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Abstract

Due to concerns about parametric model misspecification, there is interest in using ma-
chine learning to adjust for confounding when evaluating the causal effect of an exposure
on an outcome. Unfortunately, exposure effect estimators that rely on machine learning
predictions are generally subject to so-called plug-in bias, which can render naive p-values
and confidence intervals invalid. Progress has been made via proposals like targeted mini-
mum loss estimation and more recently double machine learning, which rely on learning the
conditional mean of both the outcome and exposure. Valid inference can then be obtained
so long as both predictions converge (sufficiently fast) to the truth. Focusing on partially
linear regression models, we show that a specific implementation of the machine learning
techniques can yield exposure effect estimators that have small bias even when one of the
first-stage predictions does not converge to the truth. The resulting tests and confidence
intervals are doubly robust. We also show that the proposed estimators may fail to be reg-
ular when only one nuisance parameter is consistently estimated; nevertheless, we observe
in simulation studies that our proposal can lead to reduced bias and improved confidence
interval coverage in moderate-to-large samples.

Keywords: Doubly robust estimation, Semiparametric inference, Causal inference, Con-
ditional independence testing.

1. Introduction

In recent years, there has been a resurgence of interest in so-called doubly robust estima-
tors (Robins and Rotnitzky, 2001). These estimators require estimation of two separate
nuisance parameters, and are consistent so long as one of the nuisance parameters is consis-
tently estimated. When these estimators were introduced, focus was initially on postulating
parametric working models, where at least one of the models should be correctly specified
(Bang and Robins, 2005). However, it turns out that doubly robust methods are addi-
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tionally advantageous when the nuisance parameters are estimated nonparametrically; for
example, using modern machine learning techniques. If both are estimated consistently at
sufficiently fast rates and sample splitting/cross-fitting is used, then standard inference can
be performed on the target parameter based on a simple sandwich estimator or the non-
parametric bootstrap. This is in spite of the nonparametric estimators having a potentially
large bias and an unknown or intractable asymptotic distribution. Such ideas underpin de-
velopments in targeted minimum loss estimation (TMLE) (van der Laan and Rose, 2011),
and double machine learning (Chernozhukov et al., 2018). Doubly robust estimators are
a subclass of the methods based on orthogonal estimating functions that arise in semi-
parametric theory and which are reviewed in Chernozhukov et al. (2018); an advantage of
this particular subclass is that parametric-rate inference for the target parameter can be
achieved even when one nuisance parameter is estimated at a slow rate, so long as this is
compensated by fast estimation of the other nuisance parameter.

However, the possibility of parametric-rate inference for a target parameter after data-
adaptive estimation of nuisance parameters is jeopardised when one of the nuisance pa-
rameters is not estimated consistently. A parametric-rate test has power to detect local
alternatives that go to 0 like n−1/2 and a parametric-rate confidence interval has width of
the order n−1/2. Although machine learning methods are more flexible than traditional
parametric estimators, they may still be guilty of extrapolation in causal inference and
missing data problems e.g. where treated and untreated patients are very different in terms
of the distribution of their covariates. Although the doubly robust estimator remains con-
sistent when just one of the nuisance parameters is not estimated consistently, its bias and
rate of convergence will tend to be determined by the consistent nuisance parameter es-
timator. The behaviour of the latter, which is often poorly understood, propagates into
the asymptotic distribution of the doubly robust estimator, such that its asymptotic lin-
earity (and thus asymptotic normality) no longer holds. In the context of estimating the
expected counterfactual outcome under a given treatment, van der Laan (2014) describes
how to amend estimation of the nuisance parameters within the TMLE procedure, in order
to ensure that the resulting estimator of the mean is asymptotically linear if either a model
for the probability of treatment or an outcome imputation model is correctly specified,
even when nonparametric methods are used to estimate the nuisance parameters. As a
consequence, doubly robust hypothesis tests and confidence intervals can be constructed.
Benkeser et al. (2017) simplify this nuisance estimation procedure and show that standard
‘one-step’ doubly robust estimators cannot be easily adapted to guarantee doubly robust
inference, as opposed to TMLE. Dı́az and van der Laan (2017) and Dı́az (2019) extend this
work respectively to randomised trials with missing outcome data and observational studies
with survival outcomes.

Several important questions remain. Firstly, can doubly robust inference be extended
to parameters in more general semi/nonparametric models? Existing examples based on
TMLE have focused on the expected counterfactual outcome (or closely related parame-
ters). Secondly, the proposal of Benkeser et al. (2017) involves nonparametric estimation
of two additional nuisance parameters, but the necessary conditions on their estimators
remain unclear. In particular, the interplay between their rates of convergence and those
of the estimators (on which they depend) of the outcome and treatment models requires
further exploration. Thirdly, the variance formula in Benkeser et al. (2017) differs from
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the usual one of n−1 times the sample variance of the efficient influence function. This
raises the question of whether the proposed doubly robust estimators are non-regular; their
asymptotic distribution may be highly sensitive to small changes in the data-generating law.
Confirmation of this conjecture, along with guidance about when these methods would be
expected to deliver poor performance, is therefore of interest.

In this work, we address these questions directly. We show how to adapt standard
doubly robust estimators in order to yield doubly robust tests and confidence intervals
in semiparametric regression problems, and spell out the implications for the ‘variance-
weighted’ treatment effect (Crump et al., 2006; Robins et al., 2008). In this context, a test
is doubly robust if its type I error rate is asymptotically correct so long as at least one
out of two nuisance parameters is consistently estimated; a confidence interval is doubly
robust if it attains its advertised coverage (asymptotically) so long as at least one out of two
nuisance parameters is consistently estimated. We also give a detailed theoretical treatment
of kernel estimators of the additional nuisance parameters, exploring under what conditions
they obtain the rates necessary to achieve doubly robust inference. Further, we describe the
regularity properties of the novel doubly robust estimators. Unlike Benkeser et al. (2017),
we do not rely on Donsker conditions on the nuisance parameters estimators but rather
use cross-fitting as in cross-validated TMLE (Zheng and van der Laan, 2011) and double
machine learning (Chernozhukov et al., 2018), which we explicitly incorporate into our
proofs. Dukes et al. (2020) and Dukes and Vansteelandt (2020) also obtain doubly robust
inference for the partially linear model when (potentially) high-dimensional parametric
models are postulated for the nuisance parameters; that approach is distinct from the one
in this paper, given that it is reliant on this parametric structure of the working models as
well as specific sparse estimators of the regression parameters. In comparison, the framework
in the current paper is generic in that it can allow for arbitrary nonparametric estimators
of the propensity score and conditional outcome mean. The work is also relevant to the
growing literature on conditional independence testing; our score test can be viewed as an
extension of the Generalised Covariance Measure (GCM) test proposed in Shah and Peters
(2020).

2. Review of doubly robust Z-estimators

Let W denote a random data unit with a distribution P that is contained in a statistical
modelM. Consider an estimating function ψ(W ; θ, η) for a finite dimensional target param-
eter θ0, such that θ0 is the unique solution to

∫
ψ(w; θ, η0)dP (w) = 0. Here, η0 is a nuisance

parameter that in a non/semiparametric model may be infinite-dimensional. Since η0 is
generally unknown, it is usually substituted by an estimator η̂; let η∗ refer to its probability
limit. Suppose we have n independent and identically distributed copies of W : W1, ...,Wn.
Then a Z-estimator θ̂ of θ0 can be constructed as the solution to the equations

0 =
1

n

n∑
i=1

ψ(Wi; θ, η̂).

In what follows, Pn denotes the empirical measure and we use the notation Pf =
∫
f(x)dP (x)

where f is fixed. When applying the Pn and P operators to ψ(W ; θ, η), we will usually sup-
press dependence on W e.g. Pψ(θ0, η0) = 0. We also define V = −∂Pψ(θ, η∗)/∂θ|θ=θ0 and
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we assume that V is invertible. Supposing that η̂ is obtained from an auxiliary sample,
then one can show (see e.g. Theorem 5.31 of van der Vaart (2000)) that

θ̂ − θ0 =V −1(Pn − P )ψ(θ0, η
∗) + V −1Pψ(θ0, η̂) + oP (n−1/2 + ‖Pψ(θ0, η̂)‖)

where ‖·‖ is the Euclidean norm; in places we will also use ‖·‖P,q = P (|f |q)1/q. Therefore,

the asymptotic behavior of θ̂ depends on η̂ via the so-called ‘drift’ term Pψ(θ0, η̂), which is
the remainder from a linear expansion of θ̂.

Certain statistical problems enable the construction of ‘doubly robust’ estimating func-
tions. These depend on two nuisance parameters m0 and g0 that comprise η0, which are
respectively estimated as m̂ and ĝ; let m∗ and g∗ refer to the limits of these estimators.
We will assume m0 and g0 are variation independent, in the sense that constraints on one
of the two laws does not place restrictions on the other. Then

∫
ψ(w; θ0, η

∗)dP (w) = 0 if
either m0 = m∗ or g0 = g∗. In this paper, we are interested in estimators whose drift can
be written as P{d(ĝ − g0)(m̂−m0)} for some d = d(W ) that is upper bounded. The term
d typically arises via a linearization-type argument used to express the drift in terms of the
errors in ĝ and m̂ (rather than transformations of these quantities); as we will see below,
for certain estimating functions this may equal 1. By application of the Cauchy–Schwarz
inequality, it follows that the drift can be upper bounded by a term proportional to

‖m̂−m0‖P,2 ‖ĝ − g0‖P,2 .

This implies that so long as both m̂ and ĝ converge to the truth (in the root-mean-squared er-
ror sense) at a rate faster than n−1/4, then the drift is oP (n−1/2) and the resulting estimator
θ̂ is asymptotically linear. In low-dimensional settings, classical nonparametric regression
estimators may meet these rates, as may certain statistical/machine learning methods under
structured assumptions on the underlying smoothness/sparsity of the estimated functional.

The combination of doubly robust methods with flexible, data-adaptive estimation of
nuisance parameters thus underpins recent developments in targeted learning (van der Laan
and Rose, 2011), and double machine learning (Chernozhukov et al., 2018). This in turn
builds on earlier foundational work on efficient estimation in non/semiparametric models
(Bickel et al., 1993; Pfanzagl, 2012; Ibragimov and Hasminski, 2013). Indeed, doubly-
robust Z-estimators form a subset of a general class of estimating equation-based ap-
proaches (van der Laan and Robins, 2003), involving estimating functions that are Neyman-
orthogonal with respect to η0, using the terminology of Chernozhukov et al. (2018). This
means that the Gateaux derivative operator (taken with respect to the infinite-dimensional
nuisance parameters) vanishes when the estimating function is evaluated at the true pa-
rameter values. We note that there exist other frameworks for constructing estimators
for which an expansion yields a linear term and a second-order remainder (specifically, one-
step estimation and TMLE). We adopt the estimating equations formulation as it will prove
more natural in the context of our running example. A specific benefit of doubly robust
estimators is that the cross-product structure of the remainder allows m̂ to converge slowly
(potentially even slower than n−1/4), so long as ĝ converges quickly. This property is known
as ‘rate double-robustness’ (Smucler et al., 2019).

Example 1 (Partially linear regression model). Consider the model

Y = θ0A+m0(L) + ε, E(ε|A,L) = 0 (1)
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where m0(L) = E(Y |A = 0, L) and A is one-dimensional. This model is defined by the key
restriction that A acts linearly on the conditional mean of Y , and this effect is not modified
by L. If the identification conditions for causal inference in observational studies hold (in
particular, that there is no unmeasured confounding) and A is dichotomous, then θ0 can be
interpreted as the average causal effect of A on Y a.k.a. E(Y 1−Y 0), where Y a denotes the
counterfactual outcome that would be observed were A set to level a.

A doubly robust estimator of θ0 can be constructed using the estimating function:

ψ(W ; θ0, η0) = {A− g0(L)}{Y − θ0A−m0(L)}

where g0(L) = E(A|L). In this case, one can estimate θ0 in closed-form as

θ̂ =

∑n
i=1{Ai − ĝ(Li)}{Yi − m̂(Li)}∑n

i=1{Ai − ĝ(Li)}Ai
(2)

(Robins et al., 1992). By the previous expansion, it follows immediately that the drift term
for θ̂ is asymptotically negligible so long as ‖m̂−m0‖P,2 ‖ĝ − g0‖P,2 = oP (n−1/2). Compare
this with an alternative, ‘singly robust’ estimator

θ̃ =

∑n
i=1{Ai − ĝ(Li)}Yi∑n
i=1{Ai − ĝ(Li)}Ai

(3)

(Robins et al., 1992). The drift for θ̃ is asymptotically negligible if ‖ĝ − g0‖P,2 = oP (n−1/2).
This will not be the case when nonparametric/data-adaptive estimators of ĝ(L) are used;
hence the drift for θ̂ may be asymptotically negligible whilst the drift for θ̃ will often fail to
be.

We have so far overlooked the ‘empirical process’ terms that arise in expansions for
Z-estimators. In order for θ̂ to be asymptotically linear, we require that

(Pn − P )ψ(θ̂, η̂) = (Pn − P )ψ(θ0, η
∗) + oP (n−1/2),

hence we must control the difference between the linear term and its empirical analogue.
This is often done via Donsker conditions, which restrict the complexity of the nuisances and
their estimators. An alternative is to use sample splitting. Suppose that θ0 is estimated from
a separate part of the sample than that used to estimate η0; it follows loosely e.g. from the
proof of Theorem 25.57 in van der Vaart (2000) that so long as P ‖ψ(θ0, η̂)− ψ(θ0, η

∗)‖2 =
oP (1), by Chebyshev’s inequality, the empirical process term is oP (n−1/2). Given that it
is unclear whether Donsker conditions hold for many common machine learning methods,
sample splitting is appealing in its generality and transparency. However, this comes at the
cost of loss of sample size, which has driven the development of cross-validated TMLE and
cross-fitting (Zheng and van der Laan, 2011; Chernozhukov et al., 2018). For example, a
separate estimate of θ0 can be obtained in each split (using estimates of g0 and m0 from
the other parts of the data) and then these can be averaged; asymptotically there should
be no efficiency loss. In the above example, if the errors Y − θ0−m0(L) are homoscedastic,
the drift is oP (n−1/2), and either Donsker conditions hold or cross-fitting is used, then the
doubly robust estimator attains the semiparametric efficiency bound under the partially
linear model.
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3. Inference when only one nuisance parameter is estimated consistently

3.1 Doubly robust consistency and asymptotic linearity

Let us return to the drift term of the doubly robust estimator θ̂. Suppose that ĝ converges
to g0, but m̂ converges to some limit m∗ 6= m0. Then

Pψ(θ0, η̂) ≤ ‖ĝ − g0‖P,2OP (1) = oP (1)

One can also show that the drift is oP (1) if m̂ converges to m0 but g∗ 6= g0. Hence
the drift shrinks to zero if one of the two estimators converges to the truth, regardless of
which one. Furthermore, the empirical process term will not be affected, and so long as
one nuisance parameter is estimated correctly, the linear term continues to be mean zero
and asymptotically normal. This property is known as doubly robust consistency, since
the consequence is that θ̂ is consistent so long as one of the nuisance estimators is also
consistent.

A stronger condition than doubly robust consistency is doubly robust asymptotic linearity
(Benkeser et al., 2017). This is necessary in order to obtain valid parametric-rate tests and
confidence intervals, in addition to a consistent estimator of θ0. In this context, an estimator
is doubly robust asymptotically linear if either ‖ĝ − g0‖P,2 = oP (1) or ‖m̂−m0‖P,2 =

oP (1) (or both) and the drift and empirical process terms are oP (n−1/2). The standard
doubly robust estimator will not typically possess this property; assuming only e.g. that
‖ĝ − g0‖P,2 = oP (n−κ) for κ < 1/2, then the drift is also oP (n−κ). Without additional
parametric structure, the drift is not typically asymptotically linear. Since the drift now
contributes to the first order behaviour of the estimator, the resulting estimator of θ0 may
inherit non-negligible bias from the data-adaptive estimator m̂.

3.2 Expansion of the drift term

Suppose that either ĝ does not converge to g0 or m̂ does not converge to m0. Then if the
drift can be written as P{d(ĝ − g0)(m̂−m0)}, then one can further decompose it as

Pψ(θ0, η̂) = P{d(ĝ − g∗)(m̂−m∗)}+ P{d(ĝ − g∗)(m∗ −m0)}
+ P{d(g∗ − g0)(m̂−m∗)}

= R1 +R2 +R3

So long as both estimators converge sufficiently fast to a limit, then R1 = oP (n−1/2). The
key terms that characterise how the drift contributes to the first order behaviour of the
estimator are thus R2 and R3; note that so long as one nuisance is consistently estimated,
then one of these terms will equal zero. In the case of inference on the average counterfactual
mean under treatment A = a, E(Y a) = E{E(Y |A = a, L)} (or equivalently, a population
mean with outcomes missing-at-random), van der Laan (2014) and Benkeser et al. (2017)
show that when m∗ 6= m0, R2 can be decomposed as:

R2 = Pnψ2(θ0, η̂, τ̂)− (Pn − P )ψ2(θ0, η
∗, τ∗)− Pψ2(θ0, η̂, τ̂) + oP (n−1/2)

where ψ2(θ0, η0, τ0) is a mean-zero random variable, τ0 is an additional nuisance parameter
to be estimated and τ̂ is its estimator (assumed again to be constructed on a separate
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sample), with limiting value τ∗. Note that the first term on the right hand side of the above
equality can be estimated using the data and the second is a sample average of mean-zero
random variables. Further, the authors show that |Pψ2(θ0, η̂, τ̂)| can be upper bounded by
a term proportional to ‖ĝ − g0‖P,2 ‖τ̂ − τ0‖P,2, and hence is second-order so long as both ĝ
and τ̂ converge sufficiently quickly. A similar decomposition of R3 in terms of a mean-zero
random variable ψ3(θ0, η0, τ0) is also available.

The form of the additional nuisance parameter τ0 appears to be specific to the problem
setting. Indeed, in the case of the parameter E{E(Y |A = a, L)}, multiple parametrisations
(with potentially quite different properties) are available (van der Laan, 2014; Benkeser
et al., 2017). To give further insight, we show below the above strategy for decomposing
the drift term also applies to the partially linear model.

Example 2 Partially linear regression model (continued)
Suppose that g∗(L) = g0(L) but m∗(L) 6= m0(L), then R3 = 0 and R2 = P{Ḡ(A− ĝ)} where
Ḡ(L) = E{Y − θ0A−m∗(L)|g∗(L), ĝ(L)}. Then by adding and subtracting terms (and with
some abuse of notation), we have,

R2 =
1

n

n∑
i=1

Ĝ(Li){Ai − ĝ(Li)}

− (Pn − P ){G∗(A− g0)} − (Pn − P ){Ĝ(A− ĝ)−G∗(A− g0)}
+ P{(Ḡ−G∗)(g0 − ĝ)}+ P{(G∗ − Ĝ)(g0 − ĝ)}.

where G∗(L) = E{Y − θ0A −m∗(L)|g∗(L)} and Ĝ(L) is an estimator of G∗(L) (a specific
approach is proposed in the following section). If we assume for now that the empirical
process term and P{(Ḡ− Ĝ)(g0 − ĝ)} are oP (n−1/2) then it follows that an estimator that
solves the augmented equations

0 =
1

n

n∑
i=1

{Ai − ĝ(Li)}{Yi − θAi − m̂(Li)} − Ĝ(Li){Ai − ĝ(Li)}

for θ would have a drift that can be upper bounded by
∥∥∥Ĝ−G∗∥∥∥

P,2
‖ĝ − g0‖P,2. This is

because after subtracting the empirical bias term n−1
∑n

i=1 Ĝ(Li){Ai− ĝ(Li)} from the orig-
inal estimating equations for θ0, what remains from the above decomposition of R2 is a
mean zero, linear term plus P{(G∗ − Ĝ)(g0 − ĝ)} and an oP (n−1/2) remainder.

One can repeat these arguments under the scenario that m∗(L) = m0(L), g∗(L) 6= g0(L),
where now R3 = P{M̄(Y −θ0A−m̂)} and M̄(L) = E{A−g∗(L)|m∗(L), m̂(L)}. If M∗(L) =
E{A− g∗(L)|m∗(L)} and M̂(L) denotes its estimator, then applying the same reasoning as
above, solving the equations

0 =
1

n

n∑
i=1

{Ai − ĝ(Li)}{Yi − θAi − m̂(Li)} − M̂(Li){Yi − θAi − m̂(Li)}

for θ would yield a drift that can be bounded by
∥∥∥M̂ −M∗∥∥∥

P,2
‖m̂−m0‖P,2.
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In the following sections, we will make specific proposals for estimating τ∗ = {G∗(L),M∗(L)};
note how these additional parameters will generally have reduced dimension compared with
g0(L) and m0(L). Interestingly, the additional nuisance parameters that arise in the case
of the expected counterfactual mean are either higher in dimension (van der Laan, 2014),
or higher in number; the proposal of Benkeser et al. (2017) requires estimation of three (as
opposed to two) additional nuisance parameters. Note that the above decompositions of
R2 and R3 apply for a broad class of semiparametric models where doubly robust estima-
tors exist; it is trivial to show that it also applies to the partially log-linear model (Robins
and Rotnitzky, 2001) as well as to partially linear and log-linear models with instrumental
variables (Okui et al., 2012). However, as the following example shows, it does not apply
to the important case of the partially logistic model (Tchetgen Tchetgen et al., 2010).

Example 3 Partially logistic model. Under a ‘no unmeasured confounding’ assumption,
the parameter θ0 indexing the partially logistic model

logit{Pr(Y = 1|A,L)} = θ0A+m0(L)

encodes the conditional (rather than marginal) causal log-odds ratio θ0 = logit{Pr(Y 1 =
1|L)}−logit{Pr(Y 0 = 1|L)}, due to the non-collapsible link function. Let ν0(L) = E(A|Y =
0, L) and ν∗(L) denote the limit of its estimator ν̂(L); then the score function

{A− ν∗(L)}{Y e−θ0A−m∗(L) − (1− Y )}

obtained by Tan (2019a) has mean zero if either m0(L) = m∗(L) or ν0(L) = ν∗(L). With
some abuse of notation, it follows from Tan (2019a) that the drift term under the partially
logistic model is equal to

P
{

(1− Y )
(
em0−m̂ − 1

)
(ν0 − ν̂)

}
.

In the Appendix, we show that this can be rearranged to equal

P

[
E{Y e−θ0A−m∗ − (1− Y )|ν0, ν̂}

(A− ν̂)(1− Y )

{1− E(Y |ν0, ν̂)}

]
+ P

[
E{A− ν∗|Y = 0,m0, m̂}{Y e−θ0A−m̂ − (1− Y )}

]
plus a term that can be shown to be oP (n−1/2) if either ν0(L) = ν∗(L) or m0(L) = m∗(L)
and each estimator converges sufficiently fast to a limit. Hence an expansion of the drift
term under this model yields three (as opposed to two) additional nuisance parameters:
E{Y e−θ0A−m∗(L) − (1 − Y )|ν0(L), ν̂(L)}, P{Y = 0|ν0(L), ν̂(L)} and E{A − ν∗(L)|Y =
0,m0(L), m̂(L)}, although one could directly model

E{Y e−θ0A−m∗(L)|ν0(L)}
1− E{Y |ν0(L)}

− 1.

To summarise thus far, when one of the nuisances is estimated inconsistently, then the
drift term may now contribute to the first order behaviour of θ̂. In decomposing the drift,
additional bias terms arise which can be estimated with the data at hand. For example,
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in the case of the partially linear model, one might be tempted to construct the one-step
augmented estimator

θ̂ −
∑n

i=1 Ĝ(Li){Ai − ĝ(Li)}∑n
i=1{A− ĝ(Li)}Ai

−
∑n

i=1 M̂(Li){Yi − θ̂Ai − m̂(Li)}∑n
i=1{Ai − ĝ(Li)}Ai

(4)

where one would expect the bias terms n−1
∑n

i=1 Ĝ(Li){Ai−ĝ(Li)} and n−1
∑n

i=1 M̂(Li){Yi−
θ̂Ai − m̂(Li)} to serve a similar role in de-biasing the estimator θ̂ as did subtracting
n−1

∑n
i=1{Ai − ĝ(Li)}m̂(Li) (after scaling) from the näıve estimator θ̃. This requires es-

timation of the additional nuisances G∗(Li) and M∗(Li); Benkeser et al. (2017) note that
these are univariate regression problems and thus fast rates may be available using non-
parametric estimators (e.g. kernel methods with bandwidth parameter selected using cross
validation). Nevertheless, as we will explore in Section 4.4, they are also based on data-
adaptive estimators ĝ(L) and m̂(L), which has implications for the rates.

Unfortunately, as explained by Benkeser et al. (2017), a proposal based on equation (4)
would not generally lead to doubly robust asymptotic linearity, unless one knows a priori
whether g0(L) or m0(L) is consistently estimated. To illustrate why, consider again the
setting where g∗(L) = g0(L) so that M∗(L) = 0 but m∗(L) 6= m0(L). Since R2 = 0,
including a term proportional to n−1

∑n
i=1 M̂(Li){Yi − θ̂Ai − m̂(Li)} in the estimator will

over-correct for the bias. This is because the first-order behaviour of n−1
∑n

i=1 M̂(Li)(Yi −
θ̂Ai − m̂(Li)} will be determined by

P{(M∗ − M̂)(m0 − m̂)} ≤
∥∥∥M̂ −M∗∥∥∥

P,2
OP (1)

But as M∗(L) is estimated non-parametrically, the rate of M̂(Li) may be n−1/2 or likely
slower, and so the right hand side of the above inequality fails to be oP (n−1/2). Although
the misplaced correction term will converge to zero, it does not do this fast enough to retain
asymptotic linearity. In the following section, we will remedy this.

3.3 Proposal for score tests and confidence intervals in semiparametric
regression

Before proposing how to obtain an estimator and confidence interval for θ0 in a partially
linear model, as a first step we will begin by constructing a score test of the null hypothesis
that θ = θ0. Such a test could be obtained via the expected conditional covariance statistic

1√
n

n∑
i=1

{Ai − ĝ(Li)}{Yi − θ0Ai − m̂(Li)} (5)

after scaling by the empirical standard deviation of the estimated score {Ai − ĝ(Li)}{Yi −
θ0Ai− m̂(Li)}. Note that the unscaled statistic will share the same drift as the estimator θ̂.
Following the arguments of the previous subsections, under the null hypothesis this statistic
would have expectation zero so long as one of the nuisances is consistently estimated, but
the test itself is not doubly robust. In what follows, we amend the statistic so that we have
a test that is both doubly robust consistent and asymptotically linear. Specifically, we will
propose a nuisance parameter estimation procedure that sets the bias terms in the previous

9
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expansion of the drift to zero, leaving a remainder that is second order. This procedure can
be straightforwardly adjusted for parameters in the partially log-linear model, by replacing
Y − θ0A with Y exp(−θ0A), or in semiparametric instrumental variable models, where the
residual A− ĝ(L) is replaced by the instrument minus its estimated conditional expectation.

We propose to estimate M∗(L) and G∗(L) non-parametrically using kernel smoothing.
Specifically, if

ϕj(L;x, h, η) = K

(
x−m∗(L)

h

)
{A− g∗(L)}j−1, j = 1, 2.

where K is a kernel function and h > 0 is a bandwidth parameter, then let us define the
estimator

M̂(x) = f̂−1
m̂,n(x)n−1

n∑
i=1

ϕ2(Li;x, h, η̂).

Here, x is a point in the interior of the support X of m∗(L), η = {g∗(L),m∗(L)} and

f̂m̂,n(x) = n−1
n∑
i=1

ϕ1(Li;x, h, η̂).

The above is a version of the standard Nadaraya-Watson estimator, where both the regressor
m∗(L) and the dependent variable A − g∗(L) must first be estimated from the data in an
initial step. Redefining x as a point in the interior of X of g∗(L), then if

ρj(L;x, h, η) = K

(
x− g∗(L)

h

)
{Y − θ0A−m∗(L)}j−1, j = 1, 2

and f̂ĝ,n(x) = n−1
∑n

i=1 ρ1(Li;x, h, η̂) then we can similarly define

Ĝ(x) = f̂−1
ĝ,n(x)n−1

∑n
i=1 ρ2(Li;x, h, η̂). We focus on kernel smoothers in part because of

their optimality in certain univariate nonparametric regression contexts (Horowitz, 2009),
and also because it is feasible to analyse them when outcome and regressors are themselves
functions estimated nonparametrically (Mammen et al., 2012; Delaigle et al., 2016).

After obtaining the estimates M̂(L) and Ĝ(L), then the algorithm proposed below will
update the predictions ĝ(L) and m̂(L) as

ĝ(L) + α̂Ĝ(L) and m̂(L) + β̂M̂(L)

where α̂ and β̂ are estimated respectively as the solutions to the equations:

0 =
1

n

n∑
i=1

Ĝ(Li){Ai − ĝ(Li)− αĜ(Li)} (6)

0 =
1

n

n∑
i=1

M̂(Li){Yi − θ0Ai − m̂(Li)− βM̂(Li)}. (7)

Let α∗ and β∗ be the limits in probability of α̂ and β̂. By virtue of how α̂ and β̂ are con-
structed, we set the bias terms n−1

∑n
i=1 Ĝ(Li){Ai−ĝ(Li)−α̂Ĝ(Li)} and n−1

∑n
i=1 M̂(Li){Yi−

10



Doubly Robust Inference for Double Machine Learning

θ0Ai− m̂(Li)− β̂M̂(Li)} (see Example 2) that may arise in the drift of the test statistic to
zero, in a similar way to Benkeser et al. (2017).

We note that if g0(L) = g∗(L), then α∗ = 0 and hence Ĝ(L) will not contribute in
large samples to the test statistic (likewise, if m0(L) = m∗(L) then β = 0). However,
a concern is that if m0(L) = m∗(L) then the denominator of α̂ converges to zero since∑nk

i=1 Ĝ
2
k(Li) converges to zero. We make two remarks on this point; firstly, note that α̂ is

always multiplied by Ĝ(L), which also converges to zero in this scenario. This suggests that
the potential divergence is not an issue so long as the sample average of α̂Ĝ(L) converges
to zero. Results in Section 1.2 of the Appendix suggest this is indeed expected to be the
case, and moreover that the behaviour of this sample average will be determined by the rate
of ĝ(L). Secondly, we could alternatively define a bivariate fluctuation of ĝ(L) (or m̂(L))
that also includes an intercept, which means that even if Ĝ(L) is converging toward zero
in probability the design matrix for the least squares update will have rank 1 in the limit.
However the analysis of fitted values would follow along similar lines and we have not seen
evidence of this consideration impacting inferences in our simulation studies.

Due to the concerns that Donsker conditions may not apply to the data-adaptive es-
timators of the nuisance parameters, we propose to use sample splitting combined with
cross-fitting in constructing our tests. We describe how this can be done below:

1. Divide the sample into disjoint parts Ik each of size nk = n/K, where K is a fixed
integer (and assuming n is a multiple of K). For each Ik, let Ick denote all indices that
are not in Ik.

2. Obtain the machine learning estimates ĝck(L) and m̂c
k(L) from Ick.

3. Obtain the estimates Ĝk(L) and M̂k(L) from Ik.

4. Obtain the estimates α̂k and β̂k via solving the equations:

0 =
1

nk

∑
i∈Ik

Ĝk(Li){Ai − ĝck(Li)− αĜk(Li)}

0 =
1

nk

∑
i∈Ik

M̂k(Li){Yi − θ0Ai − m̂(Li; I
c
k)− βM̂(Li; Ik)}].

for α and β from Ik.

5. For all i in Ik, obtain the score

ψ∗(Wi; θ0, η̂
c
k, τ̂k) ={Ai − ĝck(Li)− α̂kĜk(Li)}{Yi − θ0Ai − m̂c

k(Li)− β̂kM̂k(Li)}
− Ĝk(Li){Ai − ĝck(Li)− α̂kĜk(Li)}
− M̂k(Li){Yi − θ0Ai − m̂c

k(Li)− β̂kM̂k(Li)}

and its average Ũnk(Ik, I
c
k) = n−1

k

∑
i∈Ik ψ

∗(Wi; θ0, η̂
c
k, τ̂k).

6. Construct a test statistic of the null hypothesis that θ = θ0 as

1
K

∑K
k=1 Ũnk(Ik, I

c
k)

σ̂2/
√
n

11
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where

σ̂2 =
1

K

K∑
k=1

 1

nk

∑
i∈Ik

ψ∗(Wi; θ0, η̂
c
k, τ̂k)

2

−{ 1

K

K∑
k=1

Ũnk(Ik, I
c
k)

}2

.

Given that we can construct a valid test of the null hypothesis, we can invert the test
in order to construct an estimator of θ0 along with a valid 100(1 − α)% confidence set.
Specifically, one can conduct a grid search over the possible values of θ0; the point estimate
will be the value for which the test statistic equals zero (and the p-value equals 1). Likewise,
the limits of the interval can be obtained as the values of θ0 for which the scaled test statistic
equals the α/2 and 1− (α/2) quantiles of the standard normal distribution. This approach
is computationally intensive as it requires a separate estimate of the m0(L) for each choice
of θ0. Nevertheless, in related work on doubly robust inference, score tests and inverted
score test-based confidence intervals have been seen to have theoretical advantages (in terms
of weaker assumptions on nuisance parameter estimators) and good empirical performance
relative to Wald-based tests/intervals (Dukes et al., 2020; Dukes and Vansteelandt, 2020).

3.4 Connections with conditional independence testing

Our work is relevant to the problem of testing for independence between two variables A
and Y given a random vector Z. The literature on conditional independence testing has
grown in the previous years, due to its relevance in causal discovery and high-dimensional
statistics. With Ĝ(Li) and M̂(Li) set to zero, our proposed score test would reduce to the
GCM test in Shah and Peters (2020); see also the g-null test of Robins (1986). Although
Shah and Peters (2020) show that no non-trivial conditional independence test exists that
also possesses valid size under the conditional independence null, their approach is seen
to control type I error and have reasonable power over range of data-generating processes
(both theoretically and empirically). Our work can hence be viewed as a doubly robust
extension of the GCM test. An additional difference between the proposals is that we use
sample splitting and cross-fitting for the nuisance parameters; this controls remainder terms
in our proofs when either m0 or g0 is estimated inconsistently.

4. Theoretical results

4.1 Doubly robust asymptotic linearity of the test statistic

We will now describe the theoretical properties of the proposed score test statistic from the
previous section. Although formal results are developed for testing, they can be extended
for estimators and confidence intervals as these can be constructed via the inversion of the
test. For ease of exposition, the results are developed for the partially linear model, but
can be straightforwardly extended to the other semiparametric regression models discussed
above, and trivially hold for the ‘expected conditional covariance’ parameter discussed e.g.
in Robins et al. (2008). This is because in all of these examples, doubly robust estimators
are known to exist and the resulting drift term decomposes in the same way (unlike e.g. for
the partially logistic model). Before giving the main theorem, we list the key assumptions.

Introducing some further notation, let f be a function belonging to a particular class
F ; then Gn(f) =

√
n(Pn − P )f and we will use Pn,k and Gn,k to refer to the sample
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average and empirical process respectively in the k-th split of the data. In order to make
theoretical guarantees on our estimators, then we will need to place certain restrictions on
the complexity of the (infinite-dimensional) nuisance parameters. We will use F to denote
an envelope function for F ; this is a function where F (x) ≥ |f(x)| for every f ∈ F and x
in the support of X. The uniform-entropy integral is

J(δ,F , L2) =

∫ δ

0
sup
Q

√
1 + logN(ε ‖F‖Q,2 ,F , L2(Q))dε

where we take the supremum over all finitely discrete measures Q, and L2(Q) is the L2

space under a probability measure Q with semi-metric ‖f‖Q,2 for any f ∈ F . Also,
N(ε ‖F‖Q,2 ,F , L2(Q)) is the L2(Q) covering number a.k.a. the minimum number of balls
of radius ε in L2 space required to cover the function class F with the envelope F (we
use the distance ‖·‖Q,2), and hence represents the complexity of the function class. Also,

we redefine M̄(L) = E{A − g∗(L)|m0(L), m̂c
k(L), β̂kM̂k(l)} and Ḡ(L) = E{Y − θ0A −

m∗(L)|g0(L), ĝck(L), α̂kĜk(L)}.
We will denote the relevant score functions as:

ψ1(W ; θ0, η, τ) = {A− g∗(L)− αG∗(L)}{Y − θ0A−m∗(L)− βM∗(L)}
ψ2(W ; θ0, η, τ) = M∗(L){Y − θ0A−m∗(L)− βM∗(L)}
ψ3(W ; θ0, η, τ) = G∗(L){A− g∗(L)− αG∗(L)}.

We are now in a position to list the main assumptions:

Assumption 1 Convergence of nuisance parameter estimators to the truth

For every L, either g0(L) = g∗(Li) or m0(L) = m∗(L).

Assumption 2 Consistency of nuisance parameter estimators

We have that ‖ĝck − g∗‖P,2 = oP (1), ‖m̂c
k −m∗‖P,2 = oP (1),

∥∥∥α̂kĜk − α∗G∗∥∥∥
P,2

= oP (1),

and
∥∥∥β̂kM̂k − β∗M∗

∥∥∥
P,2

= oP (1) where α̂kĜk and β̂kM̂k are bounded above with probability

approaching one.

Assumption 3 Product rate conditions for nonparametric estimators√
nk ‖g∗ − ĝck‖P,2 ‖m

∗ − m̂c
k‖P,2 = oP (1).

√
nk

∥∥∥β̂kM̂k

∥∥∥
P,2
‖g∗ − ĝck‖P,2 = oP (1),

√
nk

∥∥∥α̂Ĝk∥∥∥
P,2
‖m∗ − m̂c

k‖P,2 = oP (1),

√
nk

∥∥∥α̂Ĝk∥∥∥
P,2

∥∥∥β̂kM̂k

∥∥∥
P,2

= oP (1).

If g0(L) 6= g∗(L) and m0(L) = m∗(L), we additionally require
√
nk
∥∥M̄ −M∗∥∥

P,2
‖m∗ − m̂c

k‖P,2 = oP (1),
√
nk
∥∥M̄ −M∗∥∥

P,2

∥∥∥β̂kM̂k

∥∥∥
P,2

= oP (1),

√
nk

∥∥∥M∗ − M̂∥∥∥
P,2
‖m∗ − m̂c

k‖P,2 = oP (1),
√
nk

∥∥∥M∗ − M̂∥∥∥
P,2

∥∥∥β̂kM̂k

∥∥∥
P,2

= oP (1).

If m0(L) 6= m∗(L) and g0(L) = g∗(L), we additionally require
√
nk
∥∥Ḡ−G∗∥∥

P,2
‖g∗ − ĝck‖P,2 = oP (1),

√
nk
∥∥Ḡ−G∗∥∥

P,2

∥∥∥α̂Ĝk∥∥∥
P,2

= oP (1),

√
nk

∥∥∥G∗ − Ĝ∥∥∥
P,2
‖g∗ − ĝck‖P,2 = oP (1),

√
nk

∥∥∥G∗ − Ĝ∥∥∥
P,2

∥∥∥α̂Ĝk∥∥∥
P,2

= oP (1).
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Assumption 4 Empirical process conditions

(a) For a random subset I of {1, ..., nk} of size nk = n/k, we have that the nuisance
parameter estimator η̂ck belongs to a realisation set N with probability approaching
one. The set N contains the limit η∗ of η̂ck and is constrained by the conditions below.

(b) α̂, β̂, Ĝ(L) and M̂(L) are contained in (respective) uniformly bounded function classes
Fα, Fβ, FG and FM with probability approaching 1. The sets Fα, Fβ, FG and FM
include α∗, β∗, G∗(L) and M∗(L); moreover, the space T = Fα × Fβ × FG × FM
is equipped with the product L2(P ) semi-metric d2(τ, τ̃) = ‖α− α̃‖P,2 +

∥∥∥β − β̃∥∥∥
P,2

+∥∥∥G∗ − G̃∥∥∥
P,2

+
∥∥∥M∗ − M̃∥∥∥

P,2
.

(c) For each η ∈ N and j = 1, 2, 3, the function classes

Fj = {ψj(·; θ0, η, τ) : τ ∈ T }

are measurable with envelopes Fj, where Fj ≥ supf∈Fj |f | with ‖Fj‖P,q <∞ for some
q ≥ 2 and maxi≤n F (Wi) ≤ ∞. Further, there exists a positive number ξ ≥ e and
ν ≥ 1 such that the covering numbers satisfy the condition

sup
Q

logN
(
ε ‖Fj‖Q,2 ,Fj , L2(Q)

)
≤ ν log

(
ξ

ε

)
for all 0 < ε ≤ 1.

(d) For j = 1, 2, 3, we have that

sup
η∈N ,d2(τ,τ∗)<δnk

‖ψj(θ0, η, τ)− ψj(θ0, η
∗, τ∗)‖P,2 = OP (r(j)

nk
)

where δnk → 0, and r
(j)
nk is a rate that satisfies the restrictions r

(j)
nk

√
log
(

1/r
(j)
nk

)
= o(1)

and n
−1/2
k log

(
1/r

(j)
nk

)
= o(1). Furthermore,

sup
η∈N
‖ψj(θ0, η, τ̂k)− ψj(θ0, η, τ

∗)‖Pn,k,2 = oP (1)

Assumption 2 requires that all estimators converge to a limit (which may not be the
truth), and Assumption 3 requires that certain combinations of the estimators of g∗(L),
m∗(L), G∗(L), M∗(L), α∗ and β∗ converge sufficiently fast to a limit. We use the L2 distance
to define a measure of consistency here, since this is what naturally arises when bounding
terms in the expansion using the Cauchy-Schwarz inequality. Regarding the conditions on∥∥M̄ −M∗∥∥

P,2
= and

∥∥Ḡ−G∗∥∥
P,2

, we note that these loosely require a regression function
conditional on a generated regressor to converge to the function conditional on the limit of
the regressor.

We place assumptions on α̂kĜk and β̂kM̂k converging to zero, rather than on the α̂k, β̂k,
Ĝk and M̂k individually converging. This is in light of the aforementioned issue that the
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denominators of α̂k and β̂k may themselves converge to zero when nuisance parameters are
consistently estimated, whilst it suffices that the products taken with Ĝk and M̂k converge.
This issue also arises in previous work on doubly robust inference (van der Laan, 2014;
Benkeser et al., 2017); a formal analysis of the impact on moderate-sample performance is
an important topic for future work. In the Appendix, we show that when m∗(L) 6= m0(L),

the convergence rate of α̂ will typically depend on
∥∥∥G∗ − Ĝ∥∥∥

P,2
and ‖g∗ − ĝ‖P,2, and its rate

will typically be dictated by whichever converges slower. Assumptions on the convergence
of M̄(L) to M∗(L) (and Ḡ(L) to G∗(L)) have been made in previous work (Benkeser et al.,
2017), and are generally plausible if m̂(L) and ĝ(L) converge sufficiently fast to their limits.

Assumption 4 places restrictions on the complexity of τ∗, but does not restrict the com-
plexity of η̂(Ick) or η∗. Essentially, we require τ∗ to belong to a Vapnik–Chervonenkis (VC)
class (such that it has a covering number bounded by a polynomial in 1/ε); a class that is
of VC type is also Donsker (van der Vaart and Wellner, 1996). Conditional on Ick, these
entropy conditions are met for α and β (and their estimators) since these are scalar pa-
rameters in parametric models and thus the corresponding function classes typically have
uniformly bounded entropy. Also, M∗(L) and G∗(L) are estimated non-parametrically,
but they correspond to univariate nonparametric regressions (where the entropy can again
be bounded). Simpler proofs using empirical process results could be constructed if one
were to assume that the envelopes for the considered function classes go to zero and that
J(1,F , L2) < ∞; however, in general the function class (and hence the uniform entropy
integrals) will depend on n via η̂(Ick), so we take a different approach below, looking at
specific properties of VC classes. In order to apply the local maximal inequality of Cher-
nozhukov et al. (2014), we place a restriction on covering numbers, but we believe that a
similar result could be developed via a restriction on the bracketing number and a bound
on the bracketing entropy integral (van der Vaart and Wellner, 1996). See for example
Theorem 3 of Kennedy (2019). This would apply to smooth functions and Sobolev classes;
for example, the bracketing entropy integral converges so long as the Hölder exponent is
greater than half of the covariate dimension. We note that Assumption 4 could be avoided
using a triple-splitting procedure, where η∗ is estimated in one split, τ∗ is estimated on the
second and inference on θ0 is performed in the third.

Our key theorem is as follows:

Theorem 1 Under Assumptions 1-4,

√
nkPn,kψ1(θ0, η̂

c
k, τ̂k) =

√
nkPn,kψ1(θ0, η

∗, τ∗)

− I{m∗(L) = m0(L)}
√
nkPn,kψ2(θ0, η

∗, τ∗)

− I{g∗(L) = g0(L)}
√
nkPn,kψ3(θ0, η

∗, τ∗)

+ oP (1)

Let us define

Tn,k =

√
nkPn,kψ∗(θ0, η̂

c
k, τ̂k)[

Pn,kψ∗(θ0, η̂ck, τ̂k)
2 − {Pn,kψ∗(θ0, η̂ck, τ̂k)}2

]1/2
Then Theorem 1 can be extended to show asymptotic type I error control.
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Corollary 2 Suppose that Assumptions 1-4 hold, and furthermore that 0 < P{ψ1(θ0, η
∗, τ∗)−

ψ2(θ0, η
∗, τ∗)}2 <∞ and 0 < P{ψ1(θ0, η

∗, τ∗)− ψ3(θ0, η
∗, τ∗)}2 <∞ then

sup
t∈R
|Pr(Tn,k ≥ t)− Φ(t)| → 0

This result shows that our proposed test continues to be valid so long as at least two
nuisances are consistently estimated; we need either

(i) ‖g0 − ĝck‖P,2 ‖m0 − m̂c
k‖P,2 = oP (n−1/2) or

(ii) ‖g0 − ĝck‖P,2
∥∥∥G∗ − Ĝk∥∥∥

P,2
= oP (n−1/2) or

(iii) ‖m0 − m̂c
k‖P,2

∥∥∥M∗ − M̂k

∥∥∥
P,2

= oP (n−1/2).

When either g0(L) or m0(L) cannot be consistently estimated, we continue to obtain root-n
inference by transferring our assumptions to a different nuisance parameter (either G∗(L)
or M∗(L)). As stated before, these nuisances should be less difficult to estimate because
they are univariate regressions. Nevertheless, since all nuisances are dependent on machine
learning methods, we will see in Section 4.4 that convergence of both Ĝ(L) and M̂(L) can
depend in a complex way on the convergence rates of ĝ(L) and m̂(L).

The above result can be used to justify type I error control of our test. Consider a series
of tests (Tn)∞n=1; let P denote a set of laws satisfying the null hypothesis of interest and
also certain regularity conditions (including smoothness or sparsity conditions). We focus
predominantly on pointwise asymptotic error control :

sup
P∈P

lim sup
n→∞

PrP (Tn = 1) ≤ α

for a level α ∈ (0, 1). This is in contrast with uniform asymptotic error control :

lim sup
n→∞

sup
P∈P

PrP (Tn = 1) ≤ α

which generally gives much stronger guarantees; see e.g. Lehmann and Romano (2024) for
further details. We note that in the case that both nuisances are consistently estimated,
then uniform guarantees should be feasible given a slight adjustment of the results for testing
in Shah and Peters (2020) and for estimation/interval-construction in Chernozhukov et al.
(2018). Given that the focus of this paper is on doubly robust inference, we have chosen
not to pursue this here. However, in light of the results on regularity and superefficiency in
the following section, we would conjecture that pointwise results cannot be made uniform
when only one of the two nuisances is consistently estimated (unless parametric working
models are used).

Under Assumptions 1-4, the proposed (unnormalized) doubly robust score statistic
Un(θ0) = K−1

∑K
k=1 Ũnk(Ik, I

c
k) is asymptotically linear with influence function

ψ∗(W ; θ0, η
∗, τ∗) = ψ1(W ; θ0, η

∗, τ∗) − I{m∗(L) = m0(L)}ψ2(W ; θ0, η
∗, τ∗) − I{g∗(L) =

g0(L)}ψ3(W ; θ0, η
∗, τ∗). For the remainder of this section, we will sometimes omit the de-

pendence of ψ∗(W ; θ0, η
∗, τ∗) on η∗, τ∗ to simplify notation. The following assumptions
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allow us to conclude the stronger statement that Un(θ) is asymptotically linear as a func-
tion of θ; let Θ denote the parameter space for θ, which is assumed to be bounded. In the
following assumptions, we now index nuisance parameters by θ to make explicit which ones
are dependent on the target parameter.

Assumption 5 Uniform convergence of the scores

supθ∈Θ P{ψ̂∗(θ)− ψ∗(θ)}2 = oP (1).

Assumption 6 Uniform convergence of the remainder terms

(i) supθ∈Θ ‖g0 − ĝ‖P,2 ‖m0(θ)− m̂c
k(θ)‖P,2 = oP (n

−1/2
k ) or

(ii) supθ∈Θ ‖g0 − ĝck‖P,2
∥∥∥G∗(θ)− Ĝk(θ)∥∥∥

P,2
= oP (n

−1/2
k ) or

(iii) supθ∈Θ ‖m0(θ)− m̂c
k(θ)‖P,2

∥∥∥M∗(θ)− M̂k(θ)
∥∥∥
P,2

= oP (n
−1/2
k )

We now consider the proposed estimator θ̂n such that Un(θ̂n) = 0. Under the additional
conditions 5 and 6, we have that n1/2{Un(θ) − Pψ∗(θ)} converges weakly to a Gaussian
process with mean zero and covariance function ρ(θ1, θ2) = P{ψ∗(θ1)ψ∗(θ2)}. By the delta
method, θ̂n is asymptotically linear with influence function −{ ∂

∂θ0
Pψ∗(θ0)}−1ψ∗(W ; θ0)

(van der Vaart and Wellner, 1996).

4.2 Regularity and superefficiency

In this section, we show that the doubly robust sampling distribution conferred by Theorem
1 comes at the cost of regularity when either ĝ(L) or m̂(L) is not consistent for the true
nuisance function. To study regularity of the proposal, we characterize the behavior of the
estimator obtained by inverting the score test under a sequence of local alternatives.

To simplify the exposition below, we consider the case where the outcome and exposure
are known to follow a multivariate Gaussian distribution conditionally given the covariates
L. The distribution of the covariates remains unconstrained (nonparametric). Hence, the
joint density of W = (Y,A,L) is

pθ,η(W ) = φ{Y −Aθ −m(L)}φ{A− g(L)} pL(L)

where φ(z) = (2π)−1/2 exp(−z2/2) and pL is the unspecified joint density of the covariate
vector L.

Let {θt, ηt(L)} = {θ0+tsθ, g0(L)+tsg(L),m0(L)+tsm(L)} denote a parametric submodel
in the direction s = {sθ, sm(L), sg(L)} and passing through the population parameter value
(θ0, η0) at t = 0. The scores of pθt,ηt (with respect to t) at t = 0 are given by the linear
operator s 7→ Bs defined by

Bs(W ) = {Y −Aθ0 −m0(L)}{Asθ + sm(L)}+ {A− g0(L)}sg(L).

A more general analysis for density functions other than φ will exhibit a similar form.
We now replace {θt, ηt(L)} by the local parameter sequence {θn−1/2 , ηn−1/2(L)} = {θ0 +

n−1/2sθ, g0(L)+n−1/2sg(L),m0(L)+n−1/2sm(L)} and let Pn denote the corresponding local
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probability measures. By arguments identical to those in van der Vaart (2000) and Banerjee
(2005), the log likelihood ratios Λn = logPn−logPnn are locally asymptotically normal with

Λn = n1/2PnBs−
1

2
P (Bs)2 + oP (1)

P
 N

(
−1

2
P (Bs)2, P (Bs)2

)
where

P
 denotes weak convergence with respect to P and the oP (1) term is also oPn(1).

See chapter 7 of van der Vaart (2000) for a detailed account of local asymptotic normality.
We now consider regularity of the proposed estimator. Recall that an estimator Tn of

θ0 is (locally) regular at P if the limiting distribution of n1/2(Tn − θn−1/2) with respect
to sampling under Pn does not depend on s. Standard definitions of asymptotic efficiency
restrict attention to regular estimators in order to rule out so-called superefficient estimators
(van der Vaart, 2000).

The next result characterizes the regularity of θ̂n through its sampling distribution under
sequences of local parameters.

Theorem 3 Suppose that the likelihood of an observation is

pθ,η(W ) = φ{Y −Aθ −m(L)}φ{A− g(L)} pL(L)

where φ(z) = (2π)−1/2 exp(−z2/2) and pL is the unspecified joint density of the covariate
vector L. If Assumptions 1-6 hold, then

n1/2(θ̂n − θn)
Pn N(µs, τ

2
∗ )

where {θn−1/2 , ηn−1/2(L)} = {θ0 + n−1/2sθ, g0(L) + n−1/2sg(L),m0(L) + n−1/2sm(L)} for
s = {sθ, sm(L), sg(L)}. The asymptotic variance is

τ2
∗ = P

[{
∂

∂θ0
Pψ∗(θ0)

}−1

ψ∗(θ0)

]2

.

With some abuse of notation, the asymptotic mean µs is

µs =


0 if m∗(L) = m0(L), g∗(L) = g0(L)
P{(A−g∗−M∗)sm}
P{(A−g∗−M∗)A} if m∗(L) = m0(L), g∗(L) 6= g0(L)
P{(Y−Aθ0−m∗−G∗)sg}

P{(A−g0)A} if m∗(L) 6= m0(L), g∗(L) = g0(L) .

This theorem follows by an application of Le Cam’s third lemma (van der Vaart, 2000).
A consequence of this result is that θ̂n is a regular asymptotically linear estimator if both
nuisance regressions are consistently estimated. However, if g∗(L) 6= g0(L), then θ̂n remains
asymptotically linear but is only locally regular with respect to paths s = {sθ, 0, sg(L)} that

do not vary m0(L). Similarly, when m∗(L) 6= m0(L), the estimator θ̂n is locally regular for
paths s = {sθ, sm(L), 0} that do not vary g0(L). The asymptotic results in the previous sub-
section may thus give a poor approximation under certain data-generating mechanisms, and
erratic behaviour is expected to be more severe as the degree of misspecification is larger.
Note that other examples of doubly robust asymptotically linear estimators such as Benkeser
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et al. (2017) focus on parameters in nonparametric models where only one influence function
is possible for regular asymptotically linear estimators (see the following subsection). Hence,
the result here is non-trivial for the semiparametric model under consideration.

Recently, Benkeser et al. (2020) have proposed superefficient estimators of average treat-
ment effect parameters by replacing the propensity score with an alternative regression.
Proposals such as these forsake regularity of their estimators by their construction in or-
der to achieve lower overall mean squared error. Relating this to the above theorem, note
first that the semiparametric efficiency bound under the partially linear model with ho-
moscedastic errors is proportional to 1/E{var(A|L)}. If one considers a more general class
of non-regular (and non-asymptotically linear) estimators of θ0 then it is possible to improve
this in parts of the parameter space. When g∗(L) 6= g0(L), the influence function for the
proposed estimator is scaled by 1/E[{(A− g∗(L)−M∗(L)}A]; then g∗(L) can be chosen to
deliver an estimator with asymptotic variance smaller than the semiparametric efficiency
bound but greater than 1/var(A) e.g. by letting it not depend on L. However, in light
of Theorem 3, we advocate for the more cautious approach of attempting to model both
m0(L) and g0(L) correctly and viewing the results of Theorem 1 as offering some additional
protection against possible misspecification.

4.3 Doubly robust inference for the variance-weighted average treatment effect

Throughout this article, we have assumed that the semiparametric model of interest is
correctly specified e.g. that (1) holds. When this is not the case, then so long as g0(L) is
consistently estimated, then our proposed estimator of the parameter in the partially linear
model converges to

θ∗0 =
E[{A− g0(L)}Y ]

E[{A− g0(L)}A]
(8)

as discussed e.g. in Robins et al. (2008). When A is binary, and L is sufficient to account for
confounding, then the above equals the so called overlap-weighted treatment effect (Crump
et al., 2006). However, under a nonparametric model for the observed data distribution,
there is only one regular and asymptotically linear estimator of (8), which has the influence
function:

{A− g0(L)}[Y − θ∗0{A− g0(L)} − E(Y |L)]

E[{A− g0(L)}2]
. (9)

Indeed, one can show that the influence function of the standard doubly robust estimator
θ̂ in (2) is equal to (9) plus a term

{A− g0(L)}{E(Y − θ∗0A|L)−m∗(L)}
E[{A− g0(L)}2]

,

with a drift term now equal to P [{g0(L)− ĝ(L)}{E(Y − θ∗0A|L)− m̂(L)}]. Then since m̂(L)
does not converge to E(Y −θ∗0A|L), the latter will usually fail to be oP (n−1/2) when g0(L) is
estimated data-adaptively (Whitney et al., 2019). The influence function for our proposed
estimator is equal to (9) plus a term

{A− g0(L)}[E(Y −m∗(L)|L)− E{Y −m∗(L)|g0(L)}]
E[{A− g0(L)}2]

,
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with a drift term equal to

P [(g0 − ĝ)(G∗ − Ĝ)}+ P{(g0 − ĝ)(m∗ − m̂)}

which is oP (n−1/2) under the conditions of Theorem 1 above. Therefore unlike the standard
doubly robust estimator, our proposal yields an asymptotically linear (although non-regular)
estimator of θ∗0 when restriction (1) fails.

4.4 Results for estimators of M(L) and G(L)

In this section, we explore the properties of the Nadaraya-Watson estimators of the ad-
ditional nuisance parameters and obtain novel results on their rates of convergence; given
that similar results are available for both M̂(L) and Ĝ(L), in what follows we will focus on
the former. The following theorem characterises the convergence rate when the estimators
of g0(L) and m0(L) are taken from an auxiliary sample. Mammen et al. (2012) and De-
laigle et al. (2016) give comparable results in settings where either the regressors and/or
the outcome in a kernel regression problem depend on estimated nuisance parameters (see
also Kennedy et al. (2017)). In these papers, results are given for specific nonparametric
estimators of the nuisances. Our results allow for arbitrary estimators or g0(L) and m0(L)
by incorporating sample splitting.

Theorem 4 For a random subset I of {1, ..., nk} of size nk = n/k, suppose we have that
the nuisance parameter estimator η̂(Ick) obtained on Ick belongs to the realisation set N with
probability approaching one. The set N contains η∗ and satisfies Assumption 4 required for
Theorem 1. For an x ∈ X , where X denotes the support of m∗(L), suppose that

(a) For a chosen bandwidth h, h→ 0, nh3 →∞ and n→∞.

(b) K is ϑth-order kernel where, for some ν < ∞, |K(s) − K(s′)| ≤ ν|s − s′| for all
s, s′ ∈ R1.

(c) The support X is compact. Also, fm(x) = ∂P (m∗ ≤ x)/∂x is continuous in x and
bounded away from zero.

(d) M∗(x) is ϑ-times continuously differentiable. The conditional density of A − g∗(L)
given m∗(L) = x is continuous w.r.t. x.

(e) The kernel K belongs to a class F(K) = {K(x−·h ) : x ∈ X , h > 0} which is of VC-type
with ξ ≥ e, ν ≥ 1 and uniformly bounded envelope F (K) <∞.

(f) The mean-square misspecification error satisfies ‖g0 − g∗‖P,2 = O(1).

(g) For each j = 1, 2 and each k,

sup
x∈X ,η∈N

‖ϕj(x, h, η)− ϕj(x, h, η∗)‖P,2 = OP (
√
ht(j)nk )

where t
(j)
nk is a rate that satisfies

√
ht

(j)
nk

√
log

(
1√
ht

(2)
nk

)
→ 0 and 1√

nk
log

(
1√
ht

(2)
nk

)
→ 0.
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Then

|M̂(x)−M∗(x)| = OP

(
hϑ + ζg + h−1ζm

)
(10)

and

E[{M̂(x)−M∗(x)}2] = O
(
h2ϑ + ζ2

g + h−2ζ2
m

)
, (11)

where
‖g∗ − ĝck‖P,2 = OP (ζg) and ‖m∗ − m̂c

k‖P,2 = OP (ζm).

Here we briefly discuss the assumptions. Conditions (a)-(d) are standard in the kernel
regression literature. We require conditions (e) and (g) in order to apply results on empiri-
cal processes. The former concerns the complexity of the terms which comprise the kernel
regression estimator (and their estimators). Importantly, the entropy of the relevant func-
tion classes will be controlled for fixed η̂(Ick) and η, such that we do not need to restrict the
entropy of ĝ(L) and m̂(L) here. Condition (e) is satisfied for many common choices of ker-
nel, and means that F(K) is of VC-type and therefore that the uniform entropy condition
(e) is satisfied (Giné and Guillou, 2002).

We now unpack the implications of Theorem 4. Firstly, the behaviour of M̂(L) in general
depends on both m̂(L) and ĝ(L), such that even though ĝ(L) does not have to converge
to the truth, we still rely on it to converge relatively quickly to some limiting value. This
situation is preferable to one where ĝ(L) converges to the truth but the rate is so slow that
the usual Cauchy-Schwarz bound fails to be oP (n−1/2). As a consequence, if either g0(L)
or m0(L) is especially difficult to estimate, these results suggest that one might prefer an
inconsistent estimator that converges quickly to some g∗(L) rather than one that converges
to the truth, at least from the perspective of high quality estimation of M∗(L) or G∗(L).
Nevertheless, the pointwise nature of the asymptotic results for doubly robust inference
suggest that for certain data generating processes, fast convergence of M̂(L) or Ĝ(L) will
not necessarily translate into good size/coverage of the resulting tests or confidence intervals.
This is borne out in the simulations (see Experiment 3) in the following sections, where we
see that certain types of misspecification can result in worse performance than letting m̂(L)
and ĝ(L) converge slowly to the truth.

Secondly, there are immediate implications for how to combine cross-fitting with doubly
robust inference. In order to avoid placing Donsker conditions on ĝ(L) and m̂(L) and their
limits, we should obtain them in a separate sample to the one used to obtain M̂(L) and Ĝ(L).
However, in the proof of Theorem 1 where sample splitting is required, empirical process
conditions are placed on the latter estimators, given that they are univariate nonparametric
estimators and that ĝ(L; Ick) and m̂(L; Ick) are considered fixed (conditional on the auxiliary
sample).

Finally, the optimal bandwidth for M̂(L) will now depend on the rate of convergence of
m̂(L). Note that the usual variance term of order 1/

√
nkh that appears in the expansion

of a kernel estimator is o(h−1ζm) in expression (10). To see this, suppose that h = n−λ and
ζm = n−υ for some 0 < λ < 1 and 0 < υ ≤ 1/2 respectively. Then, 1/

√
nkh = o(h−1ζm) if

2υ − 1 < λ which holds for all λ and υ. It furthermore follows that the optimal choice of

bandwidth for balancing squared bias and variance is h ∼ ζ
1/(2ϑ−1)
m . Hence, letting h tend

more slowly to zero is advantageous when m̂(L) converges slowly.
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As pointed out by a reviewer, it may be possible to improve the term h−1ζm in the rate
above, under strengthened conditions along the lines of Theorem 1 in Mammen et al. (2012).
Specifically, if one assumes that E{A|m∗(L)} = g0(L), then we would conjecture that the
term could be improved to to ζm. We would not typically want to enforce this condition,
given that we have not even assumed that g0(L) is consistently estimated by ĝ(L). It
may be possible to weaken this to a smoothness condition on the difference E{A|m∗(L)}−
g0(L) whilst maintaining the improved rate; see Assumption 4 in Mammen et al. (2012)
for example. However, we leave this to further work, since we do not find such a condition
intuitive in the doubly robust inference set-up.

5. Simulation studies

In order to judge how well the methods are expected to perform in practice, we conducted
three simulation experiments.

Experiments 1 & 2

We considered four score tests of the null hypothesis that θ = 0. The first, ‘PS’ (propensity
score), is based on the score statistic n−1/2

∑n
i=1{Ai − ĝ(Li)}Yi after scaling by its empir-

ical standard deviation. The second, ‘OR’ (outcome regression), is based on the statistic√
nPn[Ai{Yi − m̂(Li)}] (after scaling); neither of the first two tests possess the Neyman

orthogonality property discussed in Chernozhukov et al. (2018), and hence would not be
expected to posses their advertised size when data adaptive estimators of the nuisance pa-
rameters are used. We also considered a ‘GCM’ test (Shah and Peters, 2020), based on the
orthogonalised statistic n−1/2

∑n
i=1{Ai − ĝ(Li)}{Yi − m̂(Li)}], in addition to our proposal

‘DR-GCM’ given in Section 3.3. Although it is not generally required (Shah and Peters,
2020), our implementation of the ‘GCM’ test uses cross-fitting, as this was also done for
the proposal and we wanted to ensure a fair comparison of methods. One would expect
the ‘GCM’ test to posses its advertised size when both nuisance parameter estimators are
consistent, but not otherwise, in contrast to our proposal. In order to construct the tests,
all statistics given above were scaled by the empirical standard deviation of the relevant
scores.

The first experiment was closely related to the setting in Benkeser et al. (2017). The first
covariate L1 was generated from a U(−2, 2) distribution, whilst the second covariate L2 and
exposure were both binary with respective expectations 0.5 and expit{−L1 + 2L1L2}. The
outcome Y was simulated from a N (−L1 + 2L1L2, 1) distribution. We wished to evaluate
how the aforementioned tests would perform in 3 different settings: 1) when both nuisance
parameter estimators ĝ(L) and m̂(L) are consistent, 2) when only the estimated propensity
score ĝ(L) is consistent, and 3) when only the estimated outcome regression estimate is
consistent. The parameter that was consistently estimated was obtained using the Super
Learner (van der Laan et al., 2007), whilst the inconsistently estimated parameter was ob-
tained via `1−penalised maximum likelihood with an omitted interaction term. The Super
Learner library incorporated a sample average, a generalised linear model with an interac-
tion term, a kernel k-nearest neighbours algorithm, random forests and several smoothing
spline-based estimators with varying choices of penalty parameter. Nadaraya–Watson ker-
nel regression estimators were used to estimate G∗(L) and M∗(L). Tuning parameters were
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selected using cross-validation; we acknowledge that this may lack theoretical justification,
particularly in light of the complex dependence of G∗(L) and M∗(L) on the other nuisance
parameters. Implementation of optimal choices of tuning parameters with nonparametri-
cally generated outcomes and covariates has not been studied, as far as we are aware; we
note that cross-validation was seen to perform well in Benkeser et al. (2017).

Figure 1: First experiment (all nuisances estimated consistently). Black dots represent ‘PS’;
red squares represent ‘OR’; green triangles represent ‘DML’; blue triangles with
represent ‘DR-GCM’.
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The second experiment considered a different type of misspecification. The covariates
L1 and L2 were both generated from a uniform distribution over the interval [0, 1]. The
binary exposure had expectation expit{−1.5 + 3(1 + e−20(L1−0.5))−1 +L2} and the outcome
was generated from a N (3(1+e−20(L1−0.5))−1 +L2, 1) distribution. Inconsistently estimated
nuisance parameters were again estimated via `1−penalised maximum likelihood with only
main effect terms. The Super Learner included the same candidate learners as in the
previous experiment, and was again believed to be consistent; random forests have been
seen to perform well in similar settings (Friedberg et al., 2020; Cui and Tchetgen, 2019),
although the strong linear signal could be considered adversarial. All experiments were
carried out at sample sizes of 250, 500, 1,000, 2,000, 3,000 and 5,000, and at each sample
size repeated 1,000 times. Five-fold cross-fitting was used in the construction of each of the
tests.

The results of experiment 1 can be seen in Figures 1-3. Against sample size, we plot
bias of the test statistic, n1/2×bias, the size of the test, and the Monte Carlo variance of
the score statistic scaled by its average estimated variance (MC var/est var) based on the
empirical variance of the score in each simulation. This ratio indicates whether the estimated
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Figure 2: First experiment (propensity score estimated correctly). Black dots represent
‘PS’; green triangles represent ‘GCM’; blue triangles with represent ‘DR-GCM’.
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Figure 3: First experiment (outcome model estimated correctly). Red squares represent
‘OR’; green triangles represent ‘GCM’; blue triangles with represent ‘DR-GCM’.
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variance used to scale the test is too high (a value less than one) or too low (a value greater
than one). The ‘OR’ and ‘PS’ tests failed to obtain their advertised rejection rate even
when nuisance parameters were consistently estimated due to the slowly-converging bias
inherited from these Super Learner-based estimators. The ‘GCM’ test performed well when
both nuisances were accurately estimated, but could display erratic behaviour otherwise.
This was especially the case when only the outcome regression estimate was consistent,
since the ‘GCM’ test statistic appears to inherit the plug-in bias of m̂(L). This led to a
rejection rate that increases with sample size, and was over 30% at n = 5, 000. In contrast,
the ‘DR-GCM’ had close to its advertised size across all three settings. The results of the
second experiment were similar (and are given in the Appendix), although in this case, the
differences in performance between ‘GCM’ and ‘DR-GCM’ were less pronounced.

Experiment 3

In a final experiment, we considered an implication of the previous asymptotic theoretical
results that it may be preferable to estimate nuisance parameters inconsistently rather than
at slow rates. We considered a data generating process closely related to one described in
Belloni et al. (2014); L was generated from a a multivariate normal distribution N (0,Σ),
where Σk,j = 0.5|j−k|, A ∼ N (γTL, 1) and Y ∼ N (βTL, 1), where γj = ζγ(1/j)2 and
βj = ζβ(1/j)2 for j = 1, ..., 200. To estimate m0(L), we used the Lasso with penalties
selected using the method proposed by Belloni et al. (2014), which we implemented using
the ‘hdm’ package in R (Chernozhukov et al., 2016). We considered four different approaches
to estimate the propensity score; i) using the Lasso, based on a correctly specified model; ii)
subtracting a random variable distributed as N (−3n−0.1, n−0.2) from the Lasso estimate;
iii) using the Lasso, after removing the first nine columns of L; iv) as the mean of A.
For the second approach, adding the random noise allowed us to slow down the rate of
convergence of the propensity score estimator. The third and fourth approaches correspond
to misspecifying the propensity score. We implemented the proposed ‘DR-GCM’ test using
each of these estimates of g0(L). The parameters ζγ and ζβ were first both fixed at 0.82; we
then considered a more challenging setting by lowering to ζβ = 0.2, as here one might expect
approaches that include a selection step for the exposure model to outperform those that
omit such a step. We also reversed this, setting ζβ = 0.82 and ζγ = 0.2. The experiments
were carried out at sample sizes n =100, 250, 500, 1,000 and at each n, 1,000 simulated
data sets were generated.

The results are displayed in Figures 4, 5 and 6. When ζγ = ζβ = 0.82, the approaches
where the propensity score was misspecified had slightly inflated type 1 error at smaller
sample sizes, due to a larger than desirable bias. However, performance improved as n
increased. If ζγ = 0.2, misspecification of the propensity score has negligible effect on the
size of the test compared with fitting a correctly specified model. When the estimated
propensity score converged to the truth at a slow rate, there was surprisingly low bias,
but the estimated variance of the test statistic was generally an overestimate, leading to
conservative performance. When ζβ = 0.2 the differences in size were much starker between
the different approaches, as misspecification was seen to lead to highly inflated type 1 error
at low sample sizes, although this seemed to improve considerably at n = 1, 000. Hence
although there may be settings where misspecification leads to a test attaining its size faster
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Figure 4: Third experiment, ζγ = ζβ = 0.82. Black dots represent standard Lasso estima-
tion; circles represent g0 estimated at a slow rate; triangles represent omission of
the first nine covariates, crosses represent omission of all covariates.
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Figure 5: Third experiment, ζγ = 0.82 ζβ = 0.2. Black dots represent standard Lasso esti-
mation; circles represent g0 and m0 estimated at a slow rate; triangles represent
omission of the first nine covariates, crosses represent omission of all covariates.
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Figure 6: Third experiment, ζγ = 0.2 ζβ = 0.82. Black dots represent standard Lasso
estimation; circles represent g0, m0 estimated at a slow rate; triangles represent
omission of the first nine covariates, crosses represent omission of all covariates.
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than using a slower converging estimator, we see that this is very sensitive to the data-
generating process, and as a general statement does not reflect finite sample performance.
This is compatible with the pointwise rather than uniform nature of the asymptotic results
for doubly robust inference.

Results in Section 4.2 indicate that it is possible to use the doubly robust inference
framework to construct superefficient estimators. To assess this, in the setting where
ζγ = ζβ = 0.82 and with n = 1, 000, we computed the influence function for an oracle
semiparametric efficient estimator based on the true g0(L) and m0(L). We also computed
the influence function for the doubly robust inference-based approach, and then estimated
its variance over 1,000 simulations to assess how it compared to the semiparametric ef-
ficiency bound. In both cases, θ was fixed at the truth. When g0(L) was consistently
estimated as in approach (i) for estimating the propensity score, the ratio of the variance of
the doubly robust inference influence function with the oracle influence function was 1.073.
However, under approaches (iii) and (iv), the ratio of the variances changed to 0.269 and
0.268 respectively, providing clear evidence of superefficient behaviour.

6. Discussion

In this paper, we explored how standard doubly robust tests and estimators are asymp-
totically linear even when nuisance parameters are estimated using flexible data-adaptive
methods, so long as they converge (sufficiently fast) to the truth. When at least one of the
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nuisance parameter estimators is inconsistent, the tests/confidence intervals of the target
parameter will generally fail to possess their advertised size/coverage. Building on the work
of Benkeser et al. (2017) and others, we have shown how to construct tests and estimators
for semiparametric model parameters, which are asymptotically linear so long as at least
one nuisance parameter is consistently estimated. The double robustness of the inferential
procedures was borne out in simulation studies.

An important feature of the proposed estimators is that when only one nuisance is
consistently estimated, they are only locally regular with respect to certain paths. We
have characterised with respect to which submodels regularity is preserved. The sensitivity
of these procedures to local changes in the data generating mechanism is perhaps not
surprising. To give an intuitive example, suppose that m̂(L) is obtained using variable
selection, g∗(L) is deliberately misspecified and set to a constant, and the strength of
association between a confounder and Y (conditional on A and other covariates) is of the
order n−1/2. In that case, standard selection procedures will eject the confounder in some
but not all samples (at any finite n). Further, this confounder would not be picked up by
the inconsistent estimator ĝ(L), nor by M̂(L). As a result, the proposed estimator of θ0

may inherit the complex, non-standard behaviour of the m̂(L). For this reason, we also
conjecture that when only one of g0(L) or m0(L) is consistently estimated, our pointwise
asymptotic results in Section 4 cannot be made uniform (Leeb and Pötscher, 2005). We
therefore recommend using data-adaptive methods that have good performance across a
range of function classes, and to aim for consistency for both nuisance estimators.

Although the non-regularity might be viewed as a limitation of our proposal, we note
that standard double machine learning/TMLE estimators are not generally regular and
asymptotically linear when one nuisance is inconsistently estimated. In this case, our pro-
posal is at least expected to deliver smaller bias and better coverage. An open question
is whether data-adaptive doubly robust inference can be obtained without non-regularity;
positive results exist for specific sparse estimators (Tan, 2019b; Smucler et al., 2019; Dukes
et al., 2020; Dukes and Vansteelandt, 2020; Avagyan and Vansteelandt, 2021), but it is
unclear whether they can be extended more generally.
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Appendix A. Miscellaneous results

A.1 Expansion of the drift term in the partially logistic model

Up to a scaling factor (and with abuse of notation), the drift term of the doubly robust
estimator of Tan (2019a) is given by

P
[
{1− E(Y |L)}

(
em0−m̂ − 1

)
(ν0 − ν̂)

]
= −P

{
(1− Y )em0

(
e−m0 − e−m̂

)
(ν0 − ν̂)

}
.

By adding and subtracting some terms, the above equals

P
{

(1− Y )em0

(
e−m

∗ − e−m0

)
(ν∗ − ν̂)

)
+ P

{
(1− Y )em0

(
e−m̂ − e−m∗

)
(ν0 − ν∗)

}
+ P

{
(1− Y )em0

(
e−m

∗ − e−m0

)
(ν0 − ν∗)

}
+ P

{
(1− Y )em0

(
e−m

∗ − e−m̂
)

(ν∗ − ν̂)
}

= R1 +R2 +R3 +R4.

We will focus on terms R1 and R2. For the former, supposing that ν∗(L) = ν0(L),

R1 = P
{

(1− Y )
(
em0−m∗ − 1

)
(ν0 − ν̂)

}
= P

{
(Y e−θ0A−m

∗ − (1− Y ))(ν0 − ν̂)
}

= P
{
E{Y e−θ0A−m∗ − (1− Y )|ν0, ν̂}(ν0 − ν̂)

}
= P

{
E{Y e−θ0A−m∗ − (1− Y )|ν0, ν̂}(ν0 − ν̂)

(1− Y )

{1− E(Y |ν0, ν̂)}

}
= P

{
E{Y e−θ0A−m∗ − (1− Y )|ν0, ν̂}{A− ν̂(L)} (1− Y )

{1− E(Y |ν0, ν̂)}

}
.

Moving on to R2, supposing that m∗(L) = m0(L),

R2 = P
{

(1− Y )
(
em0−m̂ − 1

)
(ν0 − g∗)

}
= P

{
(1− Y )

(
em0−m̂ − 1

)
(A− g∗)

}
= P

{
(1− Y )

(
em0−m̂ − 1

)
E(A− g∗|Y = 0,m0, m̂)

}
= P

[
{Y e−θ0A−m̂ − (1− Y )}E(A− g∗|Y = 0,m0, m̂)

]
.

A.2 Results for α̂Ĝ

A.2.1 When m∗(L) 6= m0(L)

We will obtain results for the product α̂kĜk in the case that m∗(L) 6= m0(L), since parallel
developments can be shown straightforwardly for β̂kM̂k.
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We begin by considering the consistency of α̂k. Let φ(α∗, g∗, G∗) = G∗(L){A−G∗(L)−
α∗G(L)} and φ(α̂k, ĝ

c
k, Ĝk) denote the same quantity now indexed by estimates. Then

0 = Pn,kφ(α̂k, ĝ
c
k, Ĝk)− Pφ(α∗, g∗, G∗)

= (Pn,k − P )φ(α∗, g∗, G∗) + Gn,k{φ(α̂k, ĝ
c
k, Ĝk)− φ(α∗, g∗, G∗)}

+ P{φ(α̂k, ĝ
c
k, Ĝk)− φ(α∗, g∗, G∗)}

= (Pn,k − P )φ(α∗, g∗, G∗) + Gn,k{φ(α̂k, ĝ
c
k, Ĝk)− φ(α∗, g∗, G∗)}

+ P{φ(α̂k, ĝ
c
k, Ĝk)− φ(α̂k, g

∗, G∗)}+ P{φ(α̂k, g
∗, G∗)− φ(α∗, g∗, G∗)}.

We will focus on the expression on the right hand side of the final equality. The first term
(Pn,k − P )φ(α∗, g∗, G∗) is an i.i.d. sum of mean zero random variables, and therefore can

be shown to be OP (n−1/2) under weak conditions. The second term Gn,k{φ(α̂k, ĝ
c
k, Ĝk) −

φ(α∗, g∗, G∗)} is an empirical process term; we conjecture that this can be handled in a
similar way to the terms in the proof of Theorem 1, and therefore expect it to be oP (n−1/2)
given that sample splitting has been used. The final term can be shown to equal

−(α̂k − α∗)PG∗2.

Then for the third term

P{φ(α̂k, ĝ
c
k, Ĝk)− φ(α̂k, g

∗, G∗)}
= PĜk(g0 − ĝck)− PG∗(g0 − g∗) + Pα̂kP (G∗2 − Ĝ2

k)

= Pg∗(G∗ − Ĝk) + PG∗(g∗ − ĝ) + P (ĝ − g∗)(G∗ − Ĝk)
+ Pα∗P (G∗2 − Ĝ2

k) + (α̂k − α∗)P (G∗2 − Ĝ2
k)

.
∥∥∥Ĝk −G∗∥∥∥

P,2
+ ‖ĝck − g∗‖P,2 + (α̂k − α∗)

∥∥∥Ĝk −G∗∥∥∥
P,2

.

Hence by Slutsky’s Theorem,

(Pn,k − P )φ(α∗, g∗, G∗) + Gn,k{φ(α̂k, ĝ
c
k, Ĝk)− φ(α∗, g∗, G∗)}

+ P{φ(α̂k, ĝ
c
k, Ĝk)− φ(α̂k, g

∗, G∗)}+ P{φ(α̂k, g
∗, G∗)− φ(α∗, g∗, G∗)}

= (Pn,k − P )φ(α∗, g∗, G∗) + oP (n−1/2) + (α̂k − α∗)
{
−PG∗2 +OP

(∥∥∥Ĝk −G∗∥∥∥
P,2

)}
+OP

(∥∥∥Ĝk −G∗∥∥∥
P,2

+ ‖ĝck − g∗‖P,2

)
.

Assuming the invertibility of

−PG∗2 +OP

(∥∥∥Ĝk −G∗∥∥∥
P,2

)
,

we can rewrite the above as

α̂k − α∗ =

{
PG∗2 +OP

(∥∥∥Ĝk −G∗∥∥∥
P,2

)}−1

×
{

(Pn,k − P )φ(α∗, g∗, G∗) + oP (n−1/2) +OP

(∥∥∥Ĝk −G∗∥∥∥
P,2

+ ‖ĝck − g∗‖P,2

)}
.
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Hence, if ĝck and Ĝk converge to a limit, then one would expect α̂k to also be consistent.
Furthermore, the rate of α̂k will typically be determined by the slower of the rates of ĝck
and Ĝk.

We note that Theorem 1 involves conditions on
∥∥∥α̂kĜk∥∥∥

P,2
. Under the condition that

g∗(L) = g0(L), which is required in this setting for asymptotical linearity of the test statistic,
it follows that α∗ = 0. In that case,∥∥∥α̂kĜk∥∥∥

P,2
= α̂k

∥∥∥Ĝk∥∥∥
P,2
≤α̂k

∥∥∥Ĝk −G∗∥∥∥
P,2

+ α̂k ‖G∗‖P,2

by the triangle inequality. The first term of the right hand side of the inequality will

typically be of smaller order than the second, so
∥∥∥α̂kĜk∥∥∥

P,2
will typically be driven by the

convergence rate of α̂k.

A.2.2 When m∗(L) = m0(L)

We will now consider the more challenging case where m∗(L) = m0(L) and g∗(L) = g0(L).
We will now assume that the estimator Ĝck is obtained using the training sample, but expect
this can be weakened along the lines of the proof of Theorem 1. We give a result below
that indicates that although the denominator in α̂k tends to zero, |Pn,kα̂kĜck| will in general
converge to zero at a rate determined by the estimator ĝck(L).

We will make the following additional assumptions:

i Rates of convergence (in-sample error):

‖g0 − ĝck‖Pn,k,2 = OP (n−ak )∥∥∥Ĝck∥∥∥Pn,k,2 = OP (n−bk )∥∥∥Ĝck∥∥∥
P,2

= OP (n−bk )

where 0 < a ≤ 1/2 and 0 < b ≤ 1/2.

ii Pn,kĜc
2

k can be inverted at any finite sample size.

iii V ar(A|L) < c <∞ with probability one where c is a constant.

Then with some abuse of notation,

|Pn,kα̂kĜck| =|{Pn,kĜc
2

k }−1Pn,k{Ĝck(A− ĝck)}Pn,kĜck|

=|{Pn,kĜc
2

k }−1Pn,k{Ĝck(A− g0)}Pn,kĜck + {Pn,kĜc
2

k }−1Pn,k{Ĝk(g0 − ĝck)}Pn,kĜck|

≤|{Pn,kĜc
2

k }−1Pn,k{Ĝck(A− g0)}Pn,kĜck|+ |{Pn,kĜc
2

k }−1Pn,k{Ĝck(g0 − ĝck)}Pn,kĜck|.

We will consider each term on the right hand side of the final equality in turn.
Firstly,

|{Pn,kĜc
2

k }−1Pn,k{Ĝck(A− g0)}Pn,kĜck| =|{Pn,kĜc
2

k }−1||Pn,k{Ĝck(A− g0)}||Pn,kĜck|.
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By (i), Pn,kĜc
2

k = OP (n−2b
k ) and by (ii), {Pn,kĜc

2

k }−1 = OP (n2b
k ). Also, by (i) and applica-

tion of the Cauchy-Schwarz inequality, |Pn,kĜck| = OP (n−bk ). Moreover,

E
[
Pn,k{Ĝck(A− g0)}|Ick

]
= 0

and by (iii),

V ar
[
Pn,k{Ĝck(A− g0)}|Ick

]
=

1

n2
k

nk∑
i=1

V ar[Ĝck(Li){Ai − g0(Li)}|Ick]

=
1

n2
k

nk∑
i=1

E{Ĝck(Li)2V ar(Ai|Li)|Ick}

≤ cn−1
k

∥∥∥Ĝck∥∥∥2

P,2
= OP (n−1−2b

k ).

By application of Chebyshev’s inequality, we have that

|Pn,k{Ĝck(A− g0)}| = OP (n
−1/2−b
k ) = oP (n

−1/2
k )

Hence, we have

|{Pn,kĜc
2

k }−1Pn,k{Ĝck(A− g0)}Pn,kĜck| = OP (n2b
k )OP (n

−1/2−b
k )OP (n−bk ) = OP (n

−1/2
k ).

We now consider the term

|{Pn,kĜc
2

k }−1Pn,k{Ĝck(g0 − ĝck)}Pn,kĜck| = |{Pn,kĜc
2

k }−1||Pn,k{Ĝck(g0 − ĝck)}||Pn,kĜck|.

By the Cauchy-Schwarz inequality, we have that

|Pn,k{Ĝck(g0 − ĝck)}| ≤
∥∥∥Ĝck∥∥∥Pn,k,2 ‖g0 − ĝck‖Pn,k,2 = OP (n−a−bk ).

Hence,

|{Pn,kĜc
2

k }−1Pn,k{Ĝck(g0 − ĝck)}Pn,kĜck| = OP (n2b
k )OP (n−a−bk )OP (n−bk ) = OP (n−ak )

and by (i),

|Pn,kα̂kĜck| = OP (n−ak ) +OP (n
−1/2
k ) = OP (n−ak ).

It follows that this term inherits the rate of ĝck; although this will generally not be sufficiently

fast to ensure that Pn,kα̂kĜck = oP (n−1/2), we note that this is not necessarily problematic

as Pn,kα̂kĜck appears in our expansion of the test statistic as a component of product terms
alongside other quantities that also converge to zero.
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Appendix B. Proof of Theorem 1

Proof Proof of Theorem 1

We have

1√
nk

nk∑
i=1

{Ai − ĝck(Li)− α̂kĜk(Li)}{Yi − θ0Ai − m̂c
k(Li)− β̂kM̂k(Li)}

− 1√
nk

nk∑
i=1

{Ai − g∗(Li)− α∗G∗(Li)}{Yi − θ0Ai −m∗(Li)− β∗M∗(Li)}

=
√
nkPn,kψ1(θ0, η̂

c
k, τ̂k)−

√
nkPn,kψ1(θ0, η

∗, τ∗)

= Gn,k{ψ1(θ0, η̂
c
k, τ̂k)− ψ1(θ0, η

∗, τ∗)}
+
√
nkP {ψ1(θ0, η̂

c
k, τ̂k)− ψ1(θ0, η

∗, τ∗)}
= I1 + I2.

We will consider I1 and I2 in turn.

Step 1

We will proceed by showing that Pr (|Gn,k [ψ1(θ0, η̂
c
k, τ̂k)− ψ1(θ0, η

∗, τ∗)] | > κ)→ 0 for any
κ > 0 and therefore that I1 = oP (1). Let us consider the class of functions

F = [ψ1{·; θ0, η̂
c
k, τ} − ψ1(·; θ0, η

∗, τ∗) : τ ∈ T ]

as well as the subclass

Fδnk = [ψ1{·; θ0, η̂
c
k, τ} − ψ1(·; θ0, η

∗, τ∗) : d2(τ, τ∗) < δnk ]

where δnk → 0. Let Fη be a measurable envelope for f such that ‖Fη‖P,q < ∞ for some

q ≥ 2, and Znk = maxi≤nk F (Wi). Similarly, F δnk = Fη̂ck + Fη∗ . Then for any κ > 0,

Pr [|Gn,k {ψ1(θ0, η̂
c
k, τ̂k)− ψ1(Wi; θ0, η, τ

∗)} | > κ]

= E (Pr [|Gn,k {ψ1(θ0, η̂
c
k, τ̂k)− ψ1(Wi; θ0, η, τ

∗)} | > κ|Ick])
= E (Pr [|Gn,k {ψ1(θ0, η̂

c
k, τ̂k)− ψ1(Wi; θ0, η, τ

∗)} | > κ, d2(τ̂ , τ∗) < δnk |I
c
k])

+ E (Pr [|Gn,k {ψ1(θ0, η̂
c
k, τ̂k)− ψ1(Wi; θ0, η, τ

∗)} | > κ, d2(τ̂ , τ∗) ≥ δnk |I
c
k])

≤ E

{
Pr

(
sup

f∈Fδnk
|Gn,k(f)| > κ|Ick

)}
+ P {d2(τ̂ , τ∗) ≥ δnk} .

By Assumption 2, Pr {d2(τ̂ , τ∗) ≥ δnk } → 0. Then it remains to show that the first term
on the right hand side of the inequality goes to zero.

From Corollary 5.1 of Chernozhukov et al. (2014), under Assumption 4 we have the
bound on the uniform entropy integral

J(δnk ,F
δnk , F δnk ) ≤ 2

√
2νδnk

√
log(ξ/δnk)
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and the maximal inequality for VC-type classes

E

(
sup

f∈Fδnk
|Gn,k(f)|

∣∣∣∣Ick
)
. Cr(1)

nk

√√√√ν log

(
ξ
∥∥F δnk∥∥

P,2

Cr
(1)
nk

)
+
ν ‖Znk‖2√

nk
log

(
ξ
∥∥F δnk∥∥

P,2

Cr
(1)
nk

)

if σ = Cr
(1)
nk (for a constant C), where we use that sup

f∈Fδnk ‖f‖P,2 = OP (r
(1)
nk ). By

Assumption 4, one can then convert this result into the asymptotic bound

E

(
sup

f∈Fδnk
|Gn,k(f)|

∣∣∣∣Ick
)

= OP

r(1)
nk

√√√√log

(
1

r
(1)
nk

)
+

1
√
nk

log

(
1

r
(1)
nk

) = oP (1).

Then by Markov’s inequality,

E

{
Pr

(
sup

f∈Fδnk
|Gn,k(f)| > κ

∣∣∣∣Ick
)}
≤ 1

κ
E

{
E

(
sup

f∈Fδnk
|Gn,k(f)|

∣∣∣∣Ick
)}

= o(1)

and it follows that I1 = oP (1).

Step 2

One can show that

I2 =
√
nkP [ψ1(θ0, η̂

c
k, τ̂k)− ψ1(θ0, η

∗, τ∗)]

=
√
nkP

{(
g0 − ĝck + α∗G∗ − α̂kĜk

)(
m0 − m̂c

k + β∗M∗ − β̂kM̂k

)}
.

We will evaluate the above bias term in three settings:

(i) g0(L) = g∗(L) and m0(L) = m∗(L).

(ii) g0(L) 6= g∗(L) and m0(L) = m∗(L).

(iii) g0(L) = g∗(L) and m0(L) 6= m∗(L).

In setting (i), by the Cauchy-Schwarz inequality, I2 = oP (1) following Assumption 3.

For setting (ii), we note first that G∗(L) = 0 and β∗ = 0 since m0(L) = m∗(L). Then
using Assumption 3, after splitting I2 as

√
nkP

{
(g0 − ĝck)

(
m0 − m̂c

k − β̂kM̂k

)}
−
√
nkP

{
α̂kĜk

(
m0 − m̂c

k − β̂kM̂k

)}
we have that

|
√
nkP

{
α̂kĜk

(
m0 − m̂c

k − β̂kM̂k

)}
| = oP (1).
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Also,

√
nkP

{
(g0 − ĝck)

(
m0 − m̂c

k − β̂kM̂k

)}
=
√
nkP

{
(g0 − g∗)

(
m0 − m̂c

k − β̂kM̂k

)}
+
√
nkP

{
(g∗ − ĝck)

(
m0 − m̂c

k − β̂kM̂k

)}
;

the second term on the right hand side is oP (1). For the first term, with some abuse of
notation,

√
nkP

{
(g0 − g∗)

(
m0 − m̂c

k − β̂kM̂k

)}
=
√
nkP

{
(g0 − g∗)

(
m0 − m̂c

k − β̂kM̂k

)}
=
√
nkP

{
(A− g∗)

(
m0 − m̂c

k − β̂kM̂k

)}
=
√
nkP

{
M̄
(
m0 − m̂c

k − β̂kM̂k

)}
.

After some algebraic manipulation,

√
nkP

{
M̄
(
m0 − m̂c

k − β̂kM̂k

)}
=
√
nkPn,kψ2(θ0, η̂

c
k, τ̂k)−

√
nkPn,kψ2(θ0, η

∗, τ∗)

−Gn,k {ψ2(θ0, η̂
c
k, τ̂k)− ψ2(θ0, η

∗, τ∗)}
+
√
nkP{(M∗ − M̂k)(m

∗ − m̂c
k − β̂kM̂k)}+

√
nkP{(M̄ −M∗)(m∗ − m̂c

k − β̂kM̂k)}.

The first term on the right hand side is exactly zero by virtue of how β̂ is estimated. The
two terms on the final row are oP (1) following Assumption 3; we again use the fact that
βM∗(L) is zero in this case. To handle the empirical process term, we will use similar
arguments to in Step 1 of this proof; specifically, invoking Assumption 4 to show that
P [|Gn,k {ψ2(θ0, η̂

c
k, τ̂k)− ψ2(θ0, η

∗, τ∗)} | > κ] → 0. We apply the results in Chernozhukov
et al. (2014) now to the function class F2 = [ψj{·; θ0, η, τ} : τ ∈ T ] for m∗(L) = m̂(L; Ick)
and m∗(L) = m∗(L) whilst conditioning on Ick. Combined with Assumption 4, this indicates
that

√
nkGn,k {ψ2(θ0, η̂

c
k, τ̂k)− ψ2(θ0, η

∗, τ∗)} = oP (1).

Then we have shown that

√
nkPn,k [ψ1(θ0, η̂

c
k, τ̂k)] =

√
nkPn,k {ψ1(θ0, η

∗, τ∗)− ψ2{Wi; θ0, η
∗, τ∗}}+ oP (1)

To finish the proof, one can repeat the same arguments for setting (iii) as for term (ii), in
order to show that

√
nkPn,k {ψ1(θ0, η̂

c
k, τ̂k)} =

√
nkPn,k {ψ1(θ0, η

∗, τ∗)}
−
√
nkPn,k {ψ3(θ0, η

∗, τ∗)}+ oP (1)
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in that setting.

We are now in a position to prove Corollary 2
Proof Proof of Corollary 2
Suppose for the moment that g0(L) 6= g∗(L). By the central limit theorem,

√
nkPn,k{ψ1(θ0, η

∗, τ∗)− ψ2(θ0, η
∗, τ∗)}

converges to a normal distribution. Then following Theorem 1 and by application of Slut-
sky’s theorem, it follows that

√
nkPn,kψ1(θ0, η̂

c
k, τ̂k) also converges to a normal distribution.

Asymptotic normality can also be shown in the case that m0(L) 6= m∗(L) under similar
reasoning.

It remains to show that[
Pn,kψ∗(θ0, η̂

c
k, τ̂k)

2 − {Pn,kψ∗(θ0, η̂
c
k, τ̂k)}2

]−1
=
{
Pψ∗(θ0, η

∗, τ∗)2
}−1

+ oP (1)

Following Theorem 1, we have that Pn,kψ∗(θ0, η̂
c
k, τ̂k) = oP (1) and by the continuous map-

ping theorem, {Pn,kψ∗(θ0, η̂
c
k, τ̂k)}2 = oP (1). Then we will show that

Pn,kψ∗(θ0, η̂
c
k, τ̂k)

2 − Pψ∗(θ0, η
∗, τ∗)2 = oP (1)

such that by application of the Slutsky’s theorem and the continuous mapping theorem, the
main result follows.

By adding and subtracting terms,

Pn,kψ∗(θ0, η̂
c
k, τ̂k)

2 − Pψ∗(θ0, η
∗, τ∗)2

= Pn,k{ψ∗(θ0, η̂
c
k, τ̂k)

2 − ψ∗(θ0, η
∗, τ∗)2}

+ Pn,kψ∗(θ0, η
∗, τ∗)2 − Pψ∗(θ0, η

∗, τ∗)2

Then,

Pn,k{ψ∗(θ0, η̂
c
k, τ̂k)

2 − ψ∗(θ0, η
∗, τ∗)2}

= Pn,k [{ψ∗(θ0, η̂
c
k, τ̂k)− ψ∗(θ0, η

∗, τ∗)}{ψ∗(θ0, η̂
c
k, τ̂k) + ψ∗(θ0, η

∗, τ∗)}]

≤
[
Pn,k{ψ∗(θ0, η̂

c
k, τ̂k)− ψ∗(θ0, η

∗, τ∗)}2
]1/2 [Pn,k{ψ∗(θ0, η̂

c
k, τ̂k) + ψ∗(θ0, η

∗, τ∗)}2
]1/2

≤ ‖ψ∗(θ0, η̂
c
k, τ̂k)− ψ∗(θ0, η

∗, τ∗)‖Pn,k,2

×
(
‖ψ∗(θ0, η̂

c
k, τ̂k)− ψ∗(θ0, η

∗, τ∗)‖Pn,k,2 + 2
[
Pn,kψ∗(θ0, η

∗, τ∗)2
]1/2)

Where we apply the Cauchy–Schwarz inequality and then the triangle inequality, using
(a+ b)2 = {(a− b) + 2b}2.

We will next show that

‖ψ∗(θ0, η̂
c
k, τ̂k)− ψ∗(θ0, η

∗, τ∗)‖Pn,k,2 = oP (1).

First, using the triangle inequality,

‖ψ∗(θ0, η̂
c
k, τ̂k)− ψ∗(θ0, η

∗, τ∗)‖Pn,k,2
≤ ‖ψ∗(θ0, η̂

c
k, τ̂k)− ψ∗(θ0, η̂

c
k, τ
∗)‖Pn,k,2 + ‖ψ∗(θ0, η̂

c
k, τ
∗)− ψ∗(θ0, η

∗, τ∗)‖Pn,k,2
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For the first term on the right hand side of the equality, by Assumption 4, it follows that
this term is oP (1). For the second,

E
{
‖ψ∗(θ0, η̂

c
k, τ
∗)− ψ∗(θ0, η

∗, τ∗)‖2Pn,k,2 |I
c
k

}
= ‖ψ∗(θ0, η̂

c
k, τ
∗)− ψ∗(θ0, η

∗, τ∗)‖2P,2 .

By Assumption 2, this can be shown to be oP (1). Hence, by Markov’s inequality,

‖ψ∗(θ0, η̂
c
k, τ
∗)− ψ∗(θ0, η

∗, τ∗)‖2Pn,k,2 = oP (1)

and by the continuous mapping theorem, the same holds for ‖ψ∗(θ0, η̂
c
k, τ
∗)− ψ∗(θ0, η

∗, τ∗)‖Pn,k,2.

Then, the result for ‖ψ∗(θ0, η̂
c
k, τ̂k)− ψ∗(θ0, η

∗, τ∗)‖Pn,k,2 follows.

Next, using the weak law of large numbers,

Pn,kψ∗(θ0, η
∗, τ∗)2 − Pψ∗(θ0, η

∗, τ∗)2 = oP (1)

so that Pn,kψ∗(θ0, η
∗, τ∗)2 = OP (1). Hence,

Pn,k{ψ∗(θ0, η̂
c
k, τ̂k)

2 − ψ∗(θ0, η
∗, τ∗)2} = oP (1) {oP (1) +OP (1)} = oP (1).

Given that we have already shown the result for Pn,kψ∗(θ0, η
∗, τ∗)2 − Pψ∗(θ0, η

∗, τ∗)2, the
desired result follows.

Appendix C. Proof of Theorem 3

Proof For any sθ, we have that n1/2(θ̂n − θn) = n1/2(θ̂n − θ0) − sθ. It follows from local
asymptotic linearity that under sampling from P we have(

n1/2(θ̂n − θn)
Λn

)
Pn
 N

((
−sθ

−1
2P (Bs)2

)
,

(
τ2
∗ ρ∗
ρ∗ P (Bs)2

))
.

Here, ρ∗ is the asymptotic covariance between Bs and the influence function of θ̂n and τ2
∗

is variance of the same influence function.
By Le Cam’s third lemma, we have that under sampling from Pθ

n−1/2 ,ηn−1/2
that

n1/2(θ̂n − θn) N(µs, τ
2
∗ ),

where µs = ρ∗ − sθ. There are three cases, corresponding to (1) both m0(L) and g0(L)
consistently estimated, (2) just m0(L) and (3) just g0(L) consistently estimated.

Below, we let ε0(W ) = Y −Aθ0−m0(L), δ0(W ) = A−g0(L), ε∗(W ) = Y −Aθ0−m∗(L),
and δ∗(W ) = A− g∗(L). Moreover, we define

u0(W ) = ε0(W )δ0(W ) (12)

uε(W ) = ε0(W ){δ∗(W )−M∗(L)} = u0(W ) + {δ∗(W )− δ0(W )−M∗(L)}ε0(W ) (13)

uδ(W ) = {ε∗(W )−G∗(L)}δ0(W ) = u0(W ) + {ε∗(W )− ε0(W )−G∗(L)}δ0(W ) (14)

as shorthand for the influence function of the score statistic and let u̇ denote the partial
derivative of a function u with respect to θ.
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Case (1). We have that ρ∗ = −P0(u0Bs)/P u̇0. The numerator equals (with abuse of
notation)

P (u0Bs) = P [ε0δ0{ε0(Asθ + sm) + δ0sg}]
= Pε20δ0Asθ + Pε20δ0sm + Pε0δ

2
0sg

= Pδ0Asθ + Pδ0sm + 0

= sθP{δ0A} .

The penultimate equality follows from E{ε0(O) | A,L} = 0 and E{ε0(O)2 | A,L} = 1 for
the present setting. The denominator is simply

−Pu̇0(W ) = −P ∂

∂θ
(Y −Aθ −m0)δ0

= P{δ0A}.

Hence, ρ∗ = sθ in this case and µs = 0 as claimed.

Case (2). Here, we have that ρ∗ = P{uε(W )Bs(W )}/P u̇ε(W ). The numerator equals
(with abuse of notation)

P (u0B0s) = P [ε0(δ∗ −M∗){ε0(Asθ + sm) + δ0sg}]
= Pε20(δ∗ −M∗)Asθ + Pε20(δ∗ −M∗)sm + 0

= sθP{(δ∗ −M∗)A}+ P (δ∗ −M∗)sm .

For the denominator, we have

−Pu̇ε = −P ∂

∂θ
(Y −Aθ −m0)(δ∗ −M∗)

= P{(δ∗ −M∗)A}.

Putting this together, we have ρ∗ = sθ +P{(δ∗−M∗)sm}/P{(δ∗−M∗)A}. The asymptotic
mean is µs = P{(δ∗ −M∗)sm}/P{(δ∗ −M∗)A}.

Case (3). Lastly, we have that ρ∗ = P (uδBs)/P u̇δ. The numerator equals (with abuse of
notation)

P (u0Bs) = P [δ0(ε∗ −G∗){ε0(Asθ + sm) + δ0sg}]
= Pε0δ0(ε∗ −G∗)(Asθ + sm) + Pδ2

0(ε∗ −G∗)sg
= sθPε∗ε0δ0A+ Pε∗ε0δ0sm + P (ε∗ −G∗)sg
= sθP (δ0A) + 0 + P (ε∗ −G∗)sg .

Here, we have used that E{ε∗(O)ε0(O) | A,L} = 1 in the present setting. For the denomi-
nator, we have

−Pu̇ε(W ) = −P ∂

∂θ
{Y −Aθ −m∗ −G∗}δ0

= P0(δ0A).
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Putting this together, we have ρ∗ = sθ + P{(ε∗ −G∗)sg}/P (δ0A). The asymptotic mean is
µs = P{(ε∗ −G∗)sg}/P (δ0A).

This completes the proof.

Appendix D. Proof of Theorem 4

Proof Define the oracle estimator as

M̃(x) = f̂−1
m,nk

(x)Pn,k [ϕ2(x, h, η∗)] .

Our proof is based around the expansion

M̂(x)−M∗(x) = M̂(x)− M̃(x) + M̃(x)−M∗(x).

Using conditions (a)-(d), it follows from standard theory on higher order kernel estimators
(see e.g. Section 1.11 of Li and Racine (2023)) that

|M̃(x)−M∗(x)| = OP

(
1√
nkh

+ hϑ
)
.

Notably, the bias of M̃(x) is O(hϑ) and the variance is O(1/nh). We will now focus on the
difference M̂(x)− M̃(x):

M̂(x)− M̃(x)

=f̂−1
m̂,nk

(x)P {ϕ2(x, h, η̂ck)− ϕ2(x, h, η∗)}

+ f̂−1
m̂,nk

(x)(Pn,k − P ) {ϕ2(x, h, η̂ck)− ϕ2(x, h, η∗)}

+ (f̂−1
m̂,nk

− f̂−1
m,nk

)Pn,k {ϕ2(x, h, η∗)}

In order to obtain (10), we will show in turn that

P {ϕ2(x, h, η̂ck)− ϕ2(x, h, η∗)} = OP
(
ζg + h−1ζm

)
(15)

(Pn,k − P ) {ϕ2(x, h, η̂ck)− ϕ2(x, h, η∗)} = oP

(
1√
nkh

)
(16)

f̂−1
m̂,nk

− f̂−1
m,nk

= OP
(
h−1ζm

)
+ oP

(
1√
nkh

)
. (17)

Note that by the triangle inequality,

|P {ϕ2(x, h, η̂ck)− ϕ2(x, h, η)} |

= OP

(∣∣∣∣ ∫ {K (x− m̂c
k(l)

h

)
−K

(
x−m∗(l)

h

)}
{g0(l)− g∗(l)}dP (w)

∣∣∣∣)
+OP

(∣∣∣∣ ∫ K

(
x−m∗(l)

h

)
{g∗(l)− ĝck(l)}dP (w)

∣∣∣∣)
+OP

(∣∣∣∣ ∫ {K (x− m̂c
k(l)

h

)
−K

(
x−m∗(l)

h

)}
{g∗(l)− ĝck(l)}dP (w)

∣∣∣∣).
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Then, by condition (b), (f) and the Cauchy-Schwarz inequality,∣∣∣∣ ∫ {K (x− m̂c
k(l)

h

)
−K

(
x−m∗(l)

h

)}
{g0(l)− g∗(l)}dP (w)

∣∣∣∣
≤
∣∣∣∣ ∫ Ch−1|m∗(l)− m̂c

k(l)||g0(l)− g∗(l)|dP (w)

∣∣∣∣
. h−1 ‖m∗ − m̂c

k‖P,2 = OP (h−1ζm)

where C is a constant. Using similar reasoning, one can show that

OP

(∣∣∣∣ ∫ K

(
x−m∗(l)

h

)
{g∗(l)− ĝck(l)}dP (w)

∣∣∣∣) = OP (ζg)

OP

(∣∣∣∣ ∫ {K (x− m̂c
k(l)

h

)
−K

(
x−m∗(l)

h

)}
{g∗(l)− ĝck(l)}dP (w)

∣∣∣∣) = OP (h−1ζgζm)

and (15) follows.
Since K is fixed, we also have that

sup
x∈X
|
√
nkh(Pn,k − P ) [ϕ2(x, h, η̂ck)− ϕ2(x, h, η∗)] |

. max
k

sup
f∈Fn,k

|
√
hGn,k(f)|

where Fn,k = {ϕ2(·;x, h, η̂ck)− ϕ2(·;x, h, η∗) : x ∈ X} with the corresponding envelope func-
tion Fn,k = maxk supx∈X | {ϕ2(L;x, h, η̂ck)− ϕ2(L;x, h, η∗)} |. By condition (e) on the ker-
nel, the class {K(x− m̃(L))/h){A− g̃(L)} : x ∈ X} is of VC-type for fixed m̃(L) = m∗(L),
m̃(L) = m̂(L; Ick), g̃(L) = g∗(L) and g̃(L) = ĝ(L; Ick). By the permanence properties of VC
classes (van der Vaart and Wellner, 1996), it follows that Fn,k is also of VC-type and hence
has a polynomial covering number. We can then invoke Corollary 5.1 of Chernozhukov et al.
(2014), such that via conditioning on the auxiliary sample,

E

{
sup

f∈Fn,k
|
√
hGn,k(f)|

∣∣∣∣Ick
}
.
√
ht(2)
nk

√√√√log

(
1

√
ht

(2)
nk

)
+

1
√
nk

log

(
1

√
ht

(2)
nk

)
.

by condition (g). Using Markov’s inequality (along the lines of the previous proof), one can
therefore show that

√
hGn,k(f) = oP (1). Therefore we have (16).

Also,

f̂−1
m̂,nk

− f̂−1
m,nk

= f̂−1
m̂,nk

(f̂m,nk − f̂m̂,nk)f̂−1
m̂,nk

.

First,

f̂m̂,nk − f̂m,nk =P

{
K

(
x− m̂c

k

h

)
−K

(
x−m∗

h

)}
+ (Pn,k − P )

{
K

(
x− m̂c

k

h

)
−K

(
x−m∗

h

)}
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Using the same arguments as for (15),

P

{
K

(
x− m̂c

k

h

)
−K

(
x−m∗

h

)}
= OP

(
h−1ζm

)
by condition (b). Furthermore, one can show that

(Pn,k − P )

{
K

(
x− m̂c

k

h

)
−K

(
x−m∗

h

)}
= oP

(
1√
nkh

)
if conditions (e) and (g) hold. Finally, a standard result on kernel density estimators is that

E[{f̂m,nk(x)− fm,nk(x)}2] = O(h) +O

(
1

nkh

)
and by Assumptions (a), it follows that E{(f̂m,nk−fm,nk)2} = o(1), and thus f̂m,nk = OP (1)

and moreover f̂m̂,nk = OP (1). Invoking condition (c), we have shown that

f̂−1
m̂,nk

− f̂−1
m,nk

= OP (1)

{
OP
(
h−1ζm

)
+ oP

(
1√
nkh

)}
OP (1).

Using the same reasoning, one can show that Pn,k [ϕ2(x, h, η)] = OP (1) and result (10)
follows.

To show result (11), note that the previous results imply that

E{M̂(x)} −M∗(x) = O(hϑ + ζg + h−1ζm)

and

E
(

[M̂(x)− E{M̂(x)}]2
)

= O

(
1

nkh

)
.

Appendix E. Additional simulation results
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Figure 7: Second experiment (all nuisances estimated consistently). Black dots represent
‘PS’; red squares represent ‘OR’; green triangles represent ‘DML’; blue triangles
with represent ‘DR-DML’.
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Figure 8: Second experiment (propensity score estimated correctly). Black dots represent
‘PS’; green triangles represent ‘DML’; blue triangles with represent ‘DR-DML’.
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Figure 9: Second experiment (outcome model estimated correctly). Red squares represent
‘OR’; green triangles represent ‘DML’; blue triangles with represent ‘DR-DML’.
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