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Abstract

Recent advancements in unsupervised domain adaptation (UDA) and semi-supervised
learning (SSL), particularly incorporating causality, have led to significant methodological
improvements in these learning problems. However, a formal theory that explains the
role of causality in the generalization performance of UDA/SSL is still lacking. In this
paper, we consider the UDA/SSL scenarios where we access m labelled source data and n
unlabelled target data as training instances under different causal settings with a parametric
probabilistic model. We study the learning performance (e.g., excess risk) of prediction in
the target domain from an information-theoretic perspective. Specifically, we distinguish
two scenarios: the learning problem is called causal learning if the feature is the cause and
the label is the effect, and is called anti-causal learning otherwise. We show that in causal
learning, the excess risk depends on the size of the source sample at a rate of O( 1

m ) only if
the labelling distribution between the source and target domains remains unchanged. In
anti-causal learning, we show that the unlabelled data dominate the performance at a rate
of typically O( 1

n ). These results bring out the relationship between the data sample size
and the hardness of the learning problem with different causal mechanisms.
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1. Introduction

A common obstacle in many real-world learning problems is that the training and testing
data may originate from different distributions. Such a paradigm is known as the “domain
adaptation” problem. Specifically, we consider the unsupervised domain adaptation (UDA)
scenarios in which we have two datasets drawn from different distributions, namely the
“source” and “target” distributions, respectively. The source dataset includes both features
and labels, whereas the target dataset contains only features and no labels. The goal
is to train a model that performs well on the target distribution. This assumption is
particularly interesting because it reflects real-world scenarios where the target labels are
often unavailable.

Schölkopf et al. (2012) began the pioneering work of developing a framework that links
causal mechanisms with UDA, where the objective is to predict the label Y using feature
X. They delve into two fundamental causal settings: the “causal learning” setting, where
X is the cause of Y , and the “anti-causal learning” setting, where Y is the cause of X.
An interesting empirical observation made in the paper is that semi-supervised learning
(SSL) - a machine learning paradigm where the model is trained on a mix of labelled and
unlabelled data - improves learning performance in the anti-causal direction but does not
provide a similar boost in the causal direction. This finding suggests that, given known
causal structures, we may be able to enhance the generalization capabilities of machine
learning algorithms strategically. Even though numerous causality-driven machine learning
algorithms have demonstrated their effectiveness empirically (Schölkopf et al., 2012; Zhang
et al., 2013; Gong et al., 2016), the analytical part remains less investigated. Specifically,
understanding how causality impacts learning performance and how the unlabelled target
data and labelled source data contribute to the prediction under specific causal settings
is yet to be deepened. This paper attempts to demystify how causal directions influence
generalization ability and how the labelled source and unlabelled target data contribute to
the prediction in the UDA/SSL settings under generative parametric models. Specifically,
we examine the excess risk under various distribution shift conditions under the UDA setup,
including the case of no distribution shifts as seen in SSL.

Our main results reveal that in the causal learning scenario, the unlabelled target data
do not contribute to the prediction, and the source data only aids in reducing the excess risk
when the conditional probability distribution P (Y |X) remains consistent between source
and target domains. Conversely, in anti-causal learning, unlabelled data are always useful.
However, the usefulness of the source data, in terms of the convergence rate for excess risk,
is contingent on the distribution shift conditions.In situations where the causal relationship
between the feature and the label is unknown, improving generalization capability in domain
adaptation requires careful consideration when making predictions from either a causal
or anti-causal direction. This understanding enables us to design more efficient learning
algorithms that are equipped to handle the challenges presented by complex real-world
learning problems.
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2. Related Work

Causal Inference and Machine Learning. Two important frameworks in causal
inference are the potential outcome (counterfactual) framework and the structural causal
model (SCM) (Holland, 1986; Hernán and Robins, 2010; Imbens and Rubin, 2015; Pearl
and Mackenzie, 2018)1, which allows reasoning about a system not only under observation
but also under intervention, and they have become an influential tool in several machine
learning problems. For example, Schölkopf et al. (2012) study the causal and anti-causal
learning for domain adaptation with an additive noise SCM. Bottou et al. (2013) carry
out the counterfactual analysis for the advertisement placement problem, allowing more
flexibility in decision-making and thus improving the system performance. More recently,
Schölkopf (2022) put forward significant issues such as i.i.d. assumptions and generalization
ability of current machine learning algorithms and summarized the intrinsic connections
between machine learning and the causality. Moraffah et al. (2020) reviewed several causal
interpretable models and suggested that the causal interpretable model under these causal
and anti-causal frameworks is a way to explain the black-box machine learning algorithms.
Makhlouf et al. (2020) argue that causality-based machine learning algorithms are necessary
to address the problem of fairness appropriately.

However, although the causal models are favourable for specific learning regimes, only a
few works generally consider generalization ability. To name a few, Kilbertus et al. (2018)
argue that the generalization capabilities for anti-causal learning problems are associated
with the hypothesis space searching and validation, but no theoretical analysis is presented.
Kuang et al. (2018) and Cui and Athey (2022) develop a stable learning algorithm that is
robust across different underlying distributions and derives the generalization error bound
with the “causal” features, which are stable across different environments. Arjovsky et al.
(2019) propose the invariant risk minimization to generalize well across different domains.
Chen and Bühlmann (2021) develop a theoretical framework via the linear structural causal
models, allowing comparisons of the learning performance for existing domain adaptation
methods.

Domain Adaptation Most techniques to conquer domain adaptation problems are purely
statistics-based without referring to causal concepts. For example, the instance-based
methods identify source samples that bear similarities to target samples based on the
probability density ratio on the marginal distribution of features (Cortes et al., 2008; Gretton
et al., 2009). The feature-based methods will seek a new latent space where the discrepancy
of the empirical distribution embeddings between the source and target domains are small
under some metric (Pan et al., 2010; Zhang et al., 2017). The popular deep learning-based
methods will involve deep generative networks to align distributions between source and
target domains (Tzeng et al., 2017; Shen et al., 2018). However, recent works have shown
that introducing causal concepts leads to more robust and efficient algorithms for domain
adaptation. The main idea is to identify and extract the transferable components that
are invariant across different domains under certain causal models (Gong et al., 2016;
Magliacane et al., 2018; Rojas-Carulla et al., 2018; Mahajan et al., 2021). Nevertheless,
they mainly focus on the empirical verification of the effect of source samples instead of a
theoretical analysis of their algorithms. To rigorously investigate the generalization ability

1. It is sometimes also called structural equation model (SEM).
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and usefulness of the source and target data, Wu et al. (2021) give an attempt to interpret
the transfer learning in terms of parametric probabilistic models. Kpotufe and Martinet
(2018) study the covariate shift problem and derive the minimax rate with the notion of
“transfer component”. Cai and Wei (2021) investigate the concept drift problem and establish
the optimal minimax convergence rate with weighted k-nearest neighbour classifier. Maity
et al. (2022) consider the target shift condition and derive the optimal minimax rate in
non-parametric classification.

Semi-Supervised Learning Semi-supervised learning aims to learn the predictor with
scarce labelled and abundant unlabelled data. The crucial questions are when the unlabelled
data are useful and how to avoid their negative impact. On the practical side, Schölkopf
et al. (2012) find that the unlabelled data will be useful for prediction when these data are
the effect of their corresponding (unknown) labels. Li and Zhou (2014) propose a robust
SVM-based algorithm to prevent the unlabelled data from hurting the performance. Under
generalized linear models, Yuval and Rosset (2022) analyze the effectiveness of the unlabelled
data via risk minimization. On the theoretical side, Castelli and Cover (1996) and Zhang and
Oles (2000) pose the parametric assumptions on data distributions and claim the value of the
unlabelled data depends on the Fisher information matrices of the distribution parameters.
A similar argument is made in Zhu (2020) that if the unlabelled data contain all information
of the required parameters, they will be equally useful as the labelled data. Seeger (2000)
and Liang et al. (2007) suggest that for certain data-generating processes, the unlabelled
data is not useful from a Bayesian perspective. We refer to Mey and Loog (2019) for other
plentiful theoretical results on semi-supervised learning. Our methods provide a pathway to
probabilistically analyze the semi-supervised learning problem and definitude the conditions
when the unlabelled data are useful from a causal point of view.

3. Preliminaries

In this paper, we use the convention that capital letters denote the random variables and
small letters their realizations. We define a ∨ b = max(a, b) and a ∧ b = min(a, b). The
notation f(n) � g(n) means that there exists some positive integer n0 such that for all
n > n0, c1g(n) ≤ f(n) ≤ c2g(n) always holds for some positive c1 and c2. We also use
f(n) = O(g(n)) by meaning that there exists some integer n0 such that for all n > n0,
f(n) ≤ c3g(n) always holds for some positive value c3. We denote the KL divergence between

two distributions P and Q by KL(P‖Q) = EP
[
log dP

dQ

]
. We use P (X)� Q(X) to denote

that the probability distribution P (X) is absolutely continuous w.r.t. Q(X). If not otherwise
specified, the notation Eθ[·] denotes the expectation taken over all data examples involved
that are drawn from Pθ.

3.1 Information Theory Basics

Before proceeding, we will define several common information theory quantities such as
entropy, mutual information, and Kullback-Leibler divergence (KL divergence), and state
several well-known results on these measures that will be referenced in the literature. For
more information on the basics, the readers can refer to Cover and Thomas (2006). The
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Shannon entropy of a discrete random variable X is defined as:

H(X) = −
∑
x∈X

P(X = x) logP(X = x). (1)

For continuous random variable X with the probability density function p(x), the differential
entropy is defined as:

h(X) = −
∫
p(x) log p(x)dx. (2)

Note that for discrete r.v., the Shannon entropy is always nonnegative and bounded by
log |X | while the differential entropy is considered as a measure of relative information
and can be negative. Next, we define the Kullback-Leibler divergence: for two probability
measures P and Q, if P is absolutely continuous with respect to Q, the Kullback-Leibler
divergence between P and Q is:

D(P‖Q) =

∫
log

(
dP

dQ

)
dP,

where dP
dQ is the Radon-Nikodym derivative of P with respect to Q. The KL divergence

roughly estimates how different the two distributions P and Q are. For any probability
distributions P and Q over the space Ω such that P is absolutely continuous with respect
to Q, we have the non-negativity property such that D(P‖Q) ≥ 0 and the quantity is
usually non-symmetric, e.g., D(P‖Q) 6= D(Q‖P ) if P 6= Q. We can then define the mutual
information between the random variables X and Y as:

I(X;Y ) = D(P (X,Y )‖P (X)P (Y )), (3)

which is the Kullback-Leibler divergence between the joint distribution of X and Y and the
product of the marginal distributions. From the definition, it is clear that I(X;Y ) = I(Y ;X),
and the first property of the KL divergence implies that I(X;Y ) is nonnegative and
I(X;Y ) = 0 when X and Y are independent. Furthermore, we also define conditional
mutual information as

I(X,Y |Z) = EZ [D(P (X,Y |Z)‖P (X|Z)P (Y |Z))] ,

where it represents the amount of information gained about X by observing Y given a third
variable Z.

3.2 Prediction with Mixture Strategy

Considering the effectiveness and complexity of UDA and SSL problems, we use the para-
metric distribution models as a critical component of our approach. The reason for this
choice is that the distribution shifts can be characterized concisely by the parameter changes.
This approach allows for a rigorous statistical framework in which the complexities of the
learning problem can be analyzed.

The mixture strategy is an important concept in the field of statistical inference that
was leveraged from Clarke and Barron (1994, 1990); Merhav and Feder (1998) with the
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application of universal prediction, which involves the construction of a mixture distribution
over the model parameters for prediction when the true distribution (parameters) is unknown.
Here, “universal” means that the predictor does not depend on the unknown underlying
distribution and performs essentially as well as if the distribution was known in advance.
Furthermore, given these complexities and the distributional shifts of data sources, a mixture
strategy becomes a natural choice for tackling these challenges in different domain adaptation
settings as it allows us to integrate source and target distribution information, enabling a
comprehensive understanding of the learning performance.

The mixture strategy has been extensively studied in the literature, with several important
works exploring its properties and applications in various fields. For example, Feder et al.
(1992); Merhav and Feder (1998); Cover and Ordentlich (1996) mainly focused on situations
where data is drawn independently and identically from a single parametric distribution,
which is similar to traditional online learning problems. However, the bounds obtained
through the conditional mutual information cannot provide more quantitative insights for
analyzing the regret. To this end, the previous works such as Clarke (1999); Clarke and
Barron (1990); Zhu (2020) provided an asymptotic analysis for the conditional mutual
information under the conventional online learning or semi-supervised learning problems,
where the regret approximation is associated with the sample size and the prior distribution
over the distribution parameters.

Mathematically, let θ be the parameter of interest that is involved in the model distribu-
tion, and let p(θ) be the prior distribution over θ. Assume we have the training dataset D
with each Zi ∈ D i.i.d. drawn from a distribution p∗θ(Z). If we consider the predictor ω to
be a probability distribution over the data sample Z, the logarithmic loss is then defined as

`(ω,Z) = − logω(Z). (4)

We can define the expected loss on test data Z ′ as

L := −Eθ∗
[
logQ(Z ′|D)

]
. (5)

where the mixture strategy involves constructing a mixture distribution over Z ′ for the
testing data given the training data as

Q(Z ′|D) =

∫
p(D, Z ′|θ)p(θ)dθ∫
p(D|θ)p(θ)dθ

=

∫
pθ(Z

′)Q(θ|D)dθ, (6)

where Q(θ|D) is the conditional distribution of the parameter θ given the dataset D induced
by Q(D) =

∫
p(D|θ)p(θ)dθ and the joint distribution p(D, θ) = p(D|θ)p(θ), and p(θ) is a

prior distribution over θ. From a Bayesian perspective, we assign a probability distribution
p(θ) over the parameter space to represent our prior knowledge, and we update the posterior
with the training data to approximate the underlying distributions. With the mixture
strategy, the excess risk w.r.t. the best estimator could be rewritten as:

R := −Eθ∗
[
logQ(Z ′|D)

]
− Eθ∗

[
log pθ∗(Z

′)
]

(7)

= Eθ∗
[
log

Pθ∗(Z
′)

Q(Z ′|D)

]
. (8)

= I(Z ′; θ∗|D). (9)
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The above characterization implies that under logarithmic loss, with a specific prior p(θ),
the excess risk induced by the mixture strategy is captured by the conditional mutual
information between the sample Z ′ and distribution parameter that is evaluated at θ∗ given
the training data, which naturally gives an interpretation on the amount of information that
the test data point Z ′ carries about the true parameter θ∗, given the whole training set D.
Such an information-theoretic framework has been established and studied in SSL and online
learning problems (see Merhav and Feder (1998); Zhan and Taylor (2015); Zhu (2020) for
references). One advantage of this framework is that information-theoretic tools are powerful
in studying asymptotic behaviours as well as deriving learning performance bounds for various
statistical problems. This characterization also ensures minimax optimality, which means
that irrespective of the underlying parameters, the resultant learning rate is guaranteed to
be optimal, even in the worst-case scenario. Additionally, information-theoretic quantities
such as mutual information and KL divergence (relative entropy) give natural interpretations
for the learning bounds. Furthermore, when it comes to distribution parameter estimation,
the mixture model is particularly beneficial when the data is believed to be generated from
a certain underlying process, as it can provide a probabilistic representation of the diverse
sub-populations, and this is particularly valuable where only assuming a single distribution
could lead to skewed or inaccurate results (such as the plug-in method). On the other hand,
while estimating a single distribution offers simplicity, the model is sensitive to outliers
and may fall short when the data complexity is high or the sample size is small. Taking
advantage of the robustness of the mixture strategy, this paper expands on the findings
of Merhav and Feder (1998) and Zhu (2020), which were initially applied to conventional
learning scenarios where the source and target originate from the same distribution. In the
following, we will examine both UDA and SSL learning bounds across various distribution
shift conditions by leveraging a mixture strategy grounded in causal and anti-causal settings.

4. Problem Formulation

We consider the typical unsupervised domain adaptation problem for classification. Given

the labelled source data Dm
s = (X

(1)
s , Y

(1)
s , · · · , X(m)

s , Y
(m)
s ) and the unlabelled target data

DU,n
t = (X

(1)
t , · · · , X(n)

t ), we assume each source sample is i.i.d. drawn from a probability
distribution PS(X,Y ) and takes value in Z = X × Y and each target sample is i.i.d. drawn
from the marginal distribution of PT (X,Y ) and takes value in X . In general, PS(X,Y ) is
different from PT (X,Y ), and both X and Y can be discrete or continuous. For simplicity,
we consider the case where both X and Y are discrete in this paper. We point out that
the analysis in the paper continues to hold for a continuous Y in the causal learning case
and for a continuous X in the anti-causal learning case. We will predict the label Y ′t for
the previously unseen sample X ′t in target domain, utilising the training sample Dm

s and
DU,n
t with the learning algorithm A : Zm×X n×X → B, whose output b is the distribution-

independent predictor for the outcome Y ′t in the predictor space B. We define the loss
function ` : B × Y → R that evaluates the prediction performance. The learning task is to
minimise the corresponding excess risk for its label Y ′t defined as

R(b) := E
Dms ,D

U,n
t ,X′t,Y

′
t

[
`
(
b, Y ′t

)
− `(b∗, Y ′t )

]
, (10)
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where the expectation is taken with respect to all the source and target data, and b∗ is the
optimal predictor that can depend on the true distribution of the data. Particularly, we will
also examine the excess risk under the condition PS(X,Y ) = PT (X,Y ), commonly known
as semi-supervised learning.

4.1 Causal Settings

In this section, we introduce the concept of causality within a supervised learning context
involving feature variable X and label variable Y . Here we take an approach by establishing
the learning model based on the parametric data distributions. We focus on scenarios where
there are no other con-founders but only variables X and Y . Assume X is drawn from a
finite set X = {x1, x2, . . . , xk} with k elements and the corresponding label Y is drawn from
a finite set Y = {y1, y2, . . . , yk′} with k′ elements. We then construct the parametric models
under causal settings by specifying the joint distribution of X and Y as follows:

Definition 1 (Causal Settings) We define two distinct learning settings based on the
direction of causality for X ∈ X and Y ∈ Y using the following generation process:

• Causal learning (Figure 1(a)) We say that “X causes Y ” (denoted as X → Y )
if the pair (X,Y ) is generated as follows: X is firstly generated according to the
distribution PθX . Given X = x, Y is generated from the distribution PθYx . This
implies that the joint distribution of (X,Y ) is given by

P (x, y) = PθX (x)PθYx (y). (11)

We call a learning problem “causal learning” if the underlying causal mechanism
satisfies X → Y .

• Anti-causal learning (Figure 1(b)) We say that “Y causes X” (denoted as Y →
X) if the pair (X,Y ) is generated as follows: Y is firstly generated according to the
distribution PθY . Given Y = y, X is generated from the distribution PθXy . This implies
that the joint distribution of (X,Y ) is given by

P (x, y) = PθY (y)PθXy (x). (12)

We call a learning problem “anti-causal learning” if the underlying causal mechanism
satisfies Y → X.

These learning scenarios are conceptualized through parametric data generation mechanisms
and sketched in Figure 1. When considering the causal setting X → Y , we assume that X is
drawn from the distribution PθX and when we see a realization xi of the random variable X,
the distribution of the outcome variable Y is then characterized by a distinct parameter θYxi ,
and the observed outcome y is assumed to be drawn from the distribution PθYxi

. The double

subscript notation is intentionally used to emphasize that the parameters θYxi describe the
distribution of Y , which is directly associated with the specific values of xi. This framework
inherently incorporates the concept of the “soft” intervention that alters the conditional
probability distributions of the variables being intervened upon(Eberhardt and Scheines,
2007; Pearl, 2009, 1998; Imbens and Rubin, 2015), which is a fundamental concept in the
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study of causality. By firstly setting X = xi, we effectively intervene in the system, which
allows for the direct examination of its impact on Y for different interventions. Hence, the
model not only captures the association between X and Y but also provides a structured
way to explore causal effects through interventions. For the anti-causal setting Y → X,
the procedure is analogous: the distribution of Y is defined by a parameter θ∗Y , and upon
intervening to set Y to yi, the distribution of X is specified by the parameter θXyi , from
which we observe x through the distribution PθXyi

(X). In Definition 1, we assume that both

X and Y are discrete variables for simplicity. However, it is important to note that our
results also apply to cases with discrete causes and continuous effects.

1Y
 X

X XY


Y

Causal Learning Anti-causal Learning

2Y


kY
 1X

 Y

Y YX


X

2X


kX


(a) Causal Learning: X → Y

1Y
 X

X XY


Y

Causal Learning Anti-causal Learning

2Y


kY
 1X

 Y

Y YX


X

2X


kX


(b) Anti-causal Learning: Y → X

Figure 1: Causal settings for X → Y in (a) and Y → X in (b). We refer to the scenario in
(a) as the “causal learning” setting because the direction of causation aligns with
the direction of prediction, whereas the scenario in (b) is termed the “anti-causal
learning” setting since the direction of causation is opposite to the direction of
prediction.

We draw the diagram in Figure 1 to visualize the parametric models under these two
different mechanisms. The models in Figures 1(a) and 1(b) are called “causal learning” and
“anti-causal learning” respectively (Schölkopf et al., 2012), to mirror the causation direction in
alignment with the prediction direction. In causal learning, the prediction direction coincides
with the causation direction, whereas in anti-causal learning, the causation direction opposes
the prediction direction.

Remark 2 As we will show in the sequel, the causal structure of the data-generating process
can be leveraged to enhance the prediction performance, which cannot be achieved by using
the knowledge of the observational distribution of (X,Y ) alone. Roughly speaking, under
certain regularity conditions, we could learn the parameters (θX , θYx, etc.) directly from
the unlabelled data, thus improving the prediction performance. As for the labelled source
data, they can be partially profitable if the target domain shares some distribution parameters
with the source domain. We will support these intuitions with our theoretical analysis in
Section 5.

Remark 3 We make the following remarks regarding the definitions of the above settings.
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• For simplicity, we will use the notation Yx to denote a random variable if it is
generated according to the distribution PθYx (y) in the causal learning setting. Similarly,
Xy denotes a random variable generated according to the distribution PθXy (x) in the
anti-causal learning setting. More generally, we define a random variable YX if it is
drawn from a random distribution PθYX (y) induced by the random variable X. This
notation also suggests an equivalent way of expressing the causality. Namely, we have
Y =

∑k
i=1 1X=xiYxi for the causal setting where X is generated according to PθX ,

and X =
∑k

i=1 1Y=yiXyi for the anti-causal setting where Y is generated according to
Pθy . This notation is consistent with the notations used in (Hernán and Robins, 2010;
Imbens and Rubin, 2015; Cabreros and Storey, 2019), where the concept of potential
outcome is used.

• Figure 1 suggests that the random variables X and Yx1 , Yx2 , . . . , Yxk are mutually inde-
pendent in the causal settings. Similarly, Y,Xy1 , . . . , Xyk are also mutually independent
in the anti-causal learning setting.

• The causal setting outlined can also be specialized to parametric structural causal models
as outlined by Hernán and Robins (2010); Pearl and Mackenzie (2018), which takes
the form of the relationship X ′ → Y ′ by

X ′ := NX , Y ′ := f(NY , X
′).

Here, f is a function that defines the parametric distributions of Y ′, with NY and
NX being independent random variables. This setup allows us to parameterize the
distribution of X with NX by identifying PθX with P where P is the distribution
of NX . By setting Yxk = f(xk, NY ), we could then model the distribution of the
outcome by PθYxk

(Y ) where the parameters depend on the function f , NY and xk.

Then we could express Y as a sum over potential outcomes of X, represented as
Y =

∑k
i=1 1X=xif(xi, NY ), which simplifies to Y = f(NY , X).

For the following discussion and main results, we assume that the causal relationship
between X and Y is always unique, e.g., the causal direction is acyclic. Initially, we also
assume the relationship is known for the theoretical analysis. In later parts of this discussion,
we will also examine the case in which the causal direction of the underlying causal direction
is unknown.

4.2 Parametric Models

When studying domain adaptation, we have two sets of random variables (Xs, Ys) and
(Xt, Yt), where the former denotes the feature and label in the source domain and the latter
for the target domain. We will consider two causal settings. The first one is given by
Xs → Ys and Xt → Yt with the definition of causation given in Figure 1(a), namely the
adaptation with the causal learning setting. We assume Xs, Xt take value in {x1, x2, · · · , xk}
and Ys, Yt take values in Y, which could be either a continuous or discrete space. We will
focus on parametric models in this work, and more precisely, the source distribution (similarly
to target distribution) PXs is parameterized by a parameter θs∗X and the distributions of
the outcome random variables PYxi are also parameterized by the parameters θs∗Yxi

for all
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i = 1, . . . , k. Then the joint distribution of the data pair (Xs, Ys) and (Xt, Yt) can be
formulated as,

Pθ∗s (xs, ys) = Pθs∗X (xs)Pθs∗Yxs
(ys), (13)

Pθ∗t (xt, yt) = Pθt∗X (xt)Pθt∗Yxt
(yt), (14)

where we use θ∗s and θ∗t to encapsulate all the parameters:

θ∗s = (θs∗X , θ
s∗
Yx1

, · · · , θs∗Yxk ) ∈ Λ, (15)

θ∗t = (θt∗X , θ
t∗
Yx1

, · · · , θt∗Yxk ) ∈ Λ. (16)

For simplicity, we assume that every element in both θ∗s and θ∗t is a scalar in R and
Λ ⊆ Rk+1 is a closed set endowed with Lebesgue measure. In the sequel, we write PS(X) =
PT (X) (similarly for PS(Y |X)) with the understanding that their underlying parameters
are elementwise equal (e.g., θs∗X = θt∗X) and vice versa.

The second learning model we consider in this work is given by Ys → Xs and Yt → Xt,
where Xs,yi and Xt,yi denote the random outcomes given the treatment yi in source and target
domains, namely the adaptation with the anti-causal learning setting. The parameterization,
in this case, is analogous to causal learning by regarding Y as a cause and X as an effect.
Instead, we now assume Ys, Yt take value in {y1, y2, · · · , yk′} and Xs, Xt take values in a
continuous or discrete space X for the anti-causal learning. Similarly to the causal learning,
we assume Ys and Yt are parameterized by θs∗Y and θt∗Y , and Xs,yi and Xt,yi are parameterized
by θs∗Xyi

and θt∗Xyi
for all i = 1, · · · , k′, and we use the same notation θ∗s and θ∗t to encapsulate

all the parameters and every parameter in both θ∗s and θ∗t is a scalar in R and Λ ⊆ Rk′+1 is
a closed set endowed with Lebesgue measure.

Under causal learning (X → Y ), it can be seen that the unlabelled target data are
generated only with θt∗X and thus do not contain knowledge about θt∗Yxi

as they are statistically

independent. Intuitively speaking, the parameters associated with P (Y |X) in the target
domain cannot be accurately estimated exclusively from the unlabelled data. However, under
anti-causal learning (Y → X), the unlabelled target data are associated with all parameters
θt∗Y and θt∗Xyi

that induce the labelling distribution P (Y |X) in the target domain. In addition,

we make the following assumption for the data distributions in both causal settings.

Assumption 1 (Parametric IID data) We assume the labelled source and unlabelled
target samples are generated independently and identically under both causal learning and
anti-causal learning. More precisely, the joint distribution of the data sequence pairs
Pθ∗s ,θ∗t (DU,n

t , Dm
s ) can be written as

Pθ∗s ,θ∗t (DU,n
t , Dm

s ) =

n∏
i=1

Pθ∗t (X
(i)
t )

m∏
j=1

Pθ∗s (X(j)
s , Y (j)

s ),

where Pθ∗t (X
(i)
t ) is the marginal of Pθ∗t (X

(i)
t , Y

(i)
t ). We also assume θ∗t and θ∗s are points in

the interior of Λ. Furthermore, in both models, the parametric families for the cause and
effect are assumed to be known in advance.

11
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Based on the models defined above, the excess risk in Equation (10) can be written as

R(b) := E
Pθ∗s (Dms )Pθ∗t

(DU,n
t ,X′t,Y

′
t )

[
`
(
b, Y ′t

)
− `(b∗, Y ′t )

]
= Eθs,θt

[
`
(
b, Y ′t

)
− `(b∗, Y ′t )

]
(17)

For simplicity, we use the notation Eθs,θt [·] (similarly, Eθt [·] and Eθs [·]) to denote the
expectation taken over all source and target samples drawn from Pθs and Pθt .

5. Main Results

In this section, we will examine the excess risk for causal and anti-causal learning under
various conditions of distribution shift, e.g., covariate shift (Gretton et al., 2009), target
shift (Zhang et al., 2013), concept drift (Cai and Wei, 2021), etc.

Before diving into the details, we informally outline our main results in Table 1 under
log-loss. Recall that in both causal and anti-causal learning, the goal is to learn the
conditional distribution PT (Y |X) such that the label Y can be predicted from the feature X
in the target domain. In causal learning, this corresponds to learning the outcome random
variables Yt,xi . However, the unlabelled target data Xt (“cause” in this case) do not contain
information about Yt,xi as they are independent under causal generating processes. Therefore,
the unlabelled target data are not useful in the causal learning case, as indicated in the
table. The usefulness of the source data depends on the causal settings. When the labelling
distribution is invariant across two domains (e.g., PS(Y |X) = PT (Y |X)), the source data
help reduce excess risk by providing information about Yt,xi , which is identical to Ys,xi . The
learning rate is then shown to be O( km), where k is the number of parameters and m is
the size of the source sample. On the other hand, if PS(Y |X) 6= PT (Y |X), the source data
generally do not provide information about Yt,xi and the excess risk does not converge to
zero even with sufficient source and target data.

In anti-causal learning scenario (Y → X, PS(X,Y ) 6= PT (X,Y )), however, learning
PT (Y |X) requires to estimate all the parameters of Yt and Xt,yi . Unlike causal learning,
where PT (Y |X) is fully represented by the random outcome variables Yt,xi , in this case,
we need to infer PT (Y |X) from the joint distribution PT (X,Y ). We will show that the
unlabelled target data is always useful in anti-causal learning under certain conditions. The
source data can also contribute to learning, depending on the assumptions we have made
about the distribution shift. For example, if PS(Y ) 6= PT (Y ) and PS(X|Y ) 6= PT (X|Y )
with the independence assumption, there is no reason for the source data to be useful
for prediction in the target domain. Therefore, the rate, in this case, is O(k

′+1
n ), which

solely depends on the number of unlabelled target data. Intuitively, this is the cost of
learning k′+1 parameters with n unlabelled target samples. Under the target shift condition
(PS(Y ) 6= PT (Y ) and PS(X|Y ) = PT (X|Y )), the source data helps in learning the outcome
variables Xyi , i = 1, . . . , k′, which is evinced in the rate O( 1

n + k′

m+n) that constitutes the

learning of Yt (with associated parameter θt∗Y ) with a rate O( 1
n) and Xt,yi , i = 1, . . . , k′

(with associated parameters θt∗Xyi
) with a rate O( k′

n+m). Similarly, for the conditional shift

(PS(Y ) = PT (Y ) and PS(X|Y ) 6= PT (X|Y )), the rate becomes O(k
′

n + 1
m+n) where sufficient

source data boosts the learning of Yt (associated with parameter θt∗Y ) with a rate O( 1
m+n),

but are not helpful for learning outcomes variables Xt,yi .

12
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Causal Setting Conditions UT LS Rate

X → Y

PS(X) 6= PT (X), PS(Y |X) 6= PT (Y |X) 7 7 -
PS(X) 6= PT (X), PS(Y |X) = PT (Y |X) 7 3 O( km )
PS(X) = PT (X), PS(Y |X) 6= PT (Y |X) 7 7 -
PS(X) = PT (X), PS(Y |X) = PT (Y |X) 7 3 O( km )

Y → X

PS(Y ) 6= PT (Y ), PS(X|Y ) 6= PT (X|Y ) 3 7 O( 1+k′

n )

PS(Y ) 6= PT (Y ), PS(X|Y ) = PT (X|Y ) 3 3 O( 1
n + k′

n+m )

PS(Y ) = PT (Y ), PS(X|Y ) 6= PT (X|Y ) 3 3 O(k
′

n + 1
n+m )

PS(Y ) = PT (Y ), PS(X|Y ) = PT (X|Y ) 3 3 O( k
′+1
m+n )

Table 1: (Informal) results on the effectiveness of source and unlabelled target data under
causal and anti-causal learning problems.“3” and “7” marks indicate whether
the data are useful or not for the prediction under specific conditions and causal
settings. “UT” and “LS” are abbreviated for “Unlabelled Target” and “labelled
Source”, respectively. The rate illustrates the convergence for the excess risk under
log-loss in terms of the target sample size n and source sample size m. The “-”
sign in the rate column means the risk will not converge to zero even if we have
sufficient source and target data.

As a special case of domain adaptation, we also consider SSL where PS(X,Y ) = PT (X,Y ).
Using the same arguments in causal and anti-causal settings, we obtain a better rate of
O( k

′+1
m+n) in anti-causal learning, where the unlabelled target data take effect on prediction,

compared to O( km) in causal learning, where the unlabelled target data are not helpful. For
readers interested in empirical verification of our results, we substantiate the analysis with a
toy example, which can be found in Section 6. More generally, our analysis also holds for
the case when the cause is discrete and the effect can be either discrete or continuous. This
is practically useful since the datasets in many real classification problems are usually anti-
causal with a finite label space Y where the feature space is usually continuous (Schölkopf
et al., 2012; Zhang et al., 2013; Gong et al., 2016). To summarize, different causation
directions incentivize different learning complexity for generalization, which is reflected in
the number of model parameters and the effectiveness of the data. It comes naturally when
we could model both the source and target data from either X → Y or Y → X in some
non-identifiable circumstances, we need to take the distribution shift conditions and sample
sizes into account to achieve better learning performance. We will first show our main proof
techniques in Section 5.1 and examples are followed in Section 6.

Many theoretical results on generalization in domain adaptation depend on distributional
conditions and algorithms. Notably, based on the covariate shift condition, Kpotufe and
Martinet (2018) propose the “transfer component” that evaluates the support overlap between
the source and target domains and derives the minimax rate for the generalization error.
However, such a notion cannot be generally applied to other distribution shift conditions.
Similarly, Cai and Wei (2021) determine the optimal minimax rate of convergence with the
weighted k-nearest neighbour classifier using the notion of “relative signal exponent” based
on the concept drift condition. Under the target shift condition, Maity et al. (2022) and
Gong et al. (2016) derive the learning guarantees for the distribution reweighting strategies,
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which are algorithm-dependent. While our analysis is restricted to parametric models, it
applies to all possible distribution shift conditions. This applicability facilitates a unified
framework for assessing learning performance from a causal viewpoint. It also offers an
intuitive understanding of the values derived from source and target data. In particular,
our result of the covariate shift condition offers the same insight when PT (X) is absolutely
continuous w.r.t. PS(X) in Kpotufe and Martinet (2018), where the labelled source has the
same value as the labelled target. The target shift result agrees with Maity et al. (2022) in
the sense that the unlabelled target is equally useful as the labelled target data, achieving
a rate of O( 1

n). Under the concept drift condition, we argue that the excess risk does not
converge, which is consistent with Theorem 3.1 in Cai and Wei (2021) for a large relative
signal exponent and no labelled target data. Moreover, we prove in Lemma 13 that the
excess risk is minimax optimal under log-loss.

5.1 Information-theoretic Characterization

In this section, we will outline our primary proof techniques for the findings presented
in Table 1. Our proofs primarily build upon the work of Merhav and Feder (1998) and
Zhu (2020), which originally focused on the sequential learning problem or semi-supervised
learning problem. However, we extend their results by applying the mixture strategy to
the UDA and SSL problems with the information-theoretic framework. To begin with, we
first consider the log-loss (also known as the logarithmic loss), which is formally defined as
follows.

Definition 4 (Log-loss) Let the predictor b be a probability distribution over the target
label Y ′t . The log-loss is then defined as,

`(b, Y ′t ) = − log b(Y ′t ). (18)

Given the testing feature X ′t, training data Dm
s and DU,n

t , we may view the predictor b as the

conditional distribution Q(Y ′t |D
U,n
t , Dm

s , X
′
t) over the unseen target label given the testing

feature X ′t and the training data Dm
s , D

U,n
t . It could be proved that the true predictor b∗ is

given by the underlying target distribution as b∗(Y ′t ) = Pθ∗t (Y
′
t |X ′t). Then the excess risk

can be expressed as,

R(b) = Eθ∗t ,θ∗s

[
log

Pθ∗t (Y ′t |X ′t)
Q(Y ′t |D

U,n
t , Dm

s , X
′
t)

]
(19)

Concerning the choice of the predictor Q(Y ′t |D
U,n
t , Dm

s , X
′
t), we first define Θs and Θt as

random vectors over Λ, which can be interpreted as a random guess of θ∗s and θ∗t . Note that
Θs and Θt may share some common parameters, e.g., Θs,i = Θt,i for ith entry. Then by
mixture strategy (Merhav and Feder, 1998; Xie and Barron, 2000), we assign a probability
distribution ω over Θs and Θt w.r.t. the Lebesgue measure to represent our prior knowledge
and update the posterior with the incoming data to approximate the underlying distributions.
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That is,

Q(Y ′t |D
U,n
t , Dm

s , X
′
t) =

∫
Pθt(D

U,n
t , X ′t, Y

′
t )Pθs(D

m
s )ω(θt, θs)dθtdθs∫

Pθt(X
′
t)Pθt(D

U,n
t )Pθs(D

m
s )ω(θt, θs)dθtdθs

=

∫
Pθt(Y

′
t |X ′t)P (θt, θs|X ′t, Dm

s , D
U,n
s )dθsdθt. (20)

We can interpret (20) as estimating Y ′ in a two-step procedure. With a prior distribution ω,
the first step is to learn the parameters θs, θt with the joint posterior P (θs, θt|Dm

s , D
U,n
t , X ′t).

In the second step, the learned θt is applied for prediction in terms of the parametric
distribution Pθt(Y

′
t |X ′t). One way to comprehend the mixture strategy is that we encode our

prior knowledge over target and source domain distributions in terms of the prior distribution
ω(Θs,Θt), and different distribution shift conditions correspond to different priors. By the
mixture strategy, we give the excess risk under log-loss.

Theorem 5 (Excess Risk with Log-loss) Under log-loss, let the predictor Q be the dis-
tribution in (20) with the prior distribution ω(Θs,Θt). Then the excess risk can be expressed
as

R(b) = I(Y ′t ; θ∗t , θ
∗
s |Dm

s , D
U,n
t , X ′t), (21)

where the R.H.S. denotes the conditional mutual information I(Y ′t ; Θt,Θs|Dm
s , D

U,n
t , X ′t)

evaluated at Θt = θ∗t and Θs = θ∗s .

All proofs in this paper can be found in the Appendix. A similar learning strategy can be
used for more general loss functions. Given a general loss function `, we define the predictor
b as

b = argminbEQ
[
`(b, Y ′t )|X ′t, D

U,n
t , Dm

s

]
, (22)

with the choice of the mixture strategy

Q(X ′t, Y
′
t , D

n
t , D

m
s ) =

∫
Pθt,θs(X

′
t, Y

′
t , D

U,n
t , Dm

s )ω(θt, θs)dθtdθs

for some prior ω. The optimal predictor is then given by

b∗ = argminbEθ∗t
[
`(b, Y ′t )|DU,n

t , X ′t.
]

(23)

We have the following theorem for β-exponential concave loss functions as follows.

Theorem 6 (Excess Risk with Exponential Concave Loss) Assume the loss function
is β-exponentially concave of b for any y. Then the excess risk induced by b and b∗ in Equa-
tion (22) and (23) can be bounded as

R(b) ≤ 1

β
I(Y ′t ; θ∗t , θ

∗
s |Dm

s , D
U,n
t , X ′t). (24)

The log-loss can be regarded as a special case with β = 1. One can refer to Lemma 1 (also
the proof) in Zhu (2020) for more details and comments, which we will not repeat in our
context. Likewise, if the loss function is bounded, we arrive at the following theorem.
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Theorem 7 (Excess Risk with Bounded Loss) Assume the loss function satisfies |`(b, y)−
`(b∗, y)| ≤M for any observation y and any two predictors b, b∗. Then the excess risk can
be bounded as

R(b) ≤M
√

2I(Y ′t ; θ∗t , θ
∗
s |Dm

s , D
U,n
t , X ′t). (25)

From the above theorems, we can see the analogy that the expected regrets induced by
the mixture strategy are both characterized by CMI evaluated at θ∗t and θ∗s . Note that
these results apply to both causal and anti-causal learning problems. Nevertheless, the
characterization of learning performance in its present form is less informative because it
does not show the effect of sample sizes and causal directions. To this end, we make some
regularity assumptions on the parametric conditions (Clarke and Barron, 1990; Merhav and
Feder, 1998; Zhu, 2020) and define the proper prior distribution to obtain an asymptotic
approximation.

Assumption 2 (Parametric Distribution Conditions) With the aforementioned pa-
rameterization, let θ∗ = (θ∗s , θ

∗
t ) denote the underlying parameters for labelled source and

unlabelled target data. We assume:

• Condition 1: The source and target distributions Pθs(Xs, Ys) and Pθt(Xt) is twice
continuously differentiable at θ∗s and θ∗t for almost every (Xs, Ys) and Xt.

• Condition 2: Define the Fisher information matrix

Is = −Eθ∗s [∇2 logP (Xs, Ys|θ∗s)],
It = −Eθ∗t [∇2 logP (Xt|θ∗t )],
I0 = −Eθ∗ [∇2 logP (Xt, Xs, Ys|θ∗)].

We assume Is and It are positive definite and it holds that I0 is also positive definite.

• Condition 3 (Clarke and Barron, 1990): Assume that the convergence of a sequence
of parameter values is equivalent to the weak convergence of the distributions they
index. Particularly:

θs → θ∗s ⇔ Pθs(X,Y )→ Pθ∗s (X,Y ),

θt → θ∗t ⇔ Pθt(X)→ Pθ∗t (X),

for source and target domains, respectively.

• Condition 4: Assume that for all θs in some neighbourhood of θ∗s and θt in some
neighbourhood of θ∗t , the normalized Rényi divergences of order 1 + λ, the following
holds

log

∫
Pθ∗s (x, y)1+λPθs(x, y)−λdxdy <∞, (26)

log

∫
Pθ∗t (x)1+λPθt(x)−λdx <∞ (27)

for sufficiently small λ > 0.
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• Condition 5: Assume that for all θs in some neighbourhood of θ∗s and θt in some
neighbourhood of θ∗t , the moment generating function is bounded as

Eθ∗s

[
e
λ ∂2

∂θj∂θk
log p(Xs,Ys|θs)

]
<∞, (28)

Eθ∗t

[
e
λ ∂2

∂θj∂θk
log p(Xt|θt)

]
<∞, (29)

for all j, k = 1, . . . , d with some small λ > 0, where d is determined based on the causal
settings and conditional shifting conditions.

• Condition 6: Let ls := [(∇ log p (X,Y | θ∗s)),0d′′ ]
T , lt := [0d′′ ,∇ log p (X | θ∗t )]T ,

where 0d′′ denotes the zero vector with length d′′, and d′′ denotes the number of
distribution parameters for both source and target domains. We also define l′s, l

′
t as

an independent copy of ls and lt, respectively. We assume the moment-generating
functions

E
[
eλl

T
s I0ls

]
,E
[
eλl

T
s I0l

′
s

]
,E
[
eλl

T
t I0lt

]
,

E
[
eλl

T
t I0l

′
t

]
,E
[
eλl

T
t I0ls

]
exist for some small enough λ > 0.

Assumption 3 (Proper Prior) We assume that the prior distribution ω(Θs,Θt) is con-
tinuous and positive over its whole support.

Remark 8 We impose the first three conditions on parametric distributions with the proper
prior distribution to ensure that the posterior distribution of Θt and Θs asymptotically
concentrates on neighbourhoods of θ∗t and θ∗s under both causal settings given sufficient source
and target data. In particular, the positive definite Fisher information matrix and parameter
uniqueness assumption imply that θ∗t and θ∗s are identifiable within Λ. We also impose some
technical conditions to ensure that the posterior of the parameters converges to their true
values at an appropriate rate. Additionally, for the anti-causal setting Y → X, we exclude
the case when outcome variable X has the same distribution for all yi with Condition 2,
that is, PθXyi

(X) is identical for all yi ∈ Y. Because in this case, X and Y are effectively

independent, and the fisher information It is no longer positive definite as the distribution
of X no longer depends on the parameter θ∗Y .

Remark 9 The last three technical conditions are adopted and modified from Zhu (2020) to
ensure that the posterior of the parameters converges to their true values at an appropriate
rate for both source and target domains. We will mainly use these conditions for asymptotic
estimation of KL divergence, e.g., see proof of Lemma 14.

Remark 10 Though asymptotically, the prior distribution does not affect the learning rate,
its choice is crucial in practice, particularly with limited data. Priors should be selected
based on parameter understanding, model complexity, and existing knowledge. For simple
parametric models such as generalized linear models, we can adopt conjugate priors (Diaconis
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and Ylvisaker, 1979; Chen and Ibrahim, 2003) for updating parameters easily. For more
complex models, we may require non-conjugate priors where the data are used to estimate
the parameters of the prior distribution (Efron, 2012; Carlin and Louis, 2008). This is
particularly useful when we have little prior knowledge about the distribution. In practice,
the sensitivity analysis could also be conducted to assess the robustness of the posterior
distribution to the choice of prior. This helps ensure that the posterior is not unduly
influenced by the choice of prior.

5.2 Excess Risk in Causal Learning

In this section, we will characterize the excess risk asymptotically under causal learning. We
first consider the learning scenario when PS(Y |X) = PT (Y |X), which corresponds to SSL if
PT (X) = PS(X) and covariate shift regime otherwise. The random vector Θs and Θt can
be explicitly written as

Θs = (Θs
X ,Θ

s
Yx1

, · · · ,Θs
Yxk

) = (Θs
X ,Θ

s
YX

), (30)

Θt = (Θt
X ,Θ

t
Yx1

, · · · ,Θt
Yxk

) = (Θt
X ,Θ

t
YX

), (31)

where ΘYX = (ΘYx1
, · · · ,ΘYxk

) for succinctness. We assume Θt
X and Θs

X are independent

of Θs
YX

and Θt
YX

, but we will keep Θs
YX

and Θt
YX

identical according to the assumption
PS(Y |X) = PT (Y |X), written as Θst

YX
. With the proper prior distribution, we simplify the

mixture distribution Q as follows by omitting the unlabelled target data as follows:

Q(Y ′t |D
U,n
t , Dm

s , X
′
t) =

∫
P (Y ′t |θstYX , X

′
t)P (θstYX |D

m
s )dθstYX ,

where the knowledge transfer depends on the conditional posterior P (θstYX |D
m
s ). Since

PS(Y |X) = PT (Y |X), without any labels from the target domain, we can only learn the
parameters of the random outcomes YX from the source data. On the other hand, if the
assumption PS(Y |X) = PT (Y |X) does not hold, namely, the concept drift if PS(X) = PT (X)
and general shift condition otherwise, the mixture strategy in (20) becomes

Q(Y ′t |D
U,n
t , Dm

s , X
′
t) =

∫
PθtY

X′t

(Y ′t )ω(θtYX′t
)dθtYX′t

due to the mutual independence properties of the distribution parameters. In this case,
neither the unlabelled target data nor the source data are useful for the estimation, the
prediction is only piloted by the prior distribution ω(θtYX ) as the initial estimate for θt∗YX . As
a result, the excess risk, in this case, does not go to zero even if we have enough source and
target data. To formally state the idea, we give the asymptotic estimation in the following
main theorem.

Theorem 11 (Excess Risk with Causal Learning) In addition to Assumption 1,2 and 3,
we also assume that X causes Y in both source and target domains. Let Θs and Θt be
parameterized in (30) and (31). As m→∞, the mixture strategy under log-loss yields:

• (General shift and Concept drift) For any Pθt∗X (X)� Pθs∗X (X), if PS(Y |X) 6= PT (Y |X):

R(b) = Eθt∗X [KL(Pθt∗Y
X′t

(Y ′t )‖Q(Y ′t |X ′t)], (32)
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where Q(Y ′t |X ′t) =
∫
PθtY

X′t

(Y ′t )ω(θtYX′t
)dθtYX′t

for a certain prior ω over Θt
YX′t

.

• (covariate shift and SSL) For any Pθt∗X (X)� Pθs∗X (X), if PS(Y |X) = PT (Y |X):

R(b) � k

m
. (33)

From the above theorem, it is clear that the target data are not useful without labels and
n does not occur in the rate. This is understandable because such data do not contain
information about P (Y |X) due to the independence assumptions between X and Yxi . If the
conditional distribution remains unchanged between source and target domains, the excess
risk converges with the rate of O( km).

5.3 Excess Risk in Anti-Causal Learning

We now turn to the opposite causal direction where Y → X. Similarly, we define the random
variable Θs and Θt with the same form as (30) and (31) by

Θs = (Θs
Y ,Θ

s
Xy1

, · · · ,Θs
Xyk′

) = (Θs
Y ,Θ

s
XY

), (34)

Θt = (Θt
Y ,Θ

t
Xy1

, · · · ,Θt
Xyk′

) = (Θt
Y ,Θ

t
XY

). (35)

At this stage, we do not particularize any conditions on the parameters. From the Bayes
rule, we rewrite the mixture distribution Q in terms of the above parameterization as

Q(Y ′t |D
U,n
t , Dm

s , X
′
t) =

∫
Pθt(D

U,n
t , X ′t, Y

′
t )Pθs(D

m
s )ω(θt, θs)dθtdθs∫

Pθt(X
′
t)Pθt(D

U,n
t )Pθs(D

m
s )ω(θt, θs)dθtdθs

=

∫
P (Y ′t |θt, X ′t)P (θt|DU,n

t , X ′t, θs)dθtP (θs|Dm
s )dθs∫

P (θt|DU,n
t , X ′t, θs)dθtP (θs|Dm

s )dθs

=

∫
P (Y ′t |θt, X ′t)P (θt|DU,n

t , X ′t, θs)dθtP (θs|Dm
s )dθs.

To interpret, the mixture strategy first provides an estimate of θs from the source data, then
knowledge is transferred from θs to θt with the prior distribution ω(θt|θs), which induces the
posterior P (θt|X ′t, D

U,n
t , θs) along with the features X ′t, D

U,n
t in the target domain, since the

unlabelled data may contain all the information of θ∗t under the anti-causal parameterization.
Eventually, the prediction of Y ′t will be based on the estimated θt and X ′t.

With condition 3 under Assumption 2, we require that the true parameters θ∗t are
identifiable given sufficient unlabelled target data, where its distribution is a mixture distri-
bution, i.e.,

∑
y∈Y PθY (y)PθXy (X). In general, this is a strong condition where the mixture

distributions, such as the Bernoulli mixture, do not satisfy the assumption (Gyllenberg et al.,
1994) and the parameters within their support are not identifiable. But for certain types of
families, the parameters are identifiable up to label swapping, such as Gaussian (Teicher,
1963), exponential families (Barndorff-Nielsen, 1965), and many other finite continuous
mixture distributions (McLachlan et al., 2019). Under label swapping, the posterior of the
parameters approaches one of all permutations (Marin et al., 2005) and our result holds only
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up to the permutation where we simply set θ∗ to be the parameters for that permutation.
To solve the label swapping problem, the methods proposed include the specification of
parameterization constraints (Marin et al., 2005; McLachlan et al., 2019), a relabelling
algorithm (Stephens, 2000), and constraint clustering (Grün and Leisch, 2009). Once the
label swapping is addressed, the mixed distributions are identifiable (Titterington et al.,
1985; McLachlan et al., 2019) and our results hold for estimating the corresponding θ∗

as well. For illustration, we give a simple example of a categorical mixture distribution
identifiable by adding structural constraints to the parameterization in Section 6. We will
now consider different distribution shift scenarios under anti-causal learning and derive the
corresponding asymptotic estimation for the excess risk.

Theorem 12 (Excess Risk with Anti-causal Learning) In addition to Assumptions 1, 2
and 3, we also assume Y → X in both source and target domains. Let Θs and Θt be parame-
terized in (34) and (35). As m � np for some p > 0 and n→∞, the mixture strategy under
log-loss yields:

• (General shift) If PS(Y ) 6= PT (Y ), PS(X|Y ) 6= PT (X|Y ),

R(b) � 1 + k′

n
. (36)

• (Conditional shift) If PS(Y ) = PT (Y ), PS(X|Y ) 6= PT (X|Y ),

R(b) � k′

n
+

1

n ∨ np
. (37)

• (Target shift) If PS(Y ) 6= PT (Y ), PS(X|Y ) = PT (X|Y ),

R(b) � 1

n
+

k′

n ∨ np
. (38)

• (SSL) If PS(Y ) = PT (Y ), PS(X|Y ) = PT (X|Y ),

R(b) � k′ + 1

n ∨ np
. (39)

In contrast to causal learning, in the general shift case, we can achieve good generalization
ability only with the unlabelled target data, while the source data do not help at all. This
result confirms the value of unlabelled data, which is consistent with the intuition from
Figure 1. In the conditional shift and target shift cases, we can further show that the source
data can only help improve the excess risk from O(k

′+1
n ) to O(k

′+1−j
n + j

n∨np ) depending

on how many j common parameters θ∗s and θ∗t share. Intuitively, O(k
′+1−j
n ) can be viewed

as the learning cost for k′ + 1− j domain-specific parameters and O( j
n∨np ) as the learning

cost for domain-sharing parameters. Therefore, the source data are incapable of changing
the overall rate since the unlabelled target data always dominates the rate. In SSL, the
rate O( k

′+1
n∨np ) indicates that unlabelled target data are as useful as the labelled source data

and that sufficient source data (e.g., p > 1) can indeed change the convergence rate. The
results show that the learning complexity under different causal directions will vary. This
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crucial distinction discloses how the causal relationships affect the model complexity and its
generalization ability.

Our results in Theorem 5, 11, 12 establish the convergence rate for the mixture strategy.
Here we show that this strategy is in fact optimal for log-loss.

Lemma 13 (Worst-Case Excess Risk) For log-loss,

min
b

max
θ∗s ,θ

∗
t

R(b) = max
ω(θs,θt)

I(Y ′t ; Θt,Θs|Dm
s , D

U,n
t , X ′t),

where (Θt,Θs) is endowed with some prior distribution ω.

This lemma exactly characterizes the excess risk for log-loss in the worst case. It shows
that the worst-case regret is captured by the same CMI term as in Theorem 5, although
maximized w.r.t. the prior distribution over the source and target parameters. However, it
can be shown that the maximization does not change the convergence rate of the mutual
information term (Clarke and Barron, 1994; Merhav and Feder, 1998). In other words,
the convergence rate in Theorem 11, 12 is indeed optimal and cannot be improved using
a different learning algorithm. Even though we only consider the log-loss in the previous
analysis, the results can be extended straightforwardly in the case of other general loss
functions, such as exponentially concave or bounded losses, where the excess risk is captured
by the same CMI term in Theorem 5 (see Theorem 7 for bounded losses as an example).

6. Experiments

In this section, we begin by confirming our main results with a toy example, for which
we elaborate on the case when the data can be modeled both as causal learning and anti-
causal learning. Subsequently, we extend the idea to tackle real-world challenges like the
classification of handwritten digits. For these scenarios, we parametrize the data distribution
using the Gaussian mixture model as an approximation, and the insights drawn from our
experimental results reflect a similarity to those deduced from our theoretical analysis,
confirming the effectiveness of the source and target data in more complicated learning
problems.

6.1 A toy example

We will numerically confirm our main results using a toy example. We consider a simple
example where Y = {0, 1} and X = {1, 2, 3, 4}. In causal learning, we model the data
distributions as

X ∼ Cat(θx1 , θx2 , θx3 , θx4)

Yxi ∼ Ber(θYxi ) for i = 1, 2, 3, 4.

We set θt∗X = (0.25, 0.25, 0.25, 0.25) and θt∗YX = (0.3, 0.4, 0.5, 0.6) for synthetic experiments,
and we will vary θs∗X = (0.6, 0.1, 0.1, 0.2) and θs∗YX = (0.5, 0.5, 0.3, 0.5) for the covariate shift
and concept drift conditions, respectively. The parameters are estimated using the maximum
likelihood algorithm and used in the prediction. We run experiments 3000 repeatedly and
the results are shown in Figure 2. For the general shift case in (a), we fix m = 2000 and vary
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n from 500 to 16000 and it can be seen that with the unlabelled target sample increasing,
the risk will remain around 0.34 and hence does not converge in this case. We sketch the
regret for covariate shift and semi-supervised learning in figures (b) and (d), here we fix
n = 2000 and vary m from 500 to 16000. It can be seen in that R(b) in blue converges to
zero with m increasing in these two cases, then we also plot the R(b)−1 in red to show the
rate. The reciprocal of the excess risk is linear in the source sample size, which coincides
with our theoretical analysis. It is worth pointing out that the slopes are different in these
two cases because the quantity will depend on the Fisher information matrix of Pθs∗YX

(Y )

and the distribution of the covariate X varies across two domains. For concept drift learning
in (c), we fix n = 2000 and vary m from 500 to 16000. Similar to the general shift case, the
excess risk is maintained around 0.34 as well, which is independent of the source sample size
m.
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Figure 2: Excess risk comparisons under causal learning. (a) and (c) represents the results
of R(b) for general shift case and concept drift learning, where we vary n from
500 to 16000 in (a), and fix n = 2000 but vary m from 500 to 16000 in (c). We
sketch the results R(b) for covariate shift and semi-supervised learning in (b) and
(d), here we fix n = 2000 and vary m from 500 to 16000. We also plot R(b)−1 to
show the rate w.r.t. m. We plot all excess risks in blue and their reciprocals in
red. All results are derived by 3000 experimental repeats.
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In anti-causal learning, we will model the distributions of the outcome random variables
as

Y ∼ Ber(θY ),

X0 ∼ Cat(θ0, θ0 + 0.55, θ0 + 0.2, 0.25− 3θ0),

X1 ∼ Cat(θ1, θ1 + 0.25, 0.4− 3θ1, θ1 + 0.35).

For experiments, we set θt∗Y = 0.5 and θt∗X0
= θt∗X1

= 0.05 as an example, and we will
vary θs∗Y = 0.7 and θs∗X0

= θt∗X1
= 0.01 for the target shift and conditional shift conditions,

respectively. Using the maximum likelihood algorithm, we sketch the results in Figure 3.
For the general shift case in (a), the excess risk converges as n becomes larger, and more
explicitly R(b)−1 is linear in n, which confirms our theoretical result. For target shift and
conditional shift in (b) and (c), it can be seen that R(b) converges to a non-zero value λ
with m increasing in these two cases, then we also plot the (R(b)− λ)−1 to show the rate
w.r.t. the sample size m+ n. These two curves indicate that the source data can only help
reduce the excess risk up to a constant. For semi-supervised learning in (d), as expected,
the excess risk will converge to zero as m increases. It is also observed that the slope of
the reciprocal is higher compared to the general shift condition, implying the source data
contain more information than the unlabelled target data and lead to higher scaling factor
c (e.g., O( cm)) in the rate. We empirically depict the rate of learning performance under
different causal mechanisms and domain shift conditions, from which the usefulness of the
source and target data is manifested.

6.2 Experiments with Real Datasets

In this section, we shift our focus to real-world datasets (e.g., the MNIST dataset) for
anti-causal learning to further reinforce our idea in practical scenarios. Although the core of
our analysis lies in the assumption that the data distribution is parametric, this is often not
the case when dealing with real-world data. As such, we need to find a parametric model
to approximate the true underlying distribution with finite samples. In the following, we
use Gaussian mixture models (GMM) to approximate the data, where we assume each class
label yi corresponds to a specific cluster of features and these features are modeled by a
Gaussian distribution denoted as PXyi (x), with parameters including a mean vector µi and
a covariance matrix Σi. Our implementation of this model is based on the expectation-
maximization (EM) algorithm (Dempster et al., 1977) by efficiently estimating the initial
GMM parameters from the labelled data, and the parameters will be updated with the
additional unlabelled data or data with a distributional shift. This framework has been
applied to semi-supervised learning and unlabelled domain adaptation problems where the
details are outlined in Algorithm 1. While there would exist a potential mismatch between
the parametric model and the true underlying distribution and some estimation errors, the
empirical results nevertheless demonstrate that anti-causal learning can enhance prediction
performance when we efficiently use unlabelled target data and source data.
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Figure 3: Excess risk comparisons under anti-causal learning. (a) represents the results of
R(b) and R(b)−1 for general shift case, and we vary n from 500 to 16000. We
sketch the results R(b) for label shift, label concept drift and semi-supervised
learning in (b), (c) and (d). Here we fix n = 2000 and vary m from 500 to 16000.
It can be seen in that R(b) converges to a non-zero value λ with m increasing in
(b) and (c), then we also plot (R(b)−λ)−1 to show the rate w.r.t. m+n. We plot
all the excess risks in blue and their reciprocals in red. All results are derived by
3000 experimental repeats.

Semi-supervised Learning

The MNIST dataset2 (LeCun et al. (1998)) serves as a well-recognized standard for bench-
marking, comprising 70,000 grayscale, handwritten digit images (ranging from 0 to 9), each
of pixel size 28× 28. It is a frequent choice for testing various machine learning algorithms,
particularly in image classification scenarios. Our analysis will primarily focus on exploring
the usefulness of unlabelled data under the anti-causal learning setting using the Gaussian
mixture model, specifically with the MNIST dataset. To achieve this, we select two digits at
random (for instance, 2 and 5) and construct a dataset comprising 100 labelled samples,
while varying the unlabelled sample size from 0 to 1,000. By introducing a small set of
labelled target data, we can accurately determine the correct labels, addressing the potential
label-swapping issue that may arise with the unlabelled data only. Our goal is to demon-

2. http://yann.lecun.com/exdb/mnist/
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Algorithm 1: Anti-Causal Learning with GMMs

Data: A small set of labelled target training dataset D = {(xi, yi)}Ni=1 with N
samples, where xi are features and yi are labels, unlabelled target training
dataset DU = {xi}Mi=1 with M samples, labelled source training dataset
D′ = {(xi, yi)}Li=1 with L samples and test dataset DT = {(xi, yi)}Ti=1 with T
samples

Result: Improved prediction performance using GMM on DT .
1 Initialize K, the number of Gaussian components, corresponding to the number of

class labels.
2 Initialize parameters Θ = {µk,Σk}Kk=1 for each Gaussian component.
3 Step 1: Feature Engineering
4 Conduct feature engineering using methods such as PCA or other feature selection

with D, and DU or D′ depending on the SSL/UDA tasks
5 Step 2: Parameter Estimation
6 for each class label k = 1 to K do
7 Estimate µk and Σk using EM algorithm on D with corresponding instances with

label k.

8 Step 3: SSL/UDA with GMM
9 while not converged do

10 For SSL: Use unlabelled data DU to update Θ by the EM algorithm
11 For DA: Use labelled source data D′ to update Θ by the EM algorithm

12 Step 4: Prediction
13 for each new instance x in DT do
14 Predict label y by selecting the Gaussian component k that maximizes PXk(x)

with parameters (µk,Σk).

strate that incorporating unlabelled data can still improve the performance of the model
effectively. The initial step in our approach involves data preprocessing, which includes
applying principal component analysis (PCA) to both the labelled and unlabelled datasets
to reduce the input feature dimensionality from 784 down to a manageable number - 20 in
our experiment. This reduction aids in addressing the curse of dimensionality, enhancing the
computational speed and potentially boosting the Gaussian mixture model’s performance.
Following this, we establish an initial Gaussian mixture model using the labelled data only.
Then we follow the procedures in Algorithm 1 to update the parameters of the initial GMM.
We will finally compare the performance of the updated GMM with its initial model using a
test set from the same digit pair with the size of 3,000.

Figure 4 illustrates the test set accuracy for different sizes of unlabelled data for the digit
pair (2, 5). Our observations indicate that integrating unlabelled data significantly improves
the model performance. Correspondingly, as the size of unlabelled data increases, the model
accuracy also sees an increase, achieving approximately 99% accuracy when the data size
exceeds 500. This improvement indicates that unlabelled data indeed helps estimate the
distribution parameters in the context of anti-causal learning, and this also empirically
validates the results we presented in Table 1. To visualize the model performance on these
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Figure 4: Accuracy v.s. unlabelled sample size for digit pair (2, 5)
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Figure 5: Visualization of clusters for various source and target combinations for digit pair
(2, 5) for initial and updated GMM with 100 labelled data and 500 unlabelled
data

two clusters, we further illustrate the clusters by plotting the two most significant principle
components in Figure 5. It demonstrates that updated GMM learning can indeed make two
clusters more distinct and separable than the initial GMM, which leads to higher accuracy.
To provide a more comprehensive demonstration of the usefulness of unlabelled data, we have
randomly selected several additional digit pairs and conducted experiments with varying
amounts of unlabelled data. We summarize the result in Table 2. From the table, we can
see that, in all cases, the unlabelled data help improve the accuracy in predictions, and as
the sample size of unlabelled data increases, the accuracy also improves correspondingly.
However, due to the variability between different digit pairs, and randomness from train and
test sampling and estimation errors, the extent to which unlabelled data improves accuracy
varies across different experiments. Through the experimental validation conducted on the
MNIST dataset, our results confirm the substantial impact of unlabelled data on enhancing
the performance of the anti-causal learning setting, particularly under conditions where
labelled samples are limited. This establishes the crucial role of anti-causal learning settings
in practical applications when it comes to semi-supervised learning problems.
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Unlabelled Size (2,5) (5, 9) (3, 8) (4, 7) (0, 6) (2, 3)

0 0.896 0.531 0.575 0.854 0.893 0.855
50 0.941 0.623 0.817 0.858 0.942 0.865
200 0.990 0.636 0.852 0.905 0.983 0.884
500 0.991 0.774 0.891 0.917 0.985 0.937

Table 2: Performance comparison of different sizes of datasets on various digit pairs

Unlabelled Domain adaptation

We further assess the effectiveness of anti-causal learning in the realm of unlabelled domain
adaptation. Here, we include three different source data domains for comparisons: the
United States Postal Service (USPS) dataset (Hull, 1994), an adapted MNIST dataset
with added Gaussian noise, and a colour-infused MNIST dataset with colored backgrounds
added to the digits. The USPS dataset, frequently used for digit recognition and domain
adaptation tasks, consists of 9,298 grayscale images of handwritten digits (0-9) with a pixel
resolution of 16× 16. For the target domain, we randomly select two digits from the MNIST
dataset to create a dataset containing 100 labelled samples. Subsequently, we will introduce
the aforementioned three source data, each with 500 labelled samples, to help update
the distribution parameters learned from the initial GMM. We aim to examine whether
introducing an additional labelled dataset can significantly improve model performance,
particularly when the causal mechanisms and generating distributions are closely similar.
We apply a similar algorithm used in semi-supervised learning where we first apply PCA to
both source and target data, and then we construct an initial GMM with the target data
and then update the GMM using the EM algorithm on the source data. Here we pick various
digit pairs to evaluate the effectiveness of the source data, and the results are summarized
in Table 3.

Source (2,5) (5,9) (3, 8) (4,7) (0,6) (2,3)

- 0.896 0.531 0.575 0.854 0.900 0.850
Colored MNIST 0.989 0.636 0.860 0.857 0.985 0.933
Noisy MNIST 0.993 0.926 0.882 0.889 0.979 0.946

USPS 0.971 0.835 0.840 0.525 0.550 0.510

Table 3: Performance comparison of different source datasets on various digit pairs. Here
the sign ‘-’ represents the accuracy with only 100 labelled MNIST data without
any source data, while the remaining three rows are the performance with 500
additional colored MNIST, noisy MNIST and USPS data, respectively.

As can be observed from the above table, we compared the model performance by
accuracy between not using source data and using three different types of source data. In
most cases, the introduction of source data showed an improvement over not using source
data, validating the beneficial impact of source data on target performance enhancement.
Moreover, when comparing different source data, the colored MNIST and noisy MNIST are
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closer to the original MNIST in terms of the conditional generating distribution P (X|Y ),
and they do perform better than the USPS in almost all cases.

We also plot the two main components for clusters 3 and 8 in Figure 6 to visualize the
constructed GMM model. We can infer from the figure that the GMM model trained without
using source data yields the poorest performance, as it fails to distinguish between digits 3
and 8 accurately, and moreover, the prediction of digit 8 is noticeably biased, contradicting
the testing label distributions. Upon the introduction of source data, the GMM model
trained with the additional USPS dataset still exhibits a substantial overlap between 3
and 8 in the test set, implying a less optimal performance. On the other hand, with the
colored MNIST dataset, the two clusters are more separated, representing the best prediction
performance.
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Figure 6: Visualization of clusters for various source and target combinations for digit pair
(3,8)

Referring to the table, we also noticed some cases where the use of USPS actually
undermined the model accuracy for the digit pair (4, 7), (0, 6) and (2, 3). We point out that
this does not contradict our earlier analytical results (source data should never degrade the
performance). The reason is that the GMM models used to train the classifier are only
approximations of the “true” model, and importantly, the testing data is not from these
approximating parametric models but from the real dataset, whereas our analytical results
hold under the assumption that both training and testing data are from parametric models.
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Nevertheless, we see that satisfactory results can still be achieved in many scenarios with
this empirical setup, even when approximations are used, showing effective guidance of our
theoretical results.

Multi-classification with SSL and UDA

In the previous section, we provided a simplified comparison of SSL and UDA by focusing on
results involving just two numerical categories. These experiments helped clearly demonstrate
the data’s practical value through 2D visual representations. In this section, we aim to
assess the comprehensive performance across the dataset by applying our algorithm to data
that includes all labels, e.g., the multi-classification of handwritten digits ranging from 0 to
9. For experiments, we randomly select 200 samples from the MNIST dataset for our initial
labelled target dataset. Then, to explore the impact of additional training data, we gradually
increase the number of these extra training samples from 400 to 5000. These additional
samples are sourced from various datasets, including unlabelled MNIST samples or labelled
samples from variants of the MNIST dataset (such as coloured MNIST and noisy MNIST)
and the USPS dataset. Furthermore, we investigate how the number of PCA dimensions
and the number of clusters in our model affect its performance. The results are organized
across three tables. Table 4 details how varying the size of additional data samples impacts
the model performance. Table 5 explores the influence of changing the dimensions within
PCA. Lastly, Table 6 examines the effects of altering the number of clusters in GMM. From
the results, we identify some key insights as follows.

Sample sizes 400 800 1600 3200 5000

- 0.397

Unlabelled MNIST 0.364 0.545 0.606 0.623 0.636
Colored MNIST 0.399 0.400 0.481 0.455 0.531
Noisy MNIST 0.483 0.420 0.567 0.468 0.562

USPS 0.354 0.367 0.271 0.259 0.335

Table 4: Effect of the sample size for additional training instances, where we set N = 200,
K = 10 and PCA dimension to be 15. Here the sign ‘-’ represents the accuracy
with only 200 labelled MNIST data without any source data, while the rest four
rows are the results with additional unlabelled MNIST, colored MNIST, noisy
MNIST and USPS data, respectively (the same applies to tables below).

• Additional Training Samples: Including extra unlabelled MNIST samples steadily
improves the model’s performance, showing the value of unlabelled data in SSL.
Nonetheless, the effect of augmenting the dataset with colored or noisy MNIST samples
varies, indicating that while adding more training data from similar distributions can
be advantageous, the presence of distribution shifts or noise might occasionally degrade
the performance. The decrease in performance with USPS samples highlights the
difficulty in adapting the model to different data distributions, also previously observed
in Table 3 where the testing data distribution deviates from these approximating
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PCA dimension 5 15 25 35 45

- 0.470 0.397 0.195 0.485 0.372
Unlabelled MNIST 0.531 0.606 0.287 0.506 0.445

Colored MNIST 0.512 0.481 0.113 0.456 0.353
Noisy MNIST 0.538 0.567 0.137 0.441 0.461

USPS 0.264 0.271 0.139 0.132 0.094

Table 5: Effect of the cluster number where we set N = 200, M = L = 1600 and the cluster
number to be 10

Cluster number 10 15 20 25 30

- 0.590 0.616 0.609 0.563 0.491
Unlabelled MNIST 0.680 0.669 0.696 0.614 0.468

Colored MNIST 0.570 0.578 0.458 0.423 0.335
Noisy MNIST 0.693 0.695 0.727 0.649 0.592

USPS 0.458 0.487 0.479 0.338 0.223

Table 6: Effect of the cluster number where we set N = 400, M = L = 1600 and PCA
dimension to be 15

parametric models, emphasizing that in practice, the data might be instead useless if
the generating distribution varies too much in the anti-causal direction.

• PCA Dimensions: The link between the number of dimensions in PCA and how
well a model performs is complex, showing that there is not a clear connection between
adding more dimensions and achieving better performance. The best number of
PCA dimensions changes depending on the dataset, suggesting the importance of a
customized strategy for reducing dimensions that focuses on preserving key features
while eliminating the effect of other factors, such as noise. This concept is especially
clear when looking at the decline in performance across all dimension levels with USPS
data, demonstrating the difficulties in applying a one-size-fits-all approach to different
datasets.

• Cluster Number: The effectiveness of the model changes as the number of clusters
changes. There is performance improvement up to a certain cluster number for
particular datasets, and then it starts to decrease as the cluster increases. This
indicates that there is an ideal number of clusters that can enhance the model’s
performance, a trend that is particularly noticeable with unlabelled and noisy MNIST
datasets. On the other hand, for colored MNIST and USPS datasets, the performance
tends to worsen as the number of clusters increases. This could be caused by over-
segmentation or the loss of important features due to too many clusters.

These experiments examine the impact of different factors, such as additional data sample
size, the number of PCA dimensions, and the number of clusters on the performance of
models across various datasets for anti-causal learning. In the anti-causal learning setup,
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more unlabelled data without the distribution shift generally boosts the model performance,
but adding labelled source data (such as the refactored MNIST datasets and USPS in our
example) does not always lead to better results, pointing to the importance of causal direction
and data generating mechanisms. The optimal number of PCA dimensions and clusters
is not one-size-fits-all but needs customization for each dataset to ensure key parameters
are retained while minimizing noises from the redundant features. For some datasets like
unlabelled and noisy MNIST, a specific cluster number can improve performance, whereas for
others, like colored MNIST and USPS, it may cause problems due that the testing data may
not be drawn from these approximating GMM distributions and possibly over-segmentation
with large cluster numbers or the loss of important features with small PCA dimensions.

7. Extensions to Unknown Causal Settings

Even though in this work we primarily focus on the setup where the setting is known to be
either causal learning or anti-causal learning, it is also interesting to consider the scenario
where the underlying relationship between X and Y is acyclic but unknown. We ask the
question, which causal direction should we use for prediction? Our strategy is that given the
statistics from the observed data (X,Y ), we try to fit the data with both causal-learning
and anti-causal learning settings and decide which setting will enable us to make predictions
more efficiently. Notice that it could be the case that the chosen setting is not the true
underlying mechanism (and perhaps not physically possible). However, this is irrelevant as
far as the prediction is concerned, as we only work with observed data and will not intervene
in the system. By the same argument, we could choose either setting for the prediction even
if the true causal setting is known. So it is tempting to carry out this comparison even if
we know the true direction. However, it does not seem to be fruitful in general. Indeed,
as pointed out by Kocaoglu et al. (2017) and Compton et al. (2020), if we want to use an
anti-causal learning setting to fit the data generated from a causal learning setting (or vice
versa), this “artificial” fitting is in general much more complicated than fitting from the true
underlying setting, which would make the prediction more difficult.

If the causal relationship between X and Y for a certain learning problem is unknown
and we can model the data from both directions, our results imply that we should use
whichever model achieves a better learning performance. This can be viewed as a causal
model selection problem. Referring to Table 1, for semi-supervised learning, the rate from
the causal direction will be O( km) while O( k

′+1
m+n) for anti-causal learning if we have abundant

source data (n � m) and k < k′ + 1, fitting from the causal direction will be easier. In
contrast, if we have abundant target data (m� n), then fitting from the anti-causal direction
will be more favourable. Using similar arguments in the domain adaptation scenarios, if the
covariate shift assumption does not hold, the source data will be unhelpful from the causal
direction, and we should always fit from the anti-causal direction. Otherwise, the model
selection is, again, determined by the sample sizes m and n.

In an attempt to investigate the model selection issue, we examine the excess risk from
numerical analysis for the aforementioned parametric models under the semi-supervised
learning condition for the sake of simplicity. We will consider the distribution PS(X,Y ) =
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PT (X,Y ) from the anti-causal direction as:

Y ∼ Ber(0.5),

X0 ∼ Cat(0.05, 0.6, 0.25, 0.1),

X1 ∼ Cat(0.05, 0.3, 0.25, 0.4).

by setting θY = 0.5, θ0 = 0.05 and θ1 = 0.05. We can also model the same joint distribution
from the causal directions by choosing the parameters as follows:

X ∼ Cat(0.05, 0.45, 0.25, 0.25),

Yx1 ∼ Ber(0.5), Yx2 ∼ Ber(
1

3
),

Yx3 ∼ Ber(0.5), Yx3 ∼ Ber(0.8).

0 3000 6000 9000 12000 15000
Sample Size m

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Ex
ce

ss
 R

isk

Semi-supervised Learning with n = 0

0

2000

4000

6000

8000

10000

12000

(E
xc

es
s R

isk
)

1

Anti-causal excess risk
Causal excess risk
(Anti-causal excess risk) 1

(Causal excess risk) 1

(a) k = 4, k′ = 2

0 5000 10000 15000
Sample Size m + n

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Ex
ce

ss
 R

isk

Semisupervised Learning with n = 0

0

5000

10000

15000

20000

25000

30000

(E
xc

es
s R

isk
)

1

Anti-causal excess risk
Causal excess risk
(Anti-causal excess risk) 1

(Causal excess risk) 1

(b) k = 1, k′ = 2

Figure 7: Excess risk comparisons fitting from causal (red) and anti-causal (blue) under
semi-supervised learning with labelled data only. Results are derived by the same
parameterization from anti-causal learning with k′ = 2 but different parameteriza-
tion from causal learning with k = 4 in (a) and k = 1 in (b).

By varying the sample size m from 500 to 16000, we plot the excess risk R(b) under
causal and anti-causal learning settings in Figure 7(a). It is observed that both directions
produce the same rate of O( 1

m). Compared to the causal case, fitting from the anti-causal
direction enjoys a lower regret, and the slope of its reciprocal is higher, which implies that
it is “easier” to learn the distribution P (Y |X) from the anti-causal direction. Roughly
speaking, the reason is that learning θ∗YX requires k = 4 parameters, but the inference from
the anti-causal direction only requires k′ + 1 = 3 parameters, which decreases the model
uncertainty and hence the better performance. Rigorously speaking, the slope (or scaling
factor in the rate) depends on the information dimension (see Haussler and Opper (1995)
for reference). For example, under causal learning, the convergence rate is proved to be k

2m
and the slope will be 2

k where k = 4 is the number of parameters for θ∗YX in this case. It

is also confirmed from the figure that the slope is roughly 1
2 . The same argument applies
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in the anti-causal learning, and the convergence rate is k′+1
2m when m is sufficiently large,

leading to a lower regret since k > k′ + 1. With such parameterization, it is always better to
fit from the anti-causal direction.

However, if we model the distribution from the causal directions by setting θY = 0.5 in
the following way:

X ∼ Cat(0.05, 0.45, 0.25, 0.25),

Yx1 ∼ Ber(θY ), Yx2 ∼ Ber(θY −
1

6
), (40)

Yx3 ∼ Ber(θY ), Yx4 ∼ Ber(θY + 0.3),

With such a restriction, the number of parameters k is reduced to 1. We successively repeat
the experiment and plot the result in Figure 7(b). The excess risk, in this case, becomes
lower than fitting from the anti-causal direction and the rate is improved to approximately

1
2m . The results indicate that the model selection depends on how we parameterize the data
distributions, particularly the number of parameters from each causal direction.

In the above example, we only consider the labelled data. The unlabelled samples,
however, are not useful for the causal direction but will take effect from the anti-causal
direction from Figure 2(a) and 3(a). Both causal learning and anti-causal learning can be
more favorable than the other option, depending on the sample sizes. For instance, if we
have abundant unlabelled data and limited labelled data, referring to Table 1, fitting from
anti-causal direction yields the rate O( k

′+1
m+n), which is better than the rate O( km) under

causal direction if n� m.
To numerically illustrate, we conduct the experiments with the parameterization in (34)

from anti-causal direction and (40) from causal direction under semi-supervised learning
with both labelled and unlabelled data. We then plot the results in Figure 8.

We firstly vary m from 500 to 16000 by fixing n = 2000, 10000 and 30000 to show the
effectiveness of labelled data. We plot the corresponding results of R(b) in subfigure 8(a)
and R(b)−1 in 8(b). In 8(a), we only plot one curve in blue since n does not affect the excess
risk from the causal direction. The remaining three red curves are derived by fitting from
the anti-causal direction with an increasing n, from top to bottom. One can observe that a
larger n will incur a smaller initial excess risk when m = 500. However, the convergence
rates are identical for all three cases. Since the slope of R(b)−1 is higher from the causal
direction, when m is large enough (m > 2000), even with large unlabelled data (n = 30000),
the excess risk is still higher fitting from the anti-causal direction.

The subfigure 8(c) shows the results of R(b) and 8(d) of R(b)−1 by varying n from 500
to 16000 and fixing m = 500, 1000 and 2000. In 8(c), from top to bottom, three blue curves
correspond to m = 500, 1000 and 2000 by the causal direction and the three red curves by
the anti-causal direction. In this case, the excess risk from the causal direction is almost a
constant depending on m, regardless of the unlabelled sample size n. Furthermore, a higher
m incurs a lower regret. On the contrary, from the anti-causal learning direction, the excess
risk will converge as n goes sufficiently large. Selecting an appropriate model strongly hinges
on the unlabelled target sample size n. For example, in our formulation, when m = 500,
we may need more than 6500 extra unlabelled samples to achieve a lower regret, and if m
doubles, we will need to double the required unlabelled samples to achieve a comparable
expected risk.
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Figure 8: The figure shows the excess risk comparisons by varying m and n under causal
and anti-causal learning for semi-supervised learning. The subfigure 8(a) shows
the results of R(b) and 8(b) of R(b)−1 (sharing the same legend) by varying m
from 500 to 16000 and fixing n = 2000, 10000 and 30000, respectively. In 8(a),
the blue curve shows the result by fitting from the causal direction and from top
to bottom, the other three red curves are derived by fitting from the anti-causal
direction with n = 500, 1000 and 2000. The subfigure 8(c) shows the results of
R(b) and 8(d) of R(b)−1 (sharing the same legend) by varying n from 500 to 16000
and fixing m = 1000, 2000 and 3000, respectively. In 8(c), from top to bottom,
three blue curves correspond to m = 500, 1000 and 2000 by the causal direction
and the three red curves by the anti-causal direction. All results are derived by
3000 experimental repeats.

Overall, for a general domain adaptation task without knowing the underlying causal
mechanism, if we can model the data with parameterised distributions for both causal
and anti-causal directions without some physical constraints, both models can be more
favourable than the other option depending on how we do the parameterization, how many
data samples we have and how different the source and target domains are.
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8. Conclusions

This paper proposes a probabilistic framework articulating the connection between SSL/UDA
and causal mechanisms. We explicitly characterize the rate of learning performance under
different causal mechanisms and domain shift conditions, from which the usefulness of the
source and target data is manifested. However, in our analysis, the parametric characteriza-
tion of both source and target data is crucial. A possible future direction is to relax the
assumptions on parametric conditions to general probability distributions and find the excess
risk in terms of the sample sizes. Our analysis also heavily relies on the generating processes
we skectch in Figure 1 (e.g., X and Y are unconfounded), and the possible future work
could be performing a similar analysis for the case with more than two variables (e.g., causal
setting with con-founders), which improves the generality and applicability in real-world
problems. We have also observed that incorporating unlabelled data and labelled source data
could significantly enhance the model performance for the target domain on both synthetic
data and real benchmarks. Due to the discrepancy between the approximated parametric
distribution and the underlying data distribution for real-world scenarios, our theoretical
analysis cannot directly carry over. In addition, developing a method that can effectively
handle non-parametric distributions is also a potential direction worth exploring.
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Appendix A. Appendix: Proofs

A.1 Mixture Asymptotics Lemma

Lemma 14 (Mixture Asymptotics) Under Assumption 1,2,3 and assume m � np for
some p > 0 and let n→∞, then the mixture strategy yields

D(Pθ∗(D
m
s , D

U,n
t )‖Q(Dm

s , D
U,n
t )) =

d

2
log

1

2πe
+ log

1

ω(θ∗)
+

1

2
log det(Ist) + o(

1

n ∨m
),

(41)

where θ∗ ∈ Rd denotes the total parameters that characterize the source and target distribu-
tions and d denotes the total dimension, depending on the causal directions and distribution
shifting conditions. The Fisher information matrix associated with Dm

s and DU,n
t is defined

as Ist = −Eθ∗ [∇2 logP (Dm
s , D

U,n
t |θ∗)].

Proof The proof and result is a generalization of Clarke and Barron (1990); Zhu (2020) with
some modifications to fit our purpose. Without the loss of generality, we first assume that
the source parameter and target parameter will have k̃ + 1− c domain-specific parameters
and c domain-sharing parameters, where k̃ = k for causal learning and k̃ = k′ for anti-causal
learning. c will vary under different shift conditions. For example, under the target shift
condition in anti-causal learning, c will be k′ for identical parameters θXyi in both domains;
In conditional shift condition, c = 1 since θs∗Y = θt∗Y . With a little abuse of notation in this

section, we denote the true source-specific parameters by θ∗s ∈ Rk̃+1−c, the target-specific

parameters by θ∗t ∈ Rk̃+1−c and the domain-sharing parameters as θ∗c ∈ Rc. Then the source
data (X,Y ) is drawn from the distribution Pθ∗c ,θ∗s and the target data X is drawn from
the distribution Pθ∗c ,θ∗t under such parameterization. For simplicity, we can write the joint
domain parameters θ∗ = (θ∗c , θ

∗
s , θ
∗
t ) and the joint distribution for the source domain data

and target domain data is expressed by

Pθ∗(D
m
s , D

U,n
t ) = Pθ∗c ,θ∗s (Dm

s )Pθ∗c ,θ∗t (DU,n
t ) =

m∏
i=1

Pθ∗c ,θ∗s (Dm
s )

n∏
j=1

Pθ∗c ,θ∗t (DU,n
t ). (42)

Based on the notations above, we define the score functions by

ls(θs, θc) = ∇ logP (Dm
s |θs, θc), (43)

lt(θt, θc) = ∇ logP (DU,n
t |θt, θc), (44)

lst(θ) = ∇ logP (DU,n
t , Dm

s |θ). (45)

Note that

lst(θ
∗) =

[
ls(θ

∗
s , θ
∗
c )

0k̃+1−c

]
+

[
0k̃+1−c
lt(θ
∗
t , θ
∗
c )

]
, (46)
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where 0k̃+1−c denotes the zero vector with length k̃+1−c. We next restate the corresponding
Fisher information matrix,

Is = −Eθ∗s ,θ∗c [∇2 logP (Xs, Ys|θ∗s , θ∗c )] ∈ R(k̃+1)×(k̃+1), (47)

It = −Eθ∗t ,θ∗c [∇2 logP (Xt|θt, θc)] ∈ R(k̃+1)×(k̃+1) (48)

I0 = −Eθ∗ [∇2 logP (Xs, Ys, Xt|θ∗)] ∈ R(2k̃+2−c)×(2k̃+2−c), (49)

Ist = −Eθ∗ [∇2 logP (DU,n
t , Dm

s |θ∗)] ∈ R(2k̃+2−c)×(2k̃+2−c). (50)

Their corresponding empirical versions are denoted by,

Ĩs(θs, θc) = −[∇2 logP (Xs, Ys|θs, θc)] ∈ R(k̃+1)×(k̃+1), (51)

Ĩt(θt, θc) = −[∇2 logP (Xt|θt, θc)] ∈ R(k̃+1)×(k̃+1), (52)

Ĩ0(θ) = −[∇2 logP (Xs, Ys, Xt|θ∗)] ∈ R(2k̃+2−c)×(2k̃+2−c), (53)

Ĩst(θ) = −[∇2 logP (DU,n
t , Dm

s |θ)] ∈ R(2k̃+2−c)×(2k̃+2−c). (54)

For convenience, if not otherwise stated we will simply omit brackets for θ∗ in the sequel,
e.g., we write Ĩst(θ

∗) as Ĩst. Define the neighbourhood of θ∗ by Nδ = {θ : ‖θ − θ∗‖ ≤ δ}
where the norm in R2k̃+2−c is defined as

‖ξ‖2 = ξT I0ξ. (55)

Define
L(θ∗) = lTst(θ

∗)I−1
st lst(θ

∗). (56)

Note that,

E[L(θ∗)] = E[Tr(I−1
st lst(θ

∗)T lst(θ
∗))]

= Tr(I−1
st E[lst(θ

∗)T lst(θ
∗)])

= Tr(I−1
st Ist)

= 2k̃ + 2− c. (57)

For 0 < ε < 1 and δ > 0, we define three events A(δ, ε), B(δ, ε) and C(δ) as

A(δ, ε) =

{∫
Nc
δ

P
(
Ds
m, D

U,n
t | θ

)
ω(θ)dθ ≤ ε

∫
Nδ

P
(
Ds
m, D

U,n
t | θ

)
ω(θ)dθ

}
, (58)

B(δ, ε) := {(1− ε) (θ − θ∗)T Ist (θ − θ∗) ≤ (θ − θ∗)T
(
Ĩst(θ

′)
)

(θ − θ∗) , (59)

≤ (1 + ε) (θ − θ∗)T Ist (θ − θ∗) for all θ, θ′ ∈ Nδ

}
(60)

C(δ) :=
{
L (θ∗) ≤ min{n,m}δ2

}
, (61)

and

ρ(δ, θ∗) = sup
θ∈Nδ

∣∣∣∣ ω(θ)

ω(θ∗)

∣∣∣∣ . (62)

Following the similar procedures in Clarke and Barron (1990), we have the following upper
and lower bounds on the density ratio.
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Lemma 15 We assume condition 3 in Assumption 2 holds that P ∗θ is twice differentiable
around θ∗ and Ist is positive definite. With proper prior ω(θ), then on the set of A ∩B, we
have,

Q(Ds
m, D

t,U
n )

Pθ∗(Ds
m, D

t,U
n )
≤ (1 + ε)ω(θ∗)eρ(δ,θ∗)(2π)

2k̃+2−c
2 e

1
2(1−ε)L(θ∗)

det((1− ε)Ist)−
1
2 . (63)

Further, on the set of B ∩ C, we have the lower bound,

Q(Ds
m, D

t,U
n )

Pθ∗(Ds
m, D

t,U
n )
≥ ω(θ∗)e−ρ(δ,θ∗)(2π)

2k̃+2−c
2 e

1
2(1+ε)

L(θ∗)
(1− 2

2k̃+2−c
2 e−ε

2(n∧m)δ2/8) det((1 + ε)Ist)
− 1

2 .

(64)

Proof In both cases, we will use the Laplace method to give an upper and lower bound on
the density ratio, for the upper bound, if we restrict on A and B, then,

Q(Ds
m, D

t,U
n )

Pθ∗(Ds
m, D

t,U
n )
≤ (1 + ε)

∫
Nδ

Pθ(D
s
m, D

t,U
n )

Pθ∗(Ds
m, D

t,U
n )

ω(θ)dθ

= (1 + ε)

∫
Nδ

e
log

Pθ(D
s
m,D

t,U
n )

Pθ∗ (D
s
m,D

t,U
n )ω(θ)dθ

(Taylor Expansion) = (1 + ε)

∫
Nδ

e(θ−θ∗)T lst(θ∗)− 1
2

(θ−θ∗)T Ĩst(θ′)(θ−θ∗)ω(θ)dθ

(Definition of ρ) ≤ (1 + ε)ω(θ∗)eρ(δ,θ∗)

∫
Nδ

e(θ−θ∗)T lst(θ∗)− 1
2

(θ−θ∗)T Ĩst(θ′)(θ−θ∗)dθ

(Event B) ≤ (1 + ε)ω(θ∗)eρ(δ,θ∗)

∫
Nδ

e(θ−θ∗)T lst(θ∗)− 1
2

(1−ε)(θ−θ∗)T Ist(θ−θ∗)dθ

(∗)
= (1 + ε)ω(θ∗)eρ(δ,θ∗)e

1
2(1−ε) l

T
st(θ
∗)I−1

st lst(θ
∗)
∫
Nδ

e−
1
2

(1−ε)(θ−u)T Ist(θ−u)dθ

≤ (1 + ε)ω(θ∗)eρ(δ,θ∗)e
1

2(1−ε) l
T
st(θ
∗)I−1

st lst(θ
∗)
∫
Nδ∪Nc

δ

e−
1
2

(1−ε)(θ−u)T Ist(θ−u)dθ

(Gaussian integral) = (1 + ε)ω(θ∗)eρ(δ,θ∗)e
1

2(1−ε)L(θ∗)
(2π)

2k̃+2−c
2 det((1− ε)Ist)−

1
2 ,

where we define u = θ∗ + 1
1−ε(θ̂ − θ

∗) and θ̂ = θ∗ + I−1
st lst(θ

∗) provided that Ist positive
definite. We also use the identity in (*) by completing the square,

(θ − θ∗)T lst(θ∗)−
1

2
(1− ε)(θ − θ∗)T Ist(θ − θ∗) = −1− ε

2
(θ − u)T Ist(θ − u) +

1

2(1− ε)
L(θ∗).

(65)
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For the lower bound, we have,

Q(Ds
m, D

t,U
n )

Pθ∗(Ds
m, D

t,U
n )
≥
∫
Nδ

Pθ(D
s
m, D

t,U
n )

Pθ∗(Ds
m, D

t,U
n )

ω(θ)dθ

=

∫
Nδ

e
log

Pθ(D
s
m,D

t,U
n )

Pθ∗ (D
s
m,D

t,U
n )ω(θ)dθ

(Taylor Expansion) =

∫
Nδ

e(θ−θ∗)T lst(θ∗)− 1
2

(θ−θ∗)T Ĩst(θ′)(θ−θ∗)ω(θ)dθ

(Event B) ≥ ω(θ∗)e−ρ(δ,θ∗)

∫
Nδ

e(θ−θ∗)T lst(θ∗)− 1
2

(1+ε)(θ−θ∗)T Ist(θ−θ∗)dθ

= ω(θ∗)−ρ(δ,θ∗)e
1

2(1+ε)
L(θ∗)

∫
Nδ

e−
(1+ε)

2
(θ−u)T Ist(θ−u)dθ

= ω(θ∗)−ρ(δ,θ∗)e
1

2(1+ε)
L(θ∗)

[∫
R2k̃+2−c

e−
(1+ε)

2
(θ−u)T Ist(θ−u)dθ

−
∫
Nc
δ

e−
(1+ε)

2
(θ−u)T Ist(θ−u)dθ

]
.

Here we define u = θ∗ + 1
1+ε(θ̂ − θ

∗) and θ̂ = θ∗ + I−1
st lst(θ

∗). Since we restrict to the event
C and the norm is w.r.t. I0, given Condition 2 such that Ist < (n ∧m)I0, we have that for
any θ ∈ N c

δ ,

(θ − u)T Ist(θ − u) ≥ (n ∧m)(θ − u)T I0(θ − u) (66)

(Definition of ‖ · ‖) = (n ∧m)‖θ − u‖2 (67)

= (n ∧m)‖θ − θ∗ − 1

1 + ε
(θ̂ − θ∗)‖2 (68)

= (n ∧m)‖θ − θ∗ − 1

1 + ε
(I−1
st lst(θ

∗))‖2 (69)

≥ (n ∧m)(‖θ − θ∗‖ − 1

1 + ε
‖I−1
st lst(θ

∗)‖)2 (70)

≥ (n ∧m)(‖θ − θ∗‖ − 1

1 + ε

√
lTst(θ

∗)I−1
st I0I

−1
st lst(θ

∗))2 (71)

≥ (n ∧m)(‖θ − θ∗‖ − 1

1 + ε

√
1

n ∧m
lTst(θ

∗)I−1
st lst(θ

∗))2 (72)

(Event C) ≥ (n ∧m)(δ − 1

1 + ε

√
δ2)2 (73)

≥ ε2

(1 + ε)2
(n ∧m)δ2. (74)

Hence in the second integral in the lower bound, for any θ ∈ N c
δ , the integrand is not greater

than

e−
(1+ε)

2
(θ−u)T Ist(θ−u) ≤ e−

(n∧m)ε2δ2

4(1+ε) e−
(1+ε)(n∧m)‖θ−u‖2

4 . (75)
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By expanding the terms, using the Gaussian integration and rearranging the integration, we
have the lower bound and this completes the proof of this lemma.

With substantially small δ and ε, the integrand of the KL divergence term will approach
2k̃+2−c

2 log 1
2π + log 1

ω(θ∗) + 1
2 log det(Ist)− 1

2L(θ∗), hence we define the remaining term Rst
by

Rst =
Pθ∗(D

s
m, D

t,U
n )

Q(Ds
m, D

t,U
n )

− 2k̃ + 2− c
2

log
1

2π
− log

1

ω(θ∗)
− 1

2
log det(Ist) +

1

2
L(θ∗). (76)

Using the similar argument in Zhu (2020) and Clarke and Barron (1990), we can show that
the expected remaining term is upper-bounded and lower-bounded by

E[Rst] ≥− log(1 + ε)− ρ(δ, θ∗)− ε

2(1− ε)
(2k̃ + 2− c) +

2k̃ + 2− c
2

log
1

1− ε
(77)

+ P((A ∩B)c)

(
logP((A ∩B)c) +

2k̃ + 2− c
2

log
1

2π

)
− P((A ∩B)c) log

det(Ist)
1
2

ω(θ∗)
,

(78)

and

E[Rst] ≤ ρ(δ, θ∗) +
ε

2(1 + ε)
(2k̃ + 2− c) +

2k̃ + 2− c
2

log
1

1 + ε
− log

(
1− 2

2k̃+2−c
2 e−ε

2(m∧n)δ2/8
)

+ E[L(θ∗)1(B∩C)c ] + P((B ∩ C)c)

(
2k̃ + 2− c

2
log

1

2π
+ | log

∫
Nδ

ω(θ)dθ|+ log
det(Ist)

1
2

ω(θ∗)

)

+ P((B ∩ C)c)E

[
sup
θ,θ′

(θ − θ∗)∇ logPθ′(D
m
s , D

U,n
t )

]

+ P((B ∩ C)c)
1
2E

[
sup
θ,θ′

(θ − θ∗)∇2 logPθ′(D
m
s , D

U,n
t )

] 1
2

.

By application of Condition 2 in Assumption 2, with sufficiently small δ, the upper bound
will go to zero if the probability of the data pair DU,n

t and Dm
s belong to the set P (Ac),

P (Bc) and P (Cc) is o( 1
n∨m). In the following, we will show that the probability of Ac, Bc

and Cc will decay exponentially fast with m ∧ n so that the expected remaining term will
converge as o( 1

n∨m) under the regime that m = cnp for some c > 0 and finite p > 0.

Lemma 16 Assume condition 4 holds so that for all θ ∈ Nδ, let v = n ∨ m, then for
sufficiently small δ, there is an r > 0 and ρ > 0 so that,

P((DU,n
t , Dm

s ) ∈ Ac(δ, e−vr)) = O(e−(m∧n)ρ). (79)

Proof For any given r′ > 0, we define the event

U =

{∫
Nδ

ω(θ)Pθ(D
U,n
t , Dm

s )dθ > e−vr
′
Pθ∗(D

U,n
t , Dm

s )

}
. (80)
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We can bound the probability of Ac by

P
(
Ac
(
δ, e−vr

))
= P

(∫
Nδ

P (DU,n
t , Dm

s | θ)ω(θ)dθ < evr
∫
Nc
δ

P (DU,n
t , Dm

s | θ)ω(θ)dθ

)

≤ P
(
U ∩

(∫
Nδ

P (DU,n
t , Dm

s | θ)ω(θ)dθ < evr
∫
Nc
δ

P (DU,n
t , Dm

s | θ)ω(θ)dθ

))
+ P (U c)

≤ P
(
P
(
DU,n
t , Dm

s | θ∗
)
< ev(r+r′)

∫
Nc

ω(θ)P (DU,n
t , Dm

s | θ)dθ
)

+ P
(
evr
′
∫
Nδ

P (DU,n
t , Dm

s | θ)ω(θ)dθ < P
(
DU,n
t , Dm

s | θ∗
))

.

For the first term, we use the argument in Clarke and Barron (1990) (Eq. (6.6)) and
Zhu (2020) (Lemma 7) and it can be concluded that it is of the order of O(e−(n∧m)r′′)
for some r′′ under the Condition 3 for soundness of the parametric families. For the
second term, define Q(DU,n

t , Dm
s | Nδ) =

∫
Nδ
P (X|θ)ω(θ|Nδ)dθ and ω(θ|Nδ) = ω(θ)∫

Nδ
ω(θ)dθ

and

r̃ = r′ − 1
v log

∫
Nδ
ω(θ)dθ, we can write the probability as,

P
(
evr
′
∫
Nδ

P (DU,n
t , Dm

s | θ)ω(θ)dθ < P
(
DU,n
t , Dm

s | θ∗
))

= P

(
log

P (DU,n
t , Dm

s | θ∗)
Q(DU,n

t , Dm
s | Nδ)

> vr̃

)
(81)

≤ P
(

logP
(
DU,n
t , Dm

s | θ∗
)
−
∫
Nδ

logP (DU,n
t , Dm

s | θ)ω (θ | Nδ) dθ > vr̃

)
(82)

≤ P

∫
Ns,δ

log
P (Dm

s | θ∗c , θ∗s)
P (Dm

s | θc, θs)
ω (θ | Ns,δ) dθ +

∫
Nt,δ

log
P
(
DU,n
t | θ∗c , θ∗t

)
P
(
DU,n
t | θc, θt

) ω (θ | Nt,δ) dθ > vr̃


(83)

= P

 m∑
i=1

gs

(
Z(i)
s

)
+

n∑
j=1

gt

(
X

(j)
t

)
> vr̃

 (84)

≤ P

(
1

v

m∑
i=1

gs

(
Z(i)
s

)
> r̃/2

)
+ P

1

v

n∑
j=1

gt

(
X

(j)
t

)
> r̃/2

 (85)

≤ P

(
1

m

m∑
i=1

gs

(
Z(i)
s

)
> r̃/2

)
+ P

 1

n

n∑
j=1

gt

(
X

(j)
t

)
> r̃/2

 , (86)

41



Wu, Gong, Manton, Aickelin, Zhu

where we define,

gs(Z
(i)
s ) :=

∫
Ns,δ

log
P
(
Z

(i)
s | θ∗s , θ∗c

)
P (Z

(i)
s | θs, θc)

ω (θs, θc | Ns,δ) dθsdθc, (87)

gt(X
(j)
t ) :=

∫
Nt,δ

log
P
(
X

(j)
t | θ∗t , θ∗c

)
P (X

(j)
t | θt, θc)

ω (θt, θc | Nt,δ) dθsdθc, (88)

ω(θc, θs | Ns,δ) :=
ω(θc, θs)∫

Ns,δ
ω(θc, θs)dθcdθs

, (89)

ω(θc, θt | Nt,δ) :=
ω(θc, θt)∫

Nt,δ
ω(θc, θt)dθcdθt

. (90)

In this case, we use a slightly different notation that Ns,δ = {θsc : ‖θsc − θ∗sc‖ ≤ δ}, where
θsc = (θs, θc) denotes the source parameters and the norm is w.r.t. the Fisher information
matrix Is, e.g., ‖θsc‖2 = θTscIsθsc. Similarly, Nt,δ = {θtc : ‖θtc − θ∗tc‖ ≤ δ} where θtc = (θt, θc)
denotes the target parameters and norm is w.r.t. the Fisher information matrix It as
defined previously. The second inequality holds due to that It ≺ It + Isc and Is ≺ Is + Itc
for Isc = −Eθ∗s ,θ∗c [∇

2 logP (Xs, Ys|θ∗t , θ∗c )] and Itc = −Eθ∗t ,θ∗c [∇
2 logP (Xt|θ∗t , θ∗c )] the fisher

information matrix w.r.t. θ∗c in both source and target domains, with the fact that Nδ ⊂ Ns,δ

and Nδ ⊂ Nt,δ. If the source and target domain share the same parameters (e.g., c = k̃ + 1),
then our case generalizes to Lemma 7 in Zhu (2020).

Lemma 17 Assume condition 5 holds so that for sufficiently small δ, there is some ρ > 0
such that,

P((DU,n
t , Dm

s ) ∈ Bc(δ, ε)) = O(e−ρ(m∧n)). (91)

Proof The proof exactly follow Zhu (2020) with similar assumptions, which is omitted
here.

Lemma 18 Assume condition 6 holds, then for sufficiently small δ, there is a ρ > 0 so that,

P((DU,n
t , Dm

s ) ∈ Cc(δ)) = O(e−(m∧n)ρ). (92)

Proof We firstly expand the term L(θ∗) by:

L(θ∗) = lTstI
−1
st l

T
st (93)

=
m∑
i=1

lTs,iI
−1
st ls,i +

m∑
i 6=k

lTs,iI
−1
st ls,k +

n∑
i=1

lTt,iI
−1
st lt,i +

n∑
i 6=k

lTt,iI
−1
st lt,k (94)

+ 2

n∑
i=1

m∑
k=1

lTt,iI
−1
st ls,k (95)
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Then we have that,

P((DU,n
t , Dm

s ) ∈ Cc(δ)) = P(L(θ∗) > (n ∧m)δ2)

≤ P

(
1

m

m∑
i=1

lTs,iI
−1
st ls,i ≥

(n ∧m)δ2

6m

)
+ P

 1

m(m− 1)

m∑
i 6=k

lTs,iI
−1
st ls,k ≥

(n ∧m)δ2

6m(m− 1)


+ P

(
1

n

n∑
i=1

lTt,iI
−1
st lt,i ≥

(n ∧m)δ2

6n

)
+ P

 1

n(n− 1)

n∑
i 6=k

lTt,iI
−1
st lt,k ≥

(n ∧m)δ2

6n(n− 1)


+ P

(
2

nm

n∑
i=1

m∑
k=1

lTt,iI
−1
st ls,k ≥

(n ∧m)δ2

3nm

)

We first consider the case where m = cnp for p ≥ 1, then we can show that these five terms
will decay exponentially fast. We first bound the expected value by

E[lTs,iIstls,i] = Tr(I−1
st E[lTs,ils,i]) (96)

≤ 1

n ∧m
Tr(I−1

0 )Is (97)

≤ 1

n ∧m
Tr(I−1

0 )I0) (98)

=
2k̃ + 2− c
n ∧m

(99)

since Is ≺ I0 due to the Condition 2. Also we have for large m,

E[lTt,iIstlt,i] =
2k̃ + 2− c

m
, (100)

and

E[lTt,iIstlt,k] = 0, (101)

E[lTs,iIstls,k] = 0, (102)

E[lTt,iIstls,k] = 0 (103)

due to that ls,i and ls,k are mutually independent. Since the Condition 6 holds, we will use
the Chernoff bound again so that the inequality is bounded by O(e−ρ(n∧m)) for some ρ > 0
under the case that m = cnp for p ≥ 1 as Zhu (2020) (Lemma 9) suggested, where the details
are omitted here. For the case where m = cnp for some 0 < p < 1, since for large n� m,

E[lTt,iIstlt,i] =
2k̃ + 2− c

n
. (104)

We can upper bound the term on the source score function by,

E[lTs,iIstls,i] = Tr(I−1
st E[lTs,ils,i]) (105)

≤ 2k̃ + 2− c
n ∧m

. (106)

43



Wu, Gong, Manton, Aickelin, Zhu

Then similar argument can be made that the probability is bounded by O(e−ρ
′(n∧m)) for

some ρ′ > 0, and this completes the proof for all p > 0.

Overall, putting everything together we complete the proof.

A.2 Proof of Theorem 5

Proof We firstly show that given any prior over Θs and Θt,

I(Y ′t ; Θt,Θs|DU,n
t , Dm

s , X
′
t)

= I(Θt,Θs;Y
′
t , X

′
t, D

U,n
t , Dm

s )− I(Θt,Θs;X
′
t, D

U,n
t , Dm

s )

= D(PΘt,Θs(D
U,n
t , Dm

s , Y
′
t , X

′
t)‖Q(DU,n

t , Dm
s , Y

′
t , X

′
t))

−D(PΘs,Θt(D
m
s , D

U,n
t , X ′t)‖Q(Dm

s , D
U,n
t , X ′t))

=

∫ (
Eθs,θt

[
log

Pθt,θs(D
U,n
t , Dm

s , Y
′
t , X

′
t)

Q(DU,n
t , Dm

s , Y
′
t , X

′
t)

]
− Eθs,θt

[
log

Pθt,θs(D
m
s , D

U,n
t , X ′t)

Q(Dm
s , D

U,n
t , X ′t)

])
ω(θs, θt)dθsdθt

=

∫ (
Eθs,θt

[
log

Pθt(Y
′
t |X ′t)

Q(Y ′t |D
U,n
t , Dm

s , X
′
t)

])
ω(θs, θt)dθsdθt,

where in the last equality we use the chain rule and the assumption that both source and
target data are drawn in an i.i.d. way under Assumption 1. The mutual information density
at Θs = θ∗s and Θt = θ∗t is then given by

R(b) = I(Y ′t ; θ∗t , θ
∗
s |D

U,n
t , Dm

s , X
′
t)

= Eθ∗s ,θ∗t

[
log

Pθ∗t (Y ′t |X ′t)
Q(Y ′t |D

U,n
t , Dm

s , X
′
t)

]
,

which completes the proof.
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A.3 Proof of Theorem 7

Proof We can show that the expected excess risk can be bounded by

R(b) = Eθ∗t ,θ∗s
[
`(b, Y ′t )− `(b∗, Y ′t )

]
= E

Dms ,D
U,n
t ,X′t,Y

′
t
EY ′t

[
`(b, Y ′t )− `(b∗, Y ′t )|Dm

s , D
U,n
t , X ′t

]
= E

Dms ,D
U,n
t ,X′t

∑
y′t

(
`(b, y′t)− `(b∗, y′t)

)
Pθ∗s ,θ∗t (y′t|Dm

s , D
U,n
t , X ′t)

= E
Dms ,D

U,n
t ,X′t

∑
y′t

(
`(b, y′t)− `(b∗, y′t)

)
(Pθ∗s ,θ∗t (y′t|Dm

s , D
U,n
t , X ′t)

−Q(y′t|Dm
s , D

U,n
t , X ′t) +Q(y′t|Dm

s , D
U,n
t , X ′t))

(a)

≤ E
Dms ,D

U,n
t ,X′t

∑
y′t

(
`(b, y′t)− `(b∗, y′t)

)
(Pθ∗s ,θ∗t (y′t|Dm

s , D
n
t , X

′
t)−Q(y′t|Dm

s , D
U,n
t , X ′t))

(b)

≤ ME
Dms ,D

U,n
t ,X′t

∑
y′t

(Pθ∗s ,θ∗t (y′t|Dm
s , D

U,n
t , X ′t)−Q(y′t|Dm

s , D
U,n
t , X ′t))

(c)

≤ ME
Dms ,D

U,n
t ,X′t

√
2D
(
Pθ∗s ,θ∗t (Y ′t |Dm

s , D
U,n
t , X ′t)‖Q(y′t|Dm

s , D
U,n
t , X ′t)

)
(d)

≤ M

√
2E

Dms ,D
U,n
t ,X′t

D
(
Pθ∗s ,θ∗t (Y ′t |Dm

s , D
U,n
t , X ′t)‖Q(Y ′t |Dm

s , D
U,n
t , X ′t)

)
= M

√
2D
(
Pθ∗t ‖Q|Dm

s , D
U,n
t , X ′t

)
= M

√
2D(Pθ∗t (Y ′t |X ′t)‖Q(Y ′t |D

U,n
t , Dm

s , X
′
t))

= M

√
2I(Y ′t ; Θt = θ∗t ,Θs = θ∗s |Dm

s , D
U,n
t , X ′t),

where in (a) we use the definition of Q, then (b) holds since we assume the loss function
is bounded, (c) follows from the Pinsker’s inequality, (d) holds from the Jensen’s inequality.

A.4 Proof of Theorem 11

We firstly consider the scenario for covariate shift condition where PS(X) 6= PT (X) and
PS(Y |X) = PT (Y |X).

Proof Knowing the conditions θs∗Yxi
= θt∗Yxi

for every i = 1, 2, · · · , k, we choose the prior

distribution ω(Θs,Θt) as

ω(Θs,Θt) = ω(Θt
X)ω(Θs

X)ω(Θst
YX

). (107)

In the causal setting, Θs
X is usually considered as independent of Θt

X and Θs
YX

. We also
set the parameter Θt

YX
= Θs

YX
from the assumption PS(Y |X) = PT (Y |X) and denote it by

Θst
YX

. With a proper prior distribution, we will arrive at the asymptotic estimation of the
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expected excess risk as

D(Pθ∗t ,θ∗s (DU,n
t , X ′t, Y

′
t , D

m
s )‖Q(DU,n

t , X ′t, Y
′
t , D

m
s ))−D(Pθ∗t ,θ∗s (DU,n

t , X ′t, D
m
s )‖Q(DU,n

t , X ′t, D
m
s ))

= D(Pθt∗X (DU,n
t , X ′t)‖Q(DU,n

t , X ′t)) +D(Pθs∗X (Xm
s )‖Q(Xm

s )) +D(Pθ∗YX
(Y ′X′,t, Y

m
X,s)‖Q(Y ′X′,t, Y

m
X,s))

−D(Pθt∗X (DU,n
t , X ′t)‖Q(DU,n

t , X ′t)) +D(Pθs∗X (Xm
s )‖Q(Xm

s ))−D(Pθ∗YX
(Y m
X,s)‖Q(Y m

X,s))

= D(Pθ∗YX
(Y ′X′,t, Y

m
X,s)‖Q(Y ′X′,t, Y

m
X,s))−D(Pθ∗YX

(Y m
X,s)‖Q(Y m

X,s)) (108)

=
1

2
log det I1 +

k

2
log

1

2πe
+ log

1

ω(θ∗YX )
− 1

2
log det I0 −

k

2
log

1

2πe
− log

1

ω(θ∗YX )
+ o(

1

m
)

(109)

=
1

2

log det(I1)

log det(I0)
+ o(

1

m
), (110)

where we use the i.i.d. property of the data distribution and the independence property of
the prior distribution among Θt

X , Θs
X and Θst

YX
. Since Y ′X′,t and Y m

X,s are parameterized by
the same set of parameters θ∗YX , we denote the Fisher information matrix of Pθ∗YX

(Y ) for

source and target domains by

I(θ∗Yxi
) = EYxi [∂

2 logPθ∗Yxi
(Y )/(∂θYxi )

2], for i = 1, 2, · · · , k, (111)

Is(θ
∗
YX

) = −EYXs
[
∂2 logPθ∗YX

(YX)/∂θj∂θk

]
j,k=1,2,··· ,k

= diag[Pθs∗X (X = xi) ∗ I(θ∗Yxi
)]i=1,··· ,k,

(112)

It(θ
∗
YX

) = −EYXt
[
∂2 logPθ∗YX

(YX)/∂θj∂θk

]
j,k=1,2,··· ,k

= diag[Pθt∗X (X = xi) ∗ I(θ∗Yxi
)]i=1,··· ,k,

(113)

due to the mutually independence property of YXi . Then I1 and I0 are expressed as follows.

I0 = mIs(θ
∗
YX

), (114)

I1 = mIs(θ
∗
YX

) + It(θ
∗
YX

). (115)

With the assumptions that the Fisher information matrix around true θ∗YX are bounded and
positive definite, we can calculate the excess risk by

R(b) =
1

2

log det(I1)

log det(I0)
+ o(

1

m
) (116)

=
1

2
log det

(
Ik +

1

m
It(θ

t∗
YX

)I−1
s (θs∗YX )

)
+ o(

1

m
). (117)

We then use the expansion of determinant:

det(I +
1

m
A) = 1 +

1

m
Tr(A) + o(1/m). (118)
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As a consequence,

R(b) =
1

2
log

(
1 +

1

m
Tr(It(θ

∗
YX

)I−1
s (θ∗YX )) + o(1/m)

)
+ o(

1

m
) (119)

=
1

2
log

(
1 +

1

m

k∑
i=1

Pθt∗X (X = xi)

Pθs∗X (X = xi)
+ o(1/m)

)
+ o(

1

m
) (120)

�


∑k

i=1

P
θt∗
X

(X=xi)

Pθs∗
X

(X=xi)

m

 (121)

� k

m
. (122)

given that Pθt∗X (X = xi) and Pθt∗X (X = xi) are positive and bounded for any i. In other
word, the convergence is guaranteed only when the source and target domains share the
same support of the input X. For the case θs∗X = θt∗X , using the same procedure, by choosing

ω(Θs,Θt) = ω(Θst
X)ω(Θst

YX
). (123)

we will also arrive at

R(b) =
1

2
log

(
1 +

1

m
Tr(It(θ

t∗
YX

)I−1
s (θs∗YX )) + o(1/m)

)
+ o(

1

m
) (124)

� k

m
. (125)

which leads to the same rate and completes the proof.

Next we will look at the concept drift scenario where PS(Y |X) 6= PT (Y |X) and PS(X) =
PT (X).
Proof Knowing the conditions θs∗Yxi

6= θt∗Yxi
for every i = 1, 2, · · · , k, if PS(X) = PT (X), we

choose the prior distribution ω(Θs,Θt) as

ω(Θs,Θt) = ω(Θst
X)ω(Θs

YX
)ω(Θt

YX
). (126)

following the similar machinery in the covariate shift conditions. Then the mixture distribu-
tion Q becomes

Q(Y ′t |D
U,n
t , Dm

s , X
′
t) (127)

=

∫
Pθt(D

U,n
t , X ′t, Y

′
t )Pθs(D

m
s )ω(θt, θs)dθtdθs∫

Pθt(X
′
t)Pθt(D

U,n
t )Pθ∗s (Dm

s )ω(θt, θs)dθtdθs
(128)

=

∫
Pθt(Y

′
t |X ′t)P (θt, θs|X ′t, Dm

s , D
U,n
s )dθsdθt (129)

=

∫
PθtYX

(Y ′t |X ′t)P (θstX , θ
s
YX
, θtYX |X

′
t, D

m
s , D

U,n
s )dθsYXdθ

t
YX
θstX (130)

(a)
=

∫
P (Y ′t |X ′t, θYX )ω(θYX )dθYX (131)

=

∫
PθY

X′t
(Y ′t )ω(θYX′t

)dθYX′t
, (132)
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where (a) holds because X ′t, D
m
s and DU,n

s are all independent of Θt
YX

. Therefore, the excess
risk becomes,

R(b) =Eθ∗s ,θ∗t ,X′t,Y ′t

[
log

P (Y ′t |θt∗Y |X , X
′
t)

Q(Y ′t |D
U,n
t , Dm

s , X
′
t)

]
=Eθt∗X [KL(Pθt∗Y

X′t

(Y ′t )‖Q(Y ′t |X ′t)]. (133)

If PS(X) 6= PT (X), we choose the prior distribution ω(Θs,Θt) as,

ω(Θs,Θt) = ω(Θt
X)ω(Θs

X)ω(Θs
YX

)ω(Θt
YX

), (134)

where we will end up with the same results as (133).

A.5 Proof of Theorem 12

Before proving Theorem 12, we first restate the definition for Fisher information matrix and
define extra quantities for proving purposes.

Is = −Eθ∗s [∇2 logP (Xs, Ys|θ∗s)], (135)

It = −Eθ∗t [∇2 logP (Xt|θ∗t )], (136)

It,X,Y = −Eθ∗t [∇2 logP (Xt, Yt|θ∗t )], (137)

I0 = −Eθ∗ [∇2 logP (Xt, Xs, Ys|θ∗)], (138)

It,Y,U = −Eθ∗t [∇2
θY

logP (Xt|θt∗Y , θt∗XY )], (139)

It,Y = −EYt [∇2
θY

logP (Yt|θt∗Y )], (140)

Is,Y = −EYs [∇2
θY

logP (Ys|θs∗Y )], (141)

It,XY ,U = −Eθ∗t [∇2
θXY

logP (Xt|θt∗Y , θt∗XY )], (142)

It,XY = −Eθ∗t [∇2
θXY

logP (Xt|θt∗XYt )], (143)

Is,XY = −Eθ∗s [∇2
θXY

logP (Xs|θs∗XYs )]. (144)

Now we will firstly consider the case PS(Y ) 6= PS(Y ) and PS(X|Y ) 6= PT (X|Y ).

Proof Knowing the conditions θs∗Y 6= θt∗Y and θs∗Xyi
6= θt∗Xyi

for every i = 1, 2, · · · , k′, we then

choose the prior distribution ω(Θs,Θt) as

ω(Θs,Θt) = ω(Θt
Y )ω(Θs

Y )ω(Θs
XY

)ω(Θt
XY

). (145)

With such a prior distribution, we will arrive at the asymptotic estimation of the KL
divergence as,

D(Pθ∗t ,θ∗s (DU,n
t , Dm

s , X
′
t, Y

′
t )‖Q(DU,n

t , Dm
s , X

′
t, Y

′
t ))

=
1

2
log det Iθ + log

1

2πe
+ log

1

ω(θ∗s , θ
∗
t )

+ o(
1

m ∨ n
), (146)
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where

Iθ =

[
nIt + It,X,Y 0

0 mIs

]
. (147)

We also have,

D(Pθ∗t ,θ∗s (DU,n
t , X ′t, D

m
s )‖Q(DU,n

t , X ′t, D
m
s ))

=
1

2
log det Ĩθ + log

1

2πe
+ log

1

ω(θ∗s , θ
∗
t )

+ o(
1

m ∨ n
), (148)

where

Ĩθ =

[
(n+ 1)It 0

0 mIs

]
. (149)

Then the regret can be calculated by

R(b) =
1

2

log det(Iθ)

log det(̃Iθ)
+ o(

1

m ∨ n
) (150)

=
1

2
log det

(
Ik′+1 +

1

n+ 1
(It,X,Y − It)I−1

t

)
+ o(

1

m ∨ n
) (151)

� log

(
1 +

Tr((It,X,Y − It)I−1
t )

n+ 1
)

)
(152)

� k′ + 1

n+ 1
, (153)

which completes the proof.

Now we turn to conditional shifting case PS(Y ) = PS(Y ) and PS(X|Y ) 6= PT (X|Y ).
Proof In this section, we define,

It,U = −Eθ∗t

[
∂2 logP (Xt|θ∗t )
∂θY ∂θXyi

]
for i = 1, 2, · · · , k′. (154)

Knowing the conditions θs∗Y = θt∗Y and θs∗Xyi
6= θt∗Xyi

for every i = 1, 2, · · · , k′, we then choose

the prior distribution ω(Θs,Θt) as

ω(Θs,Θt) = ω(Θst
Y )ω(Θs

XY
)ω(Θt

XY
). (155)

where we denote the random variable for estimating θst∗Y by Θst
Y . With such a prior

distribution, we will arrive at the asymptotic estimation of the KL divergence as,

D(Pθ∗t ,θ∗s (DU,n
t , Dm

s , X
′
t, Y

′
t )‖Q(DU,n

t , Dm
s , X

′
t, Y

′
t ))

=
1

2
log det Iθ + log

1

2πe
+ log

1

ω(θ∗s , θ
∗
t )

+ o(
1

m ∨ n
), (156)

where the joint Fisher information matrix Iθ is defined as,

Iθ =

nIt,Y,U +mIs,Y + It,Y nIt,U 0
nITt,U nIt,XY ,U + It,XY 0

0 0 mIs,XY

 . (157)
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Here zero vectors are due to the mutually independence assumption between the distribution
parameters and i.i.d. assumption on the source and target samples. We also have,

D(Pθ∗t ,θ∗s (DU,n
t , X ′t, D

m
s )‖Q(DU,n

t , X ′t, D
m
s )) =

1

2
log det Ĩθ + log

1

2πe
+ log

1

ω(θ∗s , θ
∗
t )

+ o(
1

m ∨ n
),

(158)

where

Ĩθ =

(n+ 1)It,Y,U +mIs,Y (n+ 1)It,U 0
(n+ 1)ITt,U (n+ 1)It,XY ,U 0

0 0 mIs,XY

 . (159)

Assume m = cnp for some p > 0, as n goes to infinity, we define the scalars ∆U =
It,Y,U − It,UI−1

t,XY ,U
ITt,U and ∆s = Is,Y , then the regret can be calculated by

R(b) =
1

2

log det(Iθ)

log det(̃Iθ)
+ o(

1

m ∨ n
) (160)

=
1

2

(
log det(Ik +

1

n+ 1
(It,XY − It,XY ,U )I−1

t,XY ,U
) + log det(1 +

It,Y − It,Y,U
(n+ 1)∆U + cnp∆s

)

)
(161)

+ o(
1

m ∨ n
) (162)

� k′

n+ 1
+

1

(n+ 1) ∨ np
(163)

�k
′

n
+

1

n ∨ np
, (164)

where Ik denotes the identity matrix with dimension of k × k. Since we assume It � 0 and
Is � 0, we have that ∆U > 0 and ∆s > 0. From the information processing perspective, the
labelled target data always contains more information than unlabelled target data, hence we
have both It,XY − It,XY ,U � 0 and It,Y − It,Y,U � 0, which completes the proof.

Regarding the target shift scenario PS(Y ) 6= PS(Y ) and PS(X|Y ) = PT (X|Y ), we could
follow the similar procedures as the label drifting case.
Proof Knowing the conditions θs∗Y = θt∗Y and θs∗Xyi

6= θt∗Xyi
for every i = 1, 2, · · · , k′, we

choose the prior distribution as,

ω(Θs,Θt) = ω(Θs
Y )ω(Θt

Y )ω(Θst
XY

). (165)

where we denote the random variables for estimating θt∗XY by Θst
XY

. Following the similar
procedure as shown in the proof of conditional shift case, we can write,

Iθ =

nIt,XY ,U +mIs,XY + It,XY nITt,U 0

nIt,U nIt,Y,U + It,Y 0
0 0 mIs,Y

 (166)

and

Ĩθ =

(n+ 1)It,XY ,U +mIs,XY (n+ 1)ITt,U 0

(n+ 1)It,U (n+ 1)It,Y,U 0
0 0 mIs,Y

 . (167)

50



On Causality in Domain Adaptation and Semi-Supervised Learning

where It,U is defined in (154). We first consider the case where m = cnp for some p ≥ 1, as
n goes to infinity, we define the matrices ∆U = It,XY ,U − ITt,UI

−1
t,Y,UIt,U and ∆s = Is,XY , then

the expected regret can be calculated by using the following argument

det(I +
1

n
A) = 1 +

1

n
Tr(A) + o(1/n). (168)

Then,

R(b) =
1

2
log det(1 +

1

n+ 1
(It,Y − It,Y,U )I−1

t,Y,U ) (169)

+
1

2
log det(It,XY − It,XY ,U + (n+ 1)∆U + cnp∆s) (170)

− 1

2
log det((n+ 1)∆U + cnp∆s) + o(

1

m ∨ n
) (171)

=
1

2
log det(1 +

1

n+ 1
(It,Y − It,Y,U )I−1

t,Y,U ) (172)

+
1

2
log(Ik′ +

1

cnp
(It,XY − It,XY ,U + (n+ 1)∆U )∆−1

s ) (173)

− 1

2
log(Ik′ +

1

cnp
((n+ 1)∆U∆−1

s )) + o(
1

m ∨ n
) (174)

�
(It,Y − It,Y,U )I−1

t,Y,U

n+ 1
+

Tr((It,XY − It,XY ,U + (n+ 1)∆U )∆−1
s ))

cnp
− Tr((n+ 1)∆U∆−1

s )

cnp

(175)

� 1

n
+

k′

cnp
(176)

the last asymptotic relationship is due to that It,Y � It,Y,U and It,XY � It,XY ,U as mentioned
in the conditional shift case. For the case 0 < p < 1, similarly we arrive at,

R(b) � 1

n+ 1
+

Tr((It,XY − It,XY ,U + cnp∆s)∆
−1
U ))

n+ 1
(177)

� 1

n
+
k′

n
. (178)

(179)

which completes the proof.

In the following, we consider the semi-supervised learning scenario as PS(Y ) = PS(Y )
and PS(X|Y ) = PT (X|Y ).
Proof Since the source and the target have the same distribution, we choose the prior
distribution as,

ω(Θs,Θt) = ω(Θst
Y )ω(Θst

XY
). (180)

Combining the proofs of labelling drift and target shift cases, we arrive at,

Iθ =

[
nIt,XY ,U +mIs,XY + It,XY nITt,U

nIt,U nIt,Y,U + It,Y +mIs,Y

]
= nIt +mIs + It,X,Y (181)
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and

Ĩθ =

[
(n+ 1)It,XY ,U +mIs,XY (n+ 1)ITt,U

(n+ 1)It,U (n+ 1)It,Y,U +mIs,Y

]
= (n+ 1)It +mIs. (182)

We first consider m = cnp for some p ≥ 1, as n goes to infinity, we define the matrices
∆U = ITt,XY ,U − It,UI

−1
t,Y,UIt,U and ∆s = Is,XY , then the regret can be calculated by,

R(b) =
1

2

log det(Iθ)

log det(̃Iθ)
+ o(

1

m ∨ n
) (183)

=
1

2
log det

(
Ik′+1 + (It,X,Y − It)((n+ 1)It + cnpIs)

−1
)

+ o(
1

m ∨ n
) (184)

�
Tr((It,X,Y − It)(n+1

cnp It + Is)
−1)

cnp
(185)

�k
′ + 1

np
(186)

due to that It,X,Y � It. Similarly for the case where 0 < p < 1, we have,

R(b) �
Tr((It,X,Y − It)( cn

p

n+1Is + It)
−1)

n+ 1
(187)

� k′ + 1

n
. (188)

As a consequence,

R(b) � k′ + 1

n ∨ np
. (189)

A.6 Proof of Lemma 13

Proof We write the minimax expected regret as,

min
b

max
θ∗s ,θ

∗
t

R(b) = min
Q

{
max
θs,θt
{D (Pθs,θt‖Q(θs, θt))}

}

= min
b

max
θs,θt


∫
Pθs,θt

(
DU,m
t , Dm

s , X
′
t, Y

′
t

)
log

 Pθt (Y ′
t |X ′

t)

Q
(
Y ′
t |D

U,m
t , Dm

s , X
′
t

)
 dDU,m

t dDm
s dX

′
tdY

′
t




(a)
= min

b

 max
ω(θs,θt)


∫
Pθs,θt

(
DU,m
t , Dm

s , X
′
t, Y

′
t

)
log

 Pθt (Y ′
t |X ′

t)

Q
(
Y ′
t |D

U,m
t , Dm

s , X
′
t

)
ω(θs, θt)dθsdθtdD

U,m
t dDm

s dX
′
tdY

′
t




(b)
= max

ω(θs,θt)

{
min
b

{∫
D
(
Pθt (Y ′

t |X ′
t) ‖Q

(
Y ′
t |D

U,m
t , Dm

s , X
′
t

))
ω(θs, θt)dθsdθtdD

U,m
t dDm

s dX
′
tdY

′
t

}}
= max
ω(θs,θt)

I(Y ′
t ; θs, θt|Dm

s , D
U,n
t , X ′

t),

where (a) follows as maximizing over θs and θt and is equivalent to maximizing over a distribution

over them and (b) follows from the minimax theorem, e.g., see Du and Pardalos (2013) for proof.
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