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Abstract

A scaled conjugate gradient method that accelerates existing adaptive methods utilizing
stochastic gradients is proposed for solving nonconvex optimization problems with deep
neural networks. It is shown theoretically that, whether with a constant or diminishing
learning rate, the proposed method can obtain a stationary point of the problem. Addi-
tionally, its rate of convergence with a diminishing learning rate is verified to be superior
to that of the conjugate gradient method. The proposed method is shown to minimize
training loss functions faster than the existing adaptive methods in practical applications
of image and text classification. Furthermore, in the training of generative adversarial net-
works, one version of the proposed method achieved the lowest Fréchet inception distance
score among those of the adaptive methods.

Keywords: adaptive method, conjugate gradient method, deep neural network, genera-
tive adversarial network, nonconvex optimization, scaled conjugate gradient method

1. Introduction

Nonconvex optimization is needed for neural networks and learning systems. Various meth-
ods that use deep neural networks have been reported. In particular, stochastic gradient
descent (SGD) (Robbins and Monro, 1951) is a simple deep-learning optimizer that in the-
ory can be applied to nonconvex optimization in deep neural networks (Fehrman et al.,
2020; Scaman and Malherbe, 2020; Chen et al., 2020; Loizou et al., 2021).

Momentum methods (Polyak, 1964; Nesterov, 1983) and adaptive methods are powerful
deep-learning optimizers for accelerating SGD. The adaptive methods include, for example,
adaptive gradient (Adagrad) (Duchi et al., 2011), root mean square propagation (RMSprop)
(Tieleman and Hinton, 2012), adaptive moment estimation (Adam) (Kingma and Ba, 2015),
adaptive mean square gradient (AMSGrad) (Reddi et al., 2018), and Adam with decoupled
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weight decay (AdamW) (Loshchilov and Hutter, 2019). In (Chen et al., 2019), generalized
Adam (GAdam), which includes Adagrad, RMSprop, and AMSGrad, was proposed for non-
convex optimization. Adapting step sizes based on belief in observed gradients (AdaBelief)
(Zhuang et al., 2020) is a recent deep-learning optimizer for nonconvex optimization. Con-
vergence rates for SGD (Scaman and Malherbe, 2020) and the adaptive methods (Chen
et al., 2019; Zhuang et al., 2020) reported in recent papers are summarized in Table 1. Note
that “LR” in Table 1 means learning rate.

Table 1: Comparison of convergence rates for deep-learning optimizers used in nonconvex
optimization

Algorithm
Nonconvex optimization

Constant LR Diminishing LR

SGD (Scaman and Malherbe, 2020) O
(

1
N

)
+ C O

(
1√
N

)
GAdam (Chen et al., 2019) ——— O

(
logN√
N

)
AdaBelief (Zhuang et al., 2020) ——— O

(
logN√
N

)
CG (Iiduka and Kobayashi, 2020) ——— O

(√
logN
N

)
SCG (Proposed) O

(
1
N

)
+ C1α+ C2β + C3δ O

(
1√
N

)
The constant learning rate rule requires that αn = α > 0, βn = β ≥ 0, and δn = δ ≥ 0,

whereas the diminishing learning rate rule requires that αn = O(1/
√
n), βn = βn, and

δn = δn. C, C1, C2, and C3 are positive constants independent of the learning rate and
number of iterations N . See Section 2 for an explanation of the mathematical notation.
The proposed method (SCG) can cover all the algorithms in Table 1 (see Section 1.3 for
details). Hence, it enables algorithms, such as GAdam, AdaBelief, and the CG method,
with diminishing learning rates achieve an O(1/

√
N) convergence rate (Theorem 3), which

is an improvement on the results in (Chen et al., 2019; Zhuang et al., 2020; Iiduka and
Kobayashi, 2020).

1.1 Motivation

1.1.1 Scaled conjugate gradient (SCG) method

The above-mentioned adaptive methods use the stochastic gradient of an observed loss
function at each iteration. Meanwhile, conjugate gradient (CG) methods can be applied
to large-scale nonconvex optimization (see Chapter 5.2 in (Nocedal and Wright, 2006)) by
using the following conjugate gradient direction, which is defined from the current gradient
G(xn, ξn) and the past direction Gn−1:

Gn := G(xn, ξn)− δnGn−1, (1)

where δn > 0 is a parameter. A CG method making use of this (Iiduka and Kobayashi, 2020)
was presented for solving nonconvex optimization problems with deep neural networks.
Table 1 shows that CG has a better convergence rate than those of GAdam and AdaBelief.
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There are useful methods for general nonconvex optimization based on CG methods,
such as scaled CG (SCG) and three-term CG (Møller, 1993; Zhang et al., 2006; Cheng,
2007; Andrei, 2007; Nakamura et al., 2013; Narushima and Yabe, 2014). The SCG method
generates the following search direction using a scaled current gradient and the past direc-
tion:

Gn := (1 + γn)G(xn, ξn)− δnGn−1, (2)

where γn ≥ 0 is a parameter. The SCG direction (2) with γn = 0 coincides with the
CG direction (1). Adding a scaled parameter γn allows us to accelerate CG methods for
nonconvex optimization (Nakamura et al., 2013; Narushima and Yabe, 2014). Accordingly,
the first motivation of this paper is to show whether the SCG method for solving nonconvex
optimization problems with deep neural networks, Algorithm 1 below, accelerates powerful
deep-learning optimizers, such as RMSprop, Adagrad, Adam, and AdamW.

Algorithm 1 Scaled conjugate gradient method

Require: (αn)n∈N ⊂ (0, 1), (βn)n∈N ⊂ [0, 1), (γn)n∈N ⊂ [0,+∞), (δn)n∈N ⊂ [0, 1/2], ζ ∈
[0, 1)

1: n← 0,x0,G−1,m−1 ∈ Rd,H0 ∈ Sd++ ∩ Dd
2: loop
3: Gn := (1 + γn)G(xn, ξn)− δnGn−1

4: mn := βnmn−1 + (1− βn)Gn
5: m̂n = (1− ζn+1)−1mn

6: Hn ∈ Sd++ ∩ Dd (see (8) and (9) for examples of Hn)
7: Find dn ∈ Rd that solves Hnd = −m̂n

8: xn+1 := xn + αndn
9: n← n+ 1

10: end loop

The existing SCG methods in (Møller, 1993; Andrei, 2007; Nakamura et al., 2013;
Narushima and Yabe, 2014) use the full gradient ∇f of the loss function f and, in particu-
lar, the SCG method in (Møller, 1993) can solve minimization problems in neural networks.
The novelty of Algorithm 1 compared with the existing SCG methods is its use of the
stochastic gradient G(xn, ξn) to make Algorithm 1 implementable for deep neural networks.

The second motivation related to the results in Table 1 is to clarify whether the SCG
method (Algorithm 1) can in theory be applied to nonconvex optimization in deep neu-
ral networks. A particularly interesting concern is whether, under a diminishing learning
rate rule, the SCG method converges faster than the CG method (Iiduka and Kobayashi,
2020). Moreover, we would like to clarify whether, under a constant learning rate rule, the
SCG method can in theory approximate a desirable solution to a nonconvex optimization
problem.

The third motivation is to provide evidence that the SCG method performs better than
the existing methods, such as RMSprop, Adagrad, Adam, AMSGrad, and AdamW, on
image and text classification tasks. This is because the usefulness of the SCG method
should be verified from the viewpoint of not only theory but also practice.
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1.2 Contribution

The present work makes theoretical and practical contributions. The theoretical contribu-
tion is to show that the SCG method, whether using a constant or diminishing learning rate,
can find a stationary point of an optimization problem (Theorems 1 and 3). Using constant
learning rates allows the SCG method to have approximately an O(1/N) convergence rate,
where N denotes the number of iterations (see Table 1). For diminishing learning rates, it
is shown that the rate of convergence of the SCG method is O(1/

√
N), which is better than

the O(
√

logN/N) rate of convergence of the CG method (Iiduka and Kobayashi, 2020) (see
Table 1).

The practical contribution is to provide numerical examples in which the SCG method
performs better than the existing adaptive methods at image classification, text classifica-
tion, and image generation (Section 4). In particular, it is shown that, for training ResNet-18
on the CIFAR-100 and CIFAR-10 datasets, the SCG method with constant learning rates
minimize the training loss functions faster than other methods. For the text classification
task, the SCG method and RMSProp minimize the training loss functions faster than other
methods. Since the SCG method uses the scaled conjugate gradient direction to accelerate
the existing adaptive methods, it is considered that the method used in the experiments
could optimize the training loss functions. In addition, among the adaptive methods, the
SCG method achieves the lowest FID score in training several GANs.

1.3 Related work

Algorithm 1 when γn = 0, i.e., the non-scaled CG method, coincides with the CG method
(Iiduka and Kobayashi, 2020) using Gn := G(xn, ξn) − δnGn−1. The CG method with
diminishing learning rates has O(

√
logN/N) convergence. Meanwhile, a convergence rate

analysis of the CG method with constant learning rates has not yet been performed (see
the “CG” column of Table 1). However, SCG with constant learning rates has O(1/N) +
C1α+C2β +C3δ convergence (see the “SCG” column of Table 1). Since SCG is CG when
γn = 0, the results of the present study also indicate that CG with constant learning rates
has O(1/N) + C1α+ C2β + C3δ convergence.

Algorithm 1 when γn = 0 and δn = 0 is a unification (Iiduka, 2022) of the adaptive
methods using Gn := G(xn, ξn), such as GAdam (Chen et al., 2019) and AdaBelief (Zhuang
et al., 2020) (see (Iiduka, 2022) for examples of Hn in step 6 of Algorithm 1). Our results
show that the adaptive methods (i.e., SCG with γn = 0 and δn = 0) using constant learn-
ing rates have O(1/N) + C1α + C2β convergence, which is the same as in (Iiduka, 2022).
Moreover, the adaptive methods using diminishing learning rates have O(1/

√
N) conver-

gence, the same as in (Iiduka, 2022). Therefore, our results are generalizations of the ones
in (Iiduka, 2022).

The remainder of the paper is as follows. Section 2 provides the mathematical pre-
liminaries. Section 3 presents convergence analyses of Algorithm 1. Section 4 provides
numerical performance comparisons of the proposed method with the existing adaptive
methods. Section 5 concludes the paper with a brief summary.
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2. Mathematical Preliminaries

2.1 Notation and definitions

N is the set of non-negative integers. For n ∈ N\{0}, define [n] := {1, 2, . . . , n}. The
d-dimensional Euclidean space Rd has an inner product 〈·, ·〉 inducing the norm ‖ · ‖. Sd
denotes the set of d × d symmetric matrices: Sd = {M ∈ Rd×d : M = M>}, where >

indicates the transpose operation. The set of d× d symmetric positive-definite matrices is
denoted as Sd++ = {M ∈ Sd : M � O}, and the set of d× d diagonal matrices is denoted as
Dd = {M ∈ Rd×d : M = diag(xi), xi ∈ R (i ∈ [d])}.

2.2 Mathematical modeling in deep learning and assumptions

Given a parameter x ∈ Rd and a data point z in a data domain Z, a machine-learning
model provides a prediction whose quality is measured by a differentiable nonconvex loss
function f(x; z). We aim to minimize the expected loss defined for all x ∈ Rd by

f(x) = Ez∼D[f(x; z)] = E[fξ(x)], (3)

where D is a probability distribution over Z, ξ denotes a random variable with distribu-
tion function P , and E[·] denotes the expectation taken with respect to ξ. A particularly
interesting example of (3) is the empirical average loss defined for all x ∈ Rd by

f(x;S) =
1

T

∑
i∈[T ]

f(x; zi) =
1

T

∑
i∈[T ]

fi(x), (4)

where S = (z1, z2, . . . , zT ) denotes the training set and fi(·) := f(·; zi) denotes the loss
function corresponding to the i-th training data zi.

This paper considers optimization problems under the following assumptions.

Assumption 2.1

(A1) fi : Rd → R (i ∈ [T ]) is continuously differentiable and f : Rd → R is defined for all
x ∈ Rd by

f(x) :=
1

T

T∑
i=1

fi(x),

where T denotes the number of samples.

(A2) For each iteration n, the optimizers estimate the full gradient vector ∇f(xn) as the
stochastic gradient vector G(xn, ξn) such that, for all x ∈ Rd, E[G(x, ξn)] = ∇f(x).

(A3) There exists a positive number M such that, for all x ∈ Rd, E[‖G(x, ξn))‖2] ≤M2.

Assumption 2.1 (A1) is a standard one for nonconvex optimization in deep neural net-
works (see, e.g., (Chen et al., 2019, (2))). Assumption 2.1 (A2) is needed for the optimizers
to work (see, e.g., (Chen et al., 2019, Section 2)), and Assumption 2.1 (A3) is used in the
analysis of optimizers (see, e.g., (Chen et al., 2019, A2)).
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2.3 Nonconvex optimization problem in deep neural networks

This paper deals with the following stationary point problem (Chen et al., 2019; Zhuang
et al., 2020; Iiduka, 2022) for nonconvex optimization to minimize f defined in (A1).

Problem 2.1 Under Assumption 2.1, we would like to find a stationary point x? of a
nonconvex optimization problem that minimizes f over Rd, i.e.,

x? ∈ X? :=
{
x? ∈ Rd : ∇f(x?) = 0

}
=
{
x? ∈ Rd : 〈x? − x,∇f(x?)〉 ≤ 0

(
x ∈ Rd

)}
.

The performance measure of the optimizers for Problem 2.1 is as follows:

E [〈xn − x,∇f(xn)〉] , (5)

where x ∈ Rd and (xn)n∈N is the sequence generated by the optimizer.
Let us discuss the relationship between the performance measure (5) and the squared

`2 norm of the gradient ∇f , which is the traditional performance measure. Assume that
(xn)n∈N is bounded (see (A6)). First, we consider the case where there exists n0 ∈ N
such that, for all n ∈ N and all x ∈ Rd, n ≥ n0 implies that E[〈xn − x,∇f(xn)〉] < 0.
The boundedness condition of (xn)n∈N ensures that there exists a subsequence (xni)i∈N of
(xn)n∈N such that (xni)i∈N converges to a point x̄ ∈ Rd. Hence, the continuity of ∇f (see
(A1)) guarantees that, for all x ∈ Rd,

E [〈x̄− x,∇f(x̄)〉] ≤ 0,

which, together with x := x̄−∇f(x̄), implies that

E
[
‖∇f(x̄)‖2

]
= 0.

Accordingly, the convergent point x̄ of (xni)i∈N is a stationary point of f . Next, we consider
the case where, for all n0 ∈ N, there exist n ∈ N and x ∈ Rd such that n ≥ n0 and
E[〈xn − x,∇f(xn)〉] ≥ 0. Then, there exists a subsequence (xnj )j∈N of (xn)n∈N such that,
for all j ∈ N, 0 ≤ E[〈xnj − x,∇f(xnj )〉]. The boundedness condition of (xn)n∈N ensures
that there exists a subsequence (xnjk

)k∈N of (xnj )j∈N such that (xnjk
)k∈N converges to a

point x̂ ∈ Rd. Hence, the continuity of ∇f (see (A1)) guarantees that

0 ≤ lim
k→+∞

E
[
〈xnjk

− x,∇f(xnjk
)〉
]
≤ E [〈x̂− x,∇f(x̂)〉] ≤ ε,

where ε > 0 is the precision. The definition of the inner product implies that, if ε is small
enough, then ‖∇f(x̂)‖ will be small.

Let x := x? be a stationary point of f and consider the following performance measure:

E [〈xn − x?,∇f(xn)〉] , (6)

which is a restricted measure of (5). When the optimizer can find x?, the inner product
of xn − x? and ∇f(xn) is positive. If the upper bound of (6) is small enough, then the
definition of the inner product implies that the optimizer has fast convergence. Hence, the
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performance measure (5) including (6) will be adequate for investigating the performances
of deep-learning optimizers.

Let us consider the case where f is convex (Kingma and Ba, 2015; Reddi et al., 2018).
In this case, Problem 2.1 involves doing the following:

Find a point x? such that f(x?) ≤ f(x) for all x ∈ Rd. (7)

The performance measure of Problem (7) is the regret, defined as

R(T ) :=

T∑
i=1

fi(xi)− Tf?,

where f? denotes the optimal value of Problem (7) and (xi)
T
i=1 is the sequence generated

by the optimizer. Let x? be a solution of Problem (7). When the upper bound of the
performance measure (5) is ε > 0, the convexity of f ensures that

E [f(xn)− f?] ≤ E [〈xn − x?,∇f(xn)〉] ≤ ε.

Accordingly, the performance measure (5) leads to the one E[f(xn) − f?] used for convex
optimization.

3. Convergence Analyses of Algorithm 1

3.1 Outline of our results

Let us outline our results (see also Table 1). First, we show that the SCG method (Algorithm
1) with constant learning rates ensures that there exist positive constants Ci (i = 1, 2, 3)
such that

1

n

n∑
k=1

E [〈xk − x,∇f(xk)〉] ≤ O
(

1

n

)
+ C1α+ C2β + C3δ

(see Theorem 1 and Table 1). This implies that, if f is convex, we have

R(T )

T
≤ O

(
1

T

)
+ C1α+ C2β + C3δ

(see Proposition 2). Next, we show that the SCG method (Algorithm 1) with diminishing
learning rates, such as αn = O(1/

√
n), gives

1

n

n∑
k=1

E [〈xk − x,∇f(xk)〉] ≤ O
(

1√
n

)
(see Theorem 3 and Table 1). This implies that, if f is convex,

R(T )

T
≤ O

(
1√
T

)
(see Proposition 4).
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3.2 Our detailed results

In order to analyze Algorithm 1, we will assume the following.

Assumption 3.1 For the sequence (Hn)n∈N ⊂ Sd++ ∩ Dd in Algorithm 1 defined by Hn :=
diag(hn,i), the following conditions are satisfied:

(A4) hn+1,i ≥ hn,i for all n ∈ N and all i ∈ [d];

(A5) For all i ∈ [d], a positive number Bi exists such that sup{E[hn,i] : n ∈ N} ≤ Bi.

Moreover,

(A6) D := maxi∈[d] sup{(xn,i − xi)2 : n ∈ N} < +∞ for x = (xi) ∈ Rd.

Section 4 provides examples of Hn satisfying Assumption 3.1 (A4) and (A5) (see also
(Iiduka, 2022)). Assumption 3.1 (A6) was used in the analysis of the existing adaptive
methods (see (Kingma and Ba, 2015; Reddi et al., 2018; Iiduka, 2022)).

The following is a convergence analysis of Algorithm 1 with constant learning rates. The
proof of Theorem 1 is given in Appendix A.

Theorem 1 Suppose that Assumptions 2.1 and 3.1 hold and let αn := α, βn := β, γn := γ,
and δn := δ. Then, Algorithm 1 is such that, for all x ∈ Rd,

lim inf
n→+∞

E [〈xn − x,∇f(xn)〉] ≤ B̃2M̃2

2b̃γ̃ζ̃2
α+

M̃
√
Dd

b̃γ̃ζ̃
β +

4M̂
√
Dd

γ̃ζ̃
δ,

where b̃ := 1−β, γ̃ := 1+γ, ζ̃ := 1−ζ, M̃2 := max{‖m−1‖2,M2}, B̃ := sup{maxi∈[d] h
−1/2
n,i : n ∈

N} < +∞, and M̂ := max{M2, ‖G−1‖2}. Moreover, for all x ∈ Rd and all n ∈ N,

1

n

n∑
k=1

E [〈xk − x,∇f(xk)〉] ≤
D
∑d

i=1Bi

2b̃αn
+
B̃2M̃2

2b̃ζ̃2
α+

M̃
√
Dd

b̃
β +

4M̂
√
Dd

γ̃
δ.

Theorem 1 implies the following proposition.

Proposition 2 Under the assumptions in Theorem 1 and the convexity of fi (i ∈ [T ]), we
have

lim inf
n→+∞

E [f(xn)− f?] ≤ B̃2M̃2

2b̃γ̃ζ̃2
α+

M̃
√
Dd

b̃γ̃ζ̃
β +

4M̂
√
Dd

γ̃ζ̃
δ,

where the positive constants are defined as in Theorem 1. Moreover, for all n ∈ N,

min
k∈[n]

E [f(xk)− f?] ≤
D
∑d

i=1Bi

2b̃αn
+
B̃2M̃2

2b̃ζ̃2
α+

M̃
√
Dd

b̃
β +

4M̂
√
Dd

γ̃
δ,

R(T )

T
≤
D
∑d

i=1Bi

2b̃αT
+
B̃2M̃2

2b̃ζ̃2
α+

M̃
√
Dd

b̃
β +

4M̂
√
Dd

γ̃
δ.

Additionally, if we define x̃n by x̃n := (1/n)
∑n

k=1 xk, then

E [f(x̃n)− f?] ≤
D
∑d

i=1Bi

2b̃αn
+
B̃2M̃2

2b̃ζ̃2
α+

M̃
√
Dd

b̃
β +

4M̂
√
Dd

γ̃
δ.
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The following is a convergence analysis of Algorithm 1 with diminishing learning rates.
The proof of Theorem 3 is given in Appendix A.

Theorem 3 Suppose that Assumptions 2.1 and 3.1 hold and let (αn)n∈N, (βn)n∈N, (γn)n∈N,
and (δn)n∈N satisfy

(C1)
∑+∞

n=0 αn = +∞,
∑+∞

n=0 α
2
n < +∞,

∑+∞
n=0 αnβn < +∞,

∑+∞
n=0 αnγn < +∞, and∑+∞

n=0 αnδn < +∞.

Then, Algorithm 1 satisfies, for all x ∈ Rd,

lim inf
n→+∞

E [〈xn − x,∇f(xn)〉] ≤ 0.

Let (αn)n∈N, (βn)n∈N, (γn)n∈N, and (δn)n∈N satisfy

(C2) limn→+∞ 1/(nαn) = 0, limn→+∞(1/n)
∑n

k=0 αk = 0, limn→+∞(1/n)
∑n

k=0 βk = 0,
limn→+∞(1/n)

∑n
k=0 δk = 0, and γn+1 ≤ γn (n ∈ N).

Then, for all x ∈ Rd,

lim sup
n→+∞

1

n

n∑
k=1

E [〈xk − x,∇f(xk)〉] ≤ 0.

In particular, for the case of αn := O(1/nη) (η ∈ (0, 1)), βn := βn, and δn := δn, Algorithm
1 exhibits convergence such that, for all x ∈ Rd and all n ∈ N,

1

n

n∑
k=1

E [〈xk − x,∇f(xk)〉] ≤
D
∑d

i=1Bi

2b̃n1−η
+

B̃2M̃2

2b̃ζ̃2(1− η)nη
+
βM̃
√
Dd

b̃(1− β)n
+

4δM̂
√
Dd

(1− δ)n
.

Theorem 3 implies the following proposition.

Proposition 4 Under the assumptions in Theorem 3 and the convexity of fi (i ∈ [T ]),
Algorithm 1 with (C1) satisfies

lim inf
n→+∞

E [f(xn)− f?] = 0.

Moreover, under (C2), any accumulation point of (x̃n)n∈N defined by x̃n := (1/n)
∑n

k=1 xk
almost surely belongs to the solution set of Problem (7). In particular, in the case of αn :=
O(1/nη) (η ∈ (0, 1)), βn := βn, and δn := δn, Algorithm 1 exhibits convergence such that,
for all n ∈ N,

min
k∈[n]

E [f(xk)− f?] ≤
D
∑d

i=1Bi

2b̃n1−η
+

B̃2M̃2

2b̃ζ̃2(1− η)nη
+
βM̃
√
Dd

b̃(1− β)n
+

4δM̂
√
Dd

(1− δ)n
,

R(T )

T
≤
D
∑d

i=1Bi

2b̃T 1−η
+

B̃2M̃2

2b̃ζ̃2(1− η)T η
+
βM̃
√
Dd

b̃(1− β)T
+

4δM̂
√
Dd

(1− δ)T
,

E [f(x̃n)− f?] ≤
D
∑d

i=1Bi

2b̃n1−η
+

B̃2M̃2

2b̃ζ̃2(1− η)nη
+
βM̃
√
Dd

b̃(1− β)n
+

4δM̂
√
Dd

(1− δ)n
.
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4. Numerical Experiments

4.1 Algorithms

We define HAdam
n by

vn := θvn−1 + (1− θ)Gn � Gn,

v̄n := (1− θn+1)−1vn,

v̂n := max{v̂n−1,i, v̄n,i},

HAdam
n := diag

(√
v̂n,i

)
,

(8)

where θ ∈ [0, 1), vn = v̂n = 0, and x�x := (x2
i )
d
i=1 for x = (xi)

d
i=1 ∈ Rd. Algorithm 1 with

Hn = HAdam
n and γn = δn = 0 resembles Adam (Kingma and Ba, 2015)1. We also define

HAMSGrad
n by

vn := θvn−1 + (1− θ)Gn � Gn,

v̂n := max{v̂n−1,i, vn,i},

HAMSGrad
n := diag

(√
v̂n,i

)
.

(9)

Algorithm 1 with Hn = HAMSGrad
n and γn = δn = 0 is equivalent to AMSGrad (Reddi et al.,

2018). We compared Algorithm 1 with SGD (Robbins and Monro, 1951), Momentum
(Polyak, 1964; Nesterov, 1983), RMSprop (Tieleman and Hinton, 2012), Adagrad (Duchi
et al., 2011), Adam (Kingma and Ba, 2015), AMSGrad (Reddi et al., 2018), and AdamW
(Loshchilov and Hutter, 2019) (see Sections A.5 and A.6 for details).

The experiments used two Intel(R) Xeon(R) Gold 6148 2.4-GHz CPUs with 20 cores
each and a 16-GB NVIDIA Tesla V100 900-Gbps GPU. The experimental code was written
in Python 3.7.5 using the NumPy 1.21.6 package and PyTorch 1.7.1 package. Python
implementations of the optimizers used in the numerical experiments are available at
https://github.com/iiduka-researches/202210-izumi.

4.2 Image classification

For image classification, we used a residual neural network (ResNet), a relatively deep model
derived from convolutional neural networks (CNNs). It was applied to the CIFAR-100
and CIFAR-10 benchmark datasets2 for image classification. These datasets respectively
comprise 100 and 10 classes and each contain 6,000 32 × 32 pixel images. Each dataset
was separated into 50,000 training images and 10,000 test images (1,000 randomly selected
images per class). A 18-layer ResNet was trained on CIFAR-100 and CIFAR-10 (He et al.,
2015). Following common practice in image classification, cross-entropy was used as the
loss function for model fitting.

The image classification results for Algorithm 1 with constant and diminishing learning
rates are shown in Figures 1, 2, 6, and 7, where panels (a), (b), and (c) respectively show

1. While Adam (Kingma and Ba, 2015) used Hn := diag(
√
v̄n,i), we use HAdam

n to guarantee convergence
(Iiduka, 2022).

2. https://www.cs.toronto.edu/~kriz/cifar.html
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the training loss function value, training classification accuracy score, and test classification
accuracy score as functions of the number of epochs. Figures 3, 4, 5, 8, 9, and 10 present
box-plot comparisons of Algorithm 1 with constant (panel (a)) and diminishing (panel (b))
learning rates in terms of the training loss function value, training classification accuracy
score, and test classification accuracy score. As shown, Algorithm 1 performed better
with constant learning rates than with diminishing learning rates. For example, looking at
Figures 1(a) and 3(a)(ResNet-18 on CIFAR-100), we see that SCGAdam performed best at
minimizing the training loss function. Moreover, looking at Figures 6(a) and 8(a)(ResNet-18
on CIFAR-10), SCGAdam performed best at minimizing the training loss function. Figures
1(c) and 5(a)(ResNet-18 on CIFAR-100) also show that, when the number of epochs was
200, Momentum had a higher test classification accuracy score than those of the other
algorithms. Meanwhile, AMSGrad and SCGAdam had 70 % test classification accuracy
and was faster than the other algorithms (see Figure 1(c)). Figure 6(c) (ResNet-18 on
CIFAR-10) also shows that, when the number of epochs was 200, Momentum had a higher
classification accuracy than those of the other algorithms, while SCGAdam had 90 % test
classification accuracy and was faster than the other algorithms.
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Figure 1: Results of Algorithm 1 with constant learning rates for training ResNet-18 on
the CIFAR-100 dataset: (a) training loss function value, (b) training classification accuracy
score, and (c) test classification accuracy score.

(a) (b) (c)

Figure 2: Results of Algorithm 1 with diminishing learning rates for training ResNet-18 on
the CIFAR-100 dataset: (a) training loss function value, (b) training classification accuracy
score, and (c) test classification accuracy score.

11



Sato, Izumi, and Iiduka

SG
D

Mom
en

tum

RMSp
rop

Ad
ag

rad

Ad
am

W
Ad

am

AMSG
rad

SC
GAd

am

SC
GAMSG

algorithms

10 3

10 2

10 1

100
tra

in
in

g 
lo

ss

(a) (b)

Figure 3: Box plots of training loss function values for Algorithm 1 for training ResNet-18
on the CIFAR-100 dataset: (a) constant learning rates and (b) diminishing learning rates.
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Figure 4: Box plots of training classification accuracy score for Algorithm 1 for training
ResNet-18 on the CIFAR-100 dataset: (a) constant learning rates and (b) diminishing
learning rates.
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Figure 5: Box plots of test classification accuracy score for Algorithm 1 for training ResNet-
18 on the CIFAR-100 dataset: (a) constant learning rates and (b) diminishing learning rates.
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Figure 6: Results of Algorithm 1 with constant learning rates for training ResNet-18 on
the CIFAR-10 dataset: (a) training loss function value, (b) training classification accuracy
score, and (c) test classification accuracy score.
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Figure 7: Results of Algorithm 1 with diminishing learning rates for training ResNet-18 on
the CIFAR-10 dataset: (a) training loss function value, (b) training classification accuracy
score, and (c) test classification accuracy score.
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Figure 8: Box plots of training loss function values for Algorithm 1 for training ResNet-18
on the CIFAR-10 dataset: (a) constant learning rates and (b) diminishing learning rates.
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Figure 9: Box plots of training classification accuracy score for Algorithm 1 for training
ResNet-18 on the CIFAR-10 dataset: (a) constant learning rates and (b) diminishing learn-
ing rates.
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Figure 10: Box plots of test classification accuracy score for Algorithm 1 for training ResNet-
18 on the CIFAR-10 dataset: (a) constant learning rates and (b) diminishing learning rates.
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4.3 Text classification

For text classification, we used long short-term memory (LSTM), an artificial recurrent
neural network (RNN) architecture used for deep learning that is based on natural language
processing. The IMDb dataset (Maas et al., 2011) was used; this dataset comprises 50,000
movie reviews and associated binary sentiment polarity labels. The data were split into
25,000 training sets and 25,000 test sets. The data were classified using a multilayer LSTM
neural network and AlphaDropout for overfitting suppression. This network included one
affine layer and employed a sigmoid activation function for the output. As with the image
classification, cross-entropy was used as the loss function for the model fitting.

The text classification results for Algorithm 1 with constant learning rates are shown
in Figures 11 and 12, where panels (a), (b), and (c) respectively show the training loss
function value, training classification accuracy score, and test classification accuracy score
as functions of the number of epochs. Figures 13, 14, and 15 present box-plot comparisons of
Algorithm 1 with constant (panel (a)) and diminishing (panel (b)) learning rates in terms of
the training loss function value, training classification accuracy score, and test classification
accuracy score. As was the case with the image datasets, Algorithm 1 performed better
with constant learning rates than with diminishing learning rates. For example, looking at
Figures 11(a), and 13(a), we see that SCGAdam, along with RMSprop, performed the best
at minimizing the training loss function.

(a) (b) (c)

Figure 11: Results of Algorithm 1 with constant learning rates on the IMDb dataset: (a)
training loss function value, (b) training classification accuracy score, and (c) test classifi-
cation accuracy score.

(a) (b) (c)

Figure 12: Results of Algorithm 1 with diminishing learning rates on the IMDb dataset:
(a) training loss function value, (b) training classification accuracy score, and (c) test clas-
sification accuracy score.
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(a) (b)

Figure 13: Box plots of training loss function values for Algorithm 1 on the IMDb dataset:
(a) constant learning rates and (b) diminishing learning rates.

(a) (b)

Figure 14: Box plots of training classification accuracy score for Algorithm 1 on the IMDb
dataset: (a) constant learning rates and (b) diminishing learning rates.

(a) (b)

Figure 15: Box plots of test classification accuracy score for Algorithm 1 on the IMDb
dataset: (a) constant learning rates and (b) diminishing learning rates.
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4.4 Image generation with GANs

Generative adversarial networks (GANs) consist of two deep neural networks, a generator
and a discriminator. The training of GANs is generally unstable because it is performed
simultaneously by the generator and the discriminator in a minimax game. Since SGD and
Momentum often cause mode collapse and their convergence is slow, most of the previous
studies (Goodfellow, 2017; Gulrajani et al., 2017; Salimans et al., 2016; Zhuang et al.,
2020) used adaptive methods such as Adam, RMSProp, and AdaBelief. Therefore, training
of GANs is suitable for testing the stability of the optimizer. Here, we trained a deep
convolutional GAN (DCGAN) (Radford et al., 2016) on the LSUN-Bedroom dataset (Yu
et al., 2015), SNGAN (Miyato et al., 2018) on the CIFAR10 dataset, and Wasserstein GAN
with gradient penalty (WGAN-GP) (Gulrajani et al., 2017) on the Tiny ImageNet dataset
(Ya Le, 2015) with some adaptive optimizers. We used the widely used Fréchet inception
distance (FID) (Heusel et al., 2017) to evaluate the quality of the generated images.

For training DCGAN, five 250,000-step trainings were performed with each optimizer
under the optimal hyperparameter settings; the results are summarized in Figure 16. Figure
17 compares the box plots of mean FID scores for the last 50,000 steps, where the decrease
in FID score has subsided. According to Figure 17, SCGAMSGrad achieves the lowest FID
score on average, with AdaBelief and SCGAdam having second and third lowest scores. See
Table 2 in Appendix A.7 for the hyperparameters used in the experiments.
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Figure 16: Mean FID (solid line) bounded by the maximum and minimum over 5 runs
(shaded area) for training DCGAN on the LSUN-Bedroom dataset for five optimizers. For
all runs, the batch size is 64 and the learning rate combinations are determined with a grid
search (see Figure 22).

For training SNGAN, five 150,000-step trainings were performed with each optimizer
under the optimal hyperparameter settings; the results are summarized in Figure 18. More-
over, Figure 19 compares the box plots of mean FID scores for the last 30,000 steps, where
the decrease in FID score has subsided. According to this figure, SCGAMSGrad achieves
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Figure 17: Box plots of mean FID scores for the last 50,000 steps in training DCGAN on
the LSUN-Bedroom dataset for five optimizers.

the lowest FID score on average. See Table 3 in Appendix A.7 for the hyperparameters
used in the experiments.
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Figure 18: Mean FID (solid line) bounded by the maximum and minimum over 5 runs
(shaded area) for training SNGAN on the CIFAR10 dataset for five optimizers. For all
runs, the batch size is 64 and the learning rate combinations are determined with a grid
search (see Figure 23).

For training WGAN-GP, five 400,000-step trainings were performed with each optimizer
under the optimal hyperparameter settings; the results are summarized in Figure 20. More-
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Figure 19: Box plots of mean FID scores for the last 30,000 steps in training SNGAN on
the CIFAR10 dataset for five optimizers.

over, Figure 21 compares the box plots of mean FID scores for the last 80,000 steps, where
the decrease in FID score has subsided. According to this figure, SCGAdam achieves the
lowest FID score on average. See Table 4 in Appendix A.7 for the hyperparameters used in
the experiments.
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Figure 20: Mean FID (solid line) bounded by the maximum and minimum over 5 runs
(shaded area) for training WGAN-GP on the Tiny ImageNet dataset for five optimizers.
For all runs, the batch size is 64 and the learning rate combinations are determined with a
grid search (see Figure 24).
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Figure 21: Box plots of mean FID scores for the last 80,000 steps in training WGAN-GP
on the Tiny ImageNet dataset for five optimizers.

All of the results show that the proposed method successfully trains unstable GANs
as well as other adaptive methods. They also show that the proposed method is able to
achieve the lowest FID for certain datasets and models.

5. Conclusion

We proposed a scaled conjugate gradient method for nonconvex optimization in deep learn-
ing. With constant learning rates, this method has approximately O(1/N) convergence,
and with diminishing learning rates, it has O(1/

√
N) convergence, which is an improve-

ment on the previous results reported in (Iiduka and Kobayashi, 2020). We also showed
that the proposed method is suitable for practical applications, in particular image and text
classification tasks. Using constant learning rates, it minimized the training loss functions
faster than other methods. Furthermore, our experimental results show that the proposed
method can achieve lowest FID score among adaptive optimizers in training several GANs.
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Appendix A. Appendix A

Suppose that H ∈ Sd++. The H-inner product of Rd is defined for all x,y ∈ Rd by 〈x,y〉H :=

〈x, Hy〉, and the H-norm is defined by ‖x‖H :=
√
〈x, Hx〉.

A.1 Lemmas

Lemma 5 Under (A1) and (A2), for all x ∈ Rd and all n ∈ N,

E
[
‖xn+1 − x‖2Hn

]
≤ E

[
‖xn − x‖2Hn

]
+ 2αn

[
βn

ζ̃n
E [〈x− xn,mn−1〉] +

β̃n

ζ̃n

{
(1 + γn)E [〈x− xn,∇f(xn)〉]

+ δnE [〈xn − x,Gn−1〉]
}]

+ α2
nE
[
‖dn‖2Hn

]
,

where ζ̃n := 1− ζn+1 and β̃n := 1− βn.

Proof Let x ∈ Rd and n ∈ N. We have that

‖xn+1 − x‖2Hn
= ‖xn − x‖2Hn

+ 2αn 〈xn − x,dn〉Hn
+ α2

n ‖dn‖
2
Hn
. (10)

The definition of the Hn-inner product and the definition of Algorithm 1 ensure that

〈xn − x,dn〉Hn
=

1

ζ̃n
〈x− xn,mn〉 =

βn

ζ̃n
〈x− xn,mn−1〉+

β̃n

ζ̃n
〈x− xn,Gn〉 .

The definition of Gn implies that

〈x− xn,Gn〉 = (1 + γn) 〈x− xn,G(xn, ξn)〉+ δn 〈xn − x,Gn−1〉 .

Define the history of process ξ0, ξ1, . . . to time step n by ξ[n] = (ξ0, ξ1, . . . , ξn). The condition
xn = xn(ξ[n−1]) (n ∈ N) and (A2) guarantee that

E [〈x− xn,G(xn, ξn)〉] = E
[
E
[
〈x− xn,G(xn, ξn)〉 |ξ[n−1]

]]
= E

[〈
x− xn,E

[
G(xn, ξn)|ξ[n−1]

]〉]
= E [〈x− xn,∇f(xn)〉] .

Accordingly, taking the expectation of (10) gives us the following lemma.

Lemma 6 (Iiduka, 2022, Lemma 2) Under (A3), for all n ∈ N,

E
[
‖mn‖2

]
≤ M̃2 := max

{
‖m−1‖2,M2

}
.

Additionally, under (A4), for all n ∈ N,

E
[
‖dn‖2Hn

]
≤ B̃2M̃2

ζ̃2
,

where ζ̃ := 1− ζ and B̃ := sup{maxi=1,2,...,d h
−1/2
n,i : n ∈ N} < +∞.
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Lemma 7 Under (A3), for all n ∈ N,

E
[
‖Gn‖2

]
≤ 16M̂2,

where M̂ := max{M2, ‖G−1‖2}.

Proof From the definition of Gn, we find that, for all n ∈ N,

E
[
‖Gn‖2

]
≤ 2(1 + γn)2E

[
‖G(xn, ξn)‖2

]
+ 2δ2

nE
[
‖Gn−1‖2

]
≤ 8M2 + 2δ2

nE
[
‖Gn−1‖2

]
,

where γn ≤ 1 and (A3) have been used. In the case of n = 0, we have that E[‖G0‖2] ≤
8M̂2 + 2(1/2)2M̂2 ≤ 16M̂2, where δn ≤ 1/2. Assume that E[‖Gn‖2] ≤ 16M̂2 for some n.
Then, we have

E
[
‖Gn+1‖2

]
≤ 8M2 + 2δ2

n+1E
[
‖Gn‖2

]
≤ 8M̂2 + 2 · 1

4
· 16M̂2 = 16M̂2.

Induction thus shows that, for all n ∈ N, E[‖Gn‖2] ≤ 16M̂2.

A.2 Theorem

Theorem 8 Let (κn)n∈N be defined by κn := αnβ̃n(1 + γn)/ζ̃n and (βn)n∈N satisfy κn+1 ≤
κn (n ∈ N) and lim supn→+∞ βn < 1. Define Vn(x) := E [〈xn − x,∇f(xn)〉] for all x ∈ Rd
and all n ∈ N. Under (A1)–(A6), for x ∈ Rd and n ≥ 1,

1

n

n∑
k=1

Vk(x) ≤
D
∑d

i=1Bi

2b̃αnn
+
B̃2M̃2

2b̃ζ̃2n

n∑
k=1

αk +
M̃
√
Dd

b̃n

n∑
k=1

βk +
4M̂
√
Dd

n

n∑
k=1

δk
1 + γk

,

where b̃ := 1− b, ζ̃ := 1− ζ, (βn)n∈N ⊂ (0, b] ⊂ (0, 1), M̃ , M̂ , and B̃ are defined in Lemmas
6 and 7, and D and Bi are defined in Assumption 3.1.

Proof Fix x ∈ X arbitrarily. Lemma 5 guarantees that, for all n ≥ 1,

n∑
k=1

Vk(x) ≤ 1

2

n∑
k=1

1

κk

{
E
[
‖xk − x‖2Hk

]
− E

[
‖xk+1 − x‖2Hk

]}
︸ ︷︷ ︸

Kn

+
n∑
k=1

βk

β̃k(1 + γk)
E [〈x− xk,mk−1〉]︸ ︷︷ ︸
Bn

+

n∑
k=1

δk
(1 + γk)

E [〈xk − x,Gk−1〉]︸ ︷︷ ︸
∆n

+
1

2

n∑
k=1

αkζ̃k

β̃k
E
[
‖dk‖2Hk

]
︸ ︷︷ ︸

An

.

(11)
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From the definition of Kn and E[‖xn+1 − x‖2Hn
]/κn ≥ 0,

Kn ≤
E
[
‖x1 − x‖2H1

]
κ1

+
n∑
k=2

E
[
‖xk − x‖2Hk

]
κk

−
E
[
‖xk − x‖2Hk−1

]
κk−1

︸ ︷︷ ︸
K̃n

. (12)

Since Hk ∈ Sd++ exists such that Hk = H
2
k, we have ‖x‖2Hk

= ‖Hkx‖2 for all x ∈ Rd.
Accordingly, we have

K̃n = E

[
n∑
k=2

{∥∥Hk(xk − x)
∥∥2

κk
−
∥∥Hk−1(xk − x)

∥∥2

κk−1

}]
.

From Hk = diag(hk,i), for all k ∈ N and all x := (xi) ∈ Rd,

Hk = diag
(√

hk,i

)
and

∥∥Hkx∥∥2
=

d∑
i=1

hk,ix
2
i . (13)

Hence, for all n ≥ 2,

K̃n = E

[
n∑
k=2

d∑
i=1

(
hk,i
κk
−
hk−1,i

κk−1

)
(xk,i − xi)2

]
.

From κk ≤ κk−1 (k ≥ 1) and (A4), we have hk,i/κk − hk−1,i/κk−1 ≥ 0 (k ≥ 1, i ∈ [d]).
Accordingly, (A6) implies that, for all n ≥ 2,

K̃n ≤ DE

[
n∑
k=2

d∑
i=1

(
hk,i
κk
−
hk−1,i

κk−1

)]
= DE

[
d∑
i=1

(
hn,i
κn
− h1,i

κ1

)]
.

Therefore, (12), E[‖x1 − x‖2H1
]/κ1 ≤ DE[

∑d
i=1 h1,i/κ1], and (A5) imply, for all n ∈ N,

Kn ≤ DE

[
d∑
i=1

h1,i

κ1

]
+DE

[
d∑
i=1

(
hn,i
κn
− h1,i

κ1

)]
≤ D

κn
E

[
d∑
i=1

hn,i

]
≤ D

κn

d∑
i=1

Bi.

Moreover, from γn, ζ ≥ 0 and b̃ := 1− b,

κn :=
αnβ̃n(1 + γn)

ζ̃n
≥ b̃αn.

Hence,

Kn ≤
D
∑d

i=1Bi

b̃αn
. (14)
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The Cauchy-Schwarz inequality and (A6) imply that

Bn ≤
n∑
k=1

βk

β̃k(1 + γk)
E [‖x− xk‖ ‖mk−1‖] ≤

√
Dd

b̃

n∑
k=1

βkE [‖mk−1‖] ≤
M̃
√
Dd

b̃

n∑
k=1

βk,

(15)

where the final inequality comes from Lemma 6 and Jensen’s inequality, i.e., for all n ∈ N,
E[‖mn‖] ≤ M̃ . A discussion similar to the one showing (15) implies that

∆n ≤
n∑
k=1

δk
1 + γk

E [‖xk − x‖ ‖Gk−1‖] ≤ 4M̂
√
Dd

n∑
k=1

δk
1 + γk

, (16)

where the final inequality comes from Lemma 7 and Jensen’s inequality, i.e., for all n ∈ N,
E[‖Gn‖] ≤ 16M̂ . Lemma 6 ensures that, for all n ∈ N,

An :=
n∑
k=1

αkζ̃k

β̃k
E
[
‖dk‖2Hk

]
≤ B̃2M̃2

b̃ζ̃2

n∑
k=1

αk. (17)

Therefore, the assertion of Theorem 8 follows from (11) and (14)–(17).

A.3 Proofs of Theorem 1 and Proposition 2

Proof [Proof of Theorem 1] Let x ∈ Rd, αn := α ∈ (0, 1), βn := β = b ∈ (0, 1),
γn := γ ∈ [0,+∞), and δn := δ ∈ [0, 1/2]. Define Xn := E[‖xn − x‖2Hn

]. Lemmas 5, 6, and
7 imply that, for all n ∈ N,

Xn+1 ≤ Xn +
(
Xn+1 − E

[
‖xn+1 − x‖2Hn

])
+

2αβM̃
√
Dd

ζ̃
− 2αb̃γ̃

1− ζn+1
Vn(x) +

8αb̃δM̂
√
Dd

ζ̃
+
α2B̃2M̃2

ζ̃2
.

From 1− ζn+1 ≤ 1 and (Xn+1 −Xn)ζn+1 ≤ Xn+1ζ
n+1, we have, for all n ∈ N,

Xn+1 ≤ Xn +Xn+1ζ
n+1 +

(
Xn+1 − E

[
‖xn+1 − x‖2Hn

])
+

2αβM̃
√
Dd

ζ̃
− 2αb̃γ̃Vn(x) +

8αb̃δM̂
√
Dd

ζ̃
+
α2B̃2M̃2

ζ̃2
.

(18)

We will show that, for all ε > 0,

lim inf
n→+∞

Vn(x) ≤ αB̃2M̃2

2b̃γ̃ζ̃2
+
βM̃
√
Dd

b̃γ̃ζ̃
+

4δM̂
√
Dd

γ̃ζ̃
+
Ddε

2b̃γ̃
+ ε. (19)

If (19) does not hold for all ε > 0, then there exists ε0 > 0 such that

lim inf
n→+∞

Vn(x) >
αB̃2M̃2

2b̃γ̃ζ̃2
+
βM̃
√
Dd

b̃γ̃ζ̃
+

4δM̂
√
Dd

γ̃ζ̃
+
Ddε0

2b̃γ̃
+ ε0. (20)
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Assumptions (A4) and (A5) guarantee that there exists n0 ∈ N such that n ∈ N with n ≥ n0

implies

E

[
d∑
i=1

(hn+1,i − hn,i)

]
≤ dαε0

2
, (21)

which, together with (13), (21), and (A6), implies that, for all n ≥ n0,

Xn+1 − E
[
‖xn+1 − x‖2Hn

]
≤ Ddαε0

2
. (22)

The condition ζ ∈ [0, 1) implies that there exists n1 ∈ N such that, for all n ≥ n1,

Xn+1ζ
n+1 ≤ Ddαε0

2
. (23)

Accordingly, (18), (22), and (23) ensure that, for all n ≥ max{n0, n1},

Xn+1 ≤ Xn +Ddαε0 − 2αb̃Vn(x)

+
2αβM̃

√
Dd

ζ̃
+

8αb̃δM̂
√
Dd

ζ̃
+
α2B̃2M̃2

ζ̃2
.

(24)

Meanwhile, there exists n2 ∈ N such that, for all n ≥ n2, lim infn→+∞ Vn(x)−ε0/2 ≤ Vn(x).
Hence, (20) guarantees that, for all n ≥ n2,

Vn >
αB̃2M̃2

2b̃γ̃ζ̃2
+
βM̃
√
Dd

b̃γ̃ζ̃
+

4δM̂
√
Dd

γ̃ζ̃
+
Ddε0

2b̃γ̃
+
ε0
2
. (25)

Therefore, (24) and (25) ensure that, for all n ≥ n3 := max{n0, n1, n2},

Xn+1 < Xn +Ddαε0 − 2αb̃γ̃

{
αB̃2M̃2

2b̃γ̃ζ̃2
+
βM̃
√
Dd

b̃γ̃ζ̃
+

4δM̂
√
Dd

γ̃ζ̃
+
Ddε0

2b̃γ̃
+
ε0
2

}
+

2αβM̃
√
Dd

ζ̃
+

8αb̃δM̂
√
Dd

ζ̃
+
α2B̃2M̃2

ζ̃2

= Xn − αb̃γ̃ε0 < Xn3 − αb̃γ̃ε0(n+ 1− n3),

which is a contradiction since the right-hand side of the final inequality approaches minus
infinity as n approaches positive infinity. Therefore, (19) holds for all ε > 0; that is, we
have

lim inf
n→+∞

Vn(x) ≤ αB̃2M̃2

2b̃γ̃ζ̃2
+
βM̃
√
Dd

b̃γ̃ζ̃
+

4δM̂
√
Dd

γ̃ζ̃
.

Theorem 8 implies the assertions in Theorem 1. This completes the proof.
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Proof [Proof of Proposition 2] Since fi is convex for i ∈ [T ], we have that, for all x ∈ Rd
and all n ∈ N,

E[f(xn)− f?] ≤ Vn(x),

min
k∈[n]

E[f(xk)− f?],E[f(x̃n)− f?] ≤ 1

n

n∑
k=1

Vk(x),

R(T ) =

T∑
t=1

(ft(xt)− ft(x?)) ≤
T∑
t=1

〈xt − x?,G(xt, ξt)〉.

Accordingly, Theorems 1 and 8 imply Proposition 2.

A.4 Proofs of Theorem 3 and Proposition 4

Proof [Proof of Theorem 3] Lemmas 5 and 6 imply that, for all x ∈ Rd and all k ∈ N,

2αkVk(x) ≤ Xk −Xk+1 +Xk+1ζ
k+1

+
(
Xk+1 − E

[
‖xk+1 − x‖2Hk

])
+
B̃2M̃2

ζ̃2
α2
k + 2αkβkE [〈x− xk,mk−1〉]

+ 2αkβ̃kδkE [〈xk − x,Gk−1〉]− 2{αkγk − αkβk(1 + γk)}Vk(x),

which in turn implies that

2αkVk(x) ≤ Xk −Xk+1 +X∗ζk+1

+DE

[
d∑
i=1

(hk+1,i − hk,i)

]
+
B̃2M̃2

ζ̃2
α2
k + 2M̃

√
Ddαkβk + 8M̂

√
Ddαkδk

+ 2F{αkγk + αkβk(1 + γk)},

where X∗ := sup{Xn : n ∈ N} and F := sup{|Vn(x)| : n ∈ N} are finite by (A1) and (A6).
Summing the above inequality from k = 0 to k = n implies that, for all x ∈ Rd,

2
n∑
k=0

αkVk(x) ≤ X0 +X∗
n∑
k=0

ζk+1 +DE

[
d∑
i=1

(hn+1,i − h0,i)

]

+
B̃2M̃2

ζ̃2

n∑
k=0

α2
k + 2M̃

√
Dd

n∑
k=0

αkβk

+ 8M̂
√
Dd

n∑
k=0

αkδk + 4F

n∑
k=0

αkγk

+ 2F

n∑
k=0

αkβk.
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From (A5), ζ ∈ [0, 1),
∑+∞

n=0 α
2
n < +∞,

∑+∞
n=0 αnβn < +∞,

∑+∞
n=0 αnγn < +∞, and∑+∞

n=0 αnδn < +∞, we have

+∞∑
k=0

αkVk < +∞, (26)

which, together with
∑+∞

n=0 αn = +∞, implies that

lim inf
n→+∞

Vn(x) ≤ 0.

Suppose that (αn)n∈N, (βn)n∈N, (γn)n∈N, and (δn)n∈N satisfy limn→+∞ 1/(nαn) = 0,
limn→+∞(1/n)

∑n
k=0 αk = 0, limn→+∞(1/n)

∑n
k=0 βk = 0, limn→+∞(1/n)

∑n
k=0 δk = 0,

and γn ≥ 0 (n ∈ N). Then, Theorem 8 implies that, for all x ∈ Rd,

lim sup
n→+∞

1

n

n∑
k=1

Vk(x) ≤ 0.

In the case of αn := 1/nη (η ∈ (0, 1)), βn := βn (β ∈ [0, 1)), δn := δn (δ ∈ [0, 1)), and a
monotone decreasing sequence (γn)n∈N, we have κn+1 ≤ κn (n ∈ N) and lim supn→+∞ βn <
1. We also have

lim
n→+∞

1

nαn
= lim

n→+∞

1

n1−η = 0,

1

n

n∑
k=1

αk ≤
1

n

(
1 +

∫ n

1

dt

tη

)
≤ 1

(1− η)nη
.

Furthermore,
∑n

k=1 βk ≤
∑+∞

k=1 βk = β/(1−β) and
∑n

k=1 δk ≤
∑+∞

k=1 δk = δ/(1−δ). There-
fore, Theorem 8 gives us the convergence rates in Theorem 3. This completes the proof.

Proof [Proof of Proposition 4] It is sufficient to show that any accumulation point of
(x̃n)n∈N belongs to X? almost surely. Theorem 6 and the proof of Proposition 5 imply
that limn→+∞ E[f(x̃n) − f?] = 0. Let x̂ ∈ Rd be an arbitrary accumulation point of
(x̃n)n∈N ⊂ Rd. Then, there exists (x̃ni)i∈N ⊂ (x̃n)n∈N such that (x̃ni)i∈N converges almost
surely to x̂. The continuity of f implies that E [f(x̂)− f?] = 0, and hence, x̂ ∈ X?. The
remaining assertions in Proposition 4 follow from the proof of Proposition 2.

A.5 Algorithms for image classification

A.5.1 ResNet-18 on CIFAR-100 dataset

The training of ResNet-18 on the CIFAR-100 dataset is based on the results in https:

//github.com/weiaicunzai/pytorch-cifar100.
Constant learning rates: A learning rate with cosine annealing was used (Loshchilov

and Hutter, 2017). The initial constant learning rates used in the experiments were deter-
mined with a grid search (α ∈ {10−3, 5× 10−3, 10−2, 5× 10−2, 10−1}).
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• SGD (Robbins and Monro, 1951): α = 5× 10−2

• Momentum3 (Polyak, 1964; Nesterov, 1983): α = 10−1, βn = 0.9, and the weight
decay is 5× 10−4

• RMSprop (Tieleman and Hinton, 2012): α = 10−2 and the parameter α is 0.9

• Adagrad (Duchi et al., 2011): α = 10−2

• AdamW (Loshchilov and Hutter, 2019): α = 10−3 and the weight decay is 10−2

• Adam (Kingma and Ba, 2015): Algorithm 1 with (8), α = 10−2, ζ = βn = 0.9,
θ = 0.999, and γn = δn = 0

• AMSGrad (Reddi et al., 2018): Algorithm 1 with (9), α = 10−3, ζ = 0, βn = 0.9,
θ = 0.999, and γn = δn = 0

• SCGAdam-C: Algorithm 1 with (8), α = 10−3, ζ = βn = 0.9, θ = 0.999, γn = 10−1,
and δn = 10−3

• SCGAMSG-C: Algorithm 1 with (9), α = 10−3, ζ = 0, θ = 0.999, βn = 0.9, γn = 10−1,
and δn = 10−3

Diminishing learning rates: All optimizers used αn = 1/
√
n.

• SGD (Robbins and Monro, 1951)

• Momentum (Polyak, 1964; Nesterov, 1983): βn = 1/2n

• RMSprop (Tieleman and Hinton, 2012): the parameter α is 1/2n

• Adagrad (Duchi et al., 2011):

• AdamW (Loshchilov and Hutter, 2019): the weight decay is 10−2 and βn = 1/2n

• Adam (Kingma and Ba, 2015): Algorithm 1 with (8), ζ = 0.9, θ = 0.999, βn = 1/2n,
and γn = δn = 0

• AMSGrad (Reddi et al., 2018): Algorithm 1 with (9), ζ = 0, θ = 0.999, βn = 1/2n,
and γn = δn = 0

• SCGAdam-D: Algorithm 1 with (8), ζ = 0.9, θ = 0.999, and βn = γn = δn = 1/2n

• SCGAMSG-D: Algorithm 1 with (8), ζ = 0, θ = 0.999, and βn = γn = δn = 1/2n

3. https://github.com/kuangliu/pytorch-cifar
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A.5.2 ResNet-18 on CIFAR-10 dataset

The training of ResNet-18 on the CIFAR-10 dataset is based on the results in https:

//github.com/kuangliu/pytorch-cifar.
Constant learning rates: A learning rate with cosine annealing was used (Loshchilov

and Hutter, 2017). The initial constant learning rates used in the experiments were deter-
mined with a grid search (α ∈ {10−3, 5× 10−3, 10−2, 5× 10−2, 10−1}).

• SGD (Robbins and Monro, 1951): α = 5× 10−2

• Momentum4 (Polyak, 1964; Nesterov, 1983): α = 10−1, βn = 0.9, and the weight
decay is 5× 10−4

• RMSprop (Tieleman and Hinton, 2012): α = 10−2 and the parameter α is 0.9

• Adagrad (Duchi et al., 2011): α = 10−2

• AdamW (Loshchilov and Hutter, 2019): α = 10−3 and the weight decay is 10−2

• Adam (Kingma and Ba, 2015): Algorithm 1 with (8), α = 10−2, ζ = βn = 0.9,
θ = 0.999, and γn = δn = 0

• AMSGrad (Reddi et al., 2018): Algorithm 1 with (9), α = 10−3, ζ = 0, βn = 0.9,
θ = 0.999, and γn = δn = 0

• SCGAdam-C: Algorithm 1 with (8), α = 10−3, ζ = βn = 0.9, θ = 0.999, γn = 10−1,
and δn = 10−2

• SCGAMSG-C: Algorithm 1 with (9), α = 10−3, ζ = 0, θ = 0.999, βn = 0.9, γn = 10−1,
and δn = 10−2

Diminishing learning rates: All optimizers used αn = 1/
√
n.

• SGD (Robbins and Monro, 1951)

• Momentum (Polyak, 1964; Nesterov, 1983): βn = 1/2n

• RMSprop (Tieleman and Hinton, 2012): the parameter α is 1/2n

• Adagrad (Duchi et al., 2011):

• AdamW (Loshchilov and Hutter, 2019): the weight decay is 10−2 and βn = 1/2n

• Adam (Kingma and Ba, 2015): Algorithm 1 with (8), ζ = 0.9, θ = 0.999, βn = 1/2n,
and γn = δn = 0

• AMSGrad (Reddi et al., 2018): Algorithm 1 with (9), ζ = 0, θ = 0.999, βn = 1/2n,
and γn = δn = 0

• SCGAdam-D: Algorithm 1 with (8), ζ = 0.9, θ = 0.999, and βn = γn = δn = 1/2n

• SCGAMSG-D: Algorithm 1 with (8), ζ = 0, θ = 0.999, and βn = γn = δn = 1/2n

4. https://github.com/kuangliu/pytorch-cifar
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A.6 Algorithms for text classification

A.6.1 LSTM on IMDb dataset

Constant learning rates: All optimizers used α = 10−3. The existing optimizers together
with their default values are in torch.optim5.

• SGD (Robbins and Monro, 1951)

• Momentum (Polyak, 1964; Nesterov, 1983): βn = 0.9

• RMSprop (Tieleman and Hinton, 2012): the parameter α is 0.99

• Adagrad (Duchi et al., 2011)

• AdamW (Loshchilov and Hutter, 2019): the weight decay is 10−2

• Adam (Kingma and Ba, 2015): Algorithm 1 with (8), ζ = βn = 0.9, θ = 0.999, and
γn = δn = 0

• AMSGrad (Reddi et al., 2018): Algorithm 1 with (9), ζ = 0, βn = 0.9, θ = 0.999, and
γn = δn = 0

• SCGAdam-C: Algorithm 1 with (8), ζ = βn = 0.9, θ = 0.999, γn = 1, and δn = 10−2

• SCGAMSG-C: Algorithm 1 with (9), ζ = 0, θ = 0.999, βn = 0.9, γn = 1, and
δn = 10−3

Diminishing learning rates: All optimizers used αn = 1/
√
n. The existing optimizers

together with their default values are in torch.optim.

• SGD (Robbins and Monro, 1951)

• Momentum (Polyak, 1964; Nesterov, 1983): βn = 1/2n

• RMSprop (Tieleman and Hinton, 2012): the parameter is 1/2n

• Adagrad (Duchi et al., 2011)

• AdamW (Loshchilov and Hutter, 2019): the weight decay is 10−2 and βn = 1/2n

• Adam (Kingma and Ba, 2015): Algorithm 1 with (8), ζ = 0.9, θ = 0.999, βn = 1/2n,
and γn = δn = 0

• AMSGrad (Reddi et al., 2018): Algorithm 1 with (9), ζ = 0, θ = 0.999, βn = 1/2n,
and γn = δn = 0

• SCGAdam-D: Algorithm 1 with (8), ζ = 0.9, θ = 0.999, and βn = γn = δn = 1/2n

• SCGAMSG-D: Algorithm 1 with (8), ζ = 0, θ = 0.999, and βn = γn = δn = 1/2n
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Table 2: Hyperparameters of the optimizer used in the training DCGAN in Section 4.4.

optimizer αD αG βG1 = βD1 βG2 = βD2 β1 and β2’s reference

Adam 0.0003 0.0001 0.5 0.999 (Radford et al., 2016)
AdaBelief 0.00003 0.0003 0.5 0.999 (Zhuang et al., 2020)
RMSProp 0.00003 0.0001 0 0.99
SCGAdam 0.0001 0.0003 0.5 0.999
SCGAMSGrad 0.00005 0.0005 0.5 0.999

Table 3: Hyperparameters of the optimizer used in the training SNGAN in Section 4.4.

optimizer αD αG βG1 = βD1 βG2 = βD2
Adam 0.0001 0.0001 0.5 0.999
AdaBelief 0.0001 0.0001 0.5 0.999
RMSProp 0.00005 0.0001 0 0.99
SCGAdam 0.0001 0.0003 0.5 0.999
SCGAMSGrad 0.0001 0.0003 0.5 0.999

Table 4: Hyperparameters of the optimizer used in the training WGAN-GP in Section 4.4.

optimizer αD αG βG1 = βD1 βG2 = βD2 β1 and β2’s reference

Adam 0.0003 0.0001 0.5 0.999 (Gulrajani et al., 2017)
AdaBelief 0.00005 0.0005 0.5 0.999 (Zhuang et al., 2020)
RMSProp 0.0003 0.0005 0 0.99
SCGAdam 0.0003 0.0001 0.5 0.999
SCGAMSGrad 0.0003 0.0001 0.5 0.999
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Figure 22: Analysis of the relationship between combination of learning rates and FID score
in training DCGAN on the LSUN-Bedroom dataset: discriminator learning rate αD on the
vertical axis and generator learning rate αG on the horizontal axis. The heatmap colors
denote the FID scores; the darker the blue, the lower the FID, meaning that the training
of the generator succeeded.
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Figure 23: Analysis of the relationship between combination of learning rates and FID
score in training SNGAN on the CIFAR10 dataset: discriminator learning rate αD on the
vertical axis and generator learning rate αG on the horizontal axis. The heatmap colors
denote the FID scores; the darker the blue, the lower the FID, meaning that the training
of the generator succeeded.
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Figure 24: Analysis of the relationship between combination of learning rates and FID score
in training WGAN-GP on the Tiny ImageNet dataset: discriminator learning rate αD on
the vertical axis and generator learning rate αG on the horizontal axis. The heatmap colors
denote the FID scores; the darker the blue, the lower the FID, meaning that the training
of the generator succeeded.
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A.7 Algorithms for image generation

The combinations of learning rates used in the experiments in Section 4.4 were determined
using a grid search. Figures 22-24 shows the results of the grid search.
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