n2/3
+

12(e− 1)

n

)−1
}
,

then to achieve ε-optimality, the iteration number of outer loop T should satisfy

T ≥ 14LE [f(x̄0)− fmin]

εn1/3
.

Thus the total complexity is

d (n+ dn/7ψemb) · 14LE [f(x̄0)− fmin]

εn1/3
.

From Corollary 26, we can see that non-convex GGD-WR-SVRG can still achieve ε-optimality
with a stepsize γ = ψ/(Ln2/3) which is related to the training set size n. The complexity
will be O(dn2/3/ε) for m � n, b � n. Comparing Corollary 26 with Corollary 24, we
can find that when convex assumption does not hold, the complexity will degrade from
O(dn1/2/ε) to O(dn2/3/ε) which is still better than O(dn/ε), the complexity result for con-
vex GGD-WR-SVRG with fixed stepsize that is independent of n. This result suggests
that a stepsize which is dependent on n may be more proper to use in GGD-WR-SVRG
algorithm for convex or non-convex cases.

5.2 GGD-WR-Adam Method

Although variance reduced GGD-based method can achieve a linear convergence rate under
strongly-convex assumption, it is potentially burdened by the expensive computational cost
and the inadequacy that the iterates generated by variance reduction methods are prone to
be stuck in the local minima. As mentioned before, adaptive stepsize methods can accelerate
the training process and empirically outperform the original SGD method. Luckily, GGD
is also compatible with adaptive stepsize methods. In the rest of this section, we propose
GGD-WR-Adam which builds upon Adam and replace the stochastic sample gradient with
grafting gradient using sampling with replacement. Before diving into the detail of GGD-
WR-Adam algorithm, we first give one additional assumption.

Assumption 27 The L∞-norm of the grafting gradients is uniformly almost sure bounded,
i.e., there is a constant R ≥ σ so that

‖gm,b(x)‖∞ ≤ R−
√
σ, for all x ∈ Rd a.s..

This assumption is essential to the convergence analysis of GGD-WR-Adam.
√
σ is used to

simplify the final bound as remarked in Défossez et al. (2020).

In Algorithm 3, g2
k = gk � gk indicates the element-wise square, and for a sequence of

vectors {νk}, we denote νk,(i) the i-th component of k-th vector in this sequence. We also
assume that we have an access to the oracle GGDm,b, i.e., the first few steps in GGD-WR
algorithm, which can provide i.i.d grafting gradient samples given m, b, and xk. Good
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Algorithm 3: GGD-WR-Adam method

Input: Batch size b, subsampled set size m, learning rate γ, an orcale GGDm,b,
exponential decay rate for the first moment estimates β1, exponential
decay rate for the second moment estimates β2 and σ.

Initialize: x0 = 0, h0 = 0 and v0 = 0.
for k = 1, 2, ..., T do

gk = GGDm,b(x
k−1)

hk = β1hk−1 + gk
vk = β2vk−1 + g2

k

γk = γ · 1−β1
(1−β2)1/2

· (1−βk2 )1/2

1−βk1
for i = 1, 2, ..., d do

Update: xk(i) = xk−1
(i) − γk

hk,(i)
(σ+vk,(i))

1/2

end

end

default settings for the hyperparameters are b = 2, m = 2k for k ∈ N+, γ = 0.001,
β1 = 0.9, β2 = 0.999 and σ = 10−8 which is used for numerical stability. Following the
analysis provided by (Défossez et al., 2020), we only present the theoretical bound and
complexity result for non-convex GGD-WR-Adam method.

Theorem 28 Suppose that Assumption 27 holds, the objective function f and the individual
loss function fi are L-smooth, the objective function f is bounded below by fmin. When
Algorithm 3 is run with the fixed stepsize γ > 0, 0 < β2 < 1, 0 ≤ β1 < β2, then for any
T ∈ N+ such that T > β1/(1− β1), the iterates generated by Algorithm 3 satisfy

E‖∇f(xω)‖2 ≤
2RE

(
f(x0)− fmin

)
γT̃

+
J

T̃

(
ln

(
1 +

R2

σ(1− β2)

)
− T ln(β2)

)
,

where T̃ = T − β1/(1− β1),

J =
γdRL

(1− β1)(1− β2)(1− β1/β2)
+

γ2dL2

2(1− β2)3/2(1− β1)5/2(1− β1/β2)

+
6dR2

(1− β1)3/2(1− β2)1/2(1− β1/β2)3
,

and ω is a random index taking values from {0, 1, ..., T − 1} with probability

∀k ∈ N , k < T , P (ω = k) ∝ 1− βT−k1 .

The bound derived in Theorem 28 is different from the bound given by Défossez et al.
(2020) since we do not leave the corrective term for the first moment estimates as the
original Adam algorithm. This theoretical bound seems too complicated to acknowledge
that GGD-WR-Adam can converge with careful choice of hyperparameters. So we first give
the complexity result and then bring out some discussions about these results. If we set
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γ = γ̃/
√
T , β2 = 1 − 1/T , and assuming that β1/(1 − β1) � T and β1/β2 ≈ β1 (These

two assumptions can easily hold when iteration number T is extremely large), then the
theoretical bound given in Theorem 28 can be approximated by

E
[
‖∇f (xω)‖2

]
. 2R

E[f
(
x0
)
− fmin]

γ̃
√
T

+
1√
T

(
γ̃dRL

(1− β1)2
+

γ̃2dL2

2(1− β1)7/2
+

6dR2

(1− β1)9/2

)(
ln

(
1 +

TR2

σ

)
+ 1

)
.

Denoting

K =

(
γ̃dRL

(1− β1)2
+

γ̃2dL2

2(1− β1)7/2
+

6dR2

(1− β1)9/2

)
,

then we can obtain

E
[
‖∇f (xω)‖2

]
. 2R

E[f
(
x0
)
− fmin]

γ̃
√
T

+
K√
T

(
ln

(
1 +

TR2

σ

)
+ 1

)
. (12)

Corollary 29 To achieve ε-optimality of non-convex GGD-WR-Adam method, for some
constant φ ∈ (0, 1/2), the iteration number T should satisfy

T ≥ max

{
36R2

[
Ef(x0)− fmin

]2
γ̃2ε2

,
σ

R2

((
3K

φeε

) 2
1−2φ

·
(

1 +
R2

σ

) 1
1−2φ

− 1

)}
.

Then the total complexity is

md ·max

{
36R2

[
Ef(x0)− fmin

]2
γ̃2ε2

,
σ

R2

((
3K

φeε

) 2
1−2φ

·
(

1 +
R2

σ

) 1
1−2φ

− 1

)}
.

Now we put some remarks on the theoretical results derived in Theorem 28 and Corollary 29.
For m � n, non-convex GGD-WR-Adam achieves ε-optimality albeit with the complexity
of O(d1+2/(1−2φ)/ε2/(1−2φ)) which is larger than the complexity of non-convex GGD since
non-convex GGD-WR-Adam has a slower convergence rateO(ln(T )/

√
T ). Recalling that we

assume that there is a uniform almost sure bound for the L∞-norm of grafting gradients and
apply anisotropic stepsizes to each dimension of model parameters, parameter dimension d
is introduced into theoretical bounds and the complexity result is dependent of d1+2/(1−2φ)

as dR2 is a natural bound for the L2-norm of grafting gradient. It is also noteworthy that
β1 does not play an important role in the theoretical bounds as it is regarded as a constant
that can be absorbed by the increasing iteration number T . However, β1 serves the purpose
of deciding random index ω crucially. For one hand, β1 > 0 implies that Algorithm 3 is
run with heavy-ball style momentum. The closer β1 approaches 1, the less momentum hk
changes in one iteration, that is, the last few grafting gradients barely influence the direction
of the momentum. So the first few iterations are more likely to be selected since they are
cumulated through time and are more important in deciding the direction of momentum for
β1 → 1. On the other hand, β1 = 0 implies that ω is uniformly picked from {0, 1, ..., T − 1}.
This is expected as well since β1 = 0 also implies that there is no momentum and every
iterate contributes evenly to the direction of update.
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Data set Dim ntr (train) Sparsity nte (test) L̄ maxL κ

covtype 54 290,506 22.22% 290,506 1.2258 1.8921 3.56102× 105

ijcnn1 22 49,990 59.09% 91,071 0.3763 0.9842 1.88112× 104

a9a 123 32,561 11.28% 9,865 3.4673 3.5000 1.12898× 105

rcv1 47,236 20,242 0.1549% 677,399 0.2441 0.2500 4.94107× 103

Table 1: Summary of data sets

6. Experiment Results

Our empirical results are presented in this section. We evaluate the performance of graft-
ing gradient based algorithms on solving strongly-convex and non-convex problems, and
compare their performance with vanilla SGD, SGD with importance sampling, mini-batch
SGD, variance reduction method SVRG and adaptive stepsize method Adam.

6.1 Binary Classification Problems

We first run experiments on the L2-regularized logistic regression problem given by

fi(x) = −

(
bi ln

(
1

1 + exp−a
>
i x

)
+ (1− bi) ln

(
exp−a

>
i x

1 + exp−a
>
i x

))
+
λ

2
‖x‖2,

where (ai, bi) ∈ Rd × {0, 1}, i = 1, ..., ntr are the data samples from covtype, ijcnn1, a9a
and rcv1. All data sets are available on http://www.csie.ntu.edu.tw/~cjlin/libsvm,
and are widely used in other literatures (Nguyen et al., 2017; Qian et al., 2019; Sebbouh
et al., 2019; Mishchenko et al., 2020; Huang et al., 2021; Malinovsky et al., 2021). Relevant
statistics of data and loss function are summarized in Table 1.

In Table 1, Dim denotes the features number of the training data, ntr, nte are the
number of data used for training and testing respectively, sparsity is the proportion of
non-zero values in training data features. L̄ is the average of smoothness constants, maxL
is the maximum of smoothness constants and κ is the conditional number of objective
function f . They can be calculated explicitly since the loss function of L2-regularized
logistic regression problem is µ-strongly convex with µ = λ and Li-smooth which admits a
closed form expression Li = ‖ai‖2/4 + λ.

For ijcnn1, a9a and rcv1, we use the predefined training set and testing set. covtype
does not have a testing set. In that case, we randomly split the data set into the training
set and the testing set with 50% for training and 50% for testing.

The penalty parameter λ is set to be 1/ntr for all the experiments on different data sets.
Since the stepsizes for stochastic optimization method are critical, we adopt the popular t-
inverse learning schedule γk = γ0(1 + γdbk/ntrc)−1 (Johnson and Zhang, 2013; Reddi et al.,
2016), where k is the iteration number and γ0, γd are chosen so that the corresponding
algorithms give the best performance. When a fixed stepsize is used, we set γd = 0. For
the methods which use grafting gradients to update the parameters in one iteration, unless
specifying, the size of subsampled set m is set to be 16 for ijcnn1, a9a and rcv1 and 256
for covtype since its size is way bigger than other training sets. The batch size b used in the
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grafting gradient based methods is set to be 2 since b = 2 gives the best performance and
saves the most computational cost.

In the practical implementation, since most machine learning libraries calculate partial
derivatives through backpropagation and the chain rule, to construct the grafting gradient,
we actually obtain the entire b × m × d partial derivatives through backpropagation and
discard the unused partial derivatives. This implementation implies that in one iteration,
the actual computational complexity of GGD is approximately b times larger than that of
mini-batch SGD with the same mini-batch size m, and b × m times larger than that of
vanilla SGD. So for fair comparison, the total iteration number of vanilla SGD and SGD
with importance sampling is set to be b ×m larger than that of GGD and the mini-batch
size of mini-batch SGD, SVRG and Adam is set to be b × m in all these experiments to
maintain the total computational complexity at the same level.

(a) (b)

(c) (d)

Figure 2: Comparisons of the train loss between vanilla SGD and GGD methods on ijcnn1,
a9a, covtype and rcv1.
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Comparison between vanilla SGD and GGD. In all these experiments, we compare
the performances of different methods in terms of train loss, the square L2-norm of the
full gradient and the test loss (results are listed in Appendix). The horizontal axis of
these figures denotes the number of effective passes. Usually, one effective pass over data
is considered as computing one full gradient or evaluating ntr times gradients (total ntr×d
partial derivatives). Suffix -as means that the diminishing stepsize sequences are used in the
algorithm. Take a deep look at Figure 2. Compared with the stochastic sampled gradient,
the improvements brought by the grafting gradient mainly lie in two aspects: One is that the
iterates generated by GGD can sometimes decrease faster than vanilla SGD and the other is
that the iterates can fluctuate in a small neighborhood of the optimum point. For the former
one, since GGD which uses a batch of subsampled sets to update the parameters, compared
with the best-tuned SGD, the best-tuned GGD can fit a larger fixed stepsize which possibly
results in a faster convergence as shown in Figures 2(a), 2(c) and 2(d). For the latter

(a) (b)

(c) (d)

Figure 3: Comparisons of the square L2-norm of full gradient ‖∇f(xk)‖2 between vanilla
SGD and GGD methods on ijcnn1, a9a, covtype and rcv1.
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(a) (b)

(c) (d)

Figure 4: Comparisons of the train loss between GGD-as, mini-batch SGD-as and SGD-as
with importance sampling methods on ijcnn1, a9a, covtype and rcv1.

one, it coincides with the theoretical result derived in Theorem 4 that the noise variance
of grafting gradient is reduced by a constant factor. Figure 3 presents the comparison in
terms of ‖∇f(xk)‖2. We can observe that although the comparison is less clear, GGD with
diminishing stepsize sequence still outperforms its competitors in Figures 3(a) and 3(b) as
it achieves a lower value of ‖∇f(xk)‖2, which implies that the iterates generated by GGD
with diminishing stepsize sequence are more closer to the optimum point due to the strong
convexity of the objective function. From Figures 3(c) and 3(d), we can see after about
10 epoches of training, the iterates generated by GGD with diminishing stepsize sequence
fluctuate more smoothly compared with its competitors, which demonstrate the variance
reduction property possessed by GGD method. In a short word, these results suggest that
using GGD can be more beneficial than using vanilla SGD for solving L2-regularized logistic
regression problems.
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(a) (b)

(c) (d)

Figure 5: Comparisons of the square L2-norm of full gradient ‖∇f(xk)‖2 between GGD-as,
mini-batch SGD-as and SGD-as with importance sampling methods on ijcnn1,
a9a, covtype and rcv1.

Comparison among GGD, MBSGD and SGD-IS. Figures 4 and 5 report the
performance of GGD, mini-batch SGD (mbsgd) and SGD with importance sampling (sgdis).
SGD-IS is run without minibatching, that is, using one gradient sampled from population
with probability Pri ∝ Lri . For the performances of mini-batch SGD with importance
sampling, they are presented in Appendix C. In view of the algorithms with fixed stepsize
being inferior to the algorithms with diminishing stepsize sequence, we do not report the
performance of GGD, MBSGD and SGD-IS with fixed stepsize.

It is clear that although SGD-IS may outperform MBSGD as shown in Figures 4(a),
4(b) and 5(b), and vice versa such like Figure 4(c), the performances of GGD algorithm
with diminishing stepsize sequence are pretty robust and close to the better one out of
MBSGD and SGD-IS. For example in Figure 4(a), GGD, MBSGD and SGD-IS show a
same decreasing rate for the first few epoches, but they begin to differ after three epoches.
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(a) (b)

(c) (d)

Figure 6: Comparisons of the train loss between GGD-WR-Adam and Adam methods on
ijcnn1, a9a, covtype and rcv1.

SGD-IS decreases faster than MBSGD and GGD, and eventually achieves a lower train loss.
Although GGD performs quite similarily to MBSGD in the first few epoches, it gradually
outperforms MBSGD and catches up with SGD-IS. Robustness can also be confirmed by
Figure 4(c) where MBSGD and GGD decrease in a much stable manner compared with
SGD-IS. These results confirm the doubly robust property which we have proven in Section
4 and empirically show that GGD can obtain robust and comparable results when training
the logistic regression models with L2-regularization.

Comparison between Adam and GAdam. To compare the performance of Adam
and GGD-WR-Adam (gadam) methods, we use minibatching technique to update the pa-
rameters both for Adam and GAdam, set fixed learning rates and the hyperparameters β1,
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(a) (b)

(c) (d)

Figure 7: Comparisons of the square L2-norm of full gradient ‖∇f(xk)‖2 between GGD-
WR-Adam and Adam methods on ijcnn1, a9a, covtype and rcv1.

β2 and σ are set by default for these two methods. From the results in Figure 6, we can see
that in most cases, the difference between the performances of Adam and GAdam is quite
nuanced especially for rcv1 data set where descent curves overlap each other. GAdam and
Adam both show a similar decreasing rate and achieve a low level of train loss except for a9a
data set. In Figure 6(b), the iterates of GAdam algorithm decrease in a much stable manner
compared with Adam method. Recalling that SGD-IS empirically outperforms MBSGD on
a9a data set, we can infer that since using importance sampling technique may be more
beneficial than using mini-batching technique for training L2-regularized logistic regression
model on a9a data set.
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(a) (b)

(c) (d)

Figure 8: Comparisons of the train loss between GGD-WR-SVRG and SVRG methods on
ijcnn1, a9a, covtype and rcv1.

From Figures 7(b), 7(c) and 7(d), we can see that in terms of ‖∇f(xk)‖2, the iterates
generated by Adam fluctuate more greatly than the iterates generated by GAdam. These
results indicate that empirically the noise variance of GAdam may be smaller than the noise
variance of Adam.

Comparison between SVRG and GSVRG. In these experiments, GGD-WR-SVRG
(gsvrg) is competing against the mini-batch SVRG. The update period q is set to be b0.26nc
for ijcnn1, b1.95nc for a9a, b0.62nc for covtype and b0.14nc for rcv1 as suggested in Sebbouh
et al. (2019). We can see that GSVRG outshines the original mini-batch SVRG method
except for covtype data set where GSVRG only holds a slender lead and the improvement is
pretty much negligible. Results in Figure 8 show that GSVRG can achieve a lower train loss
compared with SVRG method for ijcnn data set. For a9a and rcv1 data sets, although the
performances of GSVRG are a liitle worse than the performances of SVRG at the beginning,
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(a) (b)

(c) (d)

Figure 9: Comparisons of the square L2-norm of full gradient ‖∇f(xk)‖2 between GGD-
WR-SVRG and SVRG methods on ijcnn1, a9a, covtype and rcv1.

the decreasing rate of GSVRG gradually catches up with SVRG and becomes a bit faster
than SVRG in the last few epoches.

In terms of ‖∇f(xk)‖2, there is no significant difference between the performances of
GSVRG and SVRG except that the comparison in a9a data set is quite discernible. Results
in Figures 4(b), 5(b), 7(b) and 9(b) suggest that methods, which assign non-uniform sam-
pling probability to data sample, may outperform these with uniform sampling probability
for training L2-regularized logistic regression model on a9a data set.

6.2 Multiclass Classification Problems

We then run experiments to solve the multiclass classification problems via training convo-
lution neural networks which is one representative non-convex problem encountered in ma-
chine learning. We use two common data sets, MNIST (LeCun et al., 2010) and CIFAR-10
(Krizhevsky et al., 2009) to train two convolution neural networks with different structures.
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For the former one, we train the classic LeNet-5 (LeCun et al., 1998) with minimal modifica-
tion, which consists of two convolution layers with batch normalization and relu activation
function, two fully-connected layer with relu activation function and one fully-connected
layer with softmax activation function to output the predicted values. For the latter one,
we use the cifar10-nv architecture proposed by Gitman and Ginsburg (2017) which achieves
close to the state-of-the-art performance in less training time. The complete network archi-
tectures are presented in Appendix C. L2-regularization are used for preventing overfitting
in these experiments and the penalty parameter λ is set to be 10−4. Features in data sets
are normalized to the interval [0, 1] for all the experiments and the images from MNIST are
resized into 32 × 32 to fit the LeNet-5 architecture. Since mini-batch SGD is much more
efficient than vanilla SGD in neural network training, we do not present the result of vanilla
SGD methods. For the convolution neural network training, the L-smoothness constant
of individual loss function is not available and hence the result of SGD with importance
sampling is not provided either. In previous experiments, we empirically show that the
methods with diminishing stepsize sequence converge much better than those methods with
fixed stepsize. Hence only the algorithms with diminishing stepsize sequence are compared
in solving multiclass classification problems.

We train all the networks with the subsampled set size m = 128 for GGD based methods.
For fair comparison, the mini-batch size is set to be 256 for mini-batch SGD, SVRG and
Adam as b = 2. We adopt the linear decay learning rate which is defined as

γk = γ0 +
γT−1 − γ0

T − 1
· k,

where γT−1 is the final learning rate, γ0 is the initial learning rate, T −1 is the total number
of effective passes and k is the current number of effective passes. The final learning rate is
10−5 and the initial learning rate is 10−2 for MBSGD and GGD. The final learning rate is
10−6 and the initial learning rate is 10−4 for Adam and GAdam. As suggested in Section

5, the final learning rate is 1/n
2/3
tr and the initial learning rate is 100/n

2/3
tr for SVRG and

GSVRG methods. The batch size b for grafting gradient based methods is set to be 2 and the
update period for variance reduction methods q are set to be 3ntr/m. Since Katharopoulos
and Fleuret (2018); Johnson and Guestrin (2018); Müller et al. (2019) all show that putting
non-uniform sampling probability on data samples can benefit the neural network training,
we hope that grafting gradient based methods can outperform stochastic gradient based
methods for training CNNs. Experiment results are presented in Figures 10 and 11.

From Figure 10, we can see that due to the importance resampling technique, train
loss obtained by GGD decreases in a less fluctuating way especially at the beginning of the
training process when the relatively large stepsizes are used. As the number of effective
passes grows, GGD eventually outperforms and hold a considerable lead over MBSGD. The
comparison between GAdam and Adam is more obvious as Adam does not procede GAdam
during the entire training process. As for the comparison between GSVRG and SVRG,
although result in Figure 10(e) indicates that the performances of GSVRG and SVRG are
quite indistinguishable before 80 epoches, GSVRG gradually emerges as a more competitive
stochastic optimization method for training LeNet-5 on MNIST data set near the end of
training process. In conclusion, GGD, GAdam and GSVRG all achieve a lower train loss
compared with MBSGD, Adam and SVRG respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Comparisons of the train loss (left) and the square L2-norm of full gradient
‖∇f(xk)‖2 (right) between MBSGD and GGD, Adam and GAdam, SVRG and
GSVRG methods on MNIST.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Comparisons of the train loss (left) and the square L2-norm of full gradient
‖∇f(xk)‖2 (right) between MBSGD and GGD, Adam and GAdam, SVRG and
GSVRG methods on CIFAR-10.
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Methods Adam GAdam MBSGD GGD SVRG GSVRG scale

Values 5.1588 5.2779 5.3185 5.8986 0.13407 0.15203 ×10−3

Table 2: Minimum square L2-norm of full gradient on MNIST

Methods Adam GAdam MBSGD GGD SVRG GSVRG scale

Values 1.6565 1.4659 634.79 2681.0 2.0849 3.7647 ×10−4

Table 3: Minimum square L2-norm of full gradient on CIFAR-10

For CIFAR-10 data set, it is intriguing if we take a deep look at Figures 11(a) and
11(c), we will find that the descent curves of objective function values have a same pattern,
that is, they all move down slowly, become flattened and slump at some epoches. Figures
11(b) and 11(d) also reflect this descent pattern to a certain extent as ‖∇f(xk)‖2 becomes
more fluctuated before and after the epoches where the slump happens. In our opinion,
the cause behind this descent pattern may be the complexity of network architecture. As
for the comparison between different methods, Figure 11(a) shows that after the first few
epoches, GGD with linear decay learning rate outperforms MBSGD completely. Even for
some train losses of the GGD method before the slump, they are slightly smaller than
the minimum train loss found by MBSGD. The comparisons between Adam and GAdam,
SVRG and GSVRG are more clear as the descent curves of Adam and SVRG lie above
the descent curves of GAdam and GSVRG almost entirely during the training process.
Another interesting fact is that although GSVRG and SVRG has a much lower ‖∇f(xk)‖2
as expected, the lowest train loss is obtained by the adpative stepsize method, GAdam. This
result suggests that one critical problem with the variance reduction methods in minimizing
non-convex objective functions is that due to the lack of randomness, the iterates generated
by variance reduction methods are likely to be trapped in local minimum. It may also
explain why there is no slump in Figure 11(e).

It is worth noting that the comparisons in terms of ‖∇f(xk)‖2 are both ambiguous on
these two data sets except for Figures 10(b) and 10(d) where grafting gradient based meth-
ods obtain a lower ‖∇f(xk)‖2 for the most time. Recalling that we derive the theoretical
bounds for minE‖∇f(xk)‖2 under non-convex assumption, these minimum values are also
reported in Tables 2 and 3 for comparison. From these results, we can see that although
the minimum values obtained by grafting gradient based methods are larger than that of
stochastic sampled gradient based methods (MBSGD, Adam, SVRG), the train losses ob-
tained by grafting gradient based methods are lower. In other words, stochastic sampled
gradient based methods may converge much closer to some stationary points and grafting
gradient based methods may converge less closer to some stationary points but with a lower
objective function value. Combining all these empirical results, we can conclude that using
grafting gradient to update the parameters is more robust and promising for empirical risk
minimization. Moreover, for training CNNs on MNIST and CIFAR-10 data sets, intro-
ducing importance resampling technique can further improve the performance of original
stochastic optimization methods.
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7. Conclusions and Discussions

We propose a novel stochastic optimization method which employs importance resampling
and constructs grafting gradient to update the model parameters. Based on the different
sampling techniques, GGD-WR and GGD-WoR are proposed. For the former one, we prove
that the grafting gradient using sampling with replacement possesses a doubly robust prop-
erty which ensures that the performance of GGD-WR will fall between the performances of
mini-batch SGD and SGD with importance sampling in sense of expectation. For the latter
one, we show that GGD-WoR can be regarded as a more generalized stochastic optimiza-
tion framework since it includes vanilla SGD, mini-batch SGD and SGD with importance
sampling as special cases. Under different assumptions, we provide the convergence anal-
ysis for GGD-WR and GGD-WoR methods. Compared with the vanilla SGD method,
GGD reduces the noise variance by a constant factor and has a better performance both
theoretically and empirically. Compared with mini-batch SGD and SGD with importance
sampling, results in Sections 4 and 6 show the unique robustness property possessed by
GGD methods. Based on the grafting gradient, we further combine it with high-level vari-
ance reduction technique and adaptive stepsize method to improve upon the original GGD
methods. The theoretical results of GGD-WR-SVRG and GGD-WR-Adam are presented
and the empirical results of GGD-WR-SVRG and GGD-WR-Adam show that they are do-
ing great jobs for solving strongly-convex or non-convex problems. It is worth noting that
the performances of coordinate descent and its variants are not compared in Section 6 as
they are less relevant to GGD in two counts. One is that grafting gradient updates the pa-
rameters in a like manner as SGD and its variants because they update all the parameters
in one iteration instead of updating one parameter while keeping all other fixed. On the
other hand, a CD is not guaranteed to converge when applied to minimize any given contin-
uously differentiable function. Powell (1973) gave an example of a non-convex continuously
differentiable function of three variables where a cyclic CD can not converge to a solution.
On the contrary, gradient based methods, including GGD, SGD even gradient descent are
guaranteed convergence to a stationary point when objective function is non-convex. Hence
we only compare GGD with the most relevant methods, that is, vanilla SGD, mini-batch
SGD and SGD with importance sampling in Section 6.

The grafting gradient based methods can be improved in several directions. First, for
GGD-WR-SVRG, the optimal resampling probability given in Algorithm 2 is more compu-
tational expensive than the resampling probability given in Algorithm 1. It will be more
satisfactory if an approximate resampling probability which is defined in terms of objective
function values instead of gradient function is adopted in Algorithm 2 with provable theo-
retical guarantees. Second, although GGD-WR-SVRG empirically outperforms the original
SVRG, the theoretical bound derived in Theorem 21 is worse than that of mini-batch SVRG
for any values of update period and stepsize. This contradiction indicates that the theoret-
ical bound of GGD-WR-SVRG may be further improved by some technical tricks. Third,
GGD-WR-SVRG and SVRG both show that they are less likely to escape from the station-
ary point. It will be more favorable if some modifications can be made to the procedure
of GGD-WR-SVRG so that the additional randomness injected by importance resampling
can help the iterates escape from the stationary point.
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An promising extension of GGD may be the implementation of GGD in federated learn-
ing. In the centralized federated learning (Blanchard et al., 2017; Yin et al., 2018), a
trustworthy parameter central server is used to orchestrate all the participating clients and
update the parameters with gradients received from clients. Due to the limits in network
bandwidth and computing power, sending a complete gradient may be time-consuming.
Hence intuitively using grafting gradient update in central parameter server may be more
friendly to those clients with low-quality device. The convergence results of “federated”
GGD require further discussions as one fundamental challenge in federated optimization
method is the presence of non-IID data.
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Appendix A. Proofs of Theorems and Corollaries in Section 4

In this appendix we prove the following theorems and corollaries in Section 4. We first
prove one useful lemma which are important to the convergence analysis.

Lemma 30 (Nesterov, 2003) If the function f is L-smooth, then

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2, (13)

and

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
1

2L
‖∇f(x)−∇f(y)‖2, (14)

where 〈x, y〉 = x>y denotes the inner product of two vectors x and y.

A direct result of (13) is that if we let x = y − ‖∇f(y)‖/L and assume that f is bounded
below by fmin, then

fmin ≤ f(y − ‖∇f(y)‖/L) ≤ f(y)− ‖∇f(y)‖2

L
+
L

2

‖∇f(y)‖2

L2
.

Rearranging the terms, we have

‖∇f(y)‖2 ≤ 2L (f(y)− fmin) , (15)

which is quite useful in our convergence analysis. The following Lemma 31 states the
relationship between smoothness constant and strong convexity constant, which is useful in
the proof of GGD-WR-SVRG.

Lemma 31 If the function f is both L-smooth and µ-strongly convex, then we have L ≥ µ.

Proof From Definition 1, if x∗ is the global minimizer of f , we have

f(x) ≥ f(x∗) +
µ

2
‖x− x∗‖2.

Due to the L-smoothness of f , from Theorem 2.1.5 in Nesterov (2003), we know that

f(x)− f(x∗) ≤ L

2
‖x− x∗‖2.

Combining these two results, we have

µ

2
‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ L

2
‖x− x∗‖2.

We prove Lemma 31 as ‖x− x∗‖2 is non-negative.
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A.1 Proof of Theorem 4

Proof Unless specifying, we write E[· | xk] as E[·] for convenience throughout the rest of
this paper. We first show that the grafting gradient gm,b(x

k) is an unbiased estimator of
∇f(xk) conditional on xk. Without loss of generality, we take a look at the first dimension
of the grafting gradient gm,b(x

k),

E
1

bPSmr1

∂fSmr1
∂x1

(
xk
)

= E

[
E

[
1

bPSmr1

∂fSmr1
∂x1

(
xk
)
| Sbm

]]

= E

[
1

b

b∑
i=1

1

PSmi

∂fSmi
∂x1

(
xk
)
· PSmi

]
= E

[
1

b

b∑
i=1

∂fSmi
∂x1

(
xk
)]

= E
[
∂fSm1

∂x1

(
xk
)]

=
1

n

n∑
i=1

∂fi
∂x1

(
xk
)
,

which proves that the grafting gradient is an unbiased estimator of∇f(xk) since Egm,b(xk) =
∇f(xk). The fourth equality holds because {Sm1 , ..., Smb} are sampled independently from
Dm. For the most gradient-based stochastic optimization algorithms, it makes sense to
study the following recursion,

E‖xk+1 − x∗‖2 = E‖xk − x∗‖2 − 2γ〈xk − x∗,∇f(xk)〉+ γ2E‖gm,b(xk)‖2

≤ (1− µγ)‖xk − x∗‖2 − 2γ
(
f(xk)− f(x∗)

)
+ γ2E‖gm,b(xk)‖2. (16)

The first inequality relies on the strong convexity of objective function. The last term in
(16) can be rewritten as

E‖gm,b(xk)‖2 = E

[
1

b2

b∑
i=1

1

PSmi
‖∇fSmi (x

k)‖2
]

= E

[
1

b2

(
b∑
i=1

‖∇fSmi (x
k)‖2

fSmi (x
k)− fSmi ,min

)(
b∑
i=1

fSmi (x
k)− fSmi ,min

)]

= E

[
1

b2

(
b∑
i=1

‖∇fSmi (x
k)‖2

)]

+ E

 1

b2

 b∑
p6=q

‖∇fSmq (xk)‖2

fSmq (xk)− fSmq ,min

(
fSmp (xk)− fSmp ,min

)
=

1

b
E‖∇fSm1

(xk)‖2 +
b− 1

b
E

[
‖∇fSmq (xk)‖2

fSmq (xk)− fSmq ,min

(
fSmp (xk)− fSmp ,min

)]

≤ 1

b
E‖∇fSm1

(xk)‖2 +
b− 1

b
E
[
2LSm1

]
E
[
fSm1

(xk)− fSm1 ,min

]
. (17)

The first inequality holds since (15) and subsets are sampled independently. Now we turn
to deal the last term in (17) respectively. Noting that E‖∇fSm1

(xk)‖2 is the noise variance
of mini-batch SGD, we first derive an upper bound for this noise variance.
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Lemma 32 For a subset Sm1 ∈ Dm. Given xk, we have

E

‖ 1

m

m∑
j∈Sm1

∇fj(xk)‖2
 =

n−m
m(n− 1)

· 1

n

n∑
j=1

‖∇fj(xk)‖2 +
n(m− 1)

m(n− 1)
‖∇f(xk)‖2. (18)

Proof The left side of (18) is

E

‖ 1

m

m∑
j∈Sm1

∇fj(xk)‖2
 =

1

m2
E

 m∑
j∈Sm1

‖∇fj(xk)‖2 +
∑

p,q∈Sm1

∑
p6=q
∇fp(xk)>∇fq(xk)


=

1

mn

n∑
j=1

‖∇fj(xk)‖2 +
m(m− 1)

n(n− 1)
· 1

m2

n∑
p 6=q
∇f>p (xk)∇fq(xk)

=
1

mn

 n∑
j=1

‖∇fj(xk)‖2 +
m− 1

n− 1

n∑
p6=q
∇f>p (xk)∇fq(xk)


=

1

mn

m− 1

n− 1
‖

n∑
j=1

∇fj(xk)‖2 +
n−m
n− 1

n∑
j=1

‖∇fj(xk)‖2


=
n−m
m(n− 1)

· 1

n

n∑
j=1

‖∇fj(xk)‖2 +
n(m− 1)

m(n− 1)
‖∇f(xk)‖2,

which proves Lemma 32.

Now we can derive the upper bound of the noise variance of mini-batch SGD given xk and
size m.

E

‖ 1

m

m∑
j∈Sm1

∇fj(xk)‖2
 =

n−m
m(n− 1)

1

n

n∑
j=1

‖∇fj(xk)‖2 +
n(m− 1)

m(n− 1)
‖∇f(xk)‖2

≤ (n−m)

m(n− 1)

1

n

n∑
j=1

2Lj

(
fj(x

k)− fj,min
)

+
2Ln(m− 1)

m(n− 1)

(
f(xk)− f(x∗)

)
≤ 2Lmax(n−m)

m(n− 1)

(
f(xk)− f(x∗) +R

)
+

2Ln(m− 1)

m(n− 1)

(
f(xk)− f(x∗)

)
=

2 (Lmax(n−m) + Ln(m− 1))

m(n− 1)

(
f(xk)− f(x∗)

)
+

2LmaxR(n−m)

m(n− 1)

= C
(
f(xk)− f(x∗)

)
+

2LmaxR(n−m)

m(n− 1)
. (19)
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The first inequality holds due to (15). E
[
2LSm1

]
E
[
fSm1

(xk)− fSm1 ,min

]
is equivalent to

E
[
2LSm1

]
E
[
fSm1

(xk)− fSm1 ,min

]
= 2L̄

(
f(xk)− f(x∗)

)
+ 2L̄R. (20)

Substituting (19) and (20) into (17), we obtain

E‖gm,b(xk)‖2 ≤
(
C

b
+
b− 1

b
2L̄

)(
f(xk)− f(x∗)

)
+

(
1

b
· n−m
m(n− 1)

2LmaxR+
b− 1

b
· 2L̄R

)
. (21)

Substituting (21) into (16), we have

E‖xk+1 − x∗‖2 ≤ (1− µγ)‖xk − x∗‖2 − 2γ
(
f(xk)− f(x∗)

)
+ γ2E‖gm,b(xk)‖2

≤ (1− µγ)‖xk − x∗‖2 −
(

2−
(
C

b
+
b− 1

b
2L̄

)
γ

)
γ
(
f(xk)− f(x∗)

)
+ γ2

(
1

b
· n−m
m(n− 1)

2LmaxR+
b− 1

b
· 2L̄R

)
≤ (1− µγ)‖xk − x∗‖2 + γ2

(
1

b
· n−m
m(n− 1)

2LmaxR+
b− 1

b
· 2L̄R

)
.

The last inequality holds because stepsize γ ≤ 2b/
(
C + 2L̄(b− 1)

)
. Taking the total ex-

pectation and unrolling this recursion across T iterations, we can obtain

E‖xT − x∗‖2 ≤ (1− µγ)TE‖x0 − x∗‖2

+ γ2

(
1

b
· 2LmaxR(n−m)

m(n− 1)
+
b− 1

b
· 2L̄R

) T−1∑
j=0

(1− µγ)j

≤ (1− µγ)TE‖x0 − x∗‖2

+ γ2

(
1

b
· 2LmaxR(n−m)

m(n− 1)
+
b− 1

b
· 2L̄R

) ∞∑
j=0

(1− µγ)j

= (1− µγ)TE‖x0 − x∗‖2 +
γ

µ

(
1

b
· 2LmaxR(n−m)

m(n− 1)
+
b− 1

b
· 2L̄R

)
.

A.2 Proof of equations (4), (5) and (6)

Proof We first derive the upper bounds for per step noise variance of different methods.
Equation (15) is repeatedly used in the following proof. Denote a uniformly sampled index
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from [n] in k-th step by ik. The upper bound for per step noise variance of SGD given xk is

E
[
‖∇fik(xk)‖2

]
=

1

n

n∑
j=1

‖∇fj(xk)‖2 ≤
1

n

n∑
j=1

2Lj

(
fj(x

k)− fj,min
)

≤ 2Lmax
n

n∑
j=1

(
fj(x

k)− fj,min
)

= 2Lmax

(
f(xk)− f(x∗)

)
+ 2LmaxR. (22)

We have derived the upper bound for per step noise variance of mini-batch SGD in (19).
As for SGD with importance sampling, following the analysis provided by Zhao and Zhang
(2015), we know that the upper bound for this noise variance is equivalent to

E
[

1

(nPik)2
‖∇fik(xk)‖2

]
=

1

n2

n∑
j=1

1

Pj
‖∇fj(xk)‖2

≤ 1

n2

n∑
j=1

1

Pj
2Lj

(
fj(x

k)− fj,min
)

=
2

n
(
n∑
j=1

Lj) ·
1

n

n∑
j=1

(
fj(x

k)− fj,min
)

= 2L̄
(
f(xk)− f(x∗)

)
+ 2L̄R. (23)

Equations (19), (22) and (23) share the common property since they can all be written in
form of

A
(
f(xk)− f(x∗)

)
+BR, (24)

with different values of A and B. Replacing the last term in (16) by (24), we can obtain

E‖xk+1 − x∗‖2 ≤ (1− µγ)‖xk − x∗‖2 − (2γ −Aγ2)
(
f(xk)− f(x∗)

)
+ γ2BR. (25)

With the proper choice of stepsize γ, the second term in (25) can be absorbed since it is
non-positive. Thus we can obtain

E‖xk+1 − x∗‖2 ≤ (1− µγ)‖xk − x∗‖2 + γ2BR.

Unrolling these recursions, we can obtain equations (4), (5) and (6).

A.3 Proof of Corollary 5

Proof As long as (1−µγ)TE‖x0−x∗‖2 ≤ ε/2 and 2γR/bµD ≤ ε/2, the expected optimality
gap satisfies E‖xT − x∗‖2 ≤ ε. From the definition of stepsize γ, we know that 2γR/bµD ≤
ε/2. Thus we only need to ensure that (1− µγ)TE‖x0 − x∗‖2 ≤ ε/2, which means

T ln(1− µγ) + ln(2E‖x0 − x∗‖2) ≤ ln ε.
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Rearranging the terms and noticing that ln(1− x) ≤ −x holds for x ∈ [0, 1), as long as we
keep

Tγµ ≥ ln

(
2E‖x0 − x∗‖2

ε

)
,

the expected optimality gap is less than ε, which means that T satisfies

T ≥ max

{
1

2
,

2b

µ(C + 2L̄(b− 1))
,

4R

εµ2bD

}
ln

(
2E‖x0 − x∗‖2

ε

)
.

A.4 Proof of Theorem 6

Proof Similar to the proof of Theorem 4, we can write a decomposition for ‖xk+1 − x∗‖
with a diminishing stepsize sequence,

E‖xk+1 − x∗‖2 ≤ (1− µγk)‖xk − x∗‖2

−
(

2γk −
(
C

b
+
b− 1

b
2L̄

)
γ2
k

)(
f(xk)− f(x∗)

)
+ γ2

k

2R

bD

≤ (1− µγk)‖xk − x∗‖2 + γ2
k

2R

bD
.

The last inequality holds because {γk} is decreasing and γ0 < 2b/
(
C + 2(b− 1)L̄

)
. Taking

the total expectation, the rest part will be proven by induction. First, the definition of v
ensures that it holds for k = 0. Assuming E‖xk − x∗‖2 ≤ v/(q+ k) holds for some k ≥ 0, it
follows that

E‖xk+1 − x∗‖2 ≤ (1− µγk)E‖xk − x∗‖2 +
2γ2

kR

bD

≤ (1− pµ

q + k
)

v

q + k
+

p2

(q + k)2

2R

bD

=
q + k − 1

(q + k)2
v − pµ− 1

(q + k)2
v +

2p2R

(q + k)2bD

≤ q + k − 1

(q + k)2
v ≤ v

q + k + 1
,

where the third inequality follows due to the definition of v, and the last inequality follows
because (q + k − 1)(q + k + 1) ≤ (q + k)2.

A.5 Proof of Theorem 8

Proof Using the proof of Theorem 4, we know that

E‖xk+1 − x∗‖2 = E‖xk − x∗‖2 − 2γ〈xk − x∗,∇f(xk)〉+ γ2E‖gm,b(xk)‖2.
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Since the objective function f is convex, we have

E‖xk+1 − x∗‖ ≤ ‖xk − x∗‖2 − 2γ
(
f(xk)− f(x∗)

)
+ γ2E‖gm,b(xk)‖2. (26)

Again using the proof of Theorem 4, the last term of (26) can be bound by

E‖gm,b(xk)‖2 ≤
(
C

b
+
b− 1

b
2L̄

)(
f(xk)− f(x∗)

)
+

2R

bD
. (27)

Substituting (27) into (26), we have

E‖xk+1 − x∗‖ ≤ ‖xk − x∗‖2 − γ

(
2−

(
C + (b− 1)2L̄

)
γ

b

)(
f(xk)− f(x∗)

)
+ γ2 2R

bD
.

Rearranging the terms, summing over T iterations and taking the total expectation, we
obtain

γ

(
2−

(
C + (b− 1)2L̄

)
γ

b

)
T−1∑
k=0

E
[
f(xk)− f(x∗)

]
≤ E‖x0 − x∗‖2 − E‖xT − x∗‖2 +

2γ2TR

bD

≤ E‖x0 − x∗‖2 +
2γ2TR

bD
.

From the definition of stepsize γ, we know that

γ

2

T−1∑
k=0

E
[
f(xk)− f(x∗)

]
≤ γ

(
2−

(
C + (b− 1)2L̄

)
γ

b

)
T−1∑
k=0

E
[
f(xk)− f(x∗)

]
,

thus we have

γ

2

T−1∑
k=0

E
[
f(xk)− f(x∗)

]
≤ E‖x0 − x∗‖2 +

2γ2TR

bD
.

Dividing γT/2 on the both side, due to the convexity of the objective function f , we have

E [f(x̂)− f(x∗)] ≤ 2E‖x0 − x∗‖2

Tγ
+

4γR

bD
.

A.6 Proof of Corollary 9

Proof From the definition of the stepsize γ, we can verify that 4γR/bD ≤ ε/2. To achieve
ε-optimality, we need to make sure that the first term in (7) is not greater than ε/2. That
is

2E‖x0 − x∗‖2

Tγ
≤ ε

2
.

Rearranging the terms, we know that T should satisfy

T ≥ 4E‖x0 − x∗‖2

εmin{3b/2(C + (b− 1)2L̄), εbD/8R}
.
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A.7 Proof of Theorem 10

Proof From the L-smoothness of the objective function f , we have

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2.

Take the conditional expectation on xk,

E[f(xk+1)]− f(xk) ≤ −γ‖∇f(xk)‖2 +
1

2
γ2LE‖gm,b(xk)‖2. (28)

From (17), we can bound E‖gm,b(xk)‖2 by,

E‖gm,b(xk)‖2 ≤
1

b
E‖∇fSm1

(xk)‖2 +
b− 1

b
2L̄
(
f(xk)− fmin

)
. (29)

Substituting (29) into (28), we obtain

E[f(xk+1)]− f(xk) ≤ −γ‖∇f(xk)‖2 +
γ2L

2

(
1

b
E‖∇fSm1

(xk)‖2 +
b− 1

b
2L̄
(
f(xk)− fmin

))
= γ

(
γL

2b
· n(m− 1)

m(n− 1)
− 1

)
‖∇f(xk)‖2

+
γ2L

2b

(
n−m
m(n− 1)

1

n

n∑
i=1

‖∇fi(xk)‖2 + (b− 1)2L̄
(
f(xk)− fmin

))

≤ γ
(
γL

2b
· n(m− 1)

m(n− 1)
− 1

)
‖∇f(xk)‖2 +

γ2L

bD

(
f(xk)− fmin

)
.

The last inequality holds due to (15). Substracting fmin on the both side, we obtain

E[f(xk+1)]− fmin ≤ γ
(
γL

2b
· n(m− 1)

m(n− 1)
− 1

)
‖∇f(xk)‖2 +

(
1 +

γ2L

bD

)(
f(xk)− fmin

)
.

Since γ ≤ (2b− 1)/L and m(n− 1)/n(m− 1) ≤ 1, we have

E[f(xk+1)]− fmin ≤ −
γ

2b
‖∇f(xk)‖2 +

(
1 +

γ2L

bD

)(
f(xk)− fmin

)
.

Let δk = E
[
f(xk)

]
− fmin. Taking total expectation and rearranging the terms, we have

γ

2b

(
1 +

γ2L

bD

)−1

E‖∇f(xk)‖2 ≤ δk −
(

1 +
γ2L

bD

)−1

δk+1. (30)

Consider the sequence {αk}k=0, where αk = (1 + γ2L/bD)−kα0 and α0 > 0 is a constant.
Multiplying αk on the both side of (30), we obtain

γ

2b

(
1 +

γ2L

bD

)−1

αkE‖∇f(xk)‖2 ≤ αkδk − αk+1δk+1.
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Summing over T iterations and rearranging the terms, we obtain

γ

2b

(
1 +

γ2L

bD

)−1 T−1∑
k=0

αkE‖∇f(xk)‖2 ≤ α0δ0 − αT δT ≤ α0δ0.

since the series
∑T−1

k=0 αk is finite, we have

γ

2b

(
1 +

γ2L

bD

)−1

min
k=0,...,T−1

E‖∇f(xk)‖2 ≤ α0δ0∑T−1
k=0 αk

.

Rearranging the terms, we can conclude

min
k=0,...,T−1

E‖∇f(xk)‖2 ≤ 2b

γ

(
1 +

γ2L

bD

)
α0δ0

 1

α0

1−
(

1 + γ2L
bD

)−1

1−
(

1 + γ2L
bD

)−T


≤ 2b

γ

 γ2L
bD

1−
(

1 + γ2L
bD

)−T
 δ0

≤ 2γL

D

 1

1−
(

1 + γ2L
bD

)−T
 δ0

≤ 2γL

D

1 +
(
γ2L
bD

)
T(

γ2L
bD

)
T

 δ0

=
2γL

D

(
1 +

bD

γ2LT

)
δ0.

The last inequality holds because (1 + β)n ≥ 1 + nβ for n ∈ N, n ≥ 1 and β > −1.

A.8 Proof of Corollary 11

Proof To achieve ε-optimality, T should satisfy

2γL

D

(
1 +

bD

γ2LT

)
δ0 ≤ ε,

which is equivalent to
bD

γLT
+ γ ≤ εD

2Lδ0
.

Since γ ≤ εD/4Lδ0. As long as inequality

bD

γLT
+ γ ≤ bD

γLT
+

εD

4Lδ0
≤ εD

2Lδ0
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holds, we can achieve ε-optimality. Rearranging the terms, we can conclude

T ≥ 4δ0b

εγ
=

4δ0b

ε
max

{
L

2b− 1
,
4Lδ0

εD

}
.

A.9 Proof of Theorem 12

Proof Let Di
m = {S | S ⊂ Dm, i ∈ S}. Following the proof of Theorem 4, we first prove

that the grafting gradient using sampling without replacement is an unbiased estimator
with respect to the full gradient.

E
1

bPSmr1

∂fSmr1
∂x1

(
xk
)

= E

[
E

[
1

bPSmr1

∂fSmr1
∂x1

(
xk
)
| Sbm

]]

= E

[
1

b

b∑
i=1

1

PSmi

∂fSmi
∂x1

(
xk
)
· PSmi

]
= E

[
1

b

b∑
i=1

∂fSmi
∂x1

(
xk
)]

= E

 1

bm

n∑
i=1

∂fi
∂x1

(xk) ·

 ∑
S∈Dim

I{S∈Sbm}


=

1

bm

n∑
i=1

∂fi
∂x1

(
xk
)
· Cm−1

n−1 ·
b

Cm
n

=
1

n

n∑
i=1

∂fi
∂x1

(xk),

which proves that the grafting gradient using sampling without replacement is an unbiased
estimator with respect to the full gradient. Recall the recursion we wrote the proof of
Theorem 4.

E‖xk+1 − x∗‖2 ≤ (1− µγ)‖xk − x∗‖2 − 2γ
(
f(xk)− f(x∗)

)
+ γ2E‖gm,b(xk)‖2. (31)

Since fi is Li-smooth, the theoretical bound for E‖gm,k(xk)‖2 can be derived as follows.

E‖gm,b(xk)‖2 = E

[
1

b2

b∑
i=1

1

PSmi
‖∇fSmi (x

k)‖2
]

≤ E

[
1

b2

b∑
i=1

1

PSmi
2LSmi

(
fSmi (x

k)− fSmi ,min
)]

= E

[
1

b2

(
b∑
i=1

2LSmi

)(
b∑
i=1

fSmi − fSmi ,min

)]
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=
1

b2
E

[
2

m

 n∑
i=1

Li ·

 ∑
S∈Dim

I{S∈Sbm}


· 1

m

 n∑
i=1

(
fi(x

k)− fi,min
) ∑

S∈Dim

I{S∈Sbm}

]

=
1

b2m2
E

 n∑
i=1

2Li

(
fi(x

k)− fi,min
) ∑

S∈Dim

I{S∈Sbm}

2
+

1

b2m2
E

 n∑
p 6=q

2Lp

(
fq(x

k)− fq,min
) ∑

U∈Dpm

I{U∈Sbm}

 ∑
V ∈Dqm

I{V ∈Sbm}

 . (32)

Now we first deal with the term E
[∑

S∈Dim I{S∈Sbm}
]2

.

E

 ∑
S∈Dim

I{S∈Sbm}

2 = E

 ∑
S∈Dim

I{S∈Sbm} +
∑

U,V ∈Dim
U 6=V

I{U∈Sbm} · I{V ∈Sbm}


= Cm−1

n−1

b

Cm
n

+ Cm−1
n−1 (Cm−1

n−1 − 1)
b(b− 1)

Cm
n (Cm

n − 1)

=
mb

n

(
1 +

(Cm−1
n−1 − 1)(b− 1)

Cm
n − 1

)
= M1. (33)

Denote Dp,q
m = {S | S ⊂ Dm and p, q ∈ S}. Likewise, the term

E
(∑

U∈Dpm I{U∈Sbm}
)(∑

V ∈Dqm I{V ∈Sbm}
)

is equivalent to

E

 ∑
U,V ∈Dp,qm

I{U∈Sbm}

+ E

 ∑
U∈Dpm,V ∈Dqm
V,U /∈Dp,qm

I{U∈Sbm} · I{V ∈Sbm}


= Cm−2

n−2 ·
b

Cm
n

+
((

Cm−1
n−1

)2 − Cm−2
n−2

)
· b(b− 1)

Cm
n (Cm

n − 1)

=
m(m− 1)b

n(n− 1)
+
mb(b− 1)Cm−1

n−1

n(Cm
n − 1)

− m(m− 1)b(b− 1)

n(n− 1)(Cm
n − 1)

=
mb(b− 1)Cm−1

n−1

(Cm
n − 1)

+
m(m− 1)b

n(n− 1)

(
1− b− 1

Cm
n − 1

)
= M2. (34)
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Combining (32), (33) and (34), we have

E‖gm,b(xk)‖2 ≤
2

b2m2

M1 ·
n∑
i=1

Li

(
fi(x

k)− fi,min
)

+M2 ·
n∑
p 6=q

Lp

(
fq(x

k)− fq,min
)

=
2

b2m2

[
M2 ·

(
n∑
i=1

Li

)(
n∑
i=1

fi(x
k)− fi,min

)]

+
2

b2m2

[
(M1 −M2) ·

n∑
i=1

Li

(
fi(x

k)− fi,min
)]

=
n2

b2m2
·M2 · 2L̄

(
f(xk)− fmin

)
+

2n

b2m2
(M1 −M2) · 1

n

n∑
i=1

Li

(
fi(x

k)− fi,min
)

≤ n2

b2m2
·M2 · 2L̄

(
f(xk)− fmin

)
+

n

b2m2
(M1 −M2) · 2L̃

(
f(xk)− fmin

)
. (35)

Substituting (35) into (31), we can obtain

E‖xk+1 − x∗‖2 ≤ (1− µγ)‖xk − x∗‖2 − 2γ
(
f(xk)− f(x∗)

)
+ γ2 n2

b2m2
·M2 · 2L̄

(
f(xk)− fmin

)
+ γ2 n

b2m2
(M1 −M2) · 2L̃

(
f(xk)− fmin

)
≤ (1− µγ)‖xk − x∗‖2

− 2γ

(
1−

(
n2L̄

b2m2
M2 +

nL̃

b2m2
(M1 −M2)

)
γ

)(
f(xk)− f(x∗)

)
+

2γ2R

b2m2

(
n2 ·M2 · L̄+ n(M1 −M2) · L̃

)
. (36)

From the definition of stepsize γ, we know that the second term in the last inequality of
(36) can be absorbed. Thus we can derive

E‖xk+1 − x∗‖2 ≤ (1− µγ)‖xk − x∗‖2 +
2γ2R

b2m2

(
n2 ·M2 · L̄+ n(M1 −M2) · L̃

)
.

Taking total expectation and unrolling this recursion across T iterations, we can obtain

E‖xT − x∗‖2 ≤ (1− µγ)TE‖x0 − x∗‖2 +
2γRM

µb2m2
.
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A.10 Proof of Corollary 16

Proof Following the proof of Corollary 5, we know that as long as (1−µγ)TE‖x0−x∗‖2 ≤
ε/2. GGD-WoR can achieve ε-optimality under strongly-convex assumption, which means

T ln(1− µγ) + ln
(
2E‖x0 − x∗‖2

)
≤ ln ε.

Rearranging the terms and noticing that ln(1− x) ≤ −x holds for x ∈ [0, 1), as long as we
keep

Tγµ ≥ ln

(
2E‖x0 − x∗‖2

ε

)
,

the expected optimality gap is less than ε, which means that T should satisfy

T ≥ max

{
1

2
,

M

b2m2µ
,

4RM

εµ2b2m2

}
ln

(
2E‖x0 − x∗‖2

ε

)
.

A.11 Proof of Theorem 17

Proof Using the proof of Theorem 8, we have

E‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γ
(
f(xk)− f(x∗)

)
+ γ2E‖gm,b(xk)‖2. (37)

From (35), we know that E‖gm,b(xk)‖2 can be bounded by

E‖gm,b(xk)‖2 ≤
2M

b2m2

(
f(xk)− f(x∗)

)
+

2RM

b2m2
. (38)

Combining (37) and (38), we can derive

E‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γ

(
1− γM

b2m2

)(
f(xk)− f(x∗)

)
+

2γ2RM

b2m2
.

Rearranging the terms and noting γ ≤ b2m2/2M , we can obtain

γ
(
f(xk)− f(x∗)

)
≤ ‖xk − x∗‖2 − E‖xk+1 − x∗‖2 +

2γ2RM

b2m2
.

Taking total expectation and summing over T iterations, we have

γ
T−1∑
k=0

E
[
f(xk)− f(x∗)

]
≤ E‖x0 − x∗‖2 +

2γ2RMT

b2m2
.

Dividing γT on both side, due to the convexity of the objective function f , we have

E [f(x̂)− f(x∗)] ≤ E‖x0 − x∗‖2

Tγ
+

2γRM

b2m2
.
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A.12 Proof of Corollary 18

Proof From the definition of stepsize γ, we know that as long as E‖x0 − x∗‖2/Tγ ≤ ε/2,
that is

T ≥ 2E‖x0 − x∗‖2

εγ
,

holds, GGD-WoR can achieve ε-optimality. since γ = b2m2/2M · min{1, ε/2R}, we can
obtain

T ≥ 4ME‖x0 − x∗‖2

εb2m2 min{1, ε/2R}
.

A.13 Proof of Theorem 19

Proof Using the proof of Theorem 10, we can obtain

E
[
f(xk+1)

]
− f(xk) ≤ −γ‖∇f(xk)‖2 +

γ2L

2
E‖gm,b(xk)‖2. (39)

Substituting (38) into (39), we have

E
[
f(xk+1)

]
− f(xk) ≤ −γ‖∇f(xk)‖2 +

γ2LM

b2m2

(
f(xk)− fmin

)
.

Consider the sequence {αk}, where αk = (1 + γ2LM/b2m2)α0 and α0 > 0 is a constant.
Recall the technical tricks used in proof of Theorem 10, we can proceed the proof with

γ

(
1 +

γ2LM

b2m2

)−1

αkE‖∇f(xk)‖2 ≤ αkδk − αk+1δk+1.

Summing over T iterations and rearranging the terms, we have

γ

(
1 +

γ2LM

b2m2

)−1

min
k=0,...,T−1

E‖∇f(xk)‖2 ≤ α0δ0∑T−1
k=0 αk

.

Rearranging the terms, we can conclude

min
k=0,...,T−1

E‖∇f(xk)‖2 ≤ 1

γ

(
1 +

γ2LM

b2m2

)
α0δ0∑T−1
k=0 αk

≤ γLM

b2m2

 1

1−
(

1 + γ2LM
b2m2

)−T
 δ0

≤ γLM

b2m2

(
1 +

b2m2

γ2LMT

)
δ0

≤ ε

2
+

δ0

γT
.
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Appendix B. Proofs of Theorems and Corollaries in Section 5

In this section, we prove the theorems and corollaries in Section 5.

B.1 Proof of Theorem 21

Proof Recall that the decomposition used in the proof of Theorem 4,

‖xk+1
s − x∗‖2 = ‖xks − γg̃km,b − x∗‖2 = ‖xks − x∗‖2 − 2γ〈xks − x∗, g̃km,b〉+ γ2‖g̃km,b‖2.

Taking the conditional expectation on xks and all past, we can obtain

E‖xk+1
s − x∗‖2 = ‖xks − x∗‖2 − 2γ〈xks − x∗,∇f(xks)〉+ γ2E‖g̃km,b‖2. (40)

Now we deal with the third term in (40),

E‖g̃km,b‖2 = E‖gm,b(xks)− gm,b(x̄) +∇f(x̄)‖2 ≤ 2E‖gm,b(xks)− gm,b(x̄)‖2 + 2‖∇f(x̄)‖2. (41)

We first deal with E‖gm,b(xks)− gm,b(x̄)‖2, similar to the proof of Theorem 4,

E
∥∥∥gm,b(xks)− gm,b (x̄)

∥∥∥2
= E

d∑
i=1

1

b2P 2
Smri

(
∂fSmri
∂xi

(xks)−
∂fSmri
∂xi

(x̄)

)2

=
d∑
i=1

E

E
 1

b2P 2
Smri

(
∂fSmri
∂xi

(xks)−
∂fSmri
∂xi

(x̄)

)2

| Sbm


=

d∑
i=1

E

 1

b2

b∑
j=1

1

PSmj

(
∂fSmj
∂xi

(xks)−
∂fSmj
∂xi

(x̄)

)2


= E

 1

b2

b∑
j=1

1

PSmj
‖∇fSmj (x

k
s)−∇fSmj (x̄)‖2

 .
Recalling the resampling probability defined in Algorithm 2, we have

E‖gm,b(xk)− gm,b(x̄)‖2 = E

 1

b2

 b∑
j=1

‖∇fSmj (x
k
s)−∇fSmj (x̄)‖

2
=

1

b2
E

 b∑
j=1

‖∇fSmj (x
k
s)−∇fSmj (x̄)‖2


+

1

b2
E

 b∑
u6=t
‖∇fSmu (xks)−∇fSmu (x̄)‖ · ‖∇fSmt (x

k
s)−∇fSmt (x̄)‖


=

1

b
E‖∇fSm1

(xks)−∇fSm1
(x̄)‖2

+
b− 1

b

(
E‖∇fSm1

(xks)−∇fSm1
(x̄)‖

)2
. (42)
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We first deal with the second term in the last equality of (42).

(
E‖∇fSm1

(xks)−∇fSm1
(x̄)‖

)2
≤ E

 1

m

∑
i∈Sm1

‖∇fi(xks)−∇fi(x̄)‖

2

≤

(
1

n

n∑
i=1

‖∇fi(xks)−∇fi(x̄)‖

)2

≤ 1

n

n∑
i=1

‖∇fi(xks)−∇fi(x̄)‖2, (43)

where the last inequality holds due to Hölder inequality. The last inequality can be further
bounded by

1

n

n∑
i=1

‖∇fi(xks)−∇fi(x̄)‖2 =
1

n

n∑
i=1

‖∇fi(xks)−∇fi(x∗) +∇fi(x∗)−∇fi(x̄)‖2

≤ 2

n

n∑
i=1

‖∇fi(xks)−∇fi(x∗)‖2 +
2

n

n∑
i=1

‖∇fi(x∗)− fi(x̄)‖2

≤ 4L

n

n∑
i=1

(
fi(x

k
s)− fi(x∗)− 〈∇fi(x∗), xks − x∗〉

)
+

4L

n

n∑
i=1

(fi(x̄)− fi(x∗)− 〈∇fi(x∗), x̄− x∗〉)

= 4L
(
f(xks)− f(x∗)

)
+ 4L (f(x̄)− f(x∗)) . (44)

The last inequality holds because of (14). Now we back to the first term in the last equality
of (42). From (19), if we replace ∇fi(xk) with ∇fi(xks)−∇fi(x̄), then we have

E‖∇fSm1
(xks)−∇fSm1

(x̄)‖2 = E

‖ 1

m

∑
i∈Sm1

(
∇fi(xks)−∇fi(x̄)

)
‖2


=
n(m− 1)

m(n− 1)
‖∇f(xks)−∇f(x̄)‖2

+
n−m
m(n− 1)

1

n

n∑
i=1

‖∇fi(xks)−∇fi(x̄)‖2. (45)

Substituting (43) and (45) into (42), we have

E‖gm,b(xks)− gm,b(x̄)‖2 ≤ n(m− 1)

bm(n− 1)
‖∇f(xks)−∇f(x̄)‖2

+

(
n−m

bm(n− 1)
+
b− 1

b

)
1

n

n∑
i=1

‖∇fi(xks)−∇fi(x̄)‖2.
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From L-smoothness and (44), we can obtain

E‖gm,b(xks)− gm,b(x̄)‖2 ≤ 4L
(
f(xks)− f(x∗)

)
+ 4L (f(x̄)− f(x∗)) . (46)

Substituting (46) into (41), we have

E‖g̃km,b‖2 ≤ 2E‖gm,b(xks)− gm,b(x̄)‖2 + 2‖∇f(x̄)‖2

≤ 8L
(
f(xks)− f(x∗)

)
+ 12L (f(x̄)− f(x∗)) . (47)

Substituting (47) into (40), we can obtain

E‖xk+1
s − x∗‖2 ≤ ‖xks − x∗‖2 − 2γ〈xks − x∗,∇f(xks)〉+ 8Lγ2

(
f(xks)− f(x∗)

)
+ 12Lγ2 (f(x̄)− f(x∗))

≤ (1− γµ)‖xks − x∗‖2 − 2γ(1− 4γL)
(
f(xks)− f(x∗)

)
+ 12Lγ2 (f(x̄)− f(x∗)) . (48)

The second inequality holds due to µ-strong convexity. Using Lemma 31, we know that
(1 − γµ) > 0 since γ ≤ 1/16L and L ≥ µ. Taking the total expectation and iterating over
k = 0, 1, ..., q − 1, we have

E‖xqs − x∗‖2 ≤ (1− γµ)qE‖x0
s − x∗‖2

− 2γ(1− 4Lγ)

q−1∑
k=0

(1− γµ)q−1−kE
[
f(xks)− f(x∗)

]

+ 12Lγ2E [f(x̄)− f(x∗)]

q−1∑
k=0

(1− γµ)q−1−k.

Considering the option (a) in the outer loop and the definitions of Vq and pk in (10), we
have

E‖xqs − x∗‖2 ≤ (1− γµ)qE‖xqs−1 − x
∗‖2 − 2γ(1− 4Lγ)Vq

q−1∑
k=0

pkE
[
f(xks)− f(x∗)

]
+ 12Lγ2VqE [f(x̄)− f(x∗)] . (49)

Define Lyapunov function Φs as follows.

Φs = ‖xqs − x∗‖2 + Ψs, where Ψs = 24Lγ2VqE [f(x̄s)− f(x∗)] .

Noticing that 1− γµ > 0 implies that pk > 0 for k = 0, ..., q − 1 and
∑q−1

k=0 pk = 1, we have

f(x̄s)− f(x∗) = f

(
q−1∑
k=0

pkx
k
s

)
− f(x∗) ≤

q−1∑
k=0

pk

(
f(xks)− f(x∗)

)
.
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The last inequality holds using Jensen’s inequality and the fact that f is convex. Hence,
the expectation of Ψs can be bounded by

E[Ψs] ≤ 24Lγ2Vq

q−1∑
k=0

pkE
[
f(xks)− f(x∗)

]
. (50)

Taking the total expectation of Lyapunov function, we have

E[Φs] = E‖xks − x∗‖2 + E[Ψs]. (51)

Substituting (49) into (51), we have

E[Φs] ≤ (1− γµ)qE‖xqs−1 − x
∗‖2 − 2γ(1− 4Lγ)Vq

q−1∑
k=0

pkE
[
f(xks)− f(x∗)

]
+ 12Lγ2VqE [f(x̄)− f(x∗)] + E[Ψs].

Noticing that x̄ = x̄s−1 and combining (50), we have

E[Φs] ≤ (1− γµ)qE‖xqs−1 − x
∗‖2 − 2γ(1− 4Lγ)Vq

q−1∑
k=0

pkE
[
f(xks)− f(x∗)

]

+ 12Lγ2VqE [f(x̄s−1)− f(x∗)] + 24Lγ2Vq

q−1∑
k=0

pkE
[
f(xks)− f(x∗)

]
= (1− γµ)qE‖xqs−1 − x

∗‖2 +
1

2
E[Ψs−1]

− 2γ(1− 16Lγ)Vq

q−1∑
k=0

pkE
[
f(xks)− f(x∗)

]
≤ (1− γµ)qE‖xqs−1 − x

∗‖2 +
1

2
E[Ψs−1] ≤ ρE[Φs−1]

where the second inequality holds due to γ ≤ 1/16L and ρ = max{(1− γµ)q, 1/2}. Recur-
sively applying this inequality for s times outer loops, we have

E[Φs] ≤ ρsE[Φ0].

Since Ψs ≥ 0, we can obtain

E‖xqs − x∗‖2 ≤ ρsE[Φ0].

Due to the L-smoothness of f , we have

E‖xqs − x∗‖2 ≤ ρs(1 + 12L2γ2Vq)E‖xq0 − x
∗‖2.
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B.2 Proof of Corollary 22

Proof To obtain an ε-optimal solution, we should ensure

ρT (1 + 12L2γ2Vq)E‖xq0 − x
∗‖2 ≤ ε.

Since q = n and γ = 1/16L, we can obtain

ρT
(

64 + 3Vq
64

)
E‖xq0 − x

∗‖2 ≤ ε.

Rearranging the terms and taking logarithm on the both side, we have

T ln ρ ≤ ln
(64 + 3Vq)E‖xq0 − x∗‖2

64ε
,

which is equivalent to

T ≥ 1

ln(1/ρ)
· ln (64 + 3Vq)E‖xq0 − x∗‖2

64ε
.

Recalling that ρ = max{(1− γµ)q, 1/2}, then we have

1

ln(1/ρ)
= max

{
− 1

n
· 1

ln
(
1− 1

16κ

) , 1

ln 2

}
. (52)

Since lnx ≤ x− 1 for all x > 0, (52) can be upper bounded by

max

{
16κ

n
, 2

}
≥ max

{
− 1

n
· 1

ln
(
1− 1

16κ

) , 1

ln 2

}
=

1

ln(1/ρ)
.

Then as long as the iteration number for the outer loop T satisfies

T ≥ max

{
16κ

n
, 2

}
· ln (64 + 3Vq)E‖xq0 − x∗‖2

64ε
,

GGD-WR-SVRG can achieve the ε-optimality. Noticing that within one outer loop, the
number of partial derivative evaluations is n(1 +mb)d. Then the total complexity is

2(1 + bm)d ·max {8κ, n} ln

(
(64 + 3Vq)E‖xq0 − x∗‖2

64ε

)
.
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B.3 Proof of Theorem 23

Proof From the first inequality of (48) and the convexity of f , we know that

E‖xk+1
s − x∗‖2 ≤ ‖xks − x∗‖2 − 2γ (1− 4Lγ)

(
f(xks)− f(x∗)

)
+ 12Lγ2 (f(x̄)− f(x∗))

≤ ‖xks − x∗‖2 − 2γ(1− 10Lγ)
(
f(xks)− f(x∗)

)
+ 12Lγ2 (f(x̄)− f(x∗))

− 12Lγ2
(
f(xks)− f(x∗)

)
.

Rearranging the terms, taking the total expectation, we obtain

2γ(1− 10Lγ)E
[
f(xks)− f(x∗)

]
≤ E‖xks − x∗‖2 + 12Lγ2E [f(x̄)− f(x∗)]

− E‖xk+1
s − x∗‖2 − 12Lγ2E

[
f(xks)− f(x∗)

]
. (53)

Consider the option (b) in the outer loop and define Lyapunov function P s as follows,

P s , E
[
‖x0

s+1 − x∗‖2
]

+ 12Lγ2qE [f(x̄s)− f(x∗)] ≥ 0.

Sum (53) recursively over k = 0, 1, ...q − 1. We obtain

2γ(1− 10Lγ)

q−1∑
k=0

E
[
f(xks)− f(x∗)

]
≤ P s−1 − P s.

Summing over T outer loop, we have

2γ(1− 10Lγ)
T∑
s=1

q−1∑
k=0

E
[
f(xks)− f(x∗)

]
≤ P 0 − P T ≤ P 0.

Dividing qT on the both side, we obtain

E

[
1

qT

T∑
s=1

q−1∑
k=0

(
f(xks)− f(x∗)

)]
≤ P 0

2qTγ(1− 10Lγ)
.

Denoting x̂ = 1
qT

∑T
s=1

∑q−1
k=0 x

k
s , due to the convexity of the function f , we can conclude

E [f(x̂)− f(x∗)] ≤ P 0

2qTγ(1− 10Lγ)
=

E‖x̄0 − x∗‖2 + 12Lγ2qE [f(x̄0)− f(x∗)]

2qTγ(1− 10Lγ)
. (54)

B.4 Proof of Corollary 24

Proof Substitute γ = 0.05/L into (54), we obtain

E [f(x̂)− f(x∗)] ≤ 20LE‖x̄0 − x∗‖2 + 0.6qE [f(x0)− f(x∗)]

qT
.
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If 20LE‖x̄0 − x∗‖2/qT ≤ ε/2 and 0.6 [f(x0)− f(x∗)] /T ≤ ε/2, we can ensure that the
expected optimality gap E [f(x̂)− f(x∗)] is not greater than any given positive real number.
To achieve ε-optimality, iteration number of outer loop T should satisfy

T ≥ max

{
40LE‖x̄0 − x∗‖2

nε
,
1.2E [f(x̄0)− f(x∗)]

ε

}
.

Since q = n, the total complexity is

nd(1 + bm) ·max

{
40LE‖x̄0 − x∗‖2

nε
,
1.2E [f(x̄0)− f(x∗)]

ε

}
.

B.5 Proof of Theorem 25

Proof Define Lyapunov function

Rks = E
[
f(xks) + ηk‖xks − x̄‖2

]
,

where ηk is defined in (11). From L-smoothness, we can obtain

f(xk+1
s ) ≤ f(xks) + γ〈∇f(xks), x

k+1
s − xks〉+

L

2
‖xk+1

s − xks‖2.

Taking expectation condition on xks and all past, we have

E
[
f(xk+1

s )
]
≤
[
f(xks)

]
− γ‖∇f(xks)‖2 +

γ2L

2
E‖g̃km,b‖2. (55)

Recalling the proof of Theorem 21, we can bound E‖g̃km,b‖2 using (40) where the term

E‖gm,b(xks)− gm,b(x̄)‖2 can be bounded by

E‖gm,b(xks)− gm,b(x̄)‖2 ≤ n(m− 1)

bm(n− 1)
‖∇f(xks)−∇f(x̄)‖2

+

(
n−m

bm(n− 1)
+
b− 1

b

)
1

n

n∑
i=1

‖∇fi(xks)−∇fi(x̄)‖2

≤ n(m− 1)

bm(n− 1)
L2‖xks − x̄‖2

+

(
n−m

bm(n− 1)
+
b− 1

b

)
1

n

n∑
i=1

L2‖xks − x̄‖2

= L2‖xks − x̄‖2. (56)

The term ‖∇f(x̄)‖2 can be bounded by

‖∇f(x̄)‖2 ≤ 2‖∇f(xks)− f(x̄)‖2 + 2‖∇f(xks)‖2 ≤ 2L2‖xks − x̄‖2 + 2‖∇f(xks)‖2. (57)
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Combining (56) and (57), we can bound E‖g̃km,b‖2 by

E‖g̃km,b‖2 ≤ 6L2‖xks − x̄‖2 + 4‖∇f(xks)‖2. (58)

Now let us set this result aside, E‖xk+1
s − x̄‖2 can be bounded by

E‖xk+1
s − x̄‖2 = E‖xk+1

s − xks + xks − x̄‖2

= γ2E‖g̃km,b‖2 + ‖xks − x̄‖2 + 2γ〈∇f(xks), x
k
s − x̄〉

≤ γ2E‖g̃km,b‖2 + ‖xks − x̄‖2 +
γ

τ
‖∇f(xks)‖+ τγ‖xks − x̄‖2, (59)

where the last inequality holds because

∀τ > 0, x, y ∈ R, xy ≤ 1

2τ
x2 +

τ

2
y2. (60)

From (55) and (59), taking total expectation, we can bound Rk+1
s by

Rk+1
s = E

[
f(xk+1

s )
]

+ ηk+1E‖xk+1
s − x̄‖2

≤ E
[
f(xks)

]
− γE‖∇f(xks)‖2 +

γ2L

2
E‖g̃km,b‖2

+ ηk+1

(
γ2E‖g̃km,b‖2 + E‖xks − x̄‖2 +

γ

τ
E‖∇f(xks)‖2 + τγE‖xks − x̄‖2

)
.

Combining (58), we can obtain

Rk+1
s ≤ E

[
f(xks)

]
− γE‖∇f(xks)‖2 + 3γ2L3E‖xks − x̄‖2 + 2γ2LE‖∇f(xks)‖2

+ ηk+1γ
2
(

6L2E‖xks − x̄‖2 + 4E‖∇f(xks)‖2
)

+ (1 + τγ)ηk+1E‖xks − x̄‖2 +
ηk+1γ

τ
E‖∇f(xks)‖2

= E
[
f(xks)

]
−
(
γ − 2γ2L− 4γ2ηk+1 −

ηk+1γ

τ

)
E‖∇f(xks)‖2

+
(
3γ2L3 + 6γ2L2ηk+1 + (1 + τγ)ηk+1

)
E‖xks − x̄‖2

= Rks −
(
γ − 2γ2L− 4γ2ηk+1 −

ηk+1γ

τ

)
E‖∇f(xks)‖2.

Rearranging the terms, we have(
γ − 2γ2L− 4γ2ηk+1 −

ηk+1γ

τ

)
E‖∇f(xks)‖2 ≤ Rks −Rk+1

s .

Since {ηk} is decreasing, we can obtain(
γ − 2γ2L− 4γ2η0 −

η0γ

τ

)
E‖∇f(xks)‖2 ≤ Rks −Rk+1

s .

Summing this recursion over q inner loops, noting that x̄s−1 = xqs−1 = x0
s and ηq = 0, we

have (
γ − 2γ2L− 4γ2η0 −

η0γ

τ

) q−1∑
k=0

E‖∇f(xks)‖2 ≤ R0
s −Rk+1

s = E [f(x̄s−1)− f(x̄s)] .
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Summing this recursion over T outer loops, we have(
γ − 2γ2L− 4γ2η0 −

η0γ

τ

) T∑
s=1

q−1∑
k=0

E‖∇f(xks)‖2 ≤ E
[
f(x̄0)− f(xqT )

]
≤ E [f(x̄0)− fmin] .

Dividing qT on the both side, rearranging the terms, we can obtain

min
k=0,1,...,q−1
s=1,2,...,T

E‖∇f(xks)‖2 ≤
1

qT

T∑
s=1

q−1∑
k=0

E‖∇f(xks)‖2 ≤
E
[
f(x0

1)− fmin
]

qTγ(1− 2γL− 4γη0 − η0/τ)
.

B.6 Proof of Corollary 26

Proof To achieve the ε-optimality, we need to ensure

E
[
f(x0

1)− fmin
]

qTγ(1− 2γL− 4γη0 − η0/τ)
≤ ε.

Rearranging the terms, we have

T ≥
E
[
f(x0

1)− fmin
]

ε
· 1

qγ
· 1

1− 2γL− 4γη0 − η0/τ
. (61)

The second term on the right side of (61) can be upper bounded by

1

qγ
≤ 7L

n1/3
. (62)

η0 can be upper bounded by

η0 = 3γ2L3 (1 + τγ + 6γ2L2)q − 1

τγ + 6γ2L2
=

3ψ2L

n4/3
·
(
1 + ψ/n+ 6ψ2/n4/3

)dn/7ψe − 1

ψ/n+ 6ψ2/n4/3

= 3ψ3L

(
1 + ψ/n+ 6ψ2/n4/3

)dn/7ψe − 1

ψn1/3 + 6ψ2

≤ 3ψ2L
(1 + 7ψ/n)dn/7ψe − 1

ψn1/3

≤ 3ψL(e− 1)

n1/3
,

where the first inequality holds because ψ/n+6ψ2/n4/3 ≤ 7ψ/n for ψ < 1 and ψn1/3+6ψ2 >
ψn1/3, the last inequality holds because (1 + 1/x)x ≤ e. Combining the definition of ψ, we
know that

1− 2γL− 4γη0 − η0/τ ≥ 1− 2ψ

n2/3
− 12ψ(e− 1)

n
− 3ψ(e− 1)

≥ 3

4
− 3ψ(e− 1) ≥ 1

2
. (63)
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Combining (62) and (63), we can upper bound the right side of (61) by

E
[
f(x0

1)− fmin
]

ε
· 14L

n1/3
≥

E
[
f(x0

1)− fmin
]

ε
· 1

qγ
· 1

1− 2γL− 4γη0 − η0/τ
.

Thus as long as we keep the iteration number of outer loop

T ≥
E
[
f(x0

1)− fmin
]

ε
· 14L

n1/3
,

non-convex GGD-WR-SVRG can achieve ε-optimality, which indicates that the total com-
plexity is

(n+ dn/7ψe ·mb)d ·
14LE

[
f(x0

1)− fmin
]

εn1/3
.

B.7 Proof of Theorem 28

Proof Most of this proof follows the analysis provided by Défossez et al. (2020) except
that we derive the theoretical bound of GGD-WR-Adam using the original form of stepsize
given by Kingma and Ba (2014) instead of a simplified stepsize given by Défossez et al.
(2020). Denote

Gn = ∇f(xn−1) and ζn,(i) =
hn,(i)√
σ + vn,(i)

and ξn,(i) =
gn,(i)√
σ + vn,(i)

,

and define ṽn,k ∈ Rd as

ṽn,k,(i) = βk2vn−k,(i) + En−k−1

 n∑
j=n−k+1

βn−j2 g2
j,(i)

 ,
where En−k−1[·] represents the expectation condition on all information before n − k-th
iteration. Before deriving the theoretical bound for GGD-WR-Adam, we first prove some
useful lemmas.

Lemma 33 Suppose that Assumption 27 holds, the objective function f and the individual
loss function fi are L-smooth and 0 < β1 < β2 < 1, then for all iterations n ∈ N+ generated
by Algorithm 3, it satisfies

E

[
d∑
i=1

Gn,(i)
hn,(i)√
σ + vn,(i)

]
≥ 1

2

(
d∑
i=1

n−1∑
k=0

βk1E

[
G2
n−k,(i)√

σ + ṽn,k+1,(i)

])

− γ2
maxL

2 (1− β1)1/2

4R

n−1∑
k=0

βk1
k

k + 1

k∑
l=1

E‖ζn−l‖2

− 3R

(1− β)1/2

(
n−1∑
k=0

(
β1

β2

)k
(k + 1)E‖ξn−k‖2

)
. (64)
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Proof For some n ∈ N+, we have

d∑
i=1

Gn,(i)
hn,(i)√
σ + vn,(i)

=
d∑
i=1

n−1∑
k=0

βk1Gn−k,(i)
gn−k,(i)√
σ + vn,(i)︸ ︷︷ ︸

A

+
d∑
i=1

n−1∑
k=0

βk1
(
Gn,(i) −Gn−k,(i)

) gn−k,(i)√
σ + vn,(i)︸ ︷︷ ︸

B

.

Let

τ =
(1− β1)1/2

2R(k + 1)
, x =

|gn−k,(i)|√
σ + vn,(i)

and y = |Gn,(i) −Gn−k,(i)|.

Using (60), we have

|B| ≤
d∑
i=1

n−1∑
k=0

βk1

(
(1− β1)1/2

4R(k + 1)

(
Gn,(i) −Gn−k,(i)

)2
+

R(k + 1)

(1− β1)1/2

g2
n−k,(i)

σ + vn,(i)

)
.

Since σ + vn,(i) ≥ σ + βk2vn−k,(i) ≥ βk2 (σ + vn−k,(i), we can obtain

|B| ≤
d∑
i=1

n−1∑
k=0

βk1

(
(1− β1)1/2

4R(k + 1)

(
Gn,(i) −Gn−k,(i)

)2
+

R(k + 1)

(1− β1)1/2

ξ2
n−k,(i)

βk2

)
. (65)

From the L-smoothness of objective function f , we have

‖Gn −Gn−k‖2 ≤ L2‖xn−1 − xn−k−1‖2 = L2

∥∥∥∥∥
k∑
l=1

γn−lζn−l

∥∥∥∥∥
2

≤ γ2
maxL

2k

k∑
l=1

‖ζn−l‖2, (66)

where γmax = max{γk}. Substituting (66) into (65), we have

|B| ≤ γ2
maxL

2
n−1∑
k=0

βk1
(1− β1)1/2k

4R(k + 1)

k∑
l=1

‖ζn−l‖2

+
R

(1− β1)1/2

n−1∑
k=0

(
β1

β2

)k
(k + 1)‖ξn−k‖2. (67)

Now we turn to deal with the term A. For simplicity, we drop the indices for now and denote
G = Gn−k,(i), g = gn−k,(i), ṽ = ṽn,k+1,(i), v = vn,(i),

θ2 =

n∑
j=n−k

βn−j2 g2
j,(i) and r2 = En−k−1θ

2.
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Since ṽ − v = r2 − θ2, taking total expectation, we can rewrite the inside terms of term A
as

E
[
G

g√
σ + v

]
= E

[
G

g√
σ + ṽ

+Gg

(
1√
σ + v

− 1√
σ + ṽ

)]
= E

[
En−k−1

[
G

g√
σ + ṽ

]
+Gg

θ2 − δ2

√
σ + v

√
σ + ṽ(

√
σ + v +

√
σ + ṽ)

]
= E

[
G2

√
σ + ṽ

]
+ E[Gg

θ2 − δ2

√
σ + v

√
σ + ṽ(

√
σ + v +

√
σ + ṽ)︸ ︷︷ ︸

C

]. (68)

Now we take a look at C,

|C| ≤ |Gg| r2

(σ + v)1/2(σ + ṽ)︸ ︷︷ ︸
D

+ |Gg| θ2

(σ + v)(σ + ṽ)1/2︸ ︷︷ ︸
E

,

due to the fact that (σ+ v)1/2 + (σ+ ṽ)1/2 ≥ max{(σ+ v), (σ+ ṽ)} and |r2− θ2| ≤ r2 + θ2.
Now using (60) again, if we let

τ =

√
1− β1

√
σ + ṽ

2
, x =

|g|r2

√
σ + ṽ

√
σ + v

and y =
|G|√
σ + ṽ

,

we can obtain

D ≤ G2

4
√
σ + ṽ

+
1√

1− β1

g2r4

√
σ + ṽ

√
σ + v

.

Given that σ + ṽ ≥ r2, taking conditional expectation, we have

En−k−1[D] ≤ G2

4
√
σ + ṽ

+
1√

1− β1

r2

√
σ + ṽ

En−k−1

[
g2

σ + v

]
. (69)

Term E can be bounded in the similar way. If we let

τ =

√
1− β1

√
σ + ṽ

2r2
, x =

|θg|
σ + v

and y =
|Gθ|√
σ + ṽ

,

we can obtain

E ≤ G2

4
√
σ + ṽ

θ2

r2
+

1√
1− β1

r2

√
σ + ṽ

g2θ2

(σ + v)2
. (70)

Considering that σ + v ≥ θ2 and E[θ2/r2] = 1, taking conditional expectation, we have

En−k−1[E] ≤ G2

4
√
σ + ṽ

+
1√

1− β1

r2

√
σ + ṽ

En−k−1

[
g2

(σ + v)

]
. (71)

Noticing that in (70), we possibly divide by zero. It is suffice to notice that if r2 = 0, then
θ2 = 0 a.s. so that E = 0 and (71) still holds. Summing (69) and (71), we have

En−k−1 [|C|] ≤ G2

2
√
σ + ṽ

+
2√

1− β1

r2

σ + ṽ
En−k−1

[
g2

σ + v

]
.
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Since r ≤
√
σ + ṽ, and from the definition of r, we know that r ≤ (k + 1)R. Reintroducing

the indices and noticing that σ + vn,(i) ≥ σ + βk2vn−k,(i) ≥ βk2 (σ + vn−k,(i)), we can obtain
after taking total expectation,

E[|C|] ≤ E

[
1

2

G2
n−k,(i)√

σ + ṽn,k+1,(i)

]
+

2R(k + 1)

(1− β1)1/2βk2
E

[
g2
n−k,(i)

σ + vn−k,(i)

]
. (72)

Substituting (72) into (68), we have

E[A] ≥
d∑
i=1

n−1∑
k=0

(
E

[
G2
n−k,iβ

k
1√

σ + ṽn,k+1,i

]
−

(
1

2
E

[
G2
n−k,iβ

k
1√

σ + ṽn,k,i

]
+

2R(k + 1)√
1− β1βk2

E

[
g2
n−k,iβ

k
1

σ + vn−k,i

]))

=
1

2

(
d∑
i=1

n−1∑
k=0

βk1E

[
G2
n−k,i√

σ + ṽn,k+1,i

])
− 2R√

1− β1

(
d∑
i=1

n−1∑
k=0

(
β1

β2

)k
(k + 1)E ‖ξn−k‖2

)
.

(73)

Combining (67) and (73), we prove Lemma 33.

Lemma 34 Suppose that 0 < β1 < β2 ≤ 1. For a sequence of real numbers {an}, denoting
bn =

∑n
j=1 β

n−j
2 a2

j and cn =
∑n

j=1 β
n−j
1 aj, then we have

n∑
j=1

c2
j

σ + bj
≤ 1

(1− β1)(1− β1/β2)

(
ln

(
1 +

bn
σ

)
− n ln(β2)

)
Proof For some j ∈ N+, j ≤ n, using Jensen inequality, we have

c2
j ≤

1

1− β1

j∑
l=1

βj−l1 a2
l ,

so that
c2
j

σ + bj
≤ 1

1− β1

j∑
l=1

βj−l1

a2
l

σ + bj
.

From the definition of bl, for any l ≤ j, we know that σ + bj ≥ σ + βj−l2 bl ≥ βj−l2 (σ + bl).
Then we can obtain

c2
j

σ + bj
≤ 1

1− β1

j∑
l=1

(
β1

β2

)j−l a2
l

σ + bl
.

Summing over all j ∈ [n], we have

n∑
j=1

c2
j

σ + bj
≤ 1

1− β1

n∑
j=1

j∑
l=1

(
β1

β2

)j−l a2
l

σ + bl

=
1

1− β1

n∑
l=1

a2
l

σ + bl

n∑
j=l

(
β1

β2

)j−l
≤ 1

(1− β1) (1− β1/β2)

n∑
l=1

a2
l

σ + bl
. (74)
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The main term in summation (74) can be bounded by

a2
l

σ + bl
≤ ln(σ + bl)− ln(σ + bl − a2

l )

= ln(σ + bl)− ln(σ + β2bl−1)

= ln

(
σ + bl
σ + bl−1

)
+ ln

(
σ + bl−1

σ + β2bl−1

)
≤ ln

(
σ + bl
σ + bl−1

)
− ln(β2).

Then (74) can be further bounded by

n∑
j=1

c2
j

σ + bj
≤ 1

(1− β1) (1− β1/β2)

n∑
l=1

a2
l

σ + bl

≤ 1

(1− β1)(1− β1/β2)

(
ln

(
1 +

bn
σ

)
− n ln(β2)

)
,

which proves Lemma 34.

Lemma 35 Given 0 < x < 1, we have

∞∑
n=0

xnn =
x

(1− x)2
.

Proof Since 0 < x < 1, we know that the infinite series
∑∞

n=0 x
nn is convergent. Denote

S(x) =
∑∞

n=0 x
nn, then for any 0 < x < 1, dividing x on the both side, then we have

∫ s

0

S(x)

x
dx =

∞∑
n=0

∫ s

0
nxn−1dx =

∞∑
n=0

sn =
s

1− s
.

Taking derivatives with respect to s, we have

S(s)

s
=
∂
(

s
1−s

)
∂s

=
1

(1− s)2
,

which proves Lemma 35.

Having finished the proof of three useful lemmas, we now formally prove Theorem 28. For
some n ∈ N+, using L-smoothness of objective function f , we have

f(xn) ≤ f(xn−1)− γnG>n ζn +
γ2
nL

2
‖ζn‖2.
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Taking total expectation and using Lemma 33, we have

E [f (xn)] ≤ E
[
f
(
xn−1

)]
− γn

2

(
d∑
i=1

n−1∑
k=0

βk1E

[
G2
n−k,(i)

2
√
σ + ṽn,k+1,(i)

])
+
γ2
nL

2
E
[
‖ζn‖2

]
+
γ3
maxL

2
√

1− β1

4R

(
n−1∑
l=1

E ‖ζn−l‖2
n−1∑
k=l

βk1
k

k + 1

)

+
3γnR√
1− β1

(
n−1∑
k=0

(
β1

β2

)k
(k + 1)E ‖ξn−k‖2

)
.

Since for any k ∈ N and k < n, we have
√
σ + ṽn,k+1,(i) ≤ R

√∑n−1
j=0 β

j
2. Denoting Ωn =√∑n−1

j=0 β
j
2, we have

E [f (xn)] ≤ E
[
f
(
xn−1

)]
− γn

2RΩn

(
n−1∑
k=0

βk1E‖Gn−k‖2
)

+
γ2
nL

2
E
[
‖ζn‖22

]
+
γ3
maxL

2
√

1− β1

4R

(
n−1∑
l=1

E ‖ζn−l‖22
n−1∑
k=l

βk1
k

k + 1

)

+
3γnR√
1− β1

(
n−1∑
k=0

(
β1

β2

)k
(k + 1)E ‖ξn−k‖22

)
.

Summing over all T iterations, rearranging the terms, noticing that the objective function
is bounded below by fmin, we have

1

2R

T∑
n=1

γn
Ωn

n−1∑
k=0

βk1E ‖Gn−k‖
2

︸ ︷︷ ︸
F

≤ E
(
f
(
x0
)
− fmin

)
+
γ2
maxL

2

T∑
n=1

E ‖ζn‖2︸ ︷︷ ︸
G

+
γ3
maxL

2(1− β1)1/2

4R

T∑
n=1

n−1∑
l=1

E ‖ζn−l‖2
n−1∑
k=l

βk1
k

k + 1︸ ︷︷ ︸
H

+
3γmaxR

(1− β1)1/2

T∑
n=1

n−1∑
k=0

(
β1

β2

)k
(k + 1)E ‖ξn−k‖2︸ ︷︷ ︸

I

. (75)

Now we proceed these terms sequentially. Note that γn/Ωn in term F can be lower bounded
by

γn
Ωn

= γ
1− β1

(1− β2)1/2

(1− βn2 )1/2

1− βn
(1− β2)1/2

(1− βn2 )1/2
= γ

1− β1

1− βn1
≥ γ(1− β1).
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Using the change of index j = n− k, we can obtain

F =
1

2R

T∑
n=1

γn
Ωn

n∑
j=1

βn−j1 E ‖Gj‖2

≥ γ (1− β1)

2R

T∑
j=1

E ‖Gj‖2
T∑
n=j

βn−j1

=
γ

2R

T∑
j=1

(
1− βT−j+1

1

)
E ‖Gj‖2

=
γ

2R

T∑
j=1

(
1− βT−j+1

1

)
E
∥∥∇f (xj−1

)∥∥2

=
γ

2R

T−1∑
i=0

(
1− βT−j1

)
E
∥∥∇f (xj)∥∥2

.

Considering the random index ω defined in Theorem 28 and noticing that

T−1∑
j=0

(1− βT−j1 ) = T − β1
1− βT1
1− β1

≥ T − β1

1− β1
= T̃ ,

we have

F ≥ γT̃

2R
E‖∇f(xω)‖2. (76)

Then we take a look at term G. Using Lemma 34, we have

G ≤ γ2
maxL

2(1− β1)(1− β1/β2)

d∑
i=1

(
ln
(

1 +
vT,(i)

σ

)
− T ln(β2)

)
.

Noting that γmax is equivalent to

γ2
n = γ2 (1− β1)2

(1− β2)

1− βn2
(1− βn1 )2

≤ γ2 (1− β1)2

(1− β2)

1

(1− βn1 )2

≤ γ2 1

(1− β2)(1 + β1)2
≤ γ2

1− β2
= γ2

max,

where the last inequality holds because (1−βn1 )2 = (1−β1)2(
∑n−1

k=0 β
k
1 )2 ≥ (1−β1)2(1+β1)2,

we can thus obtain

G ≤ γ2L

2(1− β1)(1− β2)(1− β1/β2)

d∑
i=1

(
ln
(

1 +
vT,(i)

σ

)
− T ln(β2)

)
. (77)
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Next we proceed with term H. Replacing the index j with n− l, we have

H =
γ3
maxL

2(1− β1)1/2

4R

T∑
n=1

n∑
j=1

E ‖ζn−l‖2
n−1∑
k=n−j

βk1
k

k + 1

=
γ3
maxL

2(1− β1)1/2

4R

T∑
j=1

E‖ζj‖2
T∑
n=j

n−1∑
k=n−j

βk1
k

k + 1

=
γ3
maxL

2(1− β1)1/2

4R

T∑
j=1

E‖ζj‖2
T−1∑
k=0

βk1
k

k + 1

j+k∑
n=j

1

=
γ3
maxL

2(1− β1)1/2

4R

T∑
j=1

E‖ζj‖2
T−1∑
k=0

βk1k

≤ γ3
maxL

2(1− β1)1/2

4R

β1

(1− β1)2

T∑
j=1

E‖ζj‖2

≤ γ3L2

4R

(1− β1)1/2

(1− β2)3/2

1

(1− β1)2

T∑
j=1

E‖ζj‖2 =
γ3L2

4R

1

(1− β2)3/2(1− β1)3/2

T∑
j=1

E‖ζj‖2,

where the first inequality holds due to Lemma 35. Using Lemma 34 again, we can obtain

H ≤ γ3L2

4R

1

(1− β2)3/2(1− β1)3/2

T∑
j=1

E‖ζj‖2

≤ γ3L2

4R

1

(1− β2)3/2(1− β1)5/2(1− β1/β2)

d∑
i=1

(
ln
(

1 +
vT,(i)

σ

)
− T ln(β2)

)
. (78)

Finally, we can move on to term I. Replacing index j with n− k, we can obtain

I ≤ 3γmaxR

(1− β1)1/2

T∑
n=1

n−1∑
k=0

(
β1

β2

)k
(k + 1)E ‖ξn−k‖2

≤ 3γmaxR

(1− β1)1/2

T∑
j=1

E‖ξj‖2
T∑
n=j

(
β1

β2

)n−j
(n− j + 1)

≤ 3γR

(1− β1)1/2(1− β2)1/2(1− β1/β2)2

T∑
j=1

E‖ξj‖2.

Again using Lemma 34, we can obtain

I ≤ 3γR

(1− β1)3/2(1− β2)1/2(1− β1/β2)3

d∑
i=1

(
ln
(

1 +
vT,(i)

σ

)
− T ln(β2)

)
(79)

Noticing that we have vT,(i) ≤ R2/1− β2 for any i ∈ [d], substituting (76), (77), (78), (79)
into (75), we can derive the desired result

E‖∇f(xω)‖2 ≤
2RE

(
f(x0)− fmin

)
γT̃

+
J

T̃

(
ln

(
1 +

R2

σ(1− β2)

)
− T ln(β2)

)
,
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where

J =
γdRL

(1− β1)(1− β2)(1− β1/β2)
+

γ2dL2

2(1− β2)3/2(1− β1)5/2(1− β1/β2)

+
6dR2

(1− β1)3/2(1− β2)1/2(1− β1/β2)3
.

B.8 Proof of Corollary 29

Proof From (12), we know that as long as

2R
E
[
f(x0)− fmin

]
γ̃
√
T

≤ ε

3
,
K√
T

ln

(
1 +

TR2

σ

)
≤ ε

3
and

K√
T
≤ ε

3
, (80)

we can ensure the ε-optimality. The first inequality in (80) indicates that

T ≥
36R2

[
Ef(x0)− fmin

]2
γ̃2ε2

. (81)

The left side of second inequality in (80) can be upper bound by

K√
T

ln

(
1 +

TR2

σ

)
= K

ln
(

1 + TR2

σ

)
√

1 + TR2

σ

(
1

T
+
R2

σ

)1/2

≤ K
(

1 +
R2

σ

)1/2 ln
(

1 + TR2

σ

)
√

1 + TR2

σ

≤ K
(

1 +
R2

σ

)1/2 ln
(

1 + TR2

σ

)
(1 + TR2

σ )φ
· 1

(1 + TR2

σ )1/2−φ

≤ K

φe

(
1 +

R2

σ

)1/2

· 1

(1 + TR2

σ )1/2−φ
,

where the last inequality holds due to ln(x)/xφ ≤ 1/(φe) for φ ∈ (0, 1/2). Thus we only
need to ensure that

3K

φeε

(
1 +

R2

σ

)1/2

≤ (1 +
TR2

σ
)1/2−φ,

which is equivalent to

T ≥ σ

R2

((
3K

φeε

) 2
1−2φ

·
(

1 +
R2

σ

) 1
1−2φ

− 1

)
. (82)

Since the second inequality can be bounded by ε/3, the third inequality can be bounded by
ε/3 as well. Combining (81) and (82), we have

T ≥ max

{
36R2

[
Ef(x0)− fmin

]2
γ̃2ε2

,
σ

R2

((
3K

φeε

) 2
1−2φ

·
(

1 +
R2

σ

) 1
1−2φ

− 1

)}
.
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Data set GGD MBSGD SGD-IS SVRG GSVRG Adam GAdam

covtype 1,288.7 1,077.8 4,512.5 2,249.6 3,042.1 1,002.6 1,388.5
ijcnn1 302.8 230.3 527.2 369.1 496.28 280.1 373.3

a9a 165.7 118.4 318.7 318.7 386.6 125.8 172.6
rcv1 649.7 388.3 762.9 1,320.3 2,280.6 516.5 796.8

MNIST 942.1 766.9 ** 988.2 1,835.4 721.2 982.2
CIFAR-10 9,849.7 7,718.2 ** 15,361.5 19,981.2 8,026.5 10,662.3

Table 4: Summary of the execution time (s)

Appendix C. Additional Experiment Results and Network Architectures

In Appendix C, we present some additional experiment results to complement our discus-
sions and provide the convolution neural network architectures used in Section 6.

C.1 Execution Time and Time Plots

All the experiments are carried out on a personal computer (3.70 GHz 12th Gen Intel Core
i5 with 16 GB RAM and NVIDIA RTX 3080). Table 4 presents the execution time of our
programs. From these results, we can see that in general, the increasing in the size of data
sets and the complexity of model, may lead to a longer time that CPU and GPU charge for
execution. The execution time for training CNNs using SGD-IS is not recorded here as the
importance sampling probability is not available.

To further explore the relation of execution time and the performance, we present the
time plots which depict the trade offs between the execution time (x-axis) and the train loss,
square norm of full gradient and test loss (y-axis) respectively in Figures 12 and 13 where
we sketchily show the efficiency of different algorithms in practical use. From Figure 12
and Table 4, we can see that for GAdam and Adam, since grafting gradient based methods
take more time to finish one epoch of training, GAdam is little worse than Adam at the
beginning. However, after about 500 seconds of training, GAdam catches up with Adam
and their performances become quite indistinguishable. The comparison between GSVRG
and SVRG is slightly different in two counts. One is that GSVRG achieves a lower train
loss after about 750 seconds of training and the other is that SVRG achieves a much lower
test loss. When comparing GGD with MBSGD and SGD-IS, we find that although GGD
decreases slower than those two methods, it achieves comparable performances after 700
seconds of training. For training cifar10-nv on CIFAR-10 data set, generally speaking,
grafting gradient based methods are more efficient than stochastic gradient based methods.
Especially in Figures 13(g) and 13(i), GGD-WR-SVRG shows significant improvement over
SVRG. Combining these two figures and the results in Section 6, we can conclude that in
practice, it is worth using grafting gradient to update model parameters as its improvements
over stochastic gradient based methods can compensate the time cost to some extent.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: Comparisons of the train loss (left), square norm of full gradient (middle) and
test loss (right) on rcv1.

C.2 Impact of Minibatching on GGD and SGD-IS

We also run the addtional experiments which are used to compare the impact of the sub-
sampled set size m on GGD and SGD with importance sampling. For the latter one, we
use the average of gradients which are sampled from population with probability Pri ∝ Lri
to update the model parameters. These additional experiments are run to solve the same
L2-regularized logistic regression problems on ijcnn and a9a data sets. For fair comparison,
t-inverse learning schedule is used both for mini-batch SGD with importance sampling and
GGD, the learning rates of two methods with same subsampled set size m are set to be the
same. We present the empirical results in Figures 14 and 15.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: Comparisons of the train loss (left), square norm of full gradient (middle) and
test loss (right) on CIFAR-10.

The suffix −2∧k for k ∈ {4, 5, 6, 7} represents the subsampled set size m (ranging from
16 to 128) used in algorithms. From these results, we can see that when the performance
of MBSGD is quite close to the performance of SGD with importance sampling as shown
in Figure 4(b), GGD does not benefit a lot from increasing mini-batch size as shown in
Figure 15. Coincidentally from Figure 14 we can see that GGD with larger subsampled
set size m can achieve a lower train loss and test loss when the performance of SGD-IS is
better than the performance of mini-batch SGD. As for SGD with importance sampling,
results in Figures 14 and 15 show that SGD with importance seems to be insusceptible to
minibatching technique. Combining Figures 14, 15 and the corresponding results in Figure
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(a) (b) (c)

(d) (e) (f)

Figure 14: Comparisons of the train loss (left), square norm of full gradient (middle) and
test loss (right) on ijcnn.

4, we can conclude that when mini-batch SGD performs quite similarily to SGD with
importance sampling, that is, when using minibatching technique is not more profitable
than using importance sampling technique solely, GGD does not benefit from minibatching
technique more than SGD with importance sampling does. On the contrary, when SGD
with importance sampling outperforms the mini-batch SGD, minibatching technique seems
to be more impactful when applying to GGD as increasing subsampled set size m can results
in the improvement of GGD methods. This is expected since increasing subsampled set size
m can reduce the noise variance of mini-batch SGD, that is, improving the worse bound for
the noise variance of grafting gradient so that the performance of GGD can be improved as
well.

C.3 Additional Experiments on Ridge Regression

To further check the performances of grafting gradient based methods on hard problem, that
is, the ill-conditioned problem with extremely large condition number κ. We additionally
run experiments to solve ridge regression problem given by

fi(x) = (zi − a>i x)2 +
λ

2
‖x‖2.
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(a) (b) (c)

(d) (e) (f)

Figure 15: Comparisons of the train loss (left), square norm of full gradient (middle) and
test loss (right) on a9a.

Data set d n (train) Sparsity n (test) L̄ maxL κ

ONR 58 31,715 72.01% 7,929 0.0004 2 1.34221× 107

Table 5: Summary of ONR data set

The objective function thus can be written in matrix form as

f(x) =
1

n
(z −Ax)>(z −Ax) +

λ

2
x>x, (83)

where z(n×1) and A(n×d) are data samples from OnlineNewsPopularity (ONR for short)
data set (Fernandes and Sernadela, 2015) with z indicating the responses to be predicted
and A being the data matrix. The features and targets are normalized to the interval [0, 1].
Since ONR does not have a testing set, we randomly split it into the training set and testing
set with 80% for training and 20% for testing. We know that the condition number of (83)
admits a closed form expression κ = λmax(H)/λmin(H), where H is the hessian matrix of
(83), which can be written as H = (2/n)A>A+ λ · I, and λmax, λmin represent the largest
and smallest eigenvalue of given matrix. The penalty parameter λ is set to be 10−6 so
that the corresponding condition number can be extremely large. We report the condition
number of (83) and some other information about ONR data set in Table 5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16: Comparisons of the train loss (left), square norm of full gradient (middle) and
test loss (right) on ONR.

In the following experiments, we compare the performances of GGD, MBSGD and SGD-
IS with diminishing stepsize sequences, the performances of Adam and GAdam and the
performances of SVRG and GSVRG. For fair comparison, the subsampled set size m is set
to be 32 and the batch size b = 2 for grafting gradient based methods. The mini-batch size
of mini-batch SGD, SVRG and Adam is set to be 64 and the one-shot importance sampling
probability is given by Pri ∝ Lri . The t-inverse learning rate schedule is used for methods
with diminishing stepsize sequences. For variance reduction methods, the update period is
set to be n/m and for adaptive stepsize methods, the hyperparameters are set by default.
The results are presented in Figure 16.
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LAYER SHAPE OUTPUT

data layer 1 × 32 × 32
conv1-BN-ReLU 6 × 5 × 5 6 × 28 × 28

MAX-pool2 6 × 2 × 2 6 × 14 × 14

conv3-BN-ReLU 16 × 5 × 5 16 × 10 × 10
MAX-pool4 16 × 2 × 2 16 × 5 × 5

Fully-connect5-ReLU 240 120
Fully-connect6-ReLU 120 84

Fully-connect7 84 10
softmax-loss 10 10

Table 6: Complete architecture for LeNet-5

From these results, we can see that grafting gradient based methods can still achieve
comparable performances even when the condition number is extremely large. Results from
Figures 16(a) and 16(c) again confirm the doubly robust property possessed by GGD. The
performances of MBSGD and GGD are quite similar in terms of train loss, and GGD and
SGD-IS achieves a lower test loss. However, SGD-IS does not perform well in terms of
train loss. In Figrue 16(a), the improvement of GGD over SGD-IS is significant. In our
view, the reason behind the bad performances of SGD-IS on ONR data set may be over-
sampling. From Table 5, Lmax/L̄ ≈ 5000 indicates that some data of great importance, i.e.,
with relatively large L constant, may be sampled over and over again. Hence, the training
process of SGD-IS is more like minimizing the loss with respect to a small subset which
contains important data samples instead of minimizing the average loss of whole training
data set. In constrast, over-sampling important samples is less likely to occur in the training
process of GGD as illustrated in our toy example. As for the comparison between Adam
and GAdam, their performances are quite similar. For the variance reduction methods, the
improvement of GSVRG over SVRG is obvious. GSVRG achieves a lower train loss and
‖∇f(xk)‖2. Although GSVRG and SVRG achieve comparable test losses, GSVRG uses less
epoches to reach that goal.

C.4 Test Loss Results and Network Architectures

Figures 17, 18 and 19 plot the test losses of previous experiments given in Section 6. From
these results we can see that when minimizing the L2-regularized logistic loss, the per-
formances of GGD based methods and SGD based methods are quite similar except that
GGD achieves a lower test loss for covtype and rcv1 data set compared with vanilla SGD,
and GGD with diminishing stepsize sequence achieve a lower test loss for ijcnn data set
compared with SGD with importance sampling. When training CNNs on MNIST and
CIFAR-10 data sets, only SVRG achieves lower test loss than GSVRG for MNIST data set
and Adam achieves lower test loss than GAdam for CIFAR-10 data set.

In the end, the complete architectures for two CNNs are listed in Tables 6 and 7. We
use tuple (C ×H ×W ) in which C represents the number of channels, H is the height in
pixels and W is the width in pixels to show the shape of input data and layers of two CNNs.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 17: Comparisons of the test loss between SGD, GGD, mini-batch SGD, SGD with
importance sampling methods on ijcnn1, a9a, covtype and rcv1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 18: Comparisons of the test loss between Adam, GAdam, SVRG and GSVRG meth-
ods on ijcnn1, a9a, covtype and rcv1.
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(a) (b)

(c) (d)

(e) (f)

Figure 19: Comparisons of the test loss between MBSGD and GGD, Adam and GAdam,
SVRG and GSVRG methods respectively on MNIST and CIFAR-10.
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LAYER SHAPE OUTPUT

data layer 3 × 28 × 28
conv1-ReLU 128 × 3 × 3 128 × 28 × 28
conv2-ReLU 128 × 3 × 3 128 × 28 × 28

conv3-BN-ReLU 128 × 3 × 3 128 × 28 × 28
MAX-pool3 128 × 3 × 3 128 × 14 × 14

conv4-ReLU 256 × 3 × 3 256 × 14 × 14
conv5-ReLU 256 × 3 × 3 256 × 14 × 14

conv6-BN-ReLU 256 × 3 × 3 256 × 14 × 14
MAX-pool6 256 × 3 × 3 256 × 7 × 7

conv7-ReLU 320 × 3 × 3 320 × 5 × 5
conv8-ReLU 320 × 1 × 1 320 × 5 ×5
conv9-ReLU 10 × 1 × 1 10 × 5 × 5
AVE-pool9 10 × 5 × 5 10 × 1 ×1

softmax-loss 10 10

Table 7: Complete architecture for cifar10-nv
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Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence
proof of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

Ayoub El Hanchi and David Stephens. Adaptive importance sampling for finite-sum op-
timization and sampling with decreasing step-sizes. Advances in Neural Information
Processing Systems, 33:15702–15713, 2020.

Vinagre Pedro Cortez Paulo Fernandes, Kelwin and Pedro Sernadela. Online News Popu-
larity. UCI Machine Learning Repository, 2015. DOI: https://doi.org/10.24432/C5NS3V.

Nidham Gazagnadou, Robert Gower, and Joseph Salmon. Optimal mini-batch and step sizes
for saga. In International Conference on Machine Learning, pages 2142–2150. PMLR,
2019.

Igor Gitman and Boris Ginsburg. Comparison of batch normalization and weight normaliza-
tion algorithms for the large-scale image classification. arXiv preprint arXiv:1709.08145,
2017.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of sgd: Variance
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Samuel Horváth and Peter Richtárik. Nonconvex variance reduced optimization with ar-
bitrary sampling. In International Conference on Machine Learning, pages 2781–2789.
PMLR, 2019.

Xinmeng Huang, Kun Yuan, Xianghui Mao, and Wotao Yin. An improved analysis and
rates for variance reduction under without-replacement sampling orders. Advances in
Neural Information Processing Systems, 34:3232–3243, 2021.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. Advances in Neural Information Processing Systems, 26, 2013.

Tyler B Johnson and Carlos Guestrin. Training deep models faster with robust, approximate
importance sampling. Advances in Neural Information Processing Systems, 31, 2018.

84



GGD: Grafting Gradient Descent

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep
learning with importance sampling. In International conference on machine learning,
pages 2525–2534. PMLR, 2018.
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