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Abstract

Maximum mean discrepancies (MMDs) like the kernel Stein discrepancy (KSD) have grown
central to a wide range of applications, including hypothesis testing, sampler selection, dis-
tribution approximation, and variational inference. In each setting, these kernel-based
discrepancy measures are required to (i) separate a target P from other probability mea-
sures or even (ii) control weak convergence to P. In this article we derive new sufficient
and necessary conditions to ensure (i) and (ii). For MMDs on separable metric spaces,
we characterize those kernels that separate Bochner embeddable measures and introduce
simple conditions for separating all measures with unbounded kernels and for controlling
convergence with bounded kernels. We use these results on Rd to substantially broaden
the known conditions for KSD separation and convergence control and to develop the first
KSDs known to exactly metrize weak convergence to P. Along the way, we highlight the
implications of our results for hypothesis testing, measuring and improving sample quality,
and sampling with Stein variational gradient descent.

Keywords: Maximum mean discrepancy, kernel Stein discrepancy, targeted separation,
targeted weak convergence control, enforcing tightness

1. Introduction

Maximum mean discrepancies (MMDs) like the Langevin kernel Stein discrepancy (KSD)
are kernel-based discrepancy measures widely used for hypothesis testing (Gretton et al.,
2012; Liu et al., 2016; Chwialkowski et al., 2016), sampler selection and tuning (Gorham
and Mackey, 2017), parameter estimation (Briol et al., 2019; Barp et al., 2019; Dziugaite
et al., 2015), generalized Bayesian inference (Chérief-Abdellatif and Alquier, 2020; Mat-
subara et al., 2021, 2022; Dellaporta et al., 2022), discrete approximation and numerical
integration (Chen et al., 2019, 2018; Barp et al., 2022b), control variate design (Oates et al.,
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2014, 2019; Sun et al., 2023), compression (Riabiz et al., 2022), and bias correction (Liu
and Lee, 2017; Hodgkinson et al., 2020; Riabiz et al., 2022).

Each MMD uses a kernel function to measure the integration error between a pair
of probability measures Q and P, and, in each setting above, their successful application
relies on either P-separation, that is MMD(Q,P) > 0 whenever Q 6= P, or P-convergence
control, namely MMD(Qn,P)→ 0 implies Qn → P weakly. Unfortunately, these properties
have so far only been established under overly restrictive assumptions, e.g., for Q with
continuously differentiable log densities (Chwialkowski et al., 2016; Liu et al., 2016; Barp
et al., 2019), for P with strongly log concave tails and Lipschitz log density gradients
sp = ∂ log p (Gorham and Mackey, 2017), or for bounded MMD kernels (Sriperumbudur
et al., 2010; Sriperumbudur, 2016; Simon-Gabriel and Schölkopf, 2018; Simon-Gabriel et al.,
2023). In this work, by fixing P as the target measure and allowing Q to vary, we establish
new broadly applicable conditions for P-separation and P-convergence control. Our main
results include

• Bochner P-separation with MMDs: Theorem 2 exactly characterizes those
MMDs that separate P from Bochner embeddable measures on general Radon spaces.
For MMDs with bounded kernels, this result exposes an important relationship be-
tween separation and convergence: separating P from all probability measures is equiv-
alent to controlling P-convergence for tight sequences (Qn)n.

• Score P-separation with KSDs: Theorem 3 shows that KSDs with standard char-
acteristic kernels separate P from all measures Q that finitely integrate the score sp.
This strengthens past work that only established separation from Q with continuously
differentiable log densities (Chwialkowski et al., 2016; Barp et al., 2019).

• L2 P-separation with KSDs: Theorems 4 and 5 show that KSDs with standard
translation-invariant kernels separate P from all measures with densities q and finitely
square-integrable qsq and qsp. This strengthens past work that provided no examples
of L2-separating kernels (Liu et al., 2016).

• General P-separation with MMDs: Theorem 6 provides a simple sufficient con-
dition for general P-separation: any MMD—even one with an unbounded kernel—
separates P from all probability measures and controls tight convergence to P if the
bounded functions in its associated reproducing kernel Hilbert space (RKHS) are P-
separating. All of our remaining results explicitly check this new convenient condition.

• General P-separation with KSDs: Theorem 9 shows that KSDs with standard
translation-invariant kernels separate P from all probability measures and control
tight P-convergence whenever sp is continuous and grows at most root-exponentially.
Prior P-separation results applied only to a small subset of these targets, those with
strongly log concave tails and Lipschitz sp (Gorham and Mackey, 2017; Huggins and
Mackey, 2018; Chen et al., 2018).

• Enforcing tightness with MMDs: Theorem 10 provides a new sufficient condition
for enforcing tightness, i.e., for ensuring that (Qn)n is tight whenever MMD(Qn,P)→
0: an MMD enforces tightness if elements of its RKHS suitably bound the indica-
tors of compact sets. Prior tightness-enforcing guarantees relied on a much stronger
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condition: the presence of a coercive (and hence unbounded) function in the RKHS
(Gorham and Mackey, 2017; Huggins and Mackey, 2018; Chen et al., 2018; Hodgkinson
et al., 2020).

• Metrizing P-convergence with KSDs: Building on Theorem 10, Theorem 12 de-
velops the first KSDs known to metrize weak convergence to P (i.e., KSD(Qn,P) →
0 ⇔ Qn → P weakly) by constructing bounded convergence-controlling Stein ker-
nels. Since all prior convergence-controlling KSDs featured unbounded Stein kernels,
these are also the first KSDs known to satisfy the Stein variational gradient descent
convergence assumptions of Liu (2017) (see Application 4).

• Failing to control P-convergence: Finally, Theorem 13 provides new necessary
conditions for an MMD to control P-convergence which notably fail to be satisfied
when standard KSDs are paired with heavy-tailed targets.

As we highlight in the sections to follow, these results have immediate implications for
a variety of inferential tasks in machine learning and statistics including goodness-of-fit
testing (Applications 1 and 2), measuring and improving sample quality (Application 3),
and variational inference (Application 4).

Notation For a given separable metric space X , we let C(Rd) denote the space of con-
tinuous Rd-valued functions on X . When X = Rd, we say that the derivative of a set of
R`-valued functions exists, if the functions in that set are differentiable, and we additionally
denote by C`(Rd) the space of `-times continuously differentiable Rd-valued functions on
X (i.e., f ∈ C`(Rd) if the partial derivatives of order ` of f i exist and are continuous for
i ∈ [d] ≡ {1, . . . , d}). We let ∂f denote the vector of partial derivatives of a function f ,
and, for each multi-index p, let ∂pf denote the p-th partial derivatives of f . When d = 1 or
` = 0 we will use the abbreviations C` ≡ C`(R1) or C(Rd) ≡ C0(Rd). Decay requirements
will appear as subscripts: Cb(Rd), Cc(Rd), and C0(Rd) will respectively denote the spaces
of Rd-valued continuous functions that are bounded, compactly supported, and vanishing
at infinity. Analogously, for each function h : X → [0,∞), Ch(Rd) and C0,h(Rd) respec-
tively denote the spaces of Rd-valued continuous functions f with f/(1 + h) bounded or
vanishing at infinity. Recall a function f : X → Ra vanishes at infinity if ∀ε > 0 there exists
a compact set C s.t., supx∈Cc ‖f(x)‖ ≤ ε, where Cc is the set complement of C, and ‖ · ‖
the Euclidean norm. For any function of two arguments K(y, x), we write Kx ≡ K(·, x),
and K ∈ C

(1,1)
b (Rd) if ∂

py
y ∂

px
x K(y, x) exists, is bounded, and is separately continuous for

multi-indices satisfying ‖px‖1, ‖py‖1 ≤ 1, where ‖ · ‖1 is the Euclidean 1-norm (i.e., the
multi-index absolute value). Given a map T : S1 → S2 between sets, we denote the image
of T by T (S1) ≡ {T (s) : s ∈ S1}. Given a measure µ and a µ-integrable function h, we
denote integration by µh ≡

∫
h(x)µ(dx), and we shall omit the domain of integration, which

is always X . Some additional notation for the appendices is presented in Appendix A.

2. Maximum Mean Discrepancies and Kernel Stein Discrepancies

We begin by extending the usual notions of maximum mean discrepancy and kernel Stein
discrepancy to accommodate both arbitrary probability measures Q and unbounded kernels.
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Throughout, we let P the denote set of (Borel) probability measures on a separable
metric space X . Moreover, for any function f : X → R`, we let Pf ≡ {Q ∈ P : ‖f‖ ∈ L1(Q)}
denote the set of probability measures that finitely integrate ‖f‖ ≡ ‖ · ‖ ◦ f .

2.1 Maximum mean discrepancies

Consider a (reproducing) kernel k on X with reproducing kernel Hilbert space Hk (Aron-
szajn, 1950; Schwartz, 1964). Traditionally, the associated kernel MMD is defined as the
worst-case integration error across test functions in the RKHS unit norm ball Bk (Gretton
et al., 2012):

MMDk(Q,P) ≡ sup
h∈Bk

|Qh− Ph| . (1)

However, the expression Qh − Ph is not well defined when either (i) both Qh and Ph are
infinite or (ii) h is not integrable under Q. Unfortunately, both of these cases can occur when
k is unbounded as Bk then necessarily contains an unbounded test function (see Lemma 3).

Since we are interested in a fixed target measure P, we address the first issue by focusing
on kernels with finitely P-integrable test functions, i.e., with Bk ⊆ L1(P). To address
the second issue, we extend the MMD definition (1) to all probability measures Q by
taking the supremum only over the Q-integrable elements of Bk, that is, h with either
h+ ≡ max (h, 0) ∈ L1(Q) or h− ≡ max (−h, 0) ∈ L1(Q). In fact, since Bk is a symmetric
set, considering only h with h+ ∈ L1(Q) suffices to ensure |Qh − Ph| is well defined and
belongs to [0,∞].

Definition 1 (Maximum mean discrepancy (MMD)). For a given kernel k, define the set
of embeddable probability measures PHk ≡ {Q ∈ P : Hk ⊆ L1(Q)}. For any target measure
P ∈ PHk , we define the maximum mean discrepancy MMDk(· ,P) : P → [0,∞] by

MMDk(Q,P) ≡ sup
h∈Bk:h+∈L1(Q)

|Qh− Ph| . (2)

Remark 1 (Embeddability). We show in Appendix C that (i) the embeddability condition
P ∈ PHk holds if and only if x 7→ k(·, x) is Pettis integrable by P and (ii) Pettis integra-
bility in turn implies that the kernel mean

∫
k(·, x) dP(x) belongs to the RKHS Hk. See

Definition 6 for the definition of Pettis integrability.

As we show in Appendix C.4, one user-friendly sufficient condition for Q ∈ PHk is

Bochner-embeddability, that is, Q ∈ P√k where
√
k represents the function x 7→

√
k(x, x).

When Hk is separable, Carmeli et al. (2006) proved that one can alternatively check the
weaker condition

∫∫
|k(x, y)|dQ(x)dQ(y) < ∞. The next proposition summarizes these

convenient embeddability conditions.

Proposition 1 (Embeddability conditions). The following claims hold true.

(a) P√k  PHk .

(b) If Hk is separable,
∫∫
|k(x, y)|dQ(x)dQ(y) < ∞ implies Q ∈ PHk (Carmeli et al.,

2006, Cor. 4.3).
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Remark 2 (Sufficient condition for separability). Note that when X is a locally compact
topological space, for Hk to be separable, it is sufficient that Hk ⊆ C (Carmeli et al., 2006,
Cor. 5.2). Moreover, Hk ⊆ C ⇔ k is locally bounded1 and kx ∈ C for each x (Carmeli
et al., 2006, Prop. 5.1).

Moreover, when both Q and P are embeddable, the MMD can be re-expressed as a
convenient double-integral (Simon-Gabriel and Schölkopf, 2018, Prop. 13).

Proposition 2 (MMD as a double integral). If P ∈ PHk and Q ∈ PHk , then

MMD2
k(Q,P) =

∫∫
k(x, y)d(Q− P)(x)d(Q− P)(y).

2.2 Kernel Stein discrepancies

Building on the Stein discrepancy formalism of Gorham and Mackey (2015) and the zero-
mean reproducing kernel theory of Oates et al. (2014), Chwialkowski et al. (2016); Liu
et al. (2016); Gorham and Mackey (2017) concurrently developed special MMDs that can
be computed without any explicit integration under the target P. When discussing these
Langevin KSDs we will restrict our focus to X = Rd and assume the target P has a strictly
positive density p with respect to Lebesgue measure. We will also make use of a matrix-
valued kernel K : Rd×Rd → Rd×d which generates an RKHSHK of vector-valued functions;
for an introduction to vector-valued RKHSes, please see Appendix B.

The Langevin KSD is defined in terms of a matrix-valued base kernel K and the differ-
ential operator

Sp(v) ≡ 1

p
∇ · (pv) ≡ 1

p

∑
j

∂xj (pv
j),

known as the Langevin Stein operator in the machine learning and statistics communities
(Gorham and Mackey, 2015; Anastasiou et al., 2023), which, under mild conditions, maps
Rd-valued functions v = (v1, . . . , vd) : Rd → Rd to R-valued functions with mean zero under
the target, PSp(v) = 0. Specifically, for K chosen so that Sp(v) has expectation zero under
P for each v ∈ HK , Chwialkowski et al. (2016); Gorham and Mackey (2017); Barp et al.
(2019) defined2 the Langevin KSD as an integral probability metric (Müller, 1997) over
Sp(HK):

KSDK,P(Q) ≡ sup
v∈BK

|QSp(v)| = sup
v∈BK

|QSp(v)− PSp(v)|. (3)

However, Sp(v) is often unbounded so that, for the same reasons described in Section 2.1,
the expression (3) need not be well defined for all Q ∈ P. To enable meaningful KSD
evaluation for all probability measures, we follow the recipe of Definition 1 to extend the
definition of KSD to all Q ∈ P.

1. Recall that a function f from a topological space to a normed space is locally bounded if every point in
its domain has a neighbourhood U for which the restriction of f to U is bounded.

2. The distinct definition of Liu et al. (2016) coincides with (3) under the assumptions of their Thm. 3.8.
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Definition 2 (Kernel Stein discrepancy (KSD)). Consider a target P ∈ P with density
p > 0 and matrix-valued base kernel K for which the set pHK = {ph : h ∈ HK} consists of
partially differentiable functions. When Sp(HK) ⊆ L1(P) and P(Sp(HK)) = {0}, we define
the kernel Stein discrepancy KSDK,P : P → [0,∞] by

KSDK,P(Q) ≡ sup
v∈BK :Sp(v)+∈L1(Q)

|QSp(v)| . (4)

Remark 3 (Relation to prior definitions of KSD). For scalar kernels, Definition 2 is
identical to the definition of KSD given in two of the papers that originally defined
KSDs, Chwialkowski et al. (2016, Sec. 2.1) and Gorham and Mackey (2017, Sec. 3.1 with
‖·‖ = ‖·‖2), except for the extra constraint Sp(v)+ ∈ L1(Q) that we include simply to ensure
that the KSDK,P(Q) is well defined for all probability measures Q. Moreover, for probability
measures Q satisfying the constraint Sp(v)+ ∈ L1(Q) for all v ∈ BK our definition exactly
recovers those given by Chwialkowski et al. and Gorham and Mackey. However, unlike Def-
inition 2, the prior definitions of KSD from Chwialkowski et al. and Gorham and Mackey
are not well defined for probability measures Q failing to satisfy the extra constraint, even
though this restriction is not discussed explicitly in either work.

Under additional assumptions, like Bochner embeddability of P and Q and continuous
differentiability of K and p, prior work showed that the KSD (4) is equivalent to an MMD
with a scalar Stein kernel kp and that Sp(HK) defines a Stein RKHS Hkp of scalar-valued
functions (Oates et al., 2014; Chwialkowski et al., 2016; Liu et al., 2016; Gorham and
Mackey, 2017; Barp et al., 2019). Our next result, proved in Appendix C.5, shows that
no additional assumptions are necessary: KSDK,P(Q) = MMDkp(Q,P) and Sp(HK) = Hkp
whenever the left-hand side quantities are well defined.

Theorem 1 (KSD as MMD). Consider a target P ∈ P with density p > 0 and matrix-
valued base kernel K for which pHK consists of partially differentiable functions. Then
Sp(HK) is the Stein RKHS Hkp induced by the Stein kernel3

kp(x, y) ≡ 1

p(x)p(y)
∇y · ∇x · (p(x)K(x, y)p(y)) . (5)

Moreover, for target measures with zero-mean Stein RKHSes, i.e., for P in

PK,0 ≡ {Q ∈ P with density q > 0: qHK are partially differentiable functions,

Sq(HK) ⊆ L1(Q), and Q(Sq(HK)) = {0}},

the KSD matches the Stein kernel MMD:

KSDK,P(Q) = MMDkp(Q,P) for all Q ∈ P.

Remark 4 (Scalar kernel KSD). When K = k Id for a scalar kernel k, we will say that kp

is induced by k and write Pk,0 ≡ PkId,0. In this case,

kp(x, y) =
∑d

i=1

1

p(x)p(y)
∂xi∂yi(p(x)k(x, y)p(y)).

3. Note we have kp(x, y) =
∑d
i,j=1

1
p(x)p(y)

∂yj∂xi(p(x)Kij(x, y)p(y)).
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The zero-mean condition P ∈ PK,0 ensures that all functions in the Stein RKHS integrate
to zero under the target measure so that the KSD can be evaluated without any explicit
integration under P. Moreover, by Proposition 2 and Theorem 1, when Q embeds into the
Stein RKHS, the KSD takes on its more familiar double integral form.

Corollary 1 (KSD as a double integral). If P ∈ PK,0 and Q ∈ PHkp , then

KSD2
K,P(Q) =

∫∫
kp(x, y)dQ(x)dQ(y).

Finally, the following result proved in Appendix C.6 provides user-friendly sufficient
conditions for verifying that P ∈ PK,0, which requires verifying thatHkp = Sp(HK) ⊆ L1(P),
and P(Hkp) = 0. Hereafter, we let sp ≡ ∂ log p denote the “score” function of P whenever
log p is partially differentiable.

Proposition 3 (Stein embeddability conditions). Consider a target P ∈ P with density
p > 0 and matrix-valued base kernel K for which pHK consists of partially differentiable
functions. The following claims hold true.

(a) Sp(HK) ⊆ L1(P)⇔ P ∈ PHkp .

(b) If P ∈ P√kp, then P ∈ PHkp .

(c) If P ∈ Psp and all v in HK are bounded with bounded partial derivatives, then P ∈
P√kp.

(d) If P ∈ PHkp , then
∫∫

kp(x, y)dP(x)dP(y) = 0⇔ P ∈ PK,0.

(e) If P ∈ PHkp and HK ⊆ L1(P) ∩ C1(Rd), then P ∈ PK,0.

Remark 5 (User-friendly conditions on HK). The requirements on HK in Proposition 3
(c) and (e) can often be verified by examining simple properties of the base kernel K. For
example, by Lemma 3, all v in HK are bounded iff x 7→ ‖K(x, x)‖ is bounded, and all v in
HK have bounded xi-partial derivatives if (x, y) 7→

∥∥∂xi∂yiK(x, y)
∥∥ exists and is bounded

for any matrix norm ‖·‖. In particular, if K ∈ C
(1,1)
b (Rd), then HK ⊆ C1

b (Rd). Moreover,
by Micheli and Glaunes (2013, Thm. 2.11), HK ⊆ C1(Rd) iff (x, y) 7→ ∂xi∂yiK(x, y) is
separately continuous and locally bounded.

3. Conditions for Separating Measures

Our first goal is to identify when an MMD distinguishes P from other measures. Given a set
of probability measures M⊆ P, we will say that k separates P from M if for any Q ∈M,
MMDk(Q,P) = 0 implies that Q = P. When k separates P from all probability measures
P we say simply that k is P-separating. We will first discuss restricted P-separation—that
is, separation from a distinguished subset of measures M 6= P—in Sections 3.1 and 3.2
and then turn to general P-separation—separation from all probability measures P—in
Section 3.4.
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3.1 Bochner P-separation with MMDs

Our first result, proved in Appendix D, exactly characterizes the kernels that separate P
from Bochner embeddable measures on Radon spaces (Ambrosio et al., 2005, Def. 5.1.4).

Recall that a set of probability measuresM⊆ P is tight when for each ε > 0 there exists
a compact set S ⊆ X such that Q(Sc) ≤ ε for all Q ∈ M. We also say that a measurable
function ϕ : X → R is uniformly integrable by M ⊆ P if for each ε > 0 there exists r > 0
such that supµ∈M

∫
{x: |ϕ|(x)>r} |ϕ| dµ < ε.

Theorem 2 (Bochner P-separation with MMDs). Let k be a continuous kernel over a
Radon space X (for example, a Polish space). Then k separates P ∈ P√k from P√k iff, for
any sequence (Qn)n ⊆ P√k,

Qnh→ Ph ∀h ∈ C√k ⇐⇒


(a) MMDk(Qn,P)→ 0
(b) (Qn)n is tight

(c) (Qn)n uniformly integrates
√
k.

(6)

Theorem 2 exposes an important relationship between our two goals of separation and
convergence control. In particular, when k is bounded, the uniform integrability condition
(c) always holds, P√k is the set of all probability measures P, C√

k
is the set of all bounded

continuous functions, and the convergence on the left-hand side of (6) is the usual weak
convergence in P. Hence for bounded kernels we obtain Corollary 2: separating P from all
probability measures is equivalent to controlling tight P-convergence, i.e., having Qn → P
weakly whenever MMDk(Qn,P)→ 0 and (Qn)n is tight.

Corollary 2 (P-separation with bounded kernels). Let k be a continuous bounded kernel
over a Radon space X (for example, a Polish space). Then k separates P ∈ P from P iff,
for any sequence (Qn)n ⊆ P,

Qnh→ Ph ∀h ∈ Cb ⇐⇒
{

(a) MMDk(Qn,P)→ 0
(b) (Qn)n is tight.

Remark 6 (Comparison with Simon-Gabriel et al. (2023)). When X is also locally compact
and Hausdorff, for instance when X = Rd, Theorem 9 in Simon-Gabriel et al. (2023) implies
that, if Hk ⊂ C0 and k separates every finite measure µ from the set of finite measures, then
k metrizes the weak convergence of probability measures (i.e., for every probability measure
P, MMDk(Qn,P) → 0 ⇔ Qn → P weakly). Comparing with Corollary 2, we observe
no explicit tightness requirement appears. This is because the assumption of separation
for every finite measure µ (instead of separation of a single finite measure P from P)
implicitly does the work of enforcing tightness. In the proof of Theorem 2 we can see the role
of tightness is to ensure relative compactness, which in turn allows us to use the existence of
convergent subsequences to promote the separation assumption into a convergence control.
But P is a bounded and thus relatively compact subset of the space of finite measures (Treves,
1967, Thm. 33.2). Hence, by Treves (1967, Prop. 32.5), the assumption of k separating all
finite measures is enough to guarantee the equivalence between Qnh → Ph for all h ∈ Hk
and Qnh→ Ph for all h ∈ C0. The latter is further equivalent to Qnh→ Ph for all h ∈ Cb
by Berg et al. (1984, Cor. 2.4.3).
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3.2 Score P-separation with KSDs

The standard practice in the KSD literature is to identify easily-verified properties of the
base kernel K, target P, and alternative measure Q that ensure separation. One class
of KSD separation conditions—introduced by Chwialkowski et al. (2016, Thm. 2.2) and
generalized by Barp et al. (2019, Prop. 1)—applies to measures that finitely integrate the
score sp but additionally requires Q to have a continuously differentiable log-density. The
first main result of this work, proved in Appendix E, removes the extraneous continuity
conditions and extends P-separation to all measures Q ∈ Psp under a standard separating
assumption on the base kernel, D1

L1(Rd)-characteristicness.

Theorem 3 (Score P-separation with KSDs). Suppose a matrix-valued kernel K with HK ⊆
C1
b (Rd) is D1

L1(Rd)-characteristic. If P ∈ PK,0, then kp separates P from Psp.

We provide formal definitions of D1
L1(Rd) and characteristicness in Definition 8 and

Definition 7 respectively. In brief, D1
L1(Rd) is the d-dimensional product of the space D1

L1

of finite measures and their distributional derivatives4, and a D1
L1(Rd)-characteristic kernel

is one that can separate any pair of D1
L1(Rd) elements. Our proof of Theorem 3 builds on

the kernel Schwartz distribution theory of Simon-Gabriel and Schölkopf (2018), wherein the
space D1

L1 naturally arises from the construction of the Stein RKHS via the Langevin Stein
operator Sp. Specifically, we show in Appendix P that the Stein kernel kp separates P from
Q ∈ PHkp if and only if the base kernel K separates the Schwartz distribution spQ− ∂xjQ
from the zero measure. Moreover, spQ − ∂xjQ ∈ D1

L1(Rd) when Q ∈ Psp , which yields
Theorem 3.

Application 1: Goodness-of-fit Testing

In goodness-of-fit (GOF) testing, one uses a sequence of datapoints X1, . . . , Xn gener-
ated from a Markov chain to test whether the chain’s stationary distribution Q coincides
with a target distribution P. KSDs with D1

L1-characteristic translation-invariant base
kernels are commonly used as GOF test statistics, and such tests are known to consis-
tently reject Q = P whenever KSD(Q,P) > 0 (Chwialkowski et al., 2016; Liu et al.,
2016; Gorham and Mackey, 2017). However, prior to this work, the separating condition
KSD(Q,P) > 0 had only been established for a restricted class of alternatives (continuous
Q ∈ P√kp with differentiable log densities satisfying Q(‖sp − sq‖) <∞, Barp et al. 2019,
Prop. 1) or a restricted class of targets (P with Lipschitz sp and strongly log concave
tails, Gorham and Mackey 2017, Thm. 7). The former restriction excludes discrete and
discontinuous Q, as well as Q with tails heavier than P or non-differentiable densities.
Meanwhile, the latter restriction excludes P with tails heavier than or lighter than a
Gaussian. Theorem 3 in the present work ensures that KSD(Q,P) > 0 for any P ∈ PK,0
and Q ∈ Psp . In particular, this accommodates discontinuous or non-smooth Q and all
targets P for which the KSD (4) is defined. Moreover, Theorem 3 holds for all D1

L1-
characteristic kernels, a strict superset of the C1

0 -universal kernels (Carmeli et al., 2010,
Def. 4.1) assumed in prior work.

4. Distributional derivatives extend the usual notion of derivative to objects that are not smooth, in par-
ticular to non-smooth distributions Q. When Q has a differentiable Lebesgue density q then we recover
the usual derivative, ∂xjQ = ∂xj q dx, while in general ∂xjQ will be a Schwartz distribution (Schwartz,
1978).

9



Barp, Simon-Gabriel, Girolami, and Mackey

Indeed, Simon-Gabriel and Schölkopf (2018, Thm. 12, Tab. 1, and Cor. 38) showed
that any C1

0 -universal k and any C(1,1) translation-invariant k with fully supported spectral
measure is D1

L1-characteristic. These results already cover all of the translation-invariant
base kernels commonly used with KSDs including Gaussian, inverse multiquadric (IMQ), log
inverse, sech, Matérn, B-spline, and Wendland’s compactly supported kernels. Moreover,
as we prove in Appendix F.1, characteristicness to D1

L1 is preserved under the following
operations, which allows one to construct even more flexible base kernels.

Proposition 4 (Preserving characteristicness). Suppose a matrix-valued kernel K with
HK ⊆ C1

b (Rd) is D1
L1(Rd)-characteristic. Then the following claims hold true.

(a) If a ∈ C1
b is strictly positive, then a(x)K(x, y)a(y) is D1

L1(Rd)-characteristic.

(b) If b : Rd → Rd is a Lipschitz C1(Rd)-diffeomorphism, then the composition kernel
K(b(x), b(y)) is D1

L1(Rd)-characteristic.

(c) If kj is D1
L1-characteristic for j ∈ [d], then diag(k1, . . . , kd) is D1

L1(Rd)-characteristic.

As a final remark on Theorem 3, we note that the score embedding measures Psp and
the Bochner embeddable measures P√kp exactly coincide under mild conditions satisfied by
every C(1,1) translation-invariant base kernel K. See Appendix C.3 for the proof of this
result.

Proposition 5 (Score vs. Bochner embeddability). Under the assumptions of Theorem 3,
Psp ⊆ P√kp. If, in addition, x 7→

√
〈sp(x),K(x, x)sp(x)〉/‖sp(x)‖ is bounded away from

zero, then Psp = P√kp.

3.3 L2 P-separation with KSDs

Liu et al. (2016) introduced a second class of KSD separation conditions based on an L2

separating property of the base kernel. We say that a matrix-valued kernel K is L2(Rd)-
integrally strictly positive definite (ISPD) if HK ⊆ L2(Rd) and

g ∈ L2(Rd) and g 6= 0 ⇒
∫∫

g(x)TK(x, y)g(y)dxdy > 0.

Unfortunately, the L2 requirement on HK excludes certain popular base kernels like slowly
decaying IMQ and log inverse kernels, and Liu et al. (2016) did not provide any examples
of kernels satisfying the L2-ISPD conditions. Our next result fills this gap by showing that
many standard kernels are L2-ISPD, including Gaussian, Matérn, sech, B-spline, faster de-
caying IMQ, and Wendland’s compactly supported kernels, along with their tilted variants.
The proof can be found in Appendix G.

Theorem 4 (L2-ISPD conditions). The following claims hold true for a matrix-valued
kernel K.

(a) Suppose (kj)
d
j=1 are translation-invariant continuous kernels with Hkj ⊆ L2. If the

spectral measure of each kj is fully supported, then K = diag(kj) is L2(Rd)-ISPD.

(b) If K is L2(Rd)-ISPD and A : Rd → Rd×d is bounded measurable with A(x) invertible
for each x, then the tilted kernel A(x)K(x, y)A(y)T is also L2(Rd)-ISPD.

10
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(c) If HK is separable, supx ‖Kxu‖L1 < ∞, and Kxu ∈ L2(Rd) for each x and u ∈ Rd,
then HK ⊆ L2(Rd).

(d) Suppose Kxu ∈ L1(Rd) for some u ∈ Rd. If K is translation-invariant or, more
generally, if Kxu is bounded, then Kxu ∈ L2(Rd).

Previous results in the literature have focused on properties similar to but distinct from
the L2(Rd)-ISPD condition. These include conditions under which kernels are (i) Lp(µ)-
ISPD for p ∈ [1,∞) with respect to a probability measure µ in place of Lebesgue measure
(Carmeli et al., 2010); (ii) ISPD, meaning that

∫∫
k(x, y)dµ(x)µ(y) > 0 for all non-zero finite

measures µ (Sriperumbudur et al., 2011); (iii) L1 integrally non-strictly positive definite
(INPD), meaning g ∈ L1 ⇒

∫∫
g(x)TK(x, y)g(y)dxdy ≥ 0 (Bochner, 1932; Stewart, 1976);

(iv) L2
c-INPD where L2

c is the space of compactly supported L2 functions (Cooper, 1960);
or (v) L2-INPD for continuous k ∈ L2 when d = 1 (Buescu et al., 2004, Rem. 2.10) or
translation-invariant k with kx ∈ L1 (Phillips, 2018, Thm. 2.5.1).

Liu et al. (2016, Prop. 3.3 & Thm. 3.8) showed that KSDs with L2-ISPD base kernels
separate certain measures with continuously differentiable densities q. Theorem 5, proved
in Appendix H, generalizes this finding to matrix-valued K and partially differentiable q
and provides user-friendly L2 conditions for ensuring that Q can be separated.

Theorem 5 (L2 P-separation with KSDs). Suppose P ∈ PK,0 for a matrix-valued kernel K.
The following claims hold true.

(a) If K is L2(Rd)-ISPD, then kp separates P from {Q ∈ PHkp∩PK,0 : (sp−sq)q ∈ L2(Rd)}.

(b) If Q ∈ PHkp , (sp − sq)q ∈ L2(Rd) and HK ⊆ L2(Rd) ∩ L∞(Rd), then Q ∈ PK,0.

(c) If HK ⊆ L2(Rd), ∂HK ⊆ L∞(Rd), and spq ∈ L2(Rd), then Q ∈ PHkp .

While Theorem 5 only applies to continuous Q, it does cover certain measures excluded
by Theorem 3. For example, Theorem 5 implies that Cauchy alternatives Q are separated
from Gaussian targets P since q ‖sp‖2 and q ‖sq‖2 are bounded and hence qsp, qsq ∈ L2(Rd).
Meanwhile, Theorem 3 cannot be applied to these (Q,P) pairings as the heavy tails of a
Cauchy cannot finitely integrate a Gaussian score sp.

3.4 General P-separation

The results in the preceding sections only yield general P-separation when applied to
bounded kernels, and indeed this has been the standard in much of the MMD litera-
ture (Sriperumbudur et al., 2010; Sriperumbudur, 2016; Simon-Gabriel and Schölkopf, 2018;
Simon-Gabriel et al., 2023). To accommodate the unbounded Stein kernels that often arise
in KSDs, our next definition and result (proved in Appendix J) provide a new, convenient
means to check that unbounded kernels separate P from P.

Definition 3 (Bounded P-separating property). We say a set of functions F is bounded
P-separating if L∞ ∩ F is P-separating, i.e., if Q ∈ P and Qh = Ph for all h ∈ L∞ ∩ F
then Q = P.

11
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Theorem 6 (Controlling tight convergence with bounded separation). If Hk is bounded
P-separating, then k is P-separating and controls tight P-convergence.

According to Theorem 6, to establish general P-separation, it suffices to restrict focus
to the bounded functions in an RKHS. Moreover, Theorem 6 suggests a convenient strategy
for proving P-separation with unbounded kernels k: (i) identify a sub-RKHS of bounded
functions that belongs to Hk and (ii) appeal to a broadly applicable bounded-kernel result
to establish the P-separation of the bounded sub-RKHS.

To apply this strategy to KSDs, we first show in Appendix K that any suitably tilted
D1
L1(Rd)-characteristic base kernel yields a bounded and P-separating Stein kernel:

Theorem 7 (Controlling tight convergence with bounded Stein kernels). Suppose a matrix-
valued kernel K with HK ⊆ C1

b (Rd) is D1
L1(Rd)-characteristic. If ‖sp(x)‖ ≤ θ(x) for θ ∈ C1

with 1
θ ∈ C1

b , then the Stein kernel induced by the tilted base kernel K(x,y)
θ(x)θ(y) is bounded and

P-separating and controls tight P-convergence.

Next we show that standard translation-invariant base kernels have sub-RKHSes of
precisely the form needed by Theorem 7:

Theorem 8 (Translation-invariant kernels have rapidly decreasing sub-RKHSes). Suppose
a kernel k with Hk ⊆ C1 is translation invariant with a spectral density bounded away
from zero on compact sets. Then there exist a translation-invariant, D1

L1-characteristic

kernel ks ∈ C(1,1) and, for each c > 0, a positive-definite function f with 1
f ∈ C1,

max(|f(x)|, ‖∂f(x)‖) = O(e−c
∑d
i=1

√
|xi|), and

Hkf ⊆ Hkfs ⊆ Hk for kf (x, y) ≡ f(x)ks(x, y)f(y) and kfs(x, y) ≡ ks(x, y)f(x− y).

Theorem 8 applies to all of the translation-invariant base kernels commonly used with
KSDs including Gaussian, IMQ, log inverse, sech, Matérn, B-spline, and Wendland’s com-
pactly supported kernels. Moreover, our proof in Appendix L explicitly constructs the
D1
L1-characteristic kernel ks and the rapidly decreasing tilt function f and may be of inde-

pendent interest.
We now apply our Stein operator to the base kernels of Theorem 8 and invoke Theorem 7

to deduce the second main result of this work: KSDs based on standard translation invariant
kernels achieve general P-separation, even when their Stein kernels are unbounded. The
proof of this result can be found in Appendix M.

Theorem 9 (Controlling tight convergence with KSDs). For k as in Theorem 8, define the
tilted kernel ka(x, y) = a(x)k(x, y)a(y) for each strictly positive a ∈ C1.

(a) If P ∈ Pk,0 and ‖sp‖ has at most root exponential growth,5 then the Stein kernel
induced by k is bounded P-separating and controls tight P-convergence.

(b) Moreover, if P ∈ Pka,0 and a, ∂a, and a‖sp‖ have at most root exponential growth,
then the Stein kernel induced by ka is bounded P-separating and controls tight P-
convergence.

5. A function a has at most root exponential growth if a(x) = O(exp(c
∑d
i=1

√
|xi|)) for some c > 0.
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Application 2: Goodness-of-fit Testing, continued
In the testing setting of Application 1, Theorem 9 extends the reach of KSD GOF

testing by guaranteeing KSD(Q,P) > 0 for all alternatives Q whenever ‖sp‖ has at most
root exponential growth. Since the Stein kernels of Theorem 9 are also bounded P-
separating, the same consistency guarantees immediately extend to the computationally
efficient stochastic KSDs of Gorham et al. (2020, Thm. 4).

4. Conditions for Convergence Control

Having derived sufficient conditions on the RKHS to separate measures and control tight
convergence, we now present both sufficient and necessary conditions to ensure that an
MMD controls weak convergence to P. Hereafter, we will say that k controls weak conver-
gence to P or controls P-convergence whenever MMDk(Qn,P)→ 0 implies Qn → P weakly.
Moreover, we will say that k enforces tightness whenever MMDk(Qn,P) → 0 implies that
(Qn)n is tight. Enforcing tightness is central to our developments as, if k controls tight
weak convergence to P and enforces tightness, then it also controls weak convergence to P.

4.1 Sufficient conditions

We begin by introducing a new sufficient condition to ensure that MMDs and integral
probability metrics more generally enforce tightness.

Definition 4 (P-dominating indicators). Consider a set of functions F ⊆ L1(P). We say
that F P-dominates indicators if, for each ε > 0, there exists a compact set S ⊆ X and a
function h ∈ F that satisfy

h− Ph ≥ I [Sc]− ε. (7)

Definition 4 ensures that a sequence (Qn)n can only approximate P well if it places
uniformly little mass outside of a compact set S. As we show in Appendix N, this is
sufficient to ensure that integral probability metrics like the MMD enforce tightness.

Theorem 10 (Controlling P-convergence by dominating indicators). If F ⊆ L1(P) P-
dominates indicators then (Qn)n is tight whenever the integral probability metric

dF (Qn,P) ≡ sup
h∈F : h+∈L1(Qn) or h−∈L1(Qn)

|Qnh− Ph| → 0.

Hence, if P ∈ PHk and Hk P-dominates indicators then (Qn)n is tight whenever
MMDk(Qn,P) → 0. If, in addition, k controls tight P-convergence, then k also controls
P-convergence.

We can now combine Theorem 10 with any of our KSD tight convergence results to
immediately obtain P-convergence control for KSDs.

Corollary 3 (Controlling P-convergence with KSDs). Under the conditions of Theorem 3,
7, or 9, if Hkp P-dominates indicators, then kp controls P-convergence.

13
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Before we discuss applications of these results, let us compare them to existing results
in the literature. Prior work relied on a stronger, coercive function condition to establish
that KSDs enforce tightness with generalized multiquadric (Gorham and Mackey, 2017,
Lem. 16), IMQ score (Chen et al. 2018, Thm. 4; Hodgkinson et al. 2020, Ex. 6), log inverse
(Chen et al., 2018, Thm. 3), or unbounded tilted translation invariant (Huggins and Mackey,
2018, Thm. 3.2) base kernels. Hodgkinson et al. (2020) used the following general definition
of coercivity.

Definition 5 (Coercive function (Hodgkinson et al., 2020, Assump. 1)). We say a function
h : X → R is coercive if, for any M > 0, there exists a compact set S ⊆ X such that
infx∈Sc h(x) > M .

Remark 7 (Bounded coercive functions). Any continuous coercive function is also bounded
below as continuous functions are bounded on compact sets.

Our next result, proven in Appendix O, shows that this coercive function condition is
stronger than our P-dominating indicator condition.

Lemma 1 (Coercive functions dominate indicators). If h ∈ Hk is coercive and bounded
below and P ∈ PHk , then Hk P-dominates indicators.

As a first application of Corollary 3, we show that KSDs with IMQ base kernels enforce
tightness and control convergence whenever the dissipativity rate of the target dominates the
decay rate of the kernel. Generalizing the argument in Gorham and Mackey (2017, Lem. 16),
our proof in Appendix Q explicitly constructs a coercive function in the associated Stein
RKHS.

Theorem 11 (IMQ KSDs control P-convergence). Consider a target measure P ∈ P with
score sp ∈ C(Rd) ∩ L1(P). If, for some dissipativity rate u > 1/2 and r0, r1, r2 > 0, P
satisfies the generalized dissipativity condition

−〈sp(x), x〉 − r0 ‖sp(x)‖1 ≥ r1 ‖x‖2u − r2 for all x ∈ Rd. (8)

If k(x, y) = (c2+‖x− y‖2)−γ for c > 0 and γ ∈ (0, 2u−1), then Hkp P-dominates indicators
and enforces tightness. If, in addition, ‖sp‖ has at most root exponential growth, then kp

controls P-convergence.

Application 3: Measuring and Improving Sample Quality
Because the KSD provides a computable quality measure that requires no explicit

integration under P, KSDs are now commonly used to select and tune MCMC sampling
algorithms (Gorham and Mackey, 2017), generate accurate discrete approximations to P
(Liu and Wang, 2016; Chen et al., 2018, 2019; Futami et al., 2019), compress Markov chain
output (Riabiz et al., 2022), and correct for biased or off-target sampling (Liu and Lee,
2017; Hodgkinson et al., 2020; Riabiz et al., 2022). Each of these applications relies on
KSD convergence control, but past work only established convergence control for P with
Lipschitz sp and strongly log concave tails (Gorham and Mackey 2017, Lem. 16; Chen
et al. 2018, Thm. 3; Huggins and Mackey 2018, Thm. 3.2). Notably, these conditions
imply generalized dissipativity (8) with u = 1 but exclude all P with tails lighter than a
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Gaussian. Corollary 3 and Theorem 11 significantly relax these requirements by providing
convergence control for all dissipative P with lighter-than-Laplace tails.

Much of the difficulty in analyzing KSDs stems from the fact that all known convergence-
controlling KSDs are based on unbounded Stein kernels kp. As a second illustration of the
power of Corollary 3, Theorem 12 develops the first KSDs known to metrize P-convergence
(i.e., KSD(Qn,P) → 0 ⇔ Qn → P weakly), by constructing bounded convergence-
controlling Stein kernels. The following theorem is proved in Appendix R.

Theorem 12 (Metrizing P-convergence with bounded Stein kernels). Consider a target
measure P ∈ P with score sp that, for some dissipativity rate u > 1/2 and r, r1, r2 > 0,
satisfies the generalized dissipativity condition (8). Define the Stein kernel with base kernel
K(x, y) = diag

(
a(‖x‖)(xiyi + k(x, y))a(‖y‖)

)
, i.e.,

kp(x, y) =
∑

1≤i≤d

∂xi∂yi(p(x)a(‖x‖)(xiyi + k(x, y))a(‖y‖)p(y))

p(x)p(y)
,

for k characteristic to D1
L1 with Hk ⊆ C1

0 and a(‖x‖) ≡ (c2 + ‖x‖2)−γ a tilting function
with c > 0 and γ ≤ u. The following statements hold true:

(a) If P ∈ PK,0, then Hkp P-dominates indicators and enforces tightness.

(b) If P ∈ PK,0, γ ≥ 0, and ‖sp(x)‖ ≤ (c2 + ‖x‖2)γ, then kp is bounded P-separating and
controls P-convergence.

(c) If ‖sp(x)‖ · ‖x‖ ≤ (c2 + ‖x‖2)γ and sp ∈ C, then Hkp ⊆ Cb and kp metrizes P-
convergence.

Application 4: Sampling with Stein Variational Gradient Descent

Stein variational gradient descent (SVGD) is a popular technique for approximating
a target distribution P with a collection of n representative particles. The algorithm
proceeds by iteratively updating the locations of the particles according to a simple rule
determined by a user-selected KSD. Liu (2017) showed that the SVGD approximation
converges weakly to P as the number of particles and iterations tend to infinity, provided
that the chosen KSD controls P-convergence and that the Stein kernel is bounded. How-
ever, prior to this work, no bounded convergence-controlling Stein kernels were known.
Theorem 12 therefore provides the first instance of a Stein kernel satisfying the SVGD
convergence assumptions of Liu (2017).

4.2 Necessary conditions

We finally conclude with a necessary condition for an MMD to control weak convergence
to P, which recovers and broadens the KSD failure derived by Gorham and Mackey (2017,
Thm. 6). For each RKHS Hk ⊆ L1(P), define the P-centered RKHS HkP ≡ {h − Ph : h ∈
Hk} with P-centered kernel

kP(x, y) ≡ k(x, y)−
∫
k(x, y)dP(y)−

∫
k(x, y)dP(x) +

∫∫
k(x, y)dP(x)dP(y).
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Theorem 13 shows that k fails to control P-convergence whenever its P-centered RKHS
functions all vanish at infinity; notably, this occurs whenever kP is bounded with kP

x ∈ C0

for each x (Simon-Gabriel and Schölkopf, 2018, Prop. 3). The proof in Appendix S relies
on the fact that k and kP induce exactly the same MMD.

Theorem 13 (Decaying P-centered kernels fail to control P-convergence). Suppose that X
is locally compact but not compact. If HkP ⊆ C0, then k does not control P-convergence.

Implication 1: Standard KSDs fail for heavy-tailed P!

Since Stein kernels are already P-centered by design (i.e., (kp)P = kp), Theorem 13
holds dire consequences for standard KSDs with heavy-tailed targets P. As noted by
Gorham and Mackey (2017, Thm. 10), if the score function is bounded (as is common
for super-Laplace distributions), then the KSD fails to control P-convergence whenever
a C1

0 base kernel is used. Moreover, our more general Theorem 13 result implies that if
the score function is decaying (as is true for any Student’s t distribution), then the KSD
fails to control P-convergence for any bounded base kernel. This result suggests that the
standard KSD practice of using a C1

0 base kernel is unsuitable for heavy-tailed targets
and that one should instead choose a base kernel with growth sufficient to counteract the
decay of sp.

5. Discussion

This article derived new sufficient and necessary conditions for kernel discrepancies to en-
force P-separation and control P-convergence. We characterized all MMDs that separate
P from Bochner embeddable measures, proposed novel sufficient conditions for separating
all measures and enforcing tightness, strengthened all prior guarantees for KSD separation
and convergence control on Rd, and derived the first KSD known to exactly metrize (as
opposed to strictly dominating) weak P-convergence on Rd.

These developments point to several opportunities for further advances. First, while we
have focused on weak convergence in this article, we believe many of the tools and con-
structions can be adapted to study the control of other modes of convergence. Natural can-
didates include α-Wasserstein convergence (Ambrosio et al., 2005), i.e., weak convergence
plus the convergence of α moments, and C√

k
convergence, i.e., expectation convergence for

all continuous test functions bounded by
√
k. When

√
k is unbounded, Theorem 2 exposes

an important relationship between separation and C√
k

convergence: P-separating Bochner
embeddable measures is equivalent to controlling C√

k
convergence to P for sequences that

uniformly integrate
√
k. Hence, to control C√

k
convergence, it remains to identify those

kernels that simultaneously separate and enforce uniform integrability.

Second, while we have focused on canonical KSDs defined by the Langevin Stein operator
and a bounded base kernel, our tools are amenable to analyzing other kernel-based Stein
discrepancies like the diffusion KSDs of Gorham et al. (2019); Barp et al. (2019), the second-
order KSDs studied in Barp et al. (2022b); Liu and Zhu (2018); Hodgkinson et al. (2020);
Barp et al. (2022a), the gradient-free KSDs of Han and Liu (2018); Fisher et al. (2022), and
the random feature Stein discrepancies of Huggins and Mackey (2018). In fact, employing
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a diffusion KSD with an unbounded diffusion coefficients is one promising way to overcome
the heavy-tailed-target failure mode highlighted in Implication 1.

Finally, while we have focused on KSDs for measures defined on Rd, the very recent work
of Wynne et al. (2022) provides a template for studying measure separation on infinite-
dimensional Hilbert spaces.
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Appendix A. Appendix Notation

Throughout we denote by (e`)` the canonical basis of Rd and by (e`)` its dual basis.
The spaces C`

c(Rd) and C`
0(Rd) will be equipped with their canonical topologies. How-

ever on C`
b(Rd) we will use the strict topology, written C`

b(Rd)β, because, for ` = 0, its
dual is the space of finite (Radon) measures (Conway, 1965) whenever X is a locally com-
pact Hausdorff space (e.g., when X = Rd). Note in general, any topology between the
weak paired topology and the Mackey topology yields the space of finite measures as its
(continuous) dual (Buck, 1958, Sec. 4).

In fact we will often use a generalization of C`
b(Rd): given a continuous function θ : Rd →

[c,∞) for some c > 0, we will need to construct a generalisation of the space C1
b (Rd)β,

denoted C1
b,θ(Rd)β, and defined as the vector space of C1(Rd) functions for which θf ∈

Cb(Rd), and ∂f ∈ Cb(Rd×d), with the topology defined by the family of seminorms

‖f‖ ≡ sup
x
‖γ(x)θ(x)f(x)‖, ‖f‖ ≡ sup

x
‖γ(x)∂pxf‖

where γ ∈ C0 and |p| = 1. In other words fα → f in C1
b,θ(Rd)β iff (θfα, ∂fα)→ (θf, ∂f) in

Cb(Rd)β × Cb(Rd)β. We mention that in Lemma 10 we will similarly construct B1
θ(Rd), a

Banach space that plays a similar role to C1
b,θ(Rd) but is simpler to work with (however it

is not general enough for our purposes).
Given a topological vector space (TVS) F , its (continuous) dual will be denoted F∗.

Given a subsetM⊆ F∗, and Dα, D ∈M we will write Dα
M→ D when Dα(f)→ D(f),∀f ∈

F (i.e., Dα converges to D in weak star topology). When F = Cb, and M = P, we say
that Dα converges weakly to D. More generally, we define weak convergence in P√k (notice
the “in P√k” part!) using C√

k
, where C√

k
(resp. C

0,
√
k
) is the space of continuous functions

f with 1 +
√
k growth, i.e., such that f/(1+

√
k) is bounded, (resp. in C0). Thus

Qn

P√k→ P ⇔ Qn,P ∈ P√k , and Qn(f)→ P(f) ∀f ∈ C√k.

Notice that Cb ⊆ C√
k

and P√k ⊆ P with equality if and only if (iff) k is bounded. Recall

here that, for a R`-valued function f such as
√
k, Pf ≡ {Q ∈ P : ‖f‖ ∈ L1(Q)}.

Given TVSs F1 and F2, we denote by B(F1,F2) the set of continuous linear functionals
from F1 to F2. The transpose of a continuous linear functional T is denoted T ∗.

Given a Radon measure µ on Rd, its distributional xi-derivative will be denoted ∂xiµ :
C∞c → R. Recall that the distributional derivative is equal to ∂xiµ = −µ ◦ ∂xi on C∞c .

Appendix B. Vector-Valued RKHSes and Stein RKHSes

Let X an open subset of Rd. Let Γ(Y ) denotes the set of maps X → Y . Matrix-valued ker-
nels are typically defined via a feature map, i.e., a map ξ∗ : X → B(H,Rd) (see Definition 6),
which generates the kernel

K(x, y) ≡ ξ∗(x) ◦ ξ(y).

In particular if H ⊆ Γ(Rd) is a RKHS of Rd-valued functions, i.e., a Hilbert space on which
the evaluation functionals δx ∈ B(HK ,Rd) are continuous, then H ≡ HK where K(x, y) ≡
δx ◦ δ∗y ∈ Rd×d. The transpose of δy is usually denoted Ky ≡ δ∗y , and Kv

y ≡ δ∗y(v) ∈ HK , so
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Kxv(y) = δyKxv = δyδ
∗
xv = K(x, y)∗v = K(y, x)v for any v ∈ Rd, thus Kx = K(·, x). We

can tilt matrix-valued kernels via a matrix-valued function m ∈ Γ(Rd×d), indeed ξ∗m ≡ m◦ξ∗
is a new feature map, and its kernel is

Km(x, y) ≡ ξ∗m(x) ◦ ξm(y) = m(x) ◦ ξ∗(x) ◦ ξ(y) ◦mT (y) = m(x)K(x, y)m(y)T .

Given an RKHS HK of continuously differentiable Rd-valued functions, we can obtain
a scalar-valued kernel via the Stein operator Sp.6 Let ξ̃mP ≡ Sp ◦m ◦ ξ̃ : HK → Γ(R), where
ξ̃(h)(x) ≡ ξ∗(x)(h). Then ξmP : X → HK is a feature map for the Stein kernel kp (Barp
et al., 2019), i.e.,

kp(x, y) = 〈ξmP (x), ξmP (y)〉K .

Since the matrix m just corresponds to a change of matrix kernel K 7→ Km, we can restrict
to the identity case ξP ≡ ξId

P . In other words, for the family of “diffusion” Stein operators
(Gorham et al., 2019)

Smp (v) ≡ 1

p
∇ · (pmv) ,

the matrix-valued function m can be thought of as a transformation of the base RKHS HK
into HmKmT , i.e.,

Smp (HK) = SId
p (mHK) = SId

p (HmKmT ).

Since K is arbitrary, without loss of generality we may choose m = Id, Sp ≡ SId
p . Note

that the matrix functions m obtained by the generator of P-preserving diffusions can be
characterized on any manifold (Barp et al., 2021).

Similarly, the Stein kernel obtained via the second-order Stein operator (Barp et al.,
2022b) can be recovered by setting K to be the diagonal matrix kernel of partial derivatives
of a scalar kernel. We finally recall the equivalence between universality, characteristicness,
and strict positive definiteness of (scalar-valued) kernels (Simon-Gabriel and Schölkopf,
2018, Thm. 6), noting it carries on to the case of matrix-valued kernels.

Appendix C. Embedding Schwartz Distributions in an RKHS

Given a continuous linear map T between TVS, we denote by T ∗ its transpose, and, similarly,
if h belongs to a Hilbert space, we will denote by h∗ the associated element in the dual space,
i.e., h∗(f) ≡ 〈h , f〉 for any f in that Hilbert space.

Definition 6 (Kernel embeddings and Pettis integrals). Let D be a linear functional on a
vector space F containing the RKHS HK of a matrix-valued kernel K.

(a) We say that D embeds into HK if D|HK is continuous, i.e., if there exists a function
ΦK(D) ∈ HK such that for all h ∈ HK : D(h) = 〈ΦK(D), h〉K . We call ΦK the kernel
embedding and ΦK(D) the (kernel or RKHS) embedding of D. It is given by

ΦK(D)(x) =
∑

i eiD(Kei
x ).

6. Note Sp is a special instance of the canonical operator associated to “measures” equivalent to the
Lebesgue one with differentiable densities (or more precisely, the canonical operator induced by positive
1-densities) Barp et al. (2022a).

19



Barp, Simon-Gabriel, Girolami, and Mackey

(b) Given a feature map, i.e., a function ξ : X → B(Rd,HK), we denote by ξ∗ : X →
B(HK ,Rd) the map x 7→ ξ(x)∗ and define the feature operator ξ̃ : HK → (X → Rd)
as ξ̃(h)(·) ≡ ξ∗(·)(h). We say ξ is Pettis-integrable with respect to D if ξ̃(HK) ⊆ F
and the linear functional D ◦ ξ̃ embeds into HK . The RKHS embedding, ΦK(D ◦ ξ̃),
of D ◦ ξ̃ is known as the Pettis-integral of ξ with respect to D. We will also call the
map from D 7→ ΦK(D ◦ ξ̃) the RKHS embedding of ξ.

When M is a set of embeddable linear functionals, for any D, D̃ ∈M we can define

MMDK(D, D̃) ≡ ‖D − D̃‖K ≡ ‖ΦK(D)− ΦK(D̃)‖K ,

where ΦK : M → HK is the kernel embedding, which recovers (2) when Q and P are
embeddable probability measures. In that case, k separates P from M iff Φk( · − P)|M
vanishes only at P.

Hereafter, we will say that a kernel is characteristic to a set of embeddable linear func-
tionals M when the RKHS embeddings of two distinct elements in M are always distinct.

Definition 7 (Characteristicness). Given a set M of embeddable linear functionals (see
Definition 6), we say K is characteristic to M when ΦK is injective over M.

When µ is a finite (R-valued) measure on X , then a natural set of functions that µ can
act on is the set of finitely µ-integrable functions L1(|µ|). Now, if a function ξ : X → Hk is
to be Pettis-integrable by µ, then the very least is that the functions ξ̃(h) be contained in
L1(|µ|) for every h ∈ Hk. Interestingly, we will now see that, because Hk is a Hilbert space
(not just Banach), this condition is also sufficient to guarantee µ-Pettis integrability.

Proposition 6 (Finite measures embed into Hk iff Hk is finitely integrable). Let µ be
a finite R-valued measure (e.g., a probability measure), seen as a linear functional over
L1(|µ|). Then a function ξ : X → Hk is µ-Pettis integrable if and only if ξ̃(Hk) ⊆ L1(|µ|).
In particular, if µ = Q ∈ P, then the following claims hold.

1. Using ξ : x→ kx, it follows that Q is embeddable into Hk iff Hk ⊆ L1(Q).

2. If ∂xiHk exists, then via ξ : x→ ∂xikx we obtain that ∂xiQ embeds iff ∂xiHk ⊆ L1(Q).

Proof Since Hilbert spaces are canonically isomorphic to their dual (i.e.,H∗ = H), Gelfand-
integration and Pettis-integration coincide. Therefore, Proposition 3.4 in Musia l (2002)
– which asserts that every scalarly µ-integrable function ξ : X → Hk ∼= H∗k is Gelfand
µ-integrable – concludes the first part.

Then (1) follows directly from 〈kx , h〉k = h(x). For (2), note that if ∂xiHk exists, then
ξ : x 7→ ∂xikx ∈ Hk and 〈h, ∂xikx〉k = ∂xih(x) by Lemma 4. Thus ξ̃ = ∂xi so ∂xiHk ⊆ L1(Q)
iff it is Gelfand Q-integrable, in which case

−∂iQh =
∫
∂ihdQ =

∫
〈h, ∂xikx〉kdQ(x) = 〈h,

∫
ξdQ〉k

where
∫
ξdQ is the Pettis integral. Hence ∂iQ embeds into Hk.

The embeddability of distribution in a Stein RKHS can be analysed in terms of the
embeddability of the associated (via pull-back) Schwartz distributions in the base RKHS,
as Lemma 2 shows, by generalizing (Simon-Gabriel and Schölkopf, 2018, Prop. 14).
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Lemma 2 (Embedding functionals on RKHS defined by feature maps). Let H be a Hilbert
space, HK an RKHS of R`-valued functions on X , and ξ : X → B(R`,H) be a feature
map for K, i.e., K(x, y) = ξ∗(x) ◦ ξ(y). Then a linear functional D : HK → R embeds
into HK iff D ◦ ξ̃ : H → R embeds into H. Here ξ̃ : H → HK is the feature operator (see
Definition 6).

For any Q ∈ P,
Q(
√
k) = Q(‖ξ‖H)

so Q is Bochner integrable in Hk iff ‖ξ‖H ∈ L1(Q).
Moreover, if D embeds into HK then the transpose of ξ̃ is an isometry:

‖D‖HK = ‖D ◦ ξ̃‖H.

In particular, if D = Q ∈ P and Hk ⊆ L1(Q), then

‖Q‖Hk = ‖
∫
ξ dQ‖H.

See Appendix C.1 for the proof. Applying this result to a Stein RKHS, we immediately
obtain the following corollary.

Corollary 4 (Embedding measure in Stein RKHS and base RKHS). Consider a Stein
kernel kp (5) with base kernel K, and fix any Q ∈ P. The following are equivalent:

(a) Q embeds into Hkp.

(b) Q embeds into HK via the feature map ξP : X → HK with ξP(x) = Kxsp(x)+∇x ·Kx.

If either holds and P ∈ PK,0, then

KSDK,P(Q) = ‖
∫
ξP dQ ‖HK ,

where
∫
ξP dQ is the Pettis integral.

We now formally introduce D1
L1(Rd), the d-dimensional product space of finite measures

and their distributional derivatives.

Definition 8 (The space D1
L1(Rd)). We write D1

L1(Rd) to represent the vector space of

continuous linear functionals on C1
0 (Rd) or, equivalently, on C1

b (Rd)β and define D1
L1 ≡

D1
L1(R1). Notably, D ∈ D1

L1(Rd) iff it can be expressed as a finite sum D =
∑l

j=1Dje
j

where each Dj is a finite Radon measure on Rd or a distributional derivative thereof. The
topology on D1

L1(Rd) is the canonical dual topology induced by C1
0 (Rd) (Schwartz, 1978, pg.

200).
Following Definition 7, when the elements of D1

L1(Rd) embed into HK , for instance when

HK ⊆ C1
b (Rd), we shall say that K is characteristic to D1

L1(Rd) when the kernel embedding

ΦK : D1
L1(Rd)→ HK is injective.

Importantly, for embeddable probability measures Q, the KSD is given by the norm
of a vector DQ that can be understood as a distributional derivative of Q with respect to
a differential operator induced by P. When Q is smooth DQ, will be a vector measure,
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but when Q is not assumed to be smooth, DQ will be a more general (vector) Schwartz
distribution. The space D1

L1(Rd) assumes a central role in analysing DQ and determining
when kernel discrepancies separate DQ from zero. This in turn helps us understand when
KSDs effectively distinguish the target P from alternatives Q.

To define DQ, note that since the feature operator of ξP in Corollary 4 is the Stein
operator Sp, setting

DQ|HK ≡ Q ◦ Sp : HK → R

we obtain that the KSD is given by evaluating the norm of DQ in the base RKHS,

KSDK,P(Q) = ‖DQ|HK ‖HK .

More generally, DQ can act on any function f ∈ C1 such that Sp(f) ∈ L1(Q), and we
will omit |HK when we do not specify its domain of definition. In addition, observe that
when ‖sp‖ is integrable with respect to the probability measure Q, then both siPQ and Q
are finite measures. Consequently, using the distributional derivative, we can write

DQ =
∑

i(s
i
pQ− ∂xiQ)ei ≡

∑
iDie

i

with Di ∈ D1
L1 , the space of finite measures and their distributional derivatives. Hence, DQ

is a (vector) Schwartz distribution that belongs to the space D1
L1(Rd).

When Q also has a strictly positive differentiable density with respect to the Lebesgue
measure, then DQ simplifies to a vector measure absolutely continuous with respect to the
Lebesgue measure,

DQ =
∑

i(s
i
p − siq)Q ei.

The following lemma provides bounds on Q(
√
kp) in terms of the base kernel K and

the target score sp, and thus sufficient conditions for a probability measure to be able to
Bochner integrate kp. See Appendix C.2 for the proof.

Proposition 7 (Bochner embeddability vs. score integrability). Consider a Stein kernel
kp (5) with base kernel K, and fix any Q ∈ P. We have

Q(
√
kp) ≤

∫
(‖Kx‖op‖sp(x)‖Rd + ‖∇x ·Kx‖K) Q(dx), and

Q(
√
kp) ≥

∫ ∣∣√〈sp(x),K(x, x)sp(x)〉Rd − ‖∇x ·Kx‖K
∣∣Q(dx).

Now suppose HK ⊆ C1
b (Rd). Then the following claims hold.

• The maps x 7→ ‖Kx‖op =
√
‖K(x, x)‖ and x 7→ ‖∇x ·Kx‖K are bounded.

• If Q(‖sp‖) <∞, then kp is Bochner integrable by Q, i.e., Q(
√
kp) <∞.

• If x 7→ K(x, x) is uniformly positive definite (i.e., ∃c > 0 such that for all v 6= 0 ∈ Rd,
vTK(x, x)v ≥ c‖v‖2Rd > 0 for all x), then Q(

√
kp) <∞ implies Q(‖sp‖) <∞.

Hence, if K is a diagonal kernel with each component satisfying infx k
i(x, x) > 0, then

Q(
√
kp) < ∞ iff Q(‖sp‖) < ∞, i.e., P√kp = Psp. In particular, if K = kId where k is

translation-invariant (and not equal to the null function), then P√kp = Psp.

Remark 8 (Scalar base kernel norms). When K = kId, we have

‖Kx‖op =
√
k(x, x), and

√
〈sp(x),K(x, x)sp(x)〉Rd =

√
k(x, x)‖sp(x)‖Rd .
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C.1 Proof of Lemma 2: Embedding functionals on RKHS defined by feature
maps

By (Carmeli et al., 2010, Prop 1), ξ̃ is a surjective partial isometry from H onto HK . Hence
it is continuous, and ξ̃|ker ξ̃T : ker ξ̃T → HK is an isometric isomorphism, where ker ξ̃T is

the orthogonal complement to the kernel of ξ̃. If D is continuous, so is D ◦ ξ̃ since it is the
composition of continuous maps. For the converse, note that ξ̃ ◦ (ξ̃|ker ξ̃T )−1 : HK → HK is

the identity so D = D ◦ ξ̃ ◦ (ξ̃|ker ξ̃T )−1, which is continuous if D ◦ ξ̃ is.

For the second claim, we apply the first claim to D ≡ Q|Hk . Noting that the RKHS
embedding Φk(Q) ∈ Hk is the function x 7→ Qkx, we have

‖Q‖2Hk = Q(x 7→ Qkx) =
∫∫

k(x, y)Q(dy)Q(dx) =
∫∫
〈ξ(x), ξ(y)〉HQ(dy)Q(dx)

=
∫∫

ξ̃(ξ(x))(y)Q(dy)Q(dx) =
∫

Q ◦ ξ̃(ξ(x))Q(dx) =
∫
〈(Q ◦ ξ̃)∗, ξ(x)〉HQ(dx)

=
∫
ξ̃((Q ◦ ξ̃)∗)(x)Q(dx) = ‖Q ◦ ξ̃‖2H,

where as usual (Q ◦ ξ̃)∗ denoted the embedding of Q ◦ ξ̃ into H.

To generalise the above to Q being any embeddable functional D: letting ξδ : X →
B(Rd,HK) denote the canonical feature map, ξδ(x) = K(·, x), then

ξδ = ξ̃ ◦ ξ,

since for any x, y ∈ X , c ∈ Rd (ξδ(y)c)(x) = ξ∗δ (x)ξδ(y)c = K(x, y)c = ξ∗(x)ξ(y)c =
ξ̃(ξ(y)c)(x). Moreover

Kei
x = ξ̃ξ(x)ei

and if S is embeds into H and ξf : X → B(Rd,H) is a feature map for K, then

ξ̃f (S∗) = eiS ◦ ξf (·)ei,

since ξ̃f (S∗)(x) = ξ∗f (x)(S∗) = ei(ξ
∗
f (x)(S∗))i = ei〈ei, ξ∗f (x)(S∗)〉 = eiSξf (x)ei. Hence

‖D ◦ ξ̃‖2H = D ◦ ξ̃(D ◦ ξ̃)∗ = DeiD ◦ ξ̃ ◦ ξ(·)ei = DeiDK
ei
· = DD∗ = ‖D‖2Hk .

C.2 Proof of Proposition 7: Bochner embeddability vs. score integrability

The fact that x 7→ ‖Kx‖op and x 7→ ‖∇x ·K‖K are bounded follows from Lemma 3:

Lemma 3 (RKHS boundedness conditions). If HK is a RKHS of Rd-valued functions, then
the following claims hold.

(a) HK ⊆ L∞(Rd) iff x 7→ ‖K(x, x)‖ is bounded.

(b) If ∂x`HK exists, then ∂x`HK ⊆ L∞(Rd) iff x 7→ ‖∂x`∂y`K(x, y)‖ is bounded.

(c) If ∂x`∂y`K exists, then ∂x`HK exists.

(d) If K ∈ C
(1,1)
b (Rd), then HK ⊆ C1

b (Rd).
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Proof (a) If HK ⊆ L∞(Rd), proceeding as in Appendix P.1, we have ‖K∗xh‖ =
‖h(x)‖ ≤ ‖h‖∞ for any h ∈ HK , so the Banach-–Steinhaus Theorem implies supx ‖K∗x‖ =
supx

√
‖K(x, x)‖ is finite. Conversely, when x 7→ ‖K(x, x)‖ is bounded, then ‖h(x)‖ =

‖K∗xh‖ ≤ ‖h‖K‖K∗x‖ ≤ ‖h‖K
√
‖K(x, x)‖ ≤ ‖h‖K supx

√
‖K(x, x)‖.

(b) Similarly, if HK is a RKHS of differentiable functions, then ∂x`HK is a RKHS with
matrix-valued kernel (x, y) 7→ ∂x`∂y`K(x, y) by Lemma 4. Thus, from above, ∂x`HK ⊆
L∞(Rd) iff x 7→ ‖∂1`∂2`K(x, x)‖ is bounded.

(c) If ∂1`∂2`K exists, then the argument of Micheli and Glaunes (2013, p. 8 near Eq. (5))
shows ∂`h exists for all h ∈ HK .

(d) If K ∈ C
(1,1)
b (Rd), then HK ⊆ C1(Rd) by Micheli and Glaunes (2013,

Thm. 2.11), and by above HK ⊆ Cb(Rd). Proceeding as above, we have of any
v ∈ Rd, |〈v, ∂ph(x)〉| = |〈h, ∂p2Kv(., x)〉| ≤ ‖h‖K‖∂p2Kv(., x)‖K = ‖h‖K

√
vT∂p1∂

p
2K(x, x)v

which is bounded in x, and thus ∂ph is bounded.

Now, by definition, since ξP is a feature map for kp,

Q(
√
kp) =

∫ √
〈ξP(x), ξP(x)〉KdQ = Q(‖ξP‖K).

Recall ξP(x) = Kxsp(x) +∇x ·K. By the triangle inequalities∫
|‖Kxsp(x)‖K − ‖∇x ·K‖K |Q(dx) ≤ Q(‖ξP‖K) ≤

∫
(‖Kxsp(x)‖K + ‖∇x ·K‖K) Q(dx).

The result follows by continuity of Kx = δ∗x ∈ B(Rd,HK), and the assumptions on K:

‖Kx‖op‖sp(x)‖Rd ≥ ‖δ∗xsp(x)‖K =
√
〈δ∗xsp(x), δ∗xsp(x)〉K =

√
〈sp(x),K(x, x)sp(x)〉Rd .

C.3 Proof of Proposition 5: Score vs. Bochner embeddability

The result follows by Proposition 7.

C.4 Proof of Proposition 1: Embeddability conditions

That P√k ⊆ PHk follows directly from the embeddability of the Dirac measures: P|h| =

P|ξ∗δ (h)| ≤ ‖h‖kP‖ξ∗δ‖op = ‖h‖kP
√
k, where ξ∗δ : x 7→ δx|Hk is the canonical feature map.

When Hk is separable, then by Carmeli et al. (2006, Cor. 4.3 and Prop. 4.4) a sufficient
condition for Q to embed is |k| ∈ L1(Q ⊗ Q). Note that Q ∈ P√k implies |k| ∈ L1(Q ⊗
Q), as

∫∫
|k(x, y)|dQ(x)dQ(y) =

∫∫
|〈kx, ky〉k|dQ(x)dQ(y) ≤

∫∫
‖kx‖k‖ky‖kdQ(x)dQ(y) =∫∫ √

k(x, x)
√
k(y, y)dQ(x)dQ(y) = (Q

√
k)2.

The following example is adapted from (Berlinet and Thomas-Agnan, 2004, p.204). Take
k(i, j) = I [i = j] for i, j ∈ N∗, i.e. Hk = `2(N∗), and consider the Radon measure µ(i) = 1/i.
Then it is easy to see that µ is Pettis-embeddable (and satisfies |µ| ⊗ |µ|(k) <∞), but that
it is not Bochner-embeddable into Hk, since |µ|(

√
k) =∞.

C.5 Proof of Theorem 1: KSD as MMD

First let us show the following differential reproducing property, which is a mild generaliza-
tion of results in (Steinwart and Christmann, 2008; Zhou, 2008; Micheli and Glaunes, 2013).
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In contrast to the results provided in these references, Lemma 4 does not assume continuity
of the derivatives. We note that the proof is essentially identical to the continuous deriva-
tive case in Micheli and Glaunes (2013, Thm. 2.11) (which also deals with matrix-valued
kernels). This generalized form is important for our results as it allows us to establish that
MMD and KSD coincide under no additional conditions than those required for them to be
well-defined.

Lemma 4 (Differential reproducing property). Suppose that ∂x`HK exists. Then for all
c ∈ Rd and h ∈ HK

〈∂x`K(·, x)c, h〉K = 〈c, ∂x`h(x)〉.

Moreover ∂x`HK is a RKHS with kernel (x, y) 7→ ∂x`∂y`K(x, y).

Proof Given a sequence εn > 0 with εn → 0, define ∆εn ≡ (K(·, x+ εne`)c−K(·, x)c) /εn ∈
HK . Since K(·, x)c ∈ HK its partial derivative in direction e` exists, and thus K(y, ·)c also
has a partial derivative in direction e`, hence ∆εn converges pointwise to ∂x`K(·, x)c. More-
over, for any h ∈ HK , 〈∆εn , h〉K = 〈c, (h(x+ εne`)− h(x))/εn〉 converges to 〈c, ∂x`h(x)〉 as
εn → 0 (since ∂x`h exists). By the Banach–Steinhaus theorem {∆εn}n is thus a bounded
subset of HK , and by Micheli and Glaunes (2013, Cor. 2.8) it follows that ∂x`K(·, x)c ∈ HK
and 〈c, ∂x`h(x)〉 = limn→∞〈∆εn , h〉K = 〈∂x`K(·, x)c, h〉K for all h ∈ HK .

We now show ξ∗ ≡ ∂x` : X → B(HK ,Rd), with ξ∗(x) ≡ ∂x` |x, is a feature map with
associated kernel ∂y`∂x`K. By above 〈ei, ξ∗(x)〉 is continuous for all x, i, so indeed ξ∗ is

B(HK ,Rd)-valued. Note ξ̃ = ∂x` , so by Carmeli et al. (2006, Prop. 2.4) ∂x`HK is a RKHS
with kernel K s.t.,

K(x, y)c = ξ∗(x)ξ(y)c = ∂x` |x∂y`K(·, y)c = ∂x`∂y`K(x, y)c.

Now we apply Lemma 4 to the RKHS pHK whose kernel is p(x)K(x, y)p(y) (see Ap-
pendix B), in order to show that ξp : X → HK defined by

ξp(x) ≡ 1
p(x)∇x · (pK) ≡ 1

p(x)

∑
i ∂xi (pK(·, x)ei)

is a feature map for kp. Indeed by Lemma 4, and using (Carmeli et al., 2010, Prop. 1) to
relate the inner products of K and pKp,

Sp(h)(x) =
∑

i
1

p(x)∂xi(ph
i) =

∑
i

1
p(x)〈∂xi(p(·)K(·, x)p(x)ei),ph〉pKp

=
∑

i
1

p(x)〈∂xi(K(·, x)p(x)ei), h〉K = 〈
∑

i
1

p(x)∂xi(K(·, x)pei), h〉K .

This shows Sp is the feature operator associated to ξp, and thus Hkp ≡ Sp(HK) is a RKHS
with kernel kp(x, y) ≡ 〈ξp(x), ξp(y)〉K (Carmeli et al., 2010, Prop. 1).

The following lemma Lemma 5 concludes.

Lemma 5 (Feature operators preserve unit balls). Suppose ξ̃ : HK → HK is a feature

operator. Then ξ̃(BK) = BK .
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Proof Recall ξ̃ is a surjective partial isometry (Carmeli et al., 2010, Prop. 1), in particular
‖ξ(h)‖K ≤ ‖h‖K , so ξ̃(BK) ⊆ BK . Moreover, since ξ̃|A is an isometric isomorphism from

the orthogonal complement of its kernel A ≡ ker ξ̃⊥ onto HK , it follows that for any g ∈ BK
there exists g ∈ A s.t., 1 ≥ ‖g‖K = ‖h‖K , which concludes.

C.6 Proof of Proposition 3: Stein embeddability conditions

The result is an immediate consequence of Proposition 7 and the following proposition.

Proposition 8 (Stein RKHS with vanishing P-expectations). Suppose Hkp and HK ⊆ C1

are subsets of L1(P). Then Ph = 0 for all h ∈ Hkp.

Proof The result follows from Pigola and Setti (2014, Thm. 2.36), after observing that the
distributional and usual derivatives of C1 functions coincide.

Appendix D. Proof of Theorem 2: Bochner P-separation with MMDs

In the proof we will use the fact that if we define the tilted reproducing kernel k̃(x, y) ≡
k(x,y)/(1+

√
k(x))(1+

√
k(y)), whose RKHS is Hk/1+

√
k, we have the following immediate relation

between the MMDs of k and k̃, which, for instance, may be used to generalize some results
from bounded to unbounded kernels:

Proposition 9 (Kernel tilting). With the notation above

MMDk(Qn,P) = MMDk̃(Q̃n, P̃),

where Q̃ ≡ (1 +
√
k)Q for any Q ∈ P√k, and

Qnf → Pf for any f ∈ C√k ⇔ Q̃ng → P̃g for any g ∈ Cb.

The rationale for the above proposition is that the map f 7→ (1+
√
k)f is a vector space

isomorphism from Cb (resp. C0) to C√
k

(resp. C
0,
√
k
), which induces TVS and isometric

isomorphisms once appropriate topologies have been introduced. In that case the map
Q 7→ Q̃ identifies C∗√

k
(resp. C∗

0,
√
k
) with C∗b (resp. C∗0 ).

Coming back to the proof of Theorem 2, note the kernel k needs to be characteristic to
P ∈ P√k, since if it was not, there would be a measure Q ∈ P√k not equal to P such that
‖Q− P‖k = 0, hence (Qn) ≡ (Q) would satisfy (a), and (b) since every distribution is tight
on a Radon space, while (c) holds since (1 +

√
k)Q is a finite measure; yet (Qn) does not

converge weakly to P in P√k, since it does not converge weakly in P as a result of the fact
Cb is a separating set on any metrisable space.

Conversely, let us assume that k is characteristic to P ∈ P√k. We will show that, given
(c), (a)-(b) is equivalent to (usual!) weak convergence in P. So, applying Lemma 5.1.7
of Ambrosio et al. (2005) to every f ∈ C√

k
, gives the equivalence in (6) and concludes.

Intuitively speaking, (c) lifts weak convergence in P to weak convergence in P√k.
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Assume (a)-(c). By (b) any subsequence of (Qn) is tight, so, by Prokhorov’s theorem
Ambrosio et al. (2005, Thm. 5.1.3), it is relatively compact in P (equipped with the weak
topology) and thus contains yet another subsequence (Pl) that converges weakly in P to
some probability distribution P′. Since 1 +

√
k is continuous, using condition (c) and

(5.1.23b) in Ambrosio et al. (2005, Lem. 5.1.7) further implies that P′ ∈ P√k. Moreover, by
(a) and continuity of the inner product, 〈P′ , f〉k = liml 〈Pl , f〉k = 〈P , f〉k for any f ∈ Hk.
So, by the Pettis property, the embeddings of P′ and P coincide: Φk(P

′) = Φk(P). Since k
is characteristic to P ∈ P√k, we get P′ = P. So we have shown that, out of any subsequence
of (Qn), we can extract a (sub)subsequence that converges weakly to P in P. By a classical
argument, the original sequence (Qn)n thus converges weakly to P in P.

For the converse we essentially rely on Proposition 9. Note that if we assume that Qn →
P in P, then, by Lemma 5.1.7 of Ambrosio et al. (2005), (c) is equivalent to weak convergence
in P√k. Define the measures P̃ and Q̃n as P̃(A) ≡

∫
A(1+

√
k) dP and Q̃n(A) ≡

∫
A(1+

√
k) dQn

for any measurable Borel set A ⊆ X , and let k̃(x, y) ≡ k(x,y)/(1+
√
k(x))(1+

√
k(y)). By LeCam

(1957) since X is Radon, weak convergence in P implies tightness, i.e. (b). Since Qn(f)→
P(f) for any f ∈ C√

k
can be re-written as Q̃n(g) → P̃(g) for any g ∈ Cb, it follows that

(Q̃n) converges weakly to P̃ (in the usual sense). Moreover, (c) also shows that Q̃n and P̃
are finite (non-negative) measures. So we can apply Prop. 2.3.3 of Berg et al. (1984), which
says that the tensor product of finite, non-negative measures is weakly continuous, and get

MMDk(Qn,P)2 = (Qn − P)⊗ (Qn − P)(k) = (Q̃n − P̃)⊗ (Q̃n − P̃)(k̃)

= P̃⊗ P̃(k̃)− 2Q̃n ⊗ P̃(k̃) + Q̃n ⊗ Q̃n(k̃) −→ 0.

D.1 Weak convergence in P√k and Wasserstein metric

The following proposition first gives an alternative characterization of C√
k
, P√k and weak

convergence in P√k. See also (Kanagawa et al., 2022, Section 3.1).

Proposition 10 (Wasserstein vs C√
k

convergence). Let k be a continuous strictly positive
definite kernel over a separable metric space X . Let dk(x, y) ≡ ‖δx − δy‖k be the metric
induced by k over X . Then C√

k
is the set of functions with 1-growth and P√k the probability

measures with finite first-order moments, both w.r.t. the metric dk.

Let W 1
dk

denote the Wasserstein-1 distance over P√k w.r.t. dk. Then (X , dk) is a sepa-

rable metric space, and W 1
dk

metrizes weak convergence in P√k, i.e., for Pn,P ∈ P√k

Pnh→ Ph ∀h ∈ C√k ⇐⇒ W 1
dk

(Pn,P)→ 0.

Moreover (P√k,W 1
dk

) is complete whenever (X , dk) is.

Note that (X , dk) is complete whenever dk is stronger than the original metric d (i.e.
whenever there exists C > 0 such that d(x, y) ≤ Cdk(x, y)), which is for example the case
when X = Rd equipped with its usual Euclidian metric, and k is polynomial kernel of order
≥ 1.

Proof We will prove that there exists constants C,C ′ > 0 such that

C(1 +
√
k(x, x)) ≤ 1 + dk(x, x0) ≤ C ′(1 +

√
k(x, x)) (9)
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for all x, x0 ∈ X . This shows that C√
k

is indeed the set of functions with 1-growth for the
metric dk in the sense of (5.1.21) in Ambrosio et al. (2005); and that P√k is indeed the set of
probability measures P with finite first-order moments, i.e. such that for an arbitrary (and
then any) x0 ∈ X , P(dk(., x0)) <∞.

The space (X , dk) is separable whenever X is (independently of characteristicness),
because, since k is continuous, dk is also continuous, so the topology defined by dk is weaker
than the original one. Finally, when k is characteristic over P√k, then dk becomes a metric
(i.e. additionally satisfies dk(x, y) = 0 iff x = y). So Theorem 7.1.5 of Ambrosio et al. (2005)
concludes on the completeness condition, and on the equivalence between weak convergence
in P√k and Wasserstein-1 convergence W 1

dk
.

We know prove (9). Let k0 ≡ k(x0, x0) and kx ≡ k(x, x). First, notice that

dk(x, x0)2 = k0 − 2k(x, x0) + kx ≤ k0 + 2
√
k0

√
kx + kx = (

√
k0 +

√
kx)2

Therefore 1+dk(x, x0) ≤ 1+|
√
k0+
√
kx| ≤ 1+

√
k0+
√
kx ≤ C ′(1+

√
kx) with C ′ ≡ 1+

√
k0.

Conversely and similarly, dk(x, x0)2 = (
√
k(x0, x0)−

√
k(x, x))2. Therefore

1 + dk(x, x0) ≥ 1 + |
√
kx −

√
k0| ≥ 1 + max(

√
kx −

√
k0, 0) ≥ C(1 +

√
kx)

with C = 1/(1 +
√
k0).

Appendix E. Proof of Theorem 3: Score P-separation with KSDs

When ‖sp‖ is finitely integrable with respect to a probability measure Q, then both sipQ
and Q are finite measures, so

DQ =
∑

i(s
i
pQ− ∂xiQ)ei ≡

∑
iDie

i

where Di ∈ D1
L1 and thus DQ ∈ D1

L1(Rd).
Using Corollary 4

KSDK,P(Q) = ‖
∫
ξPQ ‖HK = ‖DQ‖HK .

Hence KSDK,P(Q) = 0 iff DQ = 0. Now since the matrix kernel K is characteristic to
D1
L1(Rd), and DP = 0 by the divergence theorem, we finally obtain KSDK,P(Q) = 0 iff

DQ = 0 iff Q = P.

Appendix F. Proof of Theorem 14: Characteristicness of transformed
kernel

Theorem 14 (Characteristicness of transformed kernel). Let φ : E→ F be a linear contin-
uous map that restricts to a feature operator φ : HK → HK . Suppose the following diagram
commutes, where all maps are continuous

HK E

HK F

ιK

φ φ

ιK
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If φ(E) is dense in F, then K is characteristic to F∗ when K is characteristic to E∗.

Proof Taking the transpose of the commutative diagram φ ◦ ιK = ιK ◦φ : HK → F yields

ι∗K ◦ φ∗ = φ
∗ ◦ ι∗

K
: F∗ → H∗K .

We want to show ι∗
K

injective given that ι∗K is injective. Note that φ
∗ ◦ ι∗

K
injective implies

ι∗
K

injective, so it is sufficient to show ι∗K ◦ φ∗ injective. Hence it is sufficient to show
φ∗ : F∗ → E∗ injective, which is equivalent to φ(E) dense in F by Treves (1967, Chap 18
Cor. 5).

Concretely, it will usually suffice to verify that the image φ(E) contains the smooth
compactly supported functions, since these typically form a dense subset of F.

F.1 Proof of Proposition 4: Preserving characteristicness

The result follows from our general theorem on characteristicness-preserving transforma-
tions Theorem 14.

For the first claim, note that φ : f 7→ af is a continuous map from C1
b (Rd)β to itself.

Moreover φ(C1
c (Rd)) = C1

c (Rd) since f/a ∈ C1
c (Rd) for all f ∈ C1

c (Rd), and C1
c (Rd) is dense

in the predual C1
b (Rd)β of D1

L1(Rd).
Recall the family of semi-norms defining the C1

b (Rd)β are parametrized by γ ∈ C0 and
have the form f 7→ ‖γf‖∞, f 7→ ‖γ∂f‖∞. We first show that φ : f 7→ f ◦ b is continuous
from C1

b (Rd)β to itself. Note that if γ ∈ C0 then γ ◦ b−1 ∈ C0, since for any ε > 0 we

have b ◦ γ−1 ◦ ‖ · ‖−1[ε,∞) = b ◦ γ−1 ◦ ‖ · ‖−1[ε,∞) because b is a homeomorhism, and the
resulting set is compact since γ−1 ◦ ‖ · ‖−1[ε,∞) is compact (because γ is C0) and b preserves
compactness by continuity. Thus

‖γf ◦ b‖∞ = ‖γ ◦ b−1 ◦ b f ◦ b‖∞ = ‖γ ◦ b−1f‖∞

which is a semi-norm in C1
b (Rd)β. The same proof works for the family of semi-norms

‖γ∂(f ◦ b)‖∞ once we have observed that ∂(f ◦ b) = ∂f ◦ b · ∂b (where · denotes matrix
multiplication). Indeed

‖γ∂(f ◦ b)‖∞ = ‖γ∂f ◦ b · ∂b‖∞ = ‖γ ◦ b−1∂f · ∂b ◦ b−1‖∞ ≤ ‖∂b‖∞‖γ ◦ b−1∂f‖∞

since ∂b is bounded as b is Lipschitz. Thus φ is continuous. It remains to show that
φ(C1

c (Rd)) = C1
c (Rd), which follows from the fact that f ∈ C1

c (Rd) implies f ◦ b−1 ∈ C1
c (Rd)

since supp(f ◦ b−1) = b ◦ f−1({0}c) = b ◦ f−1({0}c) which is compact.
Finally, (c) follows from the more general statement

Proposition 11 (Scalar vs. vector characteristicness). Consider a matrix-valued kernel K
with HK ↪→ Fd for some topological vector space F . Then K is universal to Fd iff Kii is
universal to F for all i.

Proof Recall that h ∈ HK iff hi ∈ HKii for all i. Note (f1, . . . , fd) ∈ Fd iff f i ∈ F for any
i ∈ [d], and hin → f i in F for all i iff (h1

n, . . . , h
d
n)→ (f1, . . . , fd) in Fd.

29



Barp, Simon-Gabriel, Girolami, and Mackey

Appendix G. Proof of Theorem 4: L2-ISPD conditions

(a) Let κ̂jdx be the Bochner measure of κj(x− y) ≡ kj(x, y). Then κ̂jdx, has full support,
i.e., supp κ̂jdx = Rd, since this is equivalent to the characteristicness of κj (Simon-Gabriel
and Schölkopf, 2018, Thm.17). Moreover κ̂j ∈ L2 since κj ∈ L2. Since Hkj ⊆ L2, then any
measure of the form fdx, with f ∈ L2 embeds into Hkj by Proposition 6.

Then, if g ∈ L2(Rd), using Barp et al. (2019, Appendix 4)

‖ΦK(gdx)‖2K =
∑

i ‖〈ei,ΦK(gdx)〉‖2ki =
∑

i ‖Φki(gidx)‖2ki
=
∑

i

∫∫
gi(x)κi(x− y)gi(y)dxdy.

Moreover, since Plancherel theorem and the convolution theorem are valid for L2 functions
(Schwartz, 1978, Remarque pg. 270), using the fact that gj , κj and κ ? gj are in L2 by
Carmeli et al. (2006, Prop. 4.4), then∫∫

gi(x)κi(x− y)gi(y)dydx =
∫
gi(x)κi ? gi(x)dx =

∫
ĝi(w)κ̂i(w)ĝi(w)dw

=
∫
|ĝi(w)|2κ̂i(w)dw.

Hence, whenever gdx is non-zero, i.e., ‖g‖L2 > 0, then

‖ΦK(gdx)‖2K =
∑

i

∫
|ĝi(w)|2κ̂i(w)dw > 0

since κ̂i(w)dw is a fully supported non-negative measure.
(b) This follows directly by the definition of ISPD, together with the fact htat

A
(
L2(Rd)

)
⊆ L2(Rd) by boundedness, and that if ‖Ag‖L2(Rd) = 0 then ‖Ag‖ = 0 a.e.

so ‖g‖ = 0 a.e. and thus ‖g‖L2(Rd) = 0.
(c) Let us first discuss the scalar (and matrix diagonal case), i.e., we show that for a

scalar reproducing kernel k, if Hk is separable, supx ‖kx‖L1 < ∞, and kx ∈ L2 for each x,
then HkId ⊆ L2(Rd).

Write k∗f(x) ≡ (k∗f)(x) ≡
∫
k(x, y)f(y)dy when the integral is well-defined. Note, for

each y, k∗ky ∈ L1, since

‖k∗ky‖L1 =
∫
|k∗ky|(x)dx =

∫
|
∫
k(x, z)k(z, y)dz|dx =

∫∫
|k(x, z)k(z, y)|dxdz

=
∫
|k(z, y)|‖kz‖L1dz ≤ ‖ky‖L1 supz ‖kz‖L1 <∞.

Note the integral swap is justified by Fubini’s theorem. Moreover, supy ‖k∗ky‖L1 ≤
supz ‖kz‖2L1 .

Now, if f ∈ L2, then∫∫
|f(x)2k∗kx(z)|dzdx =

∫
f(x)2‖k∗kx‖L1dx ≤ supx ‖k∗kx‖L1‖f‖L2 ,

so by Fubini
∫∫
|f(x)2k∗kx(z)|dxdz < ∞ and thus

∫
|f(x)2k∗kx(·)|dx is finite a.e., i..e,√

|f2k∗kz| ∈ L2 for almost all z. It follows that z 7→ ‖
√
|f2k∗kz|‖L2 ∈ L2, since∫

‖
√
|f2k∗kz|‖L2dz =

∫∫
|f(x)2k∗kx(z)|dzdx, and similarly z 7→ |f(z)|‖

√
|k∗kz|‖L2 ∈ L2.

Hence,
∫ ∫
|f(x)k∗kz(x)f(z)|dxdz < ∞ since fk∗kz ∈ L1 (being the product of the L2

functions
√
|f2k∗kz| and

√
|k∗kz|) and∫∫

|f(x)k∗kz(x)f(z)|dxdz ≤
∫ (
‖
√
|f2k∗kz|‖L2 |f(z)|‖

√
|k∗kz|‖L2

)
dz <∞.
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Finally,

‖k∗f‖2L2 =
∫

(k∗f)2(y)dy =
∫∫

k(y, x)f(x)dx
∫
k(y, z)f(z)dzdy

=
∫∫

f(x)f(z)k∗kz(x)dxdz ≤
∫∫
|f(x)f(z)k∗kz(x)|dxdz <∞.

It follows by (Carmeli et al., 2006, Prop. 4.4) that Hk ⊆ L2.
For a general matrix-valued kernel K, set Gij(x, z) ≡

∫
〈ei,K(x, y)K(y, z)ej〉dy =∑

l

∫
Kil(x, y)Klj(y, z)dy. Note Gij(x, z) = Gji(z, x), and set Gzij ≡ Gij(·, z). Now for

f ∈ L2(Rd), if
∫∫
|fi(x)fj(z)G

z
ij(x)|dxdz <∞ we have

‖K∗f‖2
L2(Rd)

=
∫
‖K∗f‖2(y)dy =

∑
l

∫
|〈el,K∗f〉|2(y)dy =

∑
l

∫
〈el,K∗f〉|(y)〈el,K∗f〉|(y)dy

=
∑

lij

∫∫∫
Kli(y, x)fi(x)Klj(y, z)fj(z)dxdzdy

=
∑

lij

∫∫∫
Kil(x, y)fi(x)Klj(y, z)fj(z)dxdzdy

=
∑

ij

∫∫
fi(x)fj(z)G

z
ij(x)dxdz.

We can now proceed as in the scalar case with Gzij taking the place of k∗kz. Indeed

‖Gzij‖L1 ≤ ‖Kz
ij‖L1 sup

x
‖Kx

ij‖L1 ,

and note |Kz
ij | = |〈ei,Kzej〉 ≤ ‖ei‖‖Kzej‖ so ‖Kz

ij‖L1 ≤ ‖ei‖‖Kzej‖L1(Rd).
(d) Note that if K is a matrix-valued kernel, then |Kij(x, y)| = |〈ei, ξ(x)∗ξ(y)ej〉| ≤

‖ξ(x)ei‖‖ξ(y)ej‖ =
√
Kii(x, x)

√
Kjj(y, y) (for any feature map ξ), so if K is translation-

invariant then K is bounded.
In general, if Kxu is both finitely-integrable and bounded, then ‖Kxu‖L2(Rd) ≤

‖Kxu‖L1(Rd)‖Kxu‖L∞(Rd).

Appendix H. Proof of Theorem 5: L2 P-separation with KSDs

(a) Let us first show that under the assumptions of the result, the alternative definition of
KSD used in Liu et al. (2016) is equivalent to ours.

By Lemma 2, since Q embeds we have KSDK,P(Q) = ‖DQ‖K . Moreover since Q ∈ PK,0,
we know TQ ≡ Q ◦ Sq embeds to zero in HK , ΦK(TQ) = 0, and for any h ∈ HK , since
Sp(h) and Sq(h) are finitely Q-integrable, we have DQ − TQ(h) = QSp(h) − QSq(h) =
Q(Sp(h)− Sq(h)) = (sp − sq)Q(h). Hence

KSD2
K,P(Q) = ‖DQ‖2K = ‖DQ − TQ‖2K = ‖(sp − sq)Q‖2K

=
∫∫
〈sp(y)− sq(y),K(y, x)(sp(x)− sq(x))〉dQ(y)dQ(x).

Now, recall K is L2(Rd) ISPD iff it is characteristic to L2(Rd) (Simon-Gabriel and
Schölkopf, 2018, Thm. 6), so the result follows from KSDK,P(Q) = MMDK((sp − sq)Q, 0),
and (sp − sq)Q ∈ L2(Rd).

(b) We want to show that HK and Sq(HK) are subsets of L1(Q) in order to apply (g)
in Proposition 3. By assumption HK ⊆ L∞(Rd) ⊆ L1(Q), and Sp(HK) ⊆ L1(Q). Note
Sq(h) = Sp(h) + 〈sq − sp, h〉, so we have for any h ∈ K

Q|Sq(h)| = Q|Sp(h) + 〈sq − sp, h〉| ≤ Q|Sp(h)|+ Q|〈sq − sp, h〉|.
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Moreover Q|〈sq − sp, h〉| = 〈q(sq − sp), h〉L1(Rd) ≤ ‖q(sq − sp)‖L2(Rd)‖h‖L2(Rd), which con-
cludes.

(c) For any h ∈ HK we have

Q|Sp(h)| ≤
∑

i Q|∂ihi|+ Q|〈sp, h〉| ≤
∑

i ‖∂ihi‖∞ + ‖qsp‖L2(Rd)‖h‖L2(Rd) <∞.

Appendix I. Fourier Transforms

If µ is a finite measure, its Fourier transform is µ̂(x) ≡
∫
e−ix

Twdµ(w), which is a positive
definite function when µ is a non-negative measure. More generally, if T is a tempered
distribution (a.k.a. slowly increasing distribution, see Treves 1967, Chap.25), i.e., an element
of the dual of the Schwartz space (a.k.a. space of rapidly decaying functions, see Treves 1967,
Chap.10, Example IV), we define its distributional Fourier transform T̂ by

T̂ (γ) ≡ T (γ̂) ,

for any function γ in the Schwartz space. In particular if T = Φ(x)dx, with Φ continuous
and slowly increasing, and there exists f ∈ L2

loc(Rd/{0}) such that T̂ = fdx, then f is

known as the generalized Fourier transform (of order 0) of Φ, denoted Φ̂ (Wendland, 2004,
Def. 8.9). The above formula then reads

∫
Φ̂(x)γ(x)dx =

∫
γ̂(x)Φ(x)dx.

Appendix J. Proof of Theorem 6: Controlling tight convergence with
bounded separation

Since k is continuous, H ⊆ C, and since h ∈ Hb ⊆ Cb is integrable by any finite measure,
we have (with 0/0 = 0)

|Qh− Ph| ≤
∣∣∣Q h
‖h‖k − P h

‖h‖k

∣∣∣ ‖h‖k ≤ suph∈Bk∩L1(Q) |Qh− Ph|‖h‖k ≤ MMDk(Q,P)‖h‖k.

Hence if MMDk(Qn,P) → 0 then Qnh → Ph for all h ∈ Hb. Taking Qn = Q for all n, the
P-bounded separating assumption implies that k is characteristic to P ∈ P. On the other
hand, if (Qn) is a tight sequence, then it is sequentially compact, i.e., any subsequence has
a Cb-convergent subsequence, whose weak limit must be P by P-characteristicness (Ethier
and Kurtz, 2009, Lemma 4.3), which in turn implies that Qn →Cb P (see also proof of
Theorem 2: Bochner P-separation with MMDs for additional details). Hence k controls
tight convergence.

Appendix K. Proof of Theorem 7: Controlling tight convergence with
bounded Stein kernels

By Lemma 11 the shifted kernel K(x, y)/θ(x)θ(y) is universal to (i.e., dense in) C1
b,θ(Rd).

Moreover, by assumption on the score growth and base kernel the associated Stein RKHS
consists of bounded functions. The following lemma concludes:

Lemma 6 (Controlling tight convergence with bounded Stein kernels). Suppose a matrix-
valued kernel K with HK ⊆ C1

b (Rd) is characteristic to C1
b,θ(Rd)∗β. If P ∈ PK,0 and kp is

bounded, then kp is P-separating and controls tight P-convergence. Moreover, kp is bounded
iff x 7→

√
〈sp(x),K(x, x)sp(x)〉 is bounded.
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Proof We apply Proposition 12 with θ(x) ≡ ‖sp(x)‖ + 1. Note that if
‖sp(x)‖HK is bounded, then HK ⊆ C1

b,θ(Rd). Moreover ‖sp(x)‖HK = HK̃ where

K̃(x, y) ≡ ‖sp(x)‖K(x, y)‖sp(y)‖, and HK̃ is a RKHS of bounded functions iff x 7→
‖sp(x)‖

√
‖K(x, x)‖ is bounded by Lemma 3.

Moreover, since kp consists of bounded functions, it then follows by Theorem 6 that
when kP is P-separating then it controls tight convergence to P.

Appendix L. Proof of Theorem 8: Translation-invariant kernels have
rapidly decreasing sub-RKHSes

We will use the following result proved in Appendix L.1.

Lemma 7 (Convolution decay bound). Fix any u, v ∈ L1 and any subadditive function ρ
satisfying |u(x)| ≤ U(ρ(x)) and |v(x)| ≤ V (ρ(x)) for non-increasing U, V with U ◦ ρ, V ◦ ρ
finitely integrable. Then

u ? v (x) ≤ inf
α∈[0,1]

‖u‖L1V (αρ(x)) + ‖v‖L1U((1− α)ρ(x))

Let us quote Bochner’s theorem (Wendland, 2004, Thm. 6.6) (we refer to Appendix I
for definitions of Fourier transforms).

Theorem 15 (Bochner’s theorem). A continuous R-valued function on Rd is positive def-
inite if and only if it is the Fourier transform of a non-negative finite measure.

Moreover we will use the following lemma, which follows by combining Lemma 4 with
the fact that vector-valued RKHSes of continuous functions have locally bounded kernels
(Carmeli et al., 2006, Prop. 5.1), or by the closed graph theorem as shown Appendix L.2.

Lemma 8 (Continuity of RKHS inclusion). Let F be a complete metrizable TVS, contin-
uously included in the space of functions X → Rd. Then HK ⊆ F implies HK ↪→ F . In
particular Cs(Rd) is a complete metrizable TVS.

We now show k is characteristic to D1
L1 . Indeed, since Hk ⊆ C1, then Hk ↪→ C1, so we

know ∂i∂i+dk exists and is separately continuous for all i by Micheli and Glaunes (2013,
Thm. 2.11). Since ∂i∂i+dk is translation-invariant, it is further continuous. Thus k(x, y) is
C(1,1), and is characteristic to D1

L1 by Simon-Gabriel and Schölkopf (2018, Thm. 17).

Let κ(x) ≡ k(x, 0). Now, given the spectral density κ̂ : Rd → [0,∞], we define the ironed
radial kernel κiron on Rd by

κ̂iron(y) ≡ inf
w∈Rd: 0≤‖w‖≤‖y‖

κ̂(w)

and show it is characteristic to D1
L1(Rd). Note κ̂iron : Rd → [0,∞], and is finite-valued except

at the origin (since κ̂ is). Since κ̂iron ≤ κ̂, κ̂ ∈ L1(Rd), ∞ >
∫
κ̂(w)dw ≥

∫
κ̂iron(w)dw =

‖κ̂iron‖L1(Rd), so κ̂iron(w)dw is a finite non-negative measure whose Fourier transform defines
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a continuous positive definite (radial) kernel κiron by Theorem 15. Moreover κ̂iron is strictly
positive since κ̂ is bounded away from zero on the compact set Br for any r ≥ 0. In
particular κiron is characteristic to D0

L1 (Simon-Gabriel and Schölkopf, 2018, Thm. 17).

Moreover, by Steinwart and Christmann (2008, Sec. 4.3) ∂xi∂yik(x, y) is a continu-
ous translation-invariant kernel, and ∂xi∂yik(x, y) = −∂2

i κ(x − y). This implies that∫
‖w‖2κ̂(w)dw < ∞. Indeed ̂(−∂2

i κ)(w) = w2
i κ̂(w) (Treves, 1967, Thm. 25.7), and

by Theorem 15 the generalized Fourier transform of a continuous translation-invariant
kernel is integrable, i.e., w 7→ w2

i κ̂(w) ∈ L1(Rd). From κ ≥ κiron, it follows that
w 7→ ‖w‖2κ̂iron(w) ∈ L1(Rd), and thus κiron ∈ C2, since by Leibniz integral rule the second
partial derivatives exist and are continuous. Hence ki is characteristic to D1

L1 by Simon-
Gabriel and Schölkopf (2018, Thm. 17).

Now define a radial kernel κs on Rd by κ̂s(x) = κ̂iron(2x) which is strictly positive so
also characteristic to D0

L1 (more generally we can compose κ̂iron with any homeomorphism,
as their preimage commutes with closure), and κs ∈ C2 so it characteristic to D1

L1 (by an
argument analogous to that of the previous paragraph).

We now discuss a general mechanism to construct a Schwartz function f that is strictly
positive, and has a non-negative Fourier transform with compact support (which even makes
f an entire function). Later on we will apply this construction to obtain a particular f with
root exponential decay. Let us first choose a function g ∈ C∞ that is non-negative and
compactly supported (we will identify an explicit choice of such a function later in the
proof). Then we set f ≡ Ĝ ? Ĝ where G ≡ g ? g. Note that G is non-negative, smooth and
compactly supported with non-negative Fourier transform since by the convolution theorem
Ĝ = (ĝ)2. Moreover the Schwartz’s Paley–Wiener theorem (Treves, 1967, Thm. 29.1) then
asserts that its Fourier transform (more precisely, its real part restricted to real inputs,
i.e., complex numbers with zero imaginary part) Ĝ is an indefinitely (real) differentiable
function that decays faster than any polynomial, that is for all positive integer m we have
constant Cm > 0 such that |Ĝ(x)| ≤ Cm

(1+‖x‖)m . Hence so does f by Lemma 7 applied with

U, V of the form r 7→ (1 + r)−m. Moreover f̂(x) = (G(−x))2 which is non-negative with
compact support, and f is strictly positive since Ĝ (viewed as function of arbitrary complex
variables) is entire by the Schwartz’s Paley–Wiener theorem, and thus holomorphic, and
thus has finitely many isolated zeros, the set of which has Lebesgue-measure zero - hence f
is the integral of an almost-everywhere strictly positive function. Moreover, the derivative
of f decays faster than any polynomial. Indeed, since f = Ĝ ? Ĝ, where Ĝ is a smooth
function decaying faster than any polynomial, Leibniz’ integral rule yields ∂xjf = (∂xj Ĝ)?Ĝ.

By Wendland (2004, Thm. 5.16 (6)), ∂xj Ĝ(x) = ̂(−iyjG(y))(x), and since y 7→ −iyjG(y) is
smooth and compactly supported, Schwartz’s Paley–Wiener theorem implies that its Fourier
transform will decay faster than any polynomial. The convolution bound Lemma 7 then
implies that ∂xj Ĝ ? Ĝ will also decay faster than any polynomial. The above argument can
then be iterated to show that f belongs to the Schwartz space.

If in the above we specifically choose the function g = ψ ?ψ with ψ(x) ≡ ϕ(x1) · · ·ϕ(xd)
where ϕ(x1) ≡ exp(−1/(1−c2|x1|2))I

[
|x1| < 1

]
for some c > 0, then ψ̂(x) = ϕ̂(x1) · · · ϕ̂(xd),

which implies |ψ̂(x)| = O(e−c
∑
i

√
|xi|) by Johnson (2018). It follows that |ĝ(x)| =

O(e−2c
∑
i

√
|xi|), and thus Ĝ = (ĝ)2 = O(e−4c

∑
i

√
|xi|), so f = Ĝ ? Ĝ = O(e−2c

∑
i

√
|xi|) by

the convolution bound Lemma 7 with α = 1/2 and the subadditive function ρ(x) =
∑

i

√
|xi|.
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Similarly, |∂xj Ĝ| = 2|ĝ∂xj ĝ| ≤ 2‖∂xj ĝ‖∞|ĝ|, and ∂xj ĝ is bounded by the Schwartz’s Paley-

Wiener theorem as above, so ∂xj Ĝ = O(e−2c
∑
i

√
|xi|), so ∂xjf = (∂xj Ĝ)?Ĝ = O(e−c

∑
i

√
|xi|)

by the convolution bound Lemma 7 with α = 1/2 and the subadditive function ρ(x) =∑
i

√
|xi|.

Now define kf (x, y) ≡ f(x)ks(x, y)f(y), and we will show that Hkf ⊆ Hk, by leveraging
the translation-invariance of the kernel kfs(x, y) ≡ κs(x−y)f(x−y), which is a kernel since
f is a positive definite function (since its Fourier transform is a positive function) and thus
defines a reproducing kernel. Then Hkf ⊆ Hkfs . Indeed, the former RKHS is simply the
set of functions fHks (Paulsen and Raghupathi, 2016, Prop. 6.2).

On the other hand, Aronszajn (1950, Thm. II Sec. 8) implies the latter product RKHS
Hkfs = Hks ×Hf consists of the functions in the tensor product RKHS Hks ⊗Hf restricted

to the diagonal set {(x, x)} ⊆ Rd×Rd, while Berlinet and Thomas-Agnan (2004, Thm. 13)
shows the tensor product RKHS contains the functions of the form (x, y) 7→ g(x)h(y)
where g ∈ Hks and h ∈ Hf (i.e., it is the pullback RKHS defined by the diagonal map
x 7→ (x, x)), and henceHkfs contains all the functions of the form x 7→ g(x)h(x). Restricting
to h(x) = f(x − 0) ∈ Hf yields the subset inclusion Hkf ⊆ Hkfs , which is moreover
a continuous inclusion Hkf ↪→ Hkfs because inclusions of RKHS are always continuous
(Schwartz, 1964, Prop. 2).

Hence to show that Hkf is a subset of Hk, it is sufficient to show that Hkfs ⊆ Hk.
But, conveniently, since kfs is translation invariant, we can now apply Lemma 9, proved in
Appendix L.3, to verify this inclusion.

Lemma 9 (RKHS inclusion of product RKHS). Let k, k2 be kernels and ? denote the
convolution operator. The following claims hold true.

(a) If there exists a λ ≥ 0 for which λk−kk2 is a kernel, then hHk ⊆ Hk for any h ∈ Hk2.

(b) Suppose k, k2 are continuous translation invariant kernels. By Bochner’s theorem
(Theorem 15), such kernels are the Fourier transform of some finite positive measures
which we will call µ and ν. If µ ? ν � µ and the density dµ?ν

dµ belongs to L∞(µ), then
hHk ⊆ Hk for any h ∈ Hk2.

(c) Moreover, if µ (resp. ν) above is equivalent to (resp. absolutely continuous with respect
to) the Lebesgue measure on Rd, with density qµ (resp. qν), then hHk ⊆ Hk for any
h ∈ Hk2 if qµ ? qν/qµ ∈ L∞(Rd).

(d) Similarly, if f : Rd → R is a continuous positive definite function with generalized
Fourier transform f̂ , and qµ ? f̂/qµ ∈ L∞(Rd), then hHk ⊆ Hk for any h ∈ Hk2,
where k2(x, y) ≡ f(x− y).

Since k̂ is strictly positive, the result states that Hkfs ⊆ Hk iff κ̂fs/κ̂ ∈ L∞, which,

by the convolution theorem, can be written as κ̂s ? f̂/κ̂ ∈ L∞. To show this we will use
Lemma 7 to obtain the convolution bound

|(κ̂s ? f̂)(w)| ≤ ‖κ̂s‖L1U(1
2‖w‖) + ‖f̂‖L1V (1

2‖w‖) ,

where U and V are non-increasing functions that upper bound f̂ and κ̂s respectively. We
let U be the envelope above f , U(r) ≡ sup{f̂(w) : ‖w‖ ≥ r}, and since by construction κ̂s
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is non-increasing, we can set V (r) ≡ κ̂s(r). Thus

|(κ̂s ? f̂)/κ̂(w)| ≤ ‖κ̂s‖L1U(1
2‖w‖)/κ̂(w) + ‖f̂‖L1 κ̂s(

1
2‖w‖)/κ̂(w) .

By construction, for any w ∈ Rd we have κ̂s(
1
2w) = κ̂iron(w) ≤ κ̂(w), and thus κ̂s(

1
2 ·)/κ̂(·) ∈

L∞. Moreover f̂ has compact support, and thus so does U , hence |(κ̂s ? f̂)/κ̂| ∈ L∞ and
Hkfs ⊆ Hk as claimed. Moreover Hkf ↪→ Hk (Schwartz, 1964, Prop. 2).

L.1 Proof of Lemma 7: Convolution decay bound

Fix any α ∈ [0, 1] and let Sx ≡ {y ∈ Rd : ρ(x− y) ≤ αρ(x)}. On this set ρ(y) ≥ (1−α)ρ(x)
by subadditivity. Now

u ? v(x) =
∫
u(y)v(x− y)dy =

∫
Sx
u(y)v(x− y)dy +

∫
Scx
u(y)v(x− y)dy.

Moreover,∫
Sx
|u(y)v(x− y)|dy ≤

∫
Sx
U(ρ(y))|v(x− y)|dy ≤

∫
Sx
U((1− α)ρ(x))|v(x− y)|dy ≤ U((1− α)ρ(x))‖v‖L1 .

On the other hand∫
Scx
|u(y)v(x− y)|dy ≤

∫
Scx
|u(y)|V (ρ(x− y))dy ≤

∫
Scx
|u(y)|V (αρ(x))dy ≤ V (αρ(x))‖u‖L1 .

L.2 Proof of Lemma 8: Continuity of RKHS inclusion

Consider a convergent sequence (hn, hn)→ (h, f) in HK ×F . Since HK and F are contin-
uously included in the space of functions X → Rd, (hn) converges pointwise to both h and
f , hence h = f ∈ HK , and the graph of ι : HK → F is closed. Thus (Treves, 1967, Cor. 4,
Chap. 17) implies it is continuous, since the product of metrizable (resp. complete) TVS is
metrizable (resp. complete).

In particular Cs(Rd) is a complete metrizable space by (Treves, 1967, Ex. 1 Chap. 10).

L.3 Proof of Lemma 9: RKHS inclusion of product RKHS

The first result follows by the characterization of Aronszajn (1950), once we note that the
product kernel (x, y) 7→ k(x, y)k2(x, y) contains the functions of the form x 7→ h(x)f(x)
with h ∈ Hk2 and f ∈ Hk, since it is the pullback under the diagonal map x 7→ (x, x) of the
tensor product kernel k⊗ k2, and the latter is the completion of the inner product space of
functions (x, y) 7→ h(x)f(y).

The second and third result follow by Zhang and Zhao (2013, Prop. 3.1) and the convo-
lution theorem, which implies that the (translation invariant) product kernel k(r)k2(r) =
µ̂(r)ν̂(r) = µ̂ ? ν(r). Finally, for the final result, observe that Theorem 15 implies f is
the Fourier transform of a non-negative finite measure ν, which satisfies for any γ in the
Schwartz space

f̂dx[γ] ≡ fdx[γ̂] = ν̂dx[γ̂] = ν[γ ◦R] ≡ R∗ν[γ],

where R∗ is the pushforward, and thus R∗ν = f̂dx (i.e., R∗ν is the generalized Fourier
transform of f), which implies ν = f̂ ◦ Rdx. By Wendland (2004, Thm. 6.2) f is even. In
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fact f̂ ◦R is also the generalized Fourier transform of f , and f̂ ◦R = f̂ almost everywhere.
Indeed, on the one hand

∫
f̂γdx =

∫
f̂ ◦Rγ ◦RR∗dx =

∫
f̂ ◦Rγ ◦Rdx. On the other hand∫

f̂γdx =
∫
fγ̂dx =

∫
f ◦Rγ̂dx =

∫
f ◦Rγ̂ ◦R ◦Rdx =

∫
fγ̂ ◦Rdx =

∫
fγ̂ ◦Rdx.

Since composition with R is a bijection from the Schwartz space to itself, this shows that
f̂ ◦R is the generalized Fourier transform of f . The result then follows by the third result.

Appendix M. Proof of Theorem 9: Controlling tight convergence with
KSDs

Before proving the result, let us introduce the Banach space B1
θ(Rd), a generalization of

C1
0 (Rd), which is easier to handle than the topological vector space C1

b,θ(Rd)β (the analogous
generalization of C1

b (Rd)β).

Lemma 10 (Definition of B1
θ(Rd)). Given a continuous function θ : Rd → [c,∞), for some

c > 0, let B1
θ(Rd) be the completion of C1

c (Rd) with respect to

‖f‖B1
θ
≡ sup ‖θ(x)f(x)‖+

∑
|p|=1

sup ‖∂pxf‖. (10)

Then B1
θ(Rd) ∼= {f ∈ C1(Rd) : θf ∈ C0(Rd), ∂f ∈ C0(Rd×d)}.

Proof We first show that if f ∈ {f : C1(Rd) : θf ∈ C0(Rd), ∂f ∈ C0(Rd×d)}, then

∃cn ∈ C1
c (Rd) such that cn

B1
θ→ f . By definition ∀ε > 0 there exists compact subsets S1, S2

such that ‖θ(x)f(x)‖ < ε for x ∈ Sc1 and ‖∂f(x)‖ < ε for x ∈ Sc2. Since S1 ∪ S2 is compact,
there exists a ball of radius r such that S ≡ S1 ∪S2 ⊆ Br. Using Lemma 14 in Gorham and
Mackey (2017) we can find a function cε ∈ C1

c (Rd) with

cε : Rd → [0, 1], cε|Br = 1, cε|Br+2δ
c = 0, ‖∂cε‖ ≤ I[Br+2δ/Br]

for some δ > 0. In particular ∂cε = 0 and cε = 1 on S ⊆ Br. Now let fε ≡ fcε ∈ C1
c (Rd).

Then on S we have ‖θ(x)f(x)− θ(x)f(x)cε(x)‖ = 0 and

‖∂f − ∂(fcε)‖ = ‖∂f − cε∂f − f ⊗ ∂cε‖ = ‖∂f − cε∂f‖ = 0.

On Sc, we have |θ(x)f(x)− θ(x)f(x)cε(x)| ≤ 2|θ(x)f(x)| ≤ 2ε and

‖∂f − ∂(fcε)‖ ≤ ‖∂f‖+ ‖f ⊗ ∂cε‖+ ‖cε∂f‖ ≤ 3ε.

Thus C1
c (Rd) is dense in {f : C1 : θf ∈ C0, ∂f ∈ C0}.

On the other hand, suppose we have a Cauchy sequence cn ∈ C1
c (Rd) for the norm (10).

Then, since θ ≥ c > 0, (cn)n is a fortriori a C1
0 (Rd)-Cauchy sequence, and thus ‖ · ‖C1

0
-

converges to a function f ∈ C1
0 (Rd). Now we show that cn also converges to f in the norm

defined in (10). Indeed ∀ε > 0 ∃` such that n,m ≥ ` implies ‖θ(x)cn(x)−θ(x)cm(x)‖ ≤ ε for
all x, and thus taking m→∞ gives ‖θ(x)cn(x)−θ(x)f(x)‖ ≤ ε for all x, i.e., ‖θ(cn−f)‖∞ ≤

ε. An analogous argument shows ‖∂cn − ∂f‖∞ → 0, and thus cn
B1
θ→ f .
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Finally, note that ‖θf − θcn‖∞ → 0 and θcn ∈ Cc(Rd) imply θf ∈ C0(Rd). Similarly
‖∂f − ∂cn‖∞ → 0 implies ∂f ∈ C0(Rd×d) since ∂cn ∈ Cc(Rd×d).

We will now first prove the non-tilted case, with a(x) = 1. We will use the following
result, proved in Appendix M.1.

Lemma 11 (Characteristicness of tilted bounded kernels). Using the notations of The-
orem 14, let φ be the multiplication by 1/θ, where θ is a strictly positive C1 function
such that 1/θ, ∂(1/θ) are bounded. If K is universal to C1

0 (R`) (resp. C1
b (R`)β), then

K(x, y)/(θ(x)θ(y)) is universal to B1
θ(R`) (resp. C1

b,θ(R`)β).

Construct ks and kf satisfying the conditions of Theorem 8. Note kf is characteristic
to (C1

b,θ)
∗
β, as can been seen by applying Lemma 11 to ks with θ(x) ≡ 1/f(x), and recalling

that the RKHS of kf (x, y) = f(x)ks(x, y)f(y) is fHks .
Summarizing, we have proven that Hkf ⊆ Hk and that kf is characteristic to (C1

b,θ)
∗
β.

Hence, HK̃ ⊆ HK , where K̃ ≡ kf Id is characteristic to C1
b,θ(Rd)∗β by Proposition 11. The

Stein RKHS associated to K̃ consists of bounded functions and is characteristic to P ∈ P by
Proposition 12, becauseDQ ∈ C1

b,θ(Rd)∗β for any probability measure Q. Moreover, sinceHkp
is a superset of a bounded P-separating sub-RKHS, the result then follows from Theorem 6.

Finally, consider a tilting function a. In the Appendix L we have constructed a Schwartz
function f that is strictly positive and s.t., f and its partial derivatives have root exponential
decay. Moreover we have shown that Hkf ⊆ Hk, where kf (x, y) ≡ f(x)ks(x, y)f(y) with ks
a kernel obtained by ironing and scaling k, and shown that kf is universal to (C1

b,θ(Rd))β
(with θ(x) ≡ 1/f(x)). Hence aHkf ⊆ aHk. Since af and ∂(af) are bounded, and ks is

universal in (C1
b (Rd))β, then by Lemma 11 a(x)kf (x, y)a(y) is universal to (C1

b, θa
(Rd))β.

M.1 Proof of Lemma 11: Characteristicness of tilted bounded kernels

Note φ : C1
0 (R`)→ B1

θ(R`) is continuous, indeed (here θ−1 ≡ 1/θ)

‖φ(f)‖B1
θ
≤ ‖f‖∞+‖θ−1∂f+∂θ−1⊗f‖∞ ≤ ‖f‖∞+‖θ−1‖∞‖∂f‖∞+‖∂θ−1⊗f‖∞ ≤ C‖f‖C1

0
,

for some C > 0 (where we have used the boundedness of |θ−1| and ‖∂θ−1‖), where ⊗ is
the outer product. Similarly, φ is continuous as a map C1

b (R`)β → C1
b,θ(R`)β, since for any

γ ∈ C0

‖γθφ(f)‖∞ = ‖γf‖∞

and

‖γ∂iφ(f)‖∞ ≤ ‖γθ−1∂if‖∞ + ‖γf∂iθ−1‖∞ ≤ ‖θ−1‖∞‖γ∂if‖∞ + ‖∂iθ−1‖∞‖γf‖∞.

Moreover φ(C1
c (R`)) = C1

c (R`) since θ−1 ∈ C1 is strictly positive, and C1
c (R`) is dense

in C1
b,θ(R`), and in B1

θ(R`) since the latter is its completion (and metric spaces are dense in
their completion). The result then follows by Theorem 14.
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Appendix N. Proof of Theorem 10: Controlling P-convergence by
dominating indicators

Fix any ε > 0, and pick any function h ∈ F and compact set C satisfying

h− Ph ≥ I [Cc]− ε/2.

Moreover, suppose dF (Qn,P) → 0. For each n, we have (note h is bounded below, so
h+ ∈ L1(Q) for all Q ∈ P)

Qn(Cc) ≤ ε/2 + Qnh− Ph,

and, since h ∈ F and dF (Qn,P)→ 0, we further have |Qnh−Ph| ≤ ε/2 for all n larger than
some N . Hence, Qn(Cc) ≤ ε for all n sufficiently large. Since ε > 0 was arbitrary, (Qn)n≥1

is tight.
Finally, if k enforces tightness and controls tight weak convergence, then

MMDk(Qn,P)→ 0 implies (Qn) is tight, so Qn → P, i.e., k controls weak convergence.

Appendix O. Proof of Lemma 1: Coercive functions dominate indicators

Since P ∈ PHk , Ph is finite and hence h − Ph is also coercive and bounded below. Since
h−Ph is bounded below, there exists C > 0 such that (h−Ph)/C ≥ −1. Moreover, for any
ε > 0, writing hε ≡ hε/C ∈ Hk, then hε − Phε ≥ −ε, and since hε − Phε is coercive, there
exists a compact set S for which infx∈Sc hε − Phε ≥ 1 − ε, and therefore Hk P-dominates
indicators.

Appendix P. From Separating Measures in Hkp to Separating Schwartz
Distributions in HK

For a bounded RKHS we have the following result shown in Appendix P.2:

Proposition 12 (Separating measures with bounded Stein RKHSes). Suppose ‖sp(x)‖ ≤
θ(x), and HK ⊆ C1

b,θ(Rd). Then kP is P-separating iff K is characteristic to 0 in {DQ :
Q ∈ P} ⊆ (C1

b,θ(Rd)β)∗, that is for any Q ∈ P, DQ|HK = 0 =⇒ Q = P.

In order to prove this it will be convenient to first prove in Appendix P.1 the analogous
but simpler result, Proposition 13, which relies on the Banach space defined in Lemma 10.

Proposition 13 (Separating measures with C0 Stein RKHSes). Suppose ‖sp(x)‖ ≤ θ(x),
and HK ⊆ B1

θ(Rd). Then kP is P-separating iff K separates 0 from {DQ : Q ∈ P} ⊆
B1
θ(Rd)∗, i.e., for any Q ∈ P, DQ|HK = 0 =⇒ Q = P.

P.1 Proof of Proposition 13: Separating measures with C0 Stein RKHSes

Proceeding as in Proposition 9, we can define a Banach space B0
θ(Rd) such that division

by θ yields an isometric isomorphism C0
0 (Rd) ∼= B0

θ(Rd). Note the continuous inclusion
B1
θ(Rd) ↪→ B0

θ(Rd).7 In particular θQ, is a continuous linear functional on B1
θ(Rd), and

7. When θ ≥ 1 we also have B1
θ(Rd) ↪→ C1

0 (Rd).
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hence so is spQ, since

|spQ(f)| ≡ |
∑
i

Q(siPfi)| ≤
∑
i

Q(|siPfi|) ≤ C̃
∑
i

Q(θ|fi|) ≤ C sup ‖θf‖ ≤ C ‖f‖B1
θ

for some constants C̃, C > 0 (that arise from the equivalence of norms on Rd). Moreover,
∂iQ, and hence DQ, acts continuously on B1

θ(Rd), since

|∂iQ(f)| = |Q∂if | ≤ ‖∂if‖∞ ≤ ‖f‖B1
θ(Rd).

Moreover HK ⊆ B1
θ(Rd) implies HK ↪→ B1

θ(Rd). Indeed, recalling that K∗x ∈ B(HK ,Rd)
is the evaluation functional, ‖θ(x)K∗xh‖ = ‖θ(x)h(x)‖ ≤ ‖h‖B0

θ(Rd) for all h ∈ HK , so

by the Banach–Steinhaus Theorem ‖θ(x)K∗x‖ ≤ C for some C < ∞. From this we
find that supx ‖θ(x)h(x)‖ = supx ‖θ(x)K∗xh‖ ≤ supx ‖θ(x)K∗x‖‖h‖HK ≤ C‖h‖HK . Pro-
ceeding analogously with the derivative contribution, we can use |〈∂p2Kei(., x), h〉k| ≤
‖h‖B1

θ
to show ‖〈∂p2Kei(., x), ·〉k‖ ≤ Ai, for some Ai < ∞, and then supx ‖∂ph(x)‖ ≤

B supx maxi |∂phi(x)| ≤ dBmaxiAi‖h‖HK , which yields the continuity of the inclusion.

Now, note HkP ⊆ C0, so any probability measure Q embeds into the Stein RKHS by
Proposition 6. Moreover, since by assumption the embedding of P into Hkp is the null
function, from Corollary 4

KSDK,P(Q) = ‖Q‖HkP = ‖Q ◦ Sp‖HK .

We thus want to show that “Q ◦ Sp|HK = 0 implies Q ◦ Sp|B1
θ

= 0” iff “KSDK,P(Q) = 0
implies Q = P”.

If KSDK,P(Q) = 0 implies Q = P, then Q ◦ Sp|HK = 0 implies Q = P, so we want to
show P ◦ Sp|B1

θ
= 0. For this we can use P ◦ Sp|C1

c
= 0 by the divergence theorem and

the fact C1
c (Rd) is dense in B1

θ(Rd) since the latter is its completion (and metric spaces are
dense in their completion).

Conversely, we have that KSDK,P(Q) = 0 implies DQ|B1
θ

= 0, that is the distributional
Stein equation ∑

i(s
i
pQ− ∂xiQ)ei = 0,

where (ei)i=di=1 is the dual basis to the canonical basis of Rd. Applying to this vectorial distri-
butional PDE compactly supported smooth vector fields of the form f = (0, . . . , 0, l, 0, . . .)
with l ∈ C∞c , yields the system of (scalar) distributional PDEs ∂xiQ = siPQ. In particular,
solving for the function q : Rd → R the classical PDE ∂xiq = siPq, implies q is the target
probability density, q = p. We then look for solutions via the method of variation of con-
stants. We write the the form Q = pT . Subbing in and using ∂xi(pT ) = ∂xipT + p∂xiT we
obtain the equivalent distributional PDE ∂xiT = 0, which implies that T is a translation-
invariant measure, and hence proportional to the Lebesgue measure, T = Cdx, by Schwartz
(1978, Thm. VI of Chap. II). Since Q is a probability measure we must have C = 1, and
thus Q = P.
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P.2 Proof of Proposition 12: Separating measures with bounded Stein
RKHSes

Since HK ⊆ C1
b,θ(Rd), then Hkp ⊆ Cb, indeed |Sp(h)(x)| ≤ ‖sp(x)‖‖h(x)‖ + |∇x · h| ≤

θ(x)‖h(x)‖ + |∇x · h| and the latter is a bounded function of x. Hence any probability
measure embeds into Hkp by Proposition 6, and we can proceed as above once we have
shown that DQ is continuous on C1

b,θ(Rd)β. First note that, using the fact that the dual of
a finite product of TVS is isomorphic to the finite product of their duals (see, e.g., Treves
(1967, p. 259))

D1
L1(Rd) ≡ (C1

b (Rd))∗β = (
∏d
i=1 C1

b (R)β)∗ = ⊕di=1D
1
L1 ⊆ C1

b,θ(Rd)∗β,

indeed, C1
b,θ(Rd)β ↪→ C1

b (Rd)β since θ ≥ c > 0, and C1
b (Rd)∗β = D1

L1(Rd) by Conway (1965,

Sec. 1). Thus ∂xiQ ei ∈ (C1
b,θ(Rd)∗β. 8

Moreover, we have C1
b,θ(Rd)β ↪→ Cb,θ(Rd)β ∼= Cb(Rd)β, where the latter isomorphism of

topological vector spaces is given by multiplication by θ. Since (Cb)
∗
β is the space of finite

Radon measures, this shows that θQei ∈ Cb,θ(Rd)∗β ⊆ C1
b,θ(Rd)∗β.

Appendix Q. Proof of Theorem 11: IMQ KSDs control P-convergence

Our proof parallels that of Gorham and Mackey (2017, Lem. 16). Fix any c > 0, γ ∈
(0, 2u− 1), a > c/2, and α ∈ (1− u, 1

2(1− γ)), and consider the functions

gj(x) = −xj(a2 + ‖x‖2)α−1 for 1 ≤ j ≤ d.

By Gorham and Mackey (2017, proof of Lem. 16), g = (g1, . . . , gd) ∈ HK for K = kId.
Moreover, the Stein operator applied to g takes the form

Sp(g)(x) = − 〈sp(x),x〉
(a2+‖x‖2)1−α

− d
(a2+‖x‖2)1−α

+ 2(1−α)‖x‖2

(a2+‖x‖2)2−α
.

Since α < 1, the final two terms in this expression are uniformly bounded in x. Meanwhile,
our generalized dissipativity assumption (8) implies that −〈sp(x), x〉 = Ω(‖x‖2u) as ‖x‖ →
∞, so − 〈sp(x),x〉

(a2+‖x‖2)1−α
= Ω(‖x‖2u−2+2α) = ω(1) since α > 1 − u. Hence, Sp(g) is coercive.

In addition, the generalized disspativity condition (8) implies that −〈sp(x), x〉 is bounded
below and hence that Sp(g) is bounded below.

Let K = kId. Since sp is well defined and continuous on Rd, the density p is strictly
positive and continuously differentiable. In addition, since P ∈ Psp , K ∈ C

(1,1)
b (Rd), and

K ∈ L1(P), Proposition 3 and Theorem 1 imply that pHK ⊆ C1(Rd), P ∈ PK,0, KSDK,P =
MMDkp(·,P), and Sp(HK) = Hkp . Since Sp(g) ∈ Hkp , Hkp P-dominates indicators by
Lemma 1 and enforces tightness by Theorem 10.

Finally, since k ∈ C
(1,1)
b is translation-invariant with a spectral density bounded away

from zero in a neighborhood around the origin (Wendland, 2004, Thm. 8.15), we conclude
that Hk ⊆ C1

b by Proposition 3 and that kp controls P convergence by Corollary 3.

8. A more direct proof that establishes the continuity of ∂iQe
i on C1

b,θ(Rd)β reads as follows: if f ∈ C1
b,θ(Rd),

then |∂iQeif | = |Q∂if i| ≤ Amaxj∈[n] ‖γj∂if i‖∞ for some γj ∈ C0, n ∈ N, A > 0, by continuity of Q on
(Cb)β . Since f 7→ ‖γj∂f‖∞ are semi-norms on C1

b,θ(Rd)β the result follows.
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Appendix R. Proof of Theorem 12: Metrizing P-convergence with
bounded Stein kernels

Our aim is to identify a function inHkp that satisfies the indicator bounding property (7) for
each ε > 0. To this end, for each m ∈ N, define the compact set Cm = {x ∈ Rd : ‖x‖ ≤ m},
and fix any m > 1 for which −〈sp(x), x〉 is nonnegative on Ccm−1 and

−〈sp(x), x〉 − r0 ‖sp(x)‖1 − 1− r0 − 2|γ|(1 +
√
d/(c2 +m)) ≥ (r1/2) ‖x‖2u (11)

holds on Ccm. These properties hold for all m sufficiently large (specifically, for all m such

that 1
2r1m

2u ≥ 1 + r0− r2 + 2|γ|(1 +
√
d

c2+m
)) due to generalized dissipativity (8) with u > 0.

Fix also any εm ∈ (0, s] satisfying

εm supx∈Cm max
(
‖sp(x)‖1 a(‖x‖), 2|γ|‖x‖1

c2+‖x‖2a(‖x‖), ‖x‖1
c2+‖x‖2 , a(‖x‖)

)
≤ a(m)

m . (12)

Consider the smoothed indicator function

f̃m(x) = σ(m− ‖x‖) for σ(r) = 2 max(0, r)2I [r < .5] + (1− 2 max(0, 1− r)2)I [r ≥ .5]

which satisfies f̃m(x) = 1 on Cm−1, f̃m(x) = 0 on Ccm,

I [x ∈ Cm−1] ≤ f̃m(x) ≤ I [x ∈ Cm] , and − I [x ∈ Cm\Cm−1] ≤ ∂xi f̃m(x) ≤ 0.

Moreover, for each i ∈ {1, . . . , d}, x 7→ xif̃m(x) ∈ C1
0 .

Since Hk ⊆ C1
0 , then Hk ↪→ C1

0 , so by Simon-Gabriel and Schölkopf (2018, Thm. 6) Hk
is dense in C1

0 . Hence, for each i ∈ {1, . . . , d} there exists g̃mi ∈ Hk satisfying

supx∈Rd max(|g̃mi(x)− xif̃m(x)|, |∂xi g̃m(x)− ∂xi(xif̃m(x))|) ≤ εm. (13)

Moreover, the function wi(x) = xi belongs to Hk̃i for k̃i(x, y) ≡ xiyi. Since Hk ⊆ Hk+k̃i
and Hk̃i ⊆ Hk+k̃i

(see for example Carmeli et al. (2010, Prop. 5)), the functions g̃mi, wi,
and gmi = wi − g̃mi are all elements of Hk+k̃i

.
Consider now the Stein function

hm(x) =
∑d

i=1
−∂xi (p(x)a(‖x‖)gmi(x)))

p(x)

= −〈sp(x), gm(x)〉a(‖x‖)︸ ︷︷ ︸
(i)

−〈gm(x),∇a(‖x‖)〉︸ ︷︷ ︸
(ii)

−a(‖x‖)∇ · gm(x)︸ ︷︷ ︸
(iii)

, (14)

where gm is the vector valued function (gmi)
d
i=1. By construction, hm ∈ SpHK , and thus

in Hkp by Theorem 1. Therefore, the zero-mean embedding assumption P ∈ PK,0 and
Proposition 3 imply that Phm = 0. We will show that a rescaled version of hm satisfies the
indicator bound property (7) for a choice of ε̃m that decays to 0 as m → ∞. We begin by
lower-bounding each of the components in the expansion (14).

To lower-bound term (i), we first record several properties of gm. First, our approxima-
tion guarantee (13) implies

supx∈Rd |gmi(x)− xifm(x)| ≤ εm for each i ∈ {1, . . . , d}, (15)
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where fm ≡ 1− f̃m satisfies

I
[
x ∈ Ccm−1

]
≥ fm(x) ≥ I [x ∈ Ccm] and I [x ∈ Cm\Cm−1] ≥ ∂xifm(x) ≥ 0. (16)

Since a is nonnegative and fm(x) = 0 on Cm−1, Hölder’s inequality, the guarantee (15), the
assumed nonnegativity of −〈sp(x), x〉 on Ccm−1, generalized dissipativity, and our choice
(12) of εm implies that

−〈sp(x), gm(x)〉a(‖x‖) = −〈sp(x), x〉fm(x)a(‖x‖)− 〈sp(x), gm(x)− xfm(x)〉a(‖x‖)
≥ −〈sp(x), x〉fm(x)a(‖x‖)− ‖sp(x)‖1 ‖gm(x)− xfm(x)‖∞ a(‖x‖)
≥ −〈sp(x), x〉fm(x)a(‖x‖)− ‖sp(x)‖1 a(‖x‖)εm
≥ −〈sp(x), x〉I [x ∈ Ccm] a(‖x‖)− ‖sp(x)‖1 a(‖x‖)εm
= (−〈sp(x), x〉 − ‖sp(x)‖1 εm)I [x ∈ Ccm] a(‖x‖)− ‖sp(x)‖1 I [x ∈ Cm] a(‖x‖)εm
≥ (−〈sp(x), x〉 − ‖sp(x)‖1 s)I [x ∈ Ccm] a(‖x‖)− a(m)/m.

To lower bound (ii), we again employ Hölder’s inequality, the approximation guarantee
(15), and the εm properties (12) to find that

−〈gm(x),∇a(‖x‖)〉 = 2γ〈gm(x), x〉/(c2 + ‖x‖2)γ+1

= 2γ ‖x‖2 fm(x)/(c2 + ‖x‖2)γ+1 + 2γ〈gm(x)− xfm(x), x〉/(c2 + ‖x‖2)γ+1

≥ 2γ ‖x‖2 fm(x)/(c2 + ‖x‖2)γ+1 − 2γ ‖gm(x)− xfm(x)‖∞ ‖x‖1 /(c2 + ‖x‖2)γ+1

≥ 2γ ‖x‖2 fm(x)/(c2 + ‖x‖2)γ+1 − 2|γ| ‖x‖1 εm/(c2 + ‖x‖2)γ+1

≥ −2|γ| ‖x‖2 I
[
x ∈ Ccm−1

]
/(c2 + ‖x‖2)γ+1 − 2|γ| ‖x‖1 εm/(c2 + ‖x‖2)γ+1

= −2|γ| ‖x‖
2

c2+‖x‖2a(‖x‖)(I [x ∈ Ccm] + I [x ∈ Cm\Cm−1])

− 2|γ|‖x‖1εm
c2+‖x‖2 a(‖x‖)(I [x ∈ Ccm] + I [x ∈ Cm])

≥ −2|γ|
(
‖x‖2+‖x‖1εm
c2+‖x‖2

)
a(‖x‖)I [x ∈ Ccm]− 2|γ|max(a(m− 1), a(m))− a(m)/m

≥ −2|γ|(1 +
√
d/(c2 +m))a(‖x‖)I [x ∈ Ccm]− 2|γ|max(a(m− 1), a(m))− a(m)/m.

To lower bound (iii), we first note that the derivative approximation (13) implies

supx∈Rd |∂xigmi(x)− ∂xi(xifm(x))| ≤ εm for each i ∈ {1, . . . , d}.

Moreover, we have

∂xi(x
ifm(x)) = fm(x) + xi∂xifm(x) ≤ I

[
x ∈ Ccm−1

]
+ |xi|I [x ∈ Cm\Cm−1]

by our ∂xifm constraints (16). Therefore, the nonnegativity of a and the εm properties (12)
give the bound

−a(‖x‖)∇ · gm(x) ≥ −a(‖x‖)(I
[
x ∈ Ccm−1

]
+ ‖x‖1 I [x ∈ Cm\Cm−1] + εm)

= −a(‖x‖)(1 + εm)I [x ∈ Ccm]− a(‖x‖)(1 + ‖x‖1)I [x ∈ Cm\Cm−1]− a(‖x‖)εmI [x ∈ Cm]

≥ −a(‖x‖)(1 + s)I [x ∈ Ccm]−max(a(m− 1), a(m))(1 +
√
dm)− a(m)/m.
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Our assumption γ ≤ u implies that ‖x‖2u a(‖x‖) ≥ m2ua(m) whenever ‖x‖ ≥ m. This
fact combined with our collected results and the assumed growth (11) induced by our choice
of m now imply that

hm(x) ≥ (−〈sp(x), x〉 − ‖sp(x)‖1 r0 − 1− r0 − 2|γ|(1 +
√
d/(c2 +m)))I [x ∈ Ccm] a(‖x‖)

− 3a(m)/m− (1 +
√
dm+ 2|γ|) max(a(m− 1), a(m))

≥ (r1/2) ‖x‖2u I [x ∈ Ccm] a(‖x‖)− 3a(m)/m− (1 +
√
dm+ 2|γ|) max(a(m− 1), a(m))

≥ (r1/2)m2ua(m)I [x ∈ Ccm]− 3a(m)/m− (1 +
√
dm+ 2|γ|) max(a(m− 1), a(m)).

Hence, the rescaled Stein function h̃m = hm/((r1/2)m2ua(m)), satisfies the indicator ap-
proximation property (7) for the compact set Cm and the approximation factor

ε̃m = 6/(r1m
2u+1) + (1 +

√
dm+ 2|γ|) max(a(m− 1), a(m))/((r1/2)m2ua(m)).

Since u > 1/2, ε̃m vanishes as m → ∞, and hence Hkp P-dominates indicators. Thus by
Theorem 10 the Stein kernel enforces tightness.

For (b), we use Lemma 12:

Lemma 12 (Universal KSDs tilted by score growth control tight convergence). Suppose
that ‖sp(x)‖ ≤ (c2 + ‖x‖2)γ, where c 6= 0, γ ≥ 0, and K is characteristic to D1

L1(Rd). Then
the Stein kernel induced by (c2 + ‖x‖2)−γK(x, y)(c2 + ‖y‖2)−γ is P-separating and controls
tight P-convergence.

Proof The result follows by Theorem 7. Indeed the function θ(x) ≡ (c + ‖x‖2)γ has
∂1/θ(x) = −2γx(c+‖x‖2)−γ−1 satisfies the assumption of Theorem 7, so the result follows.

This shows that we can easily construct bounded Stein kernels that control tight weak
convergence to P in P by simply tilting the base kernel through a function that bounds the
score. By Lemma 12 the Stein kernel induced by the tilted base kernel a(‖x‖)k(x, y)a(‖y‖)
controls tight weak convergence, and thus so does the overall Stein kernel (which further
controls weak convergence since it enforces tightness) as it may be viewed as the sum of
two Stein kernels. Indeed, as proved in Appendix R.1, we have the following general bound
between MMDs when an RKHS contains another one:

Lemma 13 (MMD controls subset MMDs). Suppose Hk ⊆ Hk̃ and that P ∈ PH
k̃
. Then

∃c ≥ 0 such that for all Q ∈ P

MMDk(Q,P) ≤ cMMDk̃(Q,P).

Hence,

(i) If k is P-separating then k̃ is P-separating.

(ii) If k controls (tight) weak P-convergence, then k̃ controls (tight) weak P-convergence.
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Finally, for (c), first note that Hkp ⊆ Cb. Indeed for any h ∈ Hkp we have
h(x) = Sp(ag) = 〈sp(x), ag〉 + ∇ · (ag) = 〈sp, ag〉 + a∇ · g + 〈g, ∂a〉, for some vector-
valued function g with gi ∈ Hk+k̃i

, so h is continuous. Moreover it is bounded since (i)

|gi(x)| ≤ ‖gi‖k+k̃i
(
√
k(x, x) + |xi|), implies

|〈g, ∂a〉| ≤ ‖gi‖k+k̃i

∑
i 2γ

|xi| supx
√
k(x,x)+|xi|2

(c2+‖x‖2)γ+1 .

(ii) a∇ · g is bounded since ∂ig ∈ H∂i∂i+dk+1 ⊆ Cb. (iii) 〈sp(x), ag〉 is bounded since

|〈sp(x), a(x)g(x)〉| ≤ ‖sp(x)‖|a(x)|‖g(x)‖ ≤ ‖sp(x)‖‖x‖|a(x)| ≤ 1.

Finally, P ∈ PK,0 since Hkp ⊆ Cb ⊆ L1(P) by above, and HK ⊆ L1(P) as for large
enough x

‖sp‖‖x‖ ≥ −〈sp(x), x〉 ≥ r1‖x‖2u − r2 ≥ A‖x‖2u

for some A > 0, so ‖sp‖ ≥ A‖x‖2u−1 for x large enough, so ‖x‖a(x) ≤ 1/‖sp(x)‖ ≤ 1
A‖x‖2u−1

for x large enough, which implies that HK ⊆ Cb.

R.1 Proof of Lemma 13: MMD controls subset MMDs

By Schwartz (1964, Prop. 2), Hk ⊆ Hk̃ implies that there exists c ≥ 0 such that, for all
h ∈ Hk, ‖h‖Hk̃ ≤ c‖h‖Hk , so c−1Bk ⊆ Bk̃. Hence

MMDk(Q,P) ≡ sup
h∈Bk :h+∈L1(Q)

|Qh− Ph| ≤ cMMDk̃(Q,P).

Since Hk ⊆ Hk̃, the P-separation and tightness results are immediate.

Appendix S. Proof of Theorem 13: Decaying P-centered kernels fail to
control P-convergence

We will use the following result based on a construction from Simon-Gabriel et al. (2023,
Section 5).

Theorem 16 (Vanishing mean-zero kernels fail to control P-convergence). Suppose that
X is locally compact but not compact. If Hk ⊆ C0 and k maps P ∈ P to 0 ∈ Hk, i.e.,
Φk(P) = 0, then k cannot control weak convergence to P ∈ P.

Proof Since P is a regular measure, we can find a compact set C ⊆ X for which P(C) ≥ 1/2.
By Simon-Gabriel et al. (2023, Lemma 9 and 10), we can find an open set U and compact set
C ′ such that C ⊆ U ⊆ C ′ and sequence of probability measures (Qn)n such that ‖Qn‖k → 0
and Qn(C ′) = 0 for all n. Then ‖Qn−P‖k = ‖Qn‖k → 0, so Qn converges to P in maximum
mean discrepancy but not in weak convergence since P(U) ≥ P(C) > Qn(U) = 0.

Now note that Φk(P) = 0 implies that every function in Hk has vanishing P-integral.
Given any RKHS Hk ⊆ L1(P), we can construct a new RKHS whose functions have zero
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expectation under P and has the same MMD between embeddable measures, as we now
show by simply applying the projection operator ΠP(h) = h− Ph. Since

|h(x)− Ph| = | 〈h , kx〉k − 〈Φk(P) , h〉k | ≤ (‖kx‖k + ‖Φk(P)‖k)‖h‖k,

(Carmeli et al., 2006, Prop. 2.4) implies ΠP(Hk) is a RKHS with kernel (using the fact
ξ∗P(x)(h) = ΠP(h)(x) where ξ∗P(x) ≡ δx − P)

kP(x, y) = 〈Φk(δx − P) , Φk(δy − P)〉k .

Thus, the elements of HkP have the form h−Ph for some h ∈ Hk, and hence P(HkP) = {0}.
Importantly, kP and k generate the same MMD. First let us show this for embeddable

measures: since for any finite measure µ with
∫
µ = 0 that embeds into Hk, we have using

Lemma 2 and µ ◦ΠP|Hk = µ|Hk (from
∫
µ = 0) that

‖µ‖kP = ‖µ ◦ΠP‖k = ‖µ‖k.

Hence for any two embeddable probability measures Q,P we have MMDkP(Q,P) =
MMDk(Q,P). In general, for any Q ∈ P, note that h+ ∈ L1(Q) iff (ΠP(h))+ ∈ L1(Q).
Moreover BkP = ΠP(Bk) by Lemma 5. Thus, writing Sk(Q) ≡ {h ∈ Bk : h+ ∈ L1(Q)}, we
have SkP(Q) = ΠP(Sk(Q))

MMDkP(Q,P) = sup
f∈S

kP
(Q)
|Q(f)− P(f)| = sup

f∈ΠPSk(Q)
|Q(f)− P(f)|

= sup
h∈Sk(Q)

|Q(ΠPh)− P(ΠPh)| = sup
h∈Sk(Q)

|Qh− Ph| = MMDk(Q,P).

Combining with Theorem 16 we obtain the other advertised result.
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in the Space of Probability Measures. Birkhäuser Verlag, Springer, 2005.
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