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Abstract

In this paper, we study Discretized Neural Networks (DNNs) composed of low-precision
weights and activations, which suffer from either infinite or zero gradients due to the non-
differentiable discrete function during training. Most training-based DNNs in such scenar-
ios employ the standard Straight-Through Estimator (STE) to approximate the gradient
w.r.t. discrete values. However, the use of STE introduces the problem of gradient mis-
match, arising from perturbations in the approximated gradient. To address this problem,
this paper reveals that this mismatch can be interpreted as a metric perturbation in a
Riemannian manifold, viewed through the lens of duality theory. Building on information
geometry, we construct the Linearly Nearly Euclidean (LNE) manifold for DNNs, providing
a background for addressing perturbations. By introducing a partial differential equation
on metrics, i.e., the Ricci flow, we establish the dynamical stability and convergence of the
LNE metric with the L2-norm perturbation. In contrast to previous perturbation theo-
ries with convergence rates in fractional powers, the metric perturbation under the Ricci
flow exhibits exponential decay in the LNE manifold. Experimental results across various
datasets demonstrate that our method achieves superior and more stable performance for
DNNs compared to other representative training-based methods.
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Figure 1: Comparison of STE and our method. We denote the arrows and points as gra-
dients and weights, respectively. In particular, when a point falls on the grid
point, it means that the weight is discretized at this time. In the forward pass,
the continuous weight w is mapped to a discrete weight Q(w) via a discrete
function. In the backward pass, the gradient is propagated from ∂L/∂Q(w) to
∂L/∂w. (a) The STE simply copies the gradient, i.e., ∂L/∂w = ∂L/∂Q(w).
(b) Our method matches the gradient by introducing the proper metric gw, i.e.,
∂L/∂w = g−1

w ∂L/∂Q(w) in a Riemannian manifold.

1. Introduction

Discretized Neural Networks (DNNs) (Courbariaux et al., 2016; Li et al., 2016; Zhu et al.,
2016) have been proven to be efficient in computing, significantly reducing computational
complexity, storage space, power consumption, and resources (Chen et al., 2021). Consider-
ing a discretized neural network that can be well-trained, the gradient w.r.t. the continuous
weight1 w propagating through a discrete function Q(·), i.e., ∂L

∂w = ∂L
∂Q(w)

∂Q(w)
∂w , suffers

from either infinite or zero derivatives because the derivative ∂Q(w)/∂w is not calculable.
In the backward pass, one can obtain the gradient ∂L/∂Q(w), but must update the contin-
uous weight w using the gradient ∂L/∂w. Since the gradient ∂L/∂w can not be obtained
explicitly, the derivative ∂Q(w)/∂w serves as a bridge to calculate ∂L/∂w through the
standard chain rule.

In order to address the problem of either infinite or zero gradients caused by the
non-differentiable discrete function, Hinton (2012) first proposed the concept of Straight-
Through Estimator (STE). This estimator directly equates ∂L/∂w and ∂L/∂Q(w) in back-

1. In this paper, the continuous weight is relative to the neural network (its data type is full-precision).
And the discretized weight is relative to the discretized neural network (its data type is low-precision).
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propagation as if the derivative ∂Q(w)/∂w had been the identity function. Furthermore,
the rigorous definition of STE was developed by Bengio et al. (2013). This definition can
be summarized as: the gradient w.r.t. the discretized weight can be approximated by the
gradient w.r.t. the continuous weight with clipping, as shown in Figure 1(a). Subsequently,
Courbariaux et al. (2016) applied STE to binarized neural networks and provided an ap-
proximated gradient as follows:

∂L

∂w
=

∂L

∂ sign(w)
I(w),

where I(wi) : =

{
1 if |wi| ≤ 1
0 otherwise

and sign(wi) :=

{
+1 if wi ≥ 0
−1 otherwise

.

(1)

Clearly, I(·) is the indicator function, and sign(·) is the binary function. Note that the
discrete function Q(·) will degenerate to the binary function sign(·) in binarized neural
networks. In this context, ∂L/∂ sign(w) represents the gradient w.r.t. the binarized weight
in binarized neural networks. STE had been successfully implemented in the training of
binarized neural networks, and it was further extended to ternary neural networks (Li et al.,
2016) and arbitrary bit-width discretized neural networks (Zhou et al., 2016).

In contrast, Non-STE methods encompass all techniques that do not rely on STE, such
as those proposed by Hou et al. (2016), Bai et al. (2018), and Leng et al. (2018). However,
the learning process of Non-STE methods is heavily dependent on hyper-parameters (Chen
et al., 2019), such as weight partition portion in each iteration (Zhou et al., 2017) and penalty
setting in tuning (Leng et al., 2018). Consequently, STE methods are widely adopted in
DNNs due to their simplicity and versatility.

Nevertheless, the introduction of STE into DNNs inevitably leads to the problem of
gradient mismatch: the gradient w.r.t. the continuous weight is not strictly equal to the
gradient w.r.t. the discretized weight (Chen et al., 2019), compromising the training stability
of DNNs (Cai et al., 2017; Liu et al., 2018; Qin et al., 2020). Furthermore, the formula of
STE indicates that this problem can be alleviated by modifying the gradient.

Zhou et al. (2016) firstly proposed to transform the weight w into the new one w̃ via

w̃ =
tanh(w)

max(| tanh(w)|)
.

By discretizing the new weight w̃, the STE then acts on w̃. During back-propagation, the
gradient can be further computed as follows

∂L

∂w
=

∂L

∂Q(w̃)

1− tanh2(w)

max(| tanh(w)|)
.

The authors aim to manually redefine the indicator function I(w) as 1−tanh2(w)
max(| tanh(w)|) . This

modification is motivated by the fact that the function 1−tanh2(w)
max(| tanh(w)|) facilitates a smooth

transition, thereby preventing abrupt clipping of the indicator function near ±1. It is
remarkable that Chen et al. (2019) proposed to learn ∂L/∂w by a neural network, e.g.,
fully-connected layers or LSTM (Sak et al., 2014). Their specific approach is to use neural
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networks as a shared meta quantizer Mψ parameterized by ψ across layers to replace the
gradient via:

∂L

∂w
= Mψ

(
∂L

∂Q(w)
,w

)
∂w

∂w
,

where w is the weight from the meta quantizer. With the input of the gradient ∂L/∂Q(w),
the meta quantizer outputs a new gradient to match ∂L/∂w by updating the weight w in
the training process. Recently, Ajanthan et al. (2021) formulated the binarization of neural
networks as a constrained optimization problem by introducing a mirror descent frame-
work (Nemirovsky and Yudin, 1983). This method performs gradient descent in the dual
space (unconstrained space) with gradients computed in the primal space (discrete space).
Specifically, by mapping the primal variable w into the dual variable w̃ = tanh(βkw), the
gradient can be expressed as

∂L

∂w
=
∂L

∂w̃

(
1− tanh2(βkw)

)
.

As the hyper-parameter βk approaches infinity, w̃ gradually converges to sign(w) until the
corresponding neural network is fully binarized with an adaptive mirror map.

However, the method proposed by Zhou et al. (2016) only avoided abrupt clipping

of I(w) by using 1−tanh2(w)
max(| tanh(w)|) , which does not fundamentally alleviate the gradient mis-

match in essence. Subsequently, while Chen et al. (2019) suggested automatically matching
the gradient by learning a new neural network (a meta quantizer), it introduces addi-
tional errors in the gradient propagation due to extra weights from the meta quantizer,
thereby intensifying the problem of gradient mismatch. Furthermore, Ajanthan et al.
(2021) bypassed the problem of gradient mismatch by directly calculating the derivative
∂w̃/∂w =

(
1− tanh2(βkw)

)
, implying that this method does not maintain discrete weights

during training. Consequently, the problem of gradient mismatch still remains to be solved.

1.1 Contributions

In this study, we address the gradient mismatch between ∂L/∂w and ∂L/∂Q(w), treating
it as a perturbation phenomenon between these two gradients. By introducing the frame-
work of Riemannian geometry in Figure 1(b), we further regard the gradient mismatch as
a metric perturbation in a Riemannian manifold (Section 2.2) through the lens of duality
theory (Amari and Nagaoka, 2000). As a partial differential equation on metrics, the Ricci
flow (Sheridan and Rubinstein, 2006), is introduced, the metric perturbation can be expo-
nentially decayed in theory, providing a solution to the problem of gradient mismatch. The
main contributions of this paper are summarized in the following four aspects:

• We propose the LNE manifold endowed with the LNE metric, which is a special form
of Ricci-flat metrics in essence. According to the information geometry (Amari, 2016),
we construct LNE manifolds for neural networks, providing a background for dealing
with perturbations.

• We reveal the stability of LNE manifolds under the Ricci-DeTurck flow with the L2-
norm perturbation on the basis of the connection between the Ricci-DeTurck flow
and the Ricci flow. In this way, any Ricci flow starting close to the LNE metric exists
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for all time and converges to the LNE metric. This stands in contrast to previous
perturbation theories, where the convergence rate is in fractional powers. Instead,
the metric perturbation under the Ricci flow exhibits exponential decay in the LNE
manifold, providing theoretical support for effectively solving the problem of gradient
mismatch.

• Based on the appealing characteristics of LNE manifolds under Ricci flow, a novel
DNNs with the acceptable complexity, i.e., Ricci Flow Discretized Neural Network
(RF-DNN) is developed. In practice, we calculate the Ricci curvature in such a way
that the selection of coordinate systems is related to the input transformations of
neural networks. In essence, the discrete Ricci flow is employed to overcome the
problem of gradient mismatch.

• The experiments are implemented on several classification benchmark datasets and
network structures. Experimental results demonstrate the effectiveness of RF-DNN
compared with other representative training-based methods.

1.2 Overall Organization

The paper is organized as follows. In Section 2, we introduce the motivation and Ricci flow.
Section 3 deduces the corresponding LNE manifold for neural networks based on the geo-
metric structure measured by the LNE divergence. The stability of LNE manifolds under
the Ricci-DeTurck is proved in Section 4. In Section 5, we calculate the approximated gradi-
ent in the LNE manifold to avoid solving the inverse of the LNE metric. Section 6 presents
how to introduce discrete Ricci flow into DNNs and yields the corresponding algorithm.
The experimental results and ablation studies for RF-DNNs are presented in Section 7.
Section 8 concludes the entire paper. Proofs are provided in the Appendices.

The Ricci flow on Ricci-flat metrics is known in the literature to be stable for C0 pertur-
bations in the L∞-norm (Section 2.4). Based on a Bregman divergence (Bregman, 1967),
the LNE metric, a special form of Ricci-flat metrics, is introduced in neural networks via the
LNE divergence (Theorem 10). The stability of LNE manifolds under the Ricci-DeTurck
flow is then proved (Corollary 29 and Theorem 15). A discretization of the Ricci flow is
therefore proposed, leading to a practical algorithm (RF-DNNs, Algorithm 2).

2. Motivation and Formulation

2.1 Background

To establish the foundation for our study throughout the paper, we begin with the basic
background for feed-forward DNNs, drawing from the work by Martens and Grosse (2015).
Important notations are listed in Appendix B.

A neural network can be regarded as a function that transforms the input a0 into the
output al through a series of l layers. For the i-th layer (i ∈ {1, 2, . . . , l}), we denote W i as
the weight matrix, si as the vector of these weighted sum, and ai as the vector of output
(also known as the activation). Each layer receives vectors of a weighted sum of the input
from the previous layer and calculates their output through a nonlinear function. Note that
we ignore the bias vector for brevity.
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For a DNN, the introduction of a discrete function Q(·) is necessary to discretize the
weight matrix W i and the activation vector ai. We denote the discretized weight matrix as
Ŵ i = Q(W i) and the discretized activation vector as âi = Q(ai). Then, the feed-forward
of DNNs at each layer is given as follows:

si = Ŵ iâi−1

ai = f(si)

âi = Q(ai)

(2)

where f is a nonlinear (activation) function. The vectorized weights in each layer, before
and after discretization, are denoted as w and ŵ, respectively. Additionally, we define the

discretized parameter vector as ξ̂ =

[
vec
(
Ŵ 1

)>
, vec

(
Ŵ 2

)>
, . . . , vec

(
Ŵ l

)>]>
, which

consists of all of the network’s parameters concatenated together, where vec(·) is the oper-
ator that vectorizes a matrix by stacking their columns together. Similarly, the parameter

vector is defined as ξ =
[
vec (W 1)> , vec (W 2)> , . . . , vec (W l)

>
]>

. Details regarding the

back-propagation of DNNs are provided in later sections.

2.2 Motivation

We consider that the source of the gradient mismatch lies in a perturbation phenomenon
between ∂L/∂w and ∂L/∂Q(w) in terms of linear operators, expressed as:

∂L

∂w
=

∂L

∂Q(w)
+ P

(
∂L

∂Q(w)

)
, (3)

where the perturbation function P takes the gradient ∂L/∂Q(w) as input, with P (∂L/∂Q(w))
being much smaller than ∂L/∂Q(w). In general, P (∂L/∂Q(w)) can be expressed as
P (∂L/∂Q(w)) = o (∂L/∂Q(w)). If the perturbation term P (∂L/∂Q(w)) can be signif-
icantly eliminated or decayed, an elegant solution to the gradient mismatch arises. Within
the framework of perturbation theory in linear spaces (Kato, 2013), the rate of convergence
for perturbations is typically expressed in fractional powers.

Inspired by the mirror descent framework2, one can map the parameter from the pri-
mal space to the dual space, and subsequently calculate the gradient in the dual space.
Naturally3, when the Riemannian metric structure is introduced by means of information
geometry, the gradient mismatch is conclusively viewed as a metric perturbation in a Rie-
mannian manifold. Specifically, we rewrite the gradient ∂L/∂w in Euclidean space as the
gradient ∂̃L/∂̃w in a Riemannian manifold. For the sake of simplicity, we use “∂̃” to denote
the derivative in a Riemannian manifold and “∂” to denote the derivative in Euclidean space.

2. Mirror descent induces non-Euclidean structure by solving iterative optimization problems using different
proximity functions. This algorithm is introduced by Nemirovsky and Yudin (1983), and analyzed
by Beck and Teboulle (2003).

3. Natural gradient descent selects the steepest descent along a Riemannian manifold by multiplying the
standard gradient by the inverse of the metric tensor (Amari, 1998).It is worth mentioning that mir-
ror descent and natural gradient descent are proven to be equivalent (Raskutti and Mukherjee, 2015),
implying that mirror descent represents the steepest descent direction along the Riemannian manifold
corresponding to the choice of Bregman divergence.
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The difference between these two gradients is governed by the inverse of the corresponding
metric tensor. The problem of gradient mismatch can be further expressed as:

∂̃L

∂̃w
= g−1

w

∂L

∂Q(w)
, (4)

where the perturbation item is implied in the metric gw, with the term ∂L
∂Q(w) representing

the gradient ∂L(w) as defined in Definition 1. Then the metric perturbation emerges, and
the perturbation at this time is referred to the deviation from the original metric. In this
way, we present the generalization of STE in a Riemannian manifold, which will degenerate
into the standard STE when the Riemannian metric g returns to the Euclidean metric δ.

Definition 1 (Amari, 1998) The steepest descent direction of L(w) in a Riemannnian
manifold, i.e., the natural gradient descent, is given by

∂̃L(w) = g−1
w ∂L(w),

where g−1 = (gij) is the inverse of the metric g = (gij) and ∂L(w) is the gradient:

∂L(w) =

[
∂L(w)

∂w1
, · · · , ∂L(w)

∂wn

]>
.

Subsequently, a key question arises: What kind of manifolds do we need to construct to
naturally and effectively handle metric perturbations? Or, what makes a manifold “good”
in the presence of perturbations? In practice, general relativity gives an excellent exam-
ple in nature of dealing with small gravitational perturbations within the framework of
a Riemannian manifold (Wald, 2010). To address the approximation in scenarios where
gravity is “weak”, the spacetime metric is nearly flat at this time in the context of general
relativity. This approximation is sufficient for most cases, except for phenomena involving
gravitational collapse and the large-scale structure of the universe. Assuming that the de-
viation γij of the actual spacetime metric gij = ηij + γij from a flat metric ηij is “small”,
the linearized gravity is introduced to approximate the gravity in general relativity4. In
this context, “smallness” is defined such that the components of γij are much smaller than
1 in the global inertial coordinate system of ηij . Such a linearly nearly flat metric greatly
simplifies the calculation of “weak” gravity, and manifolds constructed with such metrics
are considered sufficient for approximating the manifold with perturbations.

Similarly, in this paper, we define the Linearly Nearly Euclidean (LNE) metric by re-
garding the Euclidean metric δij as the flat metric ηij . This metric plays a crucial role in
handling metric perturbations in the background of LNE manifolds for DNNs. Motivated

4. Firstly, when analyzing flat spacetime corresponding to “zero” gravity, the flat metric ηij can be em-
ployed. Secondly, when dealing with nearly flat spacetime indicative of “weak” gravity, one can use
the nearly flat metric gij = ηij + γij for analysis. In this case, gij and ηij are very close, allowing the
first-order Taylor expansion of this linearized form to yield sufficiently accurate results. For instance,
this metric form can accurately analyze the gravity produced by celestial bodies like the Earth or the
Sun. Thirdly, when faced with “strong” gravity resulting from the large-scale structure of the universe,
the linearized metric is no longer applicable due to the curved nature of spacetime.
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(Section 2.2) Gradient mismatch Metric perturbation
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Ricci flow 
(Section 4)

Stability of LNE manifolds

Perturbation bound
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Finite time stability
（Corollary 29）

Perturbation decay
(Corollary 32)

All time stability
(Theorem 15)

Figure 2: The overview of the theoretical ideas.

by the natural gradient descent connecting a neural network with the Riemannian metric5,
LNE metrics can be mathematically constructed in neural networks. To achieve this, our
method involves introducing a convex function to derive the LNE divergence with the as-
sistance of Bregman divergence (Bregman, 1967). The transition from a convex function to
the LNE divergence operates within the mirror descent framework. Subsequently, the step
from the LNE divergence to the LNE metric incorporates the concept of information geom-
etry. Consequently, the LNE metric emerges in the gradient of the LNE manifold, similar
to Definition 1. Finally, with the constructed manifold for DNNs in place, the remaining
problem is how to efficiently decay the metric perturbation. This is achieved by employing
a geometric tool, i.e., Ricci flow.

In addition, a series of proofs about stability illustrates that the Ricci flow can decay
the metric perturbation in the cases of Ricci-flat metrics. Therefore, as long as we can
prove that a small perturbation of the LNE metric under the Ricci flow decays, the metric
perturbation can be alleviated, providing a theoretical solution for the problem of gradient
mismatch in the training of DNNs. In contrast to previous perturbation theories, where the
convergence rate is in fractional powers, the metric perturbation under the Ricci flow can

5. In the natural gradient descent, the Riemannian metric is expressed in the form of Fisher informa-

tion matrix, i.e., g =


E

[
vec
(

∂L
∂W 1

)
vec
(

∂L
∂W 1

)>]
· · · E

[
vec
(

∂L
∂W 1

)
vec
(

∂L
∂W l

)>]
...

. . .
...

E

[
vec
(

∂L
∂W l

)
vec
(

∂L
∂W 1

)>]
· · · E

[
vec
(

∂L
∂W l

)
vec
(

∂L
∂W l

)>]
, where Fisher

information matrix is associated with the weights from a neural network (Martens and Grosse, 2015).
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be exponentially decayed in the LNE manifold. Figure 2 give an overview of the theoretical
ideas to facilitate sorting out the solution steps.

2.3 Ricci Flow

Definition 2 (Sheridan and Rubinstein, 2006) A Riemannian metric on a smooth man-
ifoldM is a smoothly-varying inner product on the tangent space TpM at each point p ∈M,
i.e., a (0,2)-tensor which is symmetric and positive-definite at each point of M. One will
usually write g for a Riemannian metric, and gij for it coordinate representation. A mani-
fold together with a Riemannian metric, (M, g), is called a Riemannian manifold.

The concept of Ricci flow was first proposed by Hamilton (Hamilton et al., 1982) on
the Riemannian manifold M, building upon Definition 2 for a time-dependent metric g(t).
Given the initial metric g0, the Ricci flow is described by a partial differential equation that
evolves the metric tensor:

∂

∂t
g(t) = −2 Ric(g(t))

g(0) = g0

(5)

where Ric denotes the Ricci curvature tensor, with a detailed definition available in Ap-
pendix A. The purpose of the Ricci flow is to prove Thurston’s Geometrization Conjecture
and Poincaré Conjecture, guiding the evolution of the metric towards specific geometric
structures and topological properties (Sheridan and Rubinstein, 2006).

Corollary 3 (Sheridan and Rubinstein, 2006) The Ricci flow is strongly parabolic if
there exists δ > 0 such that for all covectors ϕ 6= 0 and all (symmetric6) hij = ∂

∂tgij(t) 6= 0,
the principal symbol of the differential operator −2 Ric satisfies

[−2 Ric](ϕ)(h)ijh
ij = gpq (ϕpϕqhij + ϕiϕjhpq − ϕqϕihjp − ϕqϕjhip)hij > δϕkϕ

khrsh
rs

where hij is the inverse of hij.

Theorem 4 (Ladyzhenskaia et al., 1988) Suppose that u(t) : M× [0, T ) → E is a time-
dependent section of the vector bundle E where M is a Riemannian manifold. If the system
of the Ricci flow is strongly parabolic at u0 where u0 = u(0) : M→ E, then there exists a
unique solution on the time interval [0, T ).

Combined with Corollary 3 and Theorem 4, one can determine the existence of a unique
solution of the Ricci flow over a short time by verifying whether it is strongly parabolic.
However, if we choose hij = ϕiϕj , it is clear that the left hand side of the inequality in
Corollary 3 is 0, thus the inequality can not hold. As a consequence, Ricci flow is not always
strongly parabolic, and this lack of guarantee for the existence of a solution is highlighted
by Theorem 4. In the following analysis, we delve into the non-parabolic nature and find
a solution based on the relationship between the Ricci flow and the Ricci-DeTurck flow.
The impact of its non-parabolic nature on different parts can be understood through the

6. The Riemannian metric gij is always symmetric based on Definition 2. Hence, hij = ∂
∂t
gij(t) is required

to be symmetric.
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linearization of the Ricci curvature tensor. We define the linearization of the Ricci curvature
as D[Ric] such that

D[Ric]

(
∂

∂t
gij(t)

)
=

∂

∂t
Ric(gij(t)).

Lemma 5 The linearization of −2 Ric can be rewritten as7

D[−2 Ric](h)ij = gpq∇p∇qhij +∇iVj +∇jVi +O(hij)

where Vi = gpq
(

1

2
∇ihpq −∇qhpi

)
and hij =

∂

∂t
gij(t).

(6)

Proof The proofs can be found in Appendix C.1.

By carefully observing Lemma 5, the impact on the non-parabolic nature of the Ricci
flow comes from the terms Vi and Vj (Sheridan and Rubinstein, 2006), rather than the term
gpq∇p∇qhij . On the other hand, the term O(hij) will have no contributions to the principal
symbol of −2 Ric, so we can ignore it in this problem. Next, we attempt to eliminate the
impact of the non-parabolic nature on the Ricci flow.

Using a time-dependent diffeomorphism ϕ(t) :M→M (with ϕ(0) = id), the pullback
metrics g(t) can be expressed as

g(t) = ϕ∗(t)ḡ(t), (7)

satisfying the Ricci flow equation, where ϕ∗(t) is the pullback through ϕ(t). The above
formula yields the new metric ḡ(t) via the pullback, and the terms Vi and Vj can be repa-
rameterized by choosing ϕ(t) to form the Ricci-DeTurck flow (w.r.t. ḡ(t)), which is strongly
parabolic. Furthermore, the solution is followed by the DeTurck Trick (DeTurck, 1983),
involving a time-dependent reparameterization of the manifold:

∂

∂t
ḡ(t) = −2 Ric(ḡ(t))− L ∂ϕ(t)

∂t

ḡ(t)

ḡ(0) = ḡ0,
(8)

See Appendix C.2 for details. Thus, the Ricci-DeTurck flow has a unique solution for a
short time. For the long time behavior, please refer to Appendix C.3.

2.4 Literature

For the Riemannian n-dimensional manifold (Mn, g) that is isometric to the Euclidean n-
dimensional space (Rn, δ), Schnürer et al. (2007) showed the stability of the Euclidean space
under the Ricci flow for a small C0 perturbation. Koch and Lamm (2012) demonstrated
the stability of the Euclidean space along with the Ricci flow in the L∞-norm. Moreover,
for the decay of the L∞-norm on Euclidean space, Appleton (2018) provided a proof from
another idea.

7. In this paper, we use the Einstein summation convention (for example, (AB)ji = Ak
iB

j
k). When the same

index appears twice in one term, once as an upper index and the other time as a lower index, summation
is automatically taken over this index even without the summation symbol.
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On the other hand, for a Ricci-flat metric with small perturbations, Guenther et al.
(2002) proved that such metrics converge under Ricci flow. Considering the stability of
integrable and closed Ricci-flat metrics, Sesum (2006) proved that the convergence rate is
exponential because the spectrum of the Lichnerowicz operator is discrete. Furthermore,
Deruelle and Kröncke (2021) demonstrated that an asymptotically locally Euclidean Ricci-
flat metric is dynamically stable under the Ricci flow, with the L2 ∩ L∞ perturbation on
non-flat and non-compact Ricci-flat manifolds. In our work, we discuss aspects related to
Ricci-flat manifolds.

3. Neural Networks in LNE Manifolds

The aim of this section is to bulid an LNE manifold via information geometry, laying the
foundation for the introduction of the Ricci flow. Specifically, we first introduce a convex
function (Equation (13)) to derive the LNE divergence (Theorem 10) with the assistance
of Bregman divergence (Definition 8). We then construct the LNE metric (Equation (15))
by incorporating the LNE divergence into neural networks. Consequently, the LNE metric
emerges in the steepest descent gradient (Lemma 11) of the LNE manifold. Certainly,
the mirror descent algorithm can equivalently establish the link between divergences and
gradients, but it lacks the geometric meaning (manifold and metric) crucial for our purposes.

3.1 Neural Network Manifold

A neural network is composed of a large number of neurons connected with each other.
The set of all such networks forms a manifold, where the weights represented by the neuron
connections can be regarded as the coordinate system.

Remark 6 Comparing straight lines in Euclidean space, geodesics are the straightest pos-
sible lines that we can draw in a Riemannian manifold. Given a geodesic, there exists a
unique non-Euclidean coordinate system. Once a curved coordinate system is selected in a
Riemannian manifold, the symmetric and positive-definite metric is also defined based on
Definition 2. This geometry-based metric can describe the properties of manifolds, such as
curvature (Helgason, 2001).

3.2 Euclidean Space and Divergence

From the viewpoint of information geometry, the metric can be deduced by the divergence
satisfying the certain criteria (Basseville, 2013), summarized in Definition 7.

Definition 7 (Amari, 2016) D[P : Q] is called a divergence when it satisfies the following
criteria:

(1) D[P : Q] ≥ 0,
(2) D[P : Q] = 0 when and only when P = Q,
(3) When P and Q are sufficiently close to each other, and their coordinates are denoted

by ξP and ξQ = ξP + dξ respectively, the Taylor expansion of the divergence can be written
as

D[ξP : ξQ] =
1

2

∑
i,j

gij(ξP )dξidξj +O(|dξ|3), (9)

11



Chen, Chen, Wang, Dai, Tsang and Liu

and the Riemannian metric gij is symmetric and positive-definite8, acting on ξP .

When P and Q are sufficiently close, expressed in coordinates as column vectors ξP and
ξQ based on Definition 7, the square of an infinitesimal distance ds2 between them can be
defined as:

ds2 = 2D[ξP : ξQ] =
∑
i,j

gij(ξP )dξidξj (10)

where dξ denotes a sufficiently small coordinate variation between the coordinates ξP and
ξQ. Here, we can ignore the third-order term O(|dξ|3) followed by Amari (2016) because
the second-order approximation can give sufficiently accurate results. A manifoldM is said
to be Riemannian when a postive-definite metric gij is defined onM, and the square of the
local distance between ξP and ξQ is given by Equation (10). Geometrically, the divergence
D[ξP : ξQ] provides the manifold with a Riemannian structure.

Using an orthonormal Cartesian coordinate system in Euclidean space, the Euclidean
divergence is defined as half of the square of the Euclidean distance between ξ and ξ′

DE [ξ : ξ′] =
1

2

∑
i

(ξi − ξ′i)2. (11)

In this context, the Riemannian metric gij degenerates into the Euclidean metric δij , re-
sulting in the squared infinitesimal distance ds2 expressed as:

ds2 = 2DE [ξ : ξ + dξ] =
∑
i

(dξ)2 =
∑
i,j

δijdξidξj . (12)

It is worth noting that the Euclidean metric δij is equivalent to the identity matrix I, and
we use the notation of metrics here for consistency with geometry theory conventions.

3.3 LNE Manifold and Divergence

Recall that9, in general relativity (Wald, 2010), the complete Riemannian manifold (M, g)
endowed with a linearly nearly flat spacetime metric is considered to address the Newtonian
limit through the linearized gravity. The form of this metric is gij = ηij + γij , where ηij
represents the Minkowski metric (background to special relativity in flat spacetime), and
γij denotes small perturbations. In practice, this theory is excellent for describing small
gravitational perturbations when gravity is “weak”.

Similarly, we define a metric gij = δij + γij in a Riemannian manifold, where δij repre-
sents a flat Euclidean metric. An adequate definition of “smallness” in this context is that
the components of γij are much smaller than 1 in the global inertial coordinate system of δij .
Therefore, we can systematically develop the LNE metric to address small perturbations.

3.3.1 Convex Function and Bregman Divergence

To construct the LNE manifold endowed with the LNE metric in the neural network, in
accordance with Definition 7, we introduce a divergence to express the LNE metric, drawing
an analogy to the relationship between the Euclidean metric and its divergence.

8. The components of a Riemannian metric in a coordinate basis take on the form of a symmetric and
positive-definite matrix in differential geometry (Helgason, 2001).

9. The link between the LNE manifold and general relativity can be found in Section 2.2.
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Figure 3: The divergence D[ξ : ξ′] is viewed as the distance between the convex function
Φ(ξ) and its tangent hyperplane z, where the supporting hyperplane with normal
vector n = ∇Φ(ξ′) at the point ξ′ is defined.

The construction of a divergence relies on finding a suitable convex function (Bubeck
et al., 2015). Here, we introduce a nonlinear function Φ(ξ) of coordinates ξ as the convex
function, possessing a specific geometric structure to fulfill the requirements for constructing
the LNE divergence. For a twice differentiable function, it is considered convex if and only
if its Hessian is positive-definite

H(ξ) =

(
∂2

∂ξi∂ξj
Φ(ξ)

)
.

Definition 8 (Bregman, 1967) The Bregman divergence DB[ξ : ξ′] is defined as the
difference between a convex function Φ(ξ) and its tangent hyperplane z = Φ(ξ′) + (ξ − ξ′) ·
∇Φ(ξ′), depending on the Taylor expansion at the point ξ′:

DB[ξ : ξ′] = Φ(ξ)− Φ(ξ′)− (ξ − ξ′) · ∇Φ(ξ′).

By drawing a tangent hyperplane that touches the convex function at the point ξ′

z = Φ(ξ′) + (ξ − ξ′) · ∇Φ(ξ′),

we can express the distance between the convex function Φ(ξ) and the tangent hyperplane
z as the Bregman divergence. Since Φ(ξ) is convex, the graph of Φ(ξ) is always above the
tangent hyperplane, touching it at ξ′. The relationship between Φ(ξ) and z is illustrated
in Figure 3, with z representing the vertical axis of the graph.

Remark 9 We show examples of Bregman divergence (Amari, 2016). For a convex func-
tion Φ(ξ) = 1/2

∑
i ξ

2
i in a Euclidean space, the Bregman divergence coincides with the

Euclidean divergence, equivalently, the square of the Euclidean distance. When considering
a convex function Φ(ξ) = −

∑
i log ξi, the Bregman divergence is equivalent to the Logarith-

mic divergence. For another convex function Φ(ξ) =
∑

i ξi log ξi satisfying
∑

i ξi = 1, the
Bregman divergence is the same as the KL divergence.
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3.3.2 LNE Divergence and Gradient

Similar to the Bregman divergence associated with a convex function, we aim to construct
a new convex function to derive the LNE divergence, from which the LNE metric naturally
emerges based on Definition 7. Inspired by the work of Ajanthan et al. (2021), we propose
a novel convex function that satisfies symmetry and allows the geometric construction of
an easy-to-compute metric with the linearly nearly Euclidean nature:

Φ(ξ) =
∑
i

1

τ2
log (cosh(τξi)) (13)

where τ is a constant parameter controlling the linearity closeness to Euclidean structure.

Theorem 10 By introducing a convex function Φ defined by Equation (13) into Defini-
tion 8, the LNE divergence between two points ξ and ξ′ can be expressed as:

DLNE [ξ′ : ξ] =
∑
i

[
1

τ2
log

cosh(τξ′i)

cosh(τξi)
− 1

τ
(ξ′i − ξi) tanh(τξi)

]
≈ 1

2

∑
i,j

[
δij −

(
tanh(τξ) tanh(τξ)>

)
ij
dξidξj

]
.

(14)

Proof The detailed proofs can be found in Appendix E.1.

Combined with Definition 7, it is evident that the LNE metric corresponding to the
LNE divergence is given by

g(ξ) = δij −
[
tanh(τξ) tanh(τξ)>

]
ij

=

1− tanh(τξ1) tanh(τξ1) · · · − tanh(τξ1) tanh(τξn)
...

. . .
...

− tanh(τξn) tanh(τξ1) · · · 1− tanh(τξn) tanh(τξn)

 . (15)

Building upon the concepts introduced in Section 3.1, we can leverage the parameters of
a neural network to construct the LNE metric (with the neural network’s parameter vector
ξ). Consequently, the neural network can be characterized within the LNE manifold, as
measured by the LNE divergence based on Theorem 10. The steepest descent gradient
in the LNE manifold is given by Lemma 11, resembling the natural gradient defined in
Definition 1.

Lemma 11 The steepest descent gradient measured by the LNE divergence is defined as

∂̃ξ = g(ξ)−1∂ξ =
[
δ − tanh(τξ) tanh(τξ)>

]−1
∂ξ. (16)

Proof The proofs can be found in Appendix E.2.

Within the constructed LNE manifold, the introduction of the Ricci flow facilitates the
decay of metric perturbations w.r.t. the LNE metric, which will be elaborated on in the
following section.

14
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4. Evolution of LNE Manifolds under Ricci Flow

This section focuses on LNE metrics under Ricci flow, aiming to demonstrate that the
evolution of LNE manifolds exhibits strong stability properties over time. Specifically, we
prove that the Ricci flow exponentially decays the L2-norm perturbation to the LNE metric.

4.1 LNE Metrics and Ricci Flow

To facilitate the handling of metric perturbations, we have presented the LNE metric g(ξ) in
Equation (15), which takes the form of Ricci-flat metrics (Guenther et al., 2002; Deruelle and
Kröncke, 2021). Furthermore, the definition of the LNE metric corresponds to the linearly
nearly Euclidean Ricci-flat metric as per Definition 12, building upon prior work of Deruelle
and Kröncke (2021). Notably, the equivalence of the LNE metric g(ξ) extends to either g0

under the Ricci flow or ḡ0 under the Ricci-DeTurck flow, as they are diffeomorphic10 to each
other based on Equation (7).

Definition 12 A complete Riemannian n-manifold (Mn, ḡ0) is said to be LNE with one
end of order ι > 0 if there exists a compact set K ⊂M, a radius r, a point x in M and a
diffeomorphism satisfying φ : M\K → (Rn\B(x, r))/SO(n). Note that B(x, r) is the ball
and SO(n) is a finite group acting freely on Rn\{0}. Then∣∣∣∂k(φ∗γ)

∣∣∣
δ

= O(r−ι−k) ∀k ≥ 0 (17)

holds on (Rn\B(x, r))/SO(n). The LNE metric ḡ0 can be linearly decomposed into a form
containing the Euclidean metric δ and the deviation γ:

ḡ0 = δ + γ. (18)

4.2 All Time Convergence for L2-norm Perturbations

Firstly, buliding upon previous proofs (Koiso, 1983; Besse, 2007), we can establish that
the LNE manifold (Mn, g0) is integral and linearly stable, as defined in Definition 13 and
Definition 14.

Definition 13 (Deruelle and Kröncke, 2021) A complete LNE n-manifold (Mn, g0) is said
to be linearly stable if the L2 spectrum of the Lichnerowicz operator Lg0 := ∆g0 + 2 Rm(g0)∗
is in (−∞, 0] where ∆g0 is the Laplacian, when Lg0 acting on dij satisfies

Lg0(d) = ∆g0d+ 2 Rm(g0) ∗ d
= ∆g0d+ 2 Rm(g0)ikljdmng

km
0 gln0 .

(19)

Definition 14 (Deruelle and Kröncke, 2021) A n-manifold (Mn, g0) is said to be integrable
if a neighbourhood of g0 has a smooth structure.

10. When a Ricci flow exists, a corresponding Ricci-DeTurck flow exists, and vice versa.
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Due to the diffeomorphic relationship between the Ricci flow and the Ricci–DeTurck
flow, we introduce a metric perturbation for the Ricci-DeTurck flow, and Equation (8) can
be further reformulated as follows:

∂

∂t
ḡ(t) = −2 Ric(ḡ(t))− L ∂ϕ(t)

∂t

ḡ(t)

ḡ(0) = ḡ0 + d
(20)

where d = ḡ(0)− ḡ0 is a metric perturbation deviated from the LNE metric ḡ0. In this way,
d(t)− d0(t) = ḡ(t)− ḡ0(t) holds because we define d0(t) = ḡ0(t)− ḡ0.

Theorem 15 Let (Mn, ḡ0) be the LNE n-manifold which is linearly stable and integrable.
For any metric ḡ(t) ∈ BL2(ḡ0, ε2) where a constant ε2 > 0, there is a complete Ricci–DeTurck
flow (Mn, ḡ(t)) starting from ḡ(t) converging to the LNE metric ḡ(∞) ∈ BL2(ḡ0, ε1) where
ε1 is a small enough constant.

Proof The proofs can be found in Appendix D.3.

According to Theorem 15, the L2-norm metric perturbation w.r.t. the LNE metric can
be dynamically decayed by the Ricci-DeTurck flow in all time. For more details, refer to
Appendix D (finite-time stability in Appendix D.1 and all-time stability in Appendix D.2).
By proving the finite time existence of the Ricci-DeTurck flow with L2-norm perturbations
(Corollary 29), we then establish the convergence of L2-norm perturbations w.r.t. the LNE
metric for all time under the Ricci-DeTurck flow (Theorem 15).

4.3 Perturbation Analysis

Following the analysis in (Sesum, 2006), we further obtain |ḡ(t) − ḡ0(∞)| < Ce−ε2t, indi-
cating exponential convergence of the metric perturbation. Consequently, it also exhibits
exponential convergence for g(t) under the Ricci flow, assuming the existence of a solution
of the Ricci flow. Recall that by reparameterizing ḡ(t) to g(t) = ϕ∗(t)ḡ(t) via the pullback,
the perturbation entirely originates from ḡ(t) and is independent of the time-dependent
diffeomorphism ϕ∗(t).

In Section 3, the metric g(ξ) = δij −
[
tanh(τξ) tanh(τξ)>

]
ij

constructed for the neural

network is a kind of LNE metrics (as per Definition 12), thereby ensuring the perturbation
for this metric undergoes exponential decay under the Ricci flow.

5. Discretized Neural Networks in LNE Manifolds

Up to this point, we have tackled the problem of gradient mismatch by constructing LNE
manifolds for neural networks (Section 3) and implementing an exponential decay mech-
anism for metric perturbations (Section 4). However, the practical computation of the
steepest descent gradient in the LNE manifold, as indicated by Lemma 11, poses challenges
due to the involovement of the inverse of the LNE metric. In this section, our objective is
to approximate the inverse of the LNE metric and sebsequently derive the approximated
gradient in the LNE manifold. This step is crucial for developing a practical algorithm to
train DNNs in the LNE manifold.
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5.1 Gradient Computation in Discretized Neural Networks

Recall that Courbariaux et al. (2016) applied STE to binarized neural networks, formulated
as in Equation (1). Subsequently, Zhou et al. (2016) extended STE to arbitrary bit-width
discretized neural networks. The generalized form of STE in discretized neural networks is
expressed as:

∂L

∂w
=

∂L

∂Q(w)
. (21)

Before introducing the LNE manifold to DNNs, a contradiction needs resolution. Ac-
cording to Lemma 11, the LNE manifold is defined based on the parameter ξ across all
layers in a neural network. However, back-propagation computes the gradient layer-by-
layer, specifically on the weight w of each layer. This misalignment prevents the direct
association of gradient updates with the LNE manifold. Fortunately, we can redefine the
LNE manifold layer-by-layer by substituting ξ withw, effectively defining the LNE manifold
for each layer. Building upon Lemma 11, the steepest descent gradient is then reformulated
as:

∂̃w = g−1(w)∂w =
[
δ − tanh(τw) tanh(τw)>

]−1
∂w, (22)

which can be used for the gradient computation in DNNs, i.e.,

∂̃L

∂̃w
=
[
δ − tanh(τw) tanh(τw)>

]−1 ∂L

∂Q(w)
. (23)

Furthermore, the proposed gradient, as described above, is part of our framework to ad-
dress the problem of gradient mismatch, based on Equation (4). In this context, the metric
is layer-by-layer LNE. However, the computation of the gradient involves the inverse of
the LNE metric, a process that demands significant computational resources. Hence, we
introduce two methods for approximating the gradient of DNNs in LNE manifolds: weak
approximation and strong approximation, respectively. The approximated gradient is de-
fined as the direction in parameter space that maximizes the objective’s variation per unit
change along the layer-by-layer LNE manifold.

5.2 Strong Approximation

Our objective is to approximate the inverse of the LNE metric and subsequently approximate
the gradient in Equation (23). Based on the universal approximation theorem (Cybenko,
1989; Hornik, 1991), which asserts that a continuous function on compact subsets can
be approximated by a neural network with a single hidden layer and a finite number of
neurons (Jejjala et al., 2020), we introduce a Multi-Layer Perceptron (MLP) neural network,
depicted in Figure 4, to minimize the loss function:

L̃ = ‖I − g(w)G‖2. (24)

For the n×n symmetric metric g(w), it can be decomposed into the combination of entries P
and A, where P consists of the elements of the lower triangular matrix, containing n(n−1)/2
real parameters, and A consists of the elements of the diagonal matrix, containing n real
parameters. Therefore, the matrix G can be effectively utilized to strongly approximate
the inverse of the metric g(w).
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Figure 4: The flow chart of strong approximation of g−1(w). The new entries P̃ and Ã
generated by the neural network constitute a matrix G, which is multiplied by
the metric g(w). As the loss function, defined by Equation (24), decreases, the
matrix G serves to approximate the inverse of the metric g(w).

5.3 Weak Approximation

In this subsection, we present a method for the weak approximation of the inverse of the
LNE metric with efficient calculations.

Definition 16 For A ∈ Rn×n, A is called diagonally dominant when it satisfies

∣∣aii∣∣ > n∑
j=1,j 6=i

∣∣aij∣∣, i = 1, 2, . . . , n.

Definition 17 If A ∈ Rn×n is a diagonally dominant matrix, then A is a nonsingular
matrix together, i.e., A−1 exists.

By considering the properties of the LNE metric, adjusting the parameter τ allows us
to easily ensure that the LNE metric g(w) is diagonally dominant based on Definition 16.
Moreover, the existence of g−1(w) can be guaranteed based on Definition 17. According to
Corollary 18, the weak approximation of the gradient in the LNE manifold can be calculated,
offering a convenient feature for accelerating the computation of the inverse.

Corollary 18 Based on Definition 16 and Definition 17, the weak approximation of the
gradient in the LNE manifold is defined as

∂̃w =
[
δ − tanh(τw) tanh(τw)>

]−1
∂w ≈

[
δ + tanh(τw) tanh(τw)>

]
∂w (25)

if the LNE metric is diagonally dominant.

Proof Considering the inverse of the LNE metric, due to the diagonally dominant property

in Definition 16 and Definition 17, we can approximate
[
δ − tanh(τw) tanh(τw)>

]−1
by
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ignoring the fourth-order small quantity
∑
O(ρaρbρcρd), i.e.,

[
δ − tanh(τw) tanh(τw)>

] [
δ + tanh(τw) tanh(τw)>

]
=

1− ρ1ρ1 −ρ1ρ2 · · ·
−ρ2ρ1 1− ρ2ρ2 · · ·

...
...

. . .


1 + ρ1ρ1 ρ1ρ2 · · ·

ρ2ρ1 1 + ρ2ρ2 · · ·
...

...
. . .


=

 1−
∑
O(ρaρbρcρd) ρ1ρ2 − ρ1ρ2 −

∑
O(ρaρbρcρd) · · ·

−ρ2ρ1 + ρ2ρ1 −
∑
O(ρaρbρcρd) 1−

∑
O(ρaρbρcρd) · · ·

...
...

. . .

 ≈ I.

The proof is completed.

5.4 Training

Building upon previous work (Courbariaux et al., 2016), we present a practical algorithm
for training DNNs in the LNE manifold. As outlined in Algorithm 1, this algorithm closely
resembles the general DNN training algorithm, with the key difference lying in Line 14.
Recall that, in Figure 1, conventional DNNs utilize STE to directly copy the gradient, i.e.,
∂̃W iL = ∂Ŵ i

L. In contrast, our method involves matching the gradient by introducing the
LNE metric. Moreover, we can practically compute this gradient in Line 14 using either
the strong approximation or weak approximation mentioned above.

6. Ricci Flow Discretized Neural Networks

In this section, we introduce Ricci flow discretized neural networks (RF-DNNs). The in-
troduction of the Ricci flow implies that the background of the discussed DNNs is the
LNE manifold. Our primary goal is to offer a practical solution for metric perturbations,
thereby addressing the problem of gradient mismatch. Thus, we will focus on the practical
calculation of discrete Ricci flow, rather than solely engaging in theoretical analysis.

To establish the connection between the Ricci flow and neural networks, we discretize
the Ricci flow and select a suitable coordinate system. In Section 3, we have established the
relationship between the LNE metric and neural networks for the left-hand side of the Ricci
flow. Notably, we utilize the form of the LNE metric in these calculations, and such metrics
at this stage incorporate perturbations. Moving to the right-hand side of the Ricci flow,
we need to compute the Ricci curvature tensor with the chosen coordinate system. This
coordinate system is important for linking Ricci curvature to neural networks. Specifically,
we define a method for calculating the Ricci curvature, where the selection of coordinate
systems is associated with input transformations. This implies that the Ricci curvature in
neural networks reflects the impact of different input transformations on the parameters.
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Algorithm 1 An algorithm for training DNNs in the LNE manifold. We denote the
gradient in the LNE manifold as ∂̃. For brevity, we omit the normalization operation (Ioffe
and Szegedy, 2015; Ba et al., 2016).

Input: A minibatch of inputs and targets (x = a0,y), ξ mapped to (W 1,W 2, . . . ,W l),

ξ̂ mapped to
(
Ŵ 1, Ŵ 2, . . . , Ŵ l

)
, a nonlinear function f , a constant factor τ and a

learning rate η.
Output: The updated discretized parameters ξ̂.

1: {Forward propagation}
2: for i = 1; i ≤ l; i+ + do
3: Discretize Ŵ i = Q(W i);
4: Compute si = Ŵ iâi−1;
5: Discretize âi = Q (f(si));
6: end for
7: {Loss derivative}
8: Compute L = L(y, z);

9: Compute ∂al
L = ∂L(y,z)

∂z

∣∣
z=âl

;

10: {Backward propagation}
11: for i = l; i ≥ 1; i−− do
12: Compute ∂siL = ∂aiL� f ′(si);
13: Compute ∂Ŵ i

L = (∇siL) â>i−1;

14: Compute ∂̃W iL = g−1(W i)∂Ŵ i
L based on Equation (23);

15: Compute ∂âi−1
L = Ŵ

>
i (∂siL);

16: end for
17: {The parameters update}
18: for i = l; i ≥ 1; i−− do
19: Update W i ←W i − η · ∂̃W iL;
20: end for

21: Update ξ̂ =

[
vec
(
Ŵ 1

)>
, vec

(
Ŵ 2

)>
, . . . , vec

(
Ŵ l

)>]>
;

6.1 Ricci Curvature in Neural Networks

Now, let’s consider the Ricci curvature tensor on the Riemannian metric g. According to
Appendix A, its coordinate form can be expressed as follows:

− 2 Ric(g) = −2Riikj = 2Rikij

= gip (∂i∂kgpj − ∂i∂jgpk + ∂p∂jgik + ∂p∂kgij) .
(26)

To establish a connection between the Ricci curvature and neural networks, we introduce a
method for calculating the Ricci curvature such that the selection of coordinate systems is
linked to input transformations. When the Ricci curvature is equal to zero, it implies that
different input transformations will not induce variations in the parameters.

Inspired by prior work (Kaul and Lall, 2019), we interpret the terms ∂i and ∂p as
changes representing translation and rotation of each input, respectively. Typically, data
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augmentation in real-world applications like image classification tasks (He et al., 2016;
Shorten and Khoshgoftaar, 2019) does not involve rotation. For the sake of fairness in
ablation studies, we focus on translation by discarding the index p, i.e., ∂p(∂jgik + ∂kgij) =
0. When considering either translation or rotation, gip degenerates into δip (the identity
matrix). Consequently, ∂i∂kg and ∂i∂jg can be treated as changes representing row and
column transformations of the input data w.r.t. the metric g, respectively. The Ricci
curvature can be rewritten as:

− 2 Ric(g) = ∂i∂kgpj − ∂i∂jgpk. (27)

Remark 19 The selection of i and p (as well as k and j) is arbitrary and can even be
represented in other coordinate systems. Here, we provide a specific geometric meaning by
considering the characteristic of the image classification task.
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Figure 5: Upon feeding the original image into the neural network and performing a forward
and backward pass on the linear layer to update the weights w, we construct the
metric structure g(w) based on Section 5.1. Furthermore, we subject the original
image to four distinct small translation transformations (k1, k2, j1, and j2) before
inputting them into the neural network. By sequentially performing a forward
and backward passes, we obtain four metric structures (g|k1 , g|k2 , g|j1 , and g|j2)
corresponding to these translations. The combination of these metrics allows us
to characterize the Ricci curvature Ric(g).

As shown in Figure 5 and leveraging Equation (27), we express the Ricci curvature with
coordinate systems using a difference equation:

− 2 Ric(g) =
g|k1 − g|k2
k1 − k2

− g|j1 − g|j2
j1 − j2

(28)

where we approximate partial derivatives with difference equations (Kaul and Lall, 2019),
i.e., ∂i∂kg = (g|k1 − g|k2)/(k1 − k2) and ∂i∂jg = (g|j1 − g|j2)/(j1 − j2) corresponding to the
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input translation dimensions k and j, respectively. Here, g|k1 , g|k2 , g|j1 , and g|j2 represent
four metric structures under different small translation transformations k1, k2, j1, and j2,
respectively. In general, (k1 − k2) and (j1 − j2) denote translations of fewer than 4 pixels,
aligning with common data augmentation practices (He et al., 2016).

6.2 Existence of Discrete Ricci Flow in Neural Networks

Recall that we considered the Ricci-DeTurck flow instead of the Ricci flow, as the solution of
the Ricci flow does not always exist, as discussed in Section 2.3. Assuming that the solution
of the Ricci flow exists in neural networks, we can utilize the Ricci flow to exponentially
decay the metric perturbation, as explained in Section 4.3.

In terms of the Ricci flow equation, we have previously examined the right-hand side,
namely, the Ricci curvature tensor. Now, we define the equivalent form of the left-hand side
of the Ricci flow using a difference equation:

∂

∂t
g(t) := g(t+ 1)− g(t), (29)

which represents the consecutive iterations in the training process, where t ∈ {0, 1, · · · , T −
1} is a uniform partition of the interval [0, T ], with T being the total number of iterations.
As the number of iterations T approaches infinity, the formula above holds.

Combining Equation (28) and Equation (29) in neural networks, we present the discrete
Ricci flow as a difference equation:

g(t+ 1)|k1 − g(t)|k1 =
g(t)|k1 − g(t)|k2

k1 − k2
− g(t)|j1 − g(t)|j2

j1 − j2
g(0)|k1 = δ − tanh(τw) tanh(τw)>

(30)

To ensure the existence of the solution of the discrete Ricci flow, we achieve this goal by
adding a regularization term to the loss function, constraining the discrete Ricci flow in
DNNs. Following Equation (30), we present the regularization term:

N =

∥∥∥∥g(t+ 1)|k1 − g(t)|k1 −
g(t)|k1 − g(t)|k2

k1 − k2
+
g(t)|j1 − g(t)|j2

j1 − j2

∥∥∥∥2

L2

, (31)

where g(t) is ε-close to the LNE metric g0 based on Definition 20. In other words, g(t) is
the LNE metric with perturbations.

Definition 20 (Sheridan and Rubinstein, 2006) Let g(t) be the metrics on the LNE mani-
fold. For ε > 0, BL2(g0, ε) is the ε-ball with respect to the L2-norm induced by g0 and centred
at g0, where any metric g(t) ∈ BL2(g0, ε) is ε-close to g0 if

(1 + ε)−1g0 ≤ g(t) ≤ (1 + ε)g0

in the sense of matrices.

By constraining the regularization term N in DNNs, the solution of the discrete Ricci
flow exists when N → 0. Simultaneously, the metric perturbation exponentially converges
(g(t)→ g0) as the discrete Ricci flow evolves.
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Algorithm 2 An algorithm for training our RF-DNNs in the LNE manifold. We introduce
a parameter α to balance the regularization and ensure the existence of the solution for the
discrete Ricci flow. For brevity, we omit the normalization operation (Ioffe and Szegedy,
2015; Ba et al., 2016).

Input: A minibatch of inputs and targets (x = a0,y), ξ mapped to (W 1,W 2, . . . ,W l),

ξ̂ mapped to
(
Ŵ 1, Ŵ 2, . . . , Ŵ l

)
, a nonlinear function f , a constant factor τ and a

learning rate η.
Output: The updated discretized parameters ξ̂.

1: {Forward propagation}
2: for i = 1; i ≤ l; i+ + do
3: Compute Ŵ i = Q(W i);
4: Compute si = Ŵ iâi−1;
5: Compute âi = Q (f(si));
6: end for
7: Compute the regularization term N based on Equation (31);
8: {Loss derivative}
9: Compute L = L(y, z) + α ·N ;

10: Compute ∂al
L = ∂L(y,z)

∂z

∣∣
z=âl

;

11: {Backward propagation}
12: for i = l; i ≥ 1; i−− do
13: Compute ∂siL = ∂aiL� f ′(si);
14: Compute ∂Ŵ i

L = (∇siL) â>i−1;

15: Compute ∂̃W iL = g−1
W i

(t)∂Ŵ i
L based on Equation (32);

16: Compute ∂âi−1
L = Ŵ

>
i (∂siL);

17: end for
18: {The parameters update}
19: for i = l; i ≥ 1; i−− do
20: Update W i ←W i − η · ∂̃W iL;
21: end for

22: Update ξ̂ =

[
vec
(
Ŵ 1

)>
, vec

(
Ŵ 2

)>
, . . . , vec

(
Ŵ l

)>]>
;

6.3 Algorithm Design

By imposing constraints on the discrete Ricci Flow in layer-by-layer LNE manifold, we can
effectively address the problem of gradient mismatch. Given that the background is the
LNE manifold, we can construct the satisfied gradient based on Equation (23). Note that,
at this point, the metric becomes time-dependent under the Ricci flow, i.e., gw(t). And we
obtain the gradient under the discrete Ricci flow as follows:

∂̃wL = g−1
w (t)∂Q(w). (32)

The overall process is shown in Algorithm 2. Compared with Algorithm 1, we have intro-
duced Line 7 and Line 15. In Line 7, the regularization term is calculated to ensure the
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existence of the solution for the discrete Ricci flow. On the other hand, in Line 15, the
gradient is computed in the LNE manifold under the discrete Ricci flow. This is in contrast
to Algorithm 1, which only calculates the gradient in the LNE manifold with perturba-
tions. Applying the Ricci flow indicates that the LNE manifold at this point is dynamic
and anti-perturbative.

Remark 21 In addition to using discretized weights and activations, DNNs need to store
non-discretized weights and activations for gradient updates. It is important to note that
the gradients of a DNN are non-discretized.

6.4 Complexity Analysis

Based on Algorithm 2, it is evident that the forward time complexity is approximately
O(n2), where the time complexities of Line 4 and Line 5 are about O(n2) and O(n), respec-
tively. In the backward pass, the time complexity of Line 13 is around O(n). Consequently,
the time complexities of computing the gradients w.r.t. the weights (Line 15) and activa-
tions (Line 17) are both approximately O(n2). Therefore, the backward time complexity is
roughly O(2n2). For the training process of a neural network, its total complexity is O(n2).

Since the computation of the Ricci curvature involves four different translations of input
data w.r.t. the metric, its time complexity is about O(n2). In this manner, the updated
weights are only used to calculate the constraints of the discrete Ricci flow, and the final
weights can be obtained by a subsequent backward pass. The time complexity of Line 16
is O(n2) when we use the weak approximation to calculate the gradient. Thus, the total
complexity of RF-DNN remains O(n2), which is consistent with that of a neural network.

7. Experiments

In this section, we conduct ablation studies to compare our RF-DNN11 trained from scratch
with other STE methods. Additionally, when evaluating the performance of the RF-DNN
with a pre-trained model, we compare it with several representative training-based methods
on classification benchmark datasets. All experiments are implemented in Python using
PyTorch (Paszke et al., 2019). The hardware environment includes an Intel(R) Xeon(R)
Silver 4214 CPU(2.20 GHz), GeForce GTX 2080Ti GPU, and 128GB RAM.

7.1 Experimental Settings

The two datasets used in our experiments are introduced as follows.

CIFAR datasets: There are two CIFAR benchmarks (Krizhevsky et al., 2009), each
consisting of natural color images with 32 × 32 pixels. Both datasets comprise 50k training
images, 10k test images, and a validation set of 5k images selected from the training set.
CIFAR-10 is organized into 10 classes, while CIFAR-100 has 100 classes. We apply a
standard data augmentation scheme (random corner cropping and random flipping), widely
used for these two datasets. Images are normalized during preprocessing using the means
and standard deviations of the channels.

11. For convenient gradient calculation, we utilize the weak approximation of the inverse of the LNE metric
in all experiments.
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ImageNet dataset: The ImageNet benchmark (Russakovsky et al., 2015) consists of
1.2 million high-resolution natural images, with a validation set containing 50k images.
These images are organized into 1000 object categories for training and re resized to 224
× 224 pixels before fed into the network. In the subsequent experiments, we report our
single-crop evaluation results using top-1 and top-5 accuracies.

We specify the discrete function, the composition of which significantly influences the
performance and computation of DNNs. Specifically, the discrete function can simplify
calculations, which vary depending on different discrete values, such as fixed-point multi-
plication, SHIFT operation (Elhoushi et al., 2019), and XNOR operation (Rastegari et al.,
2016), etc.

We denote Q1 as the 1-bit discrete function:

Q1(·) = sign(·) = {−1,+1}. (33)

The k-bit, for k > 1, discrete function is denoted as Qk:

Qk>1(·) =
2

2k − 1
round

[
(2k − 1)

(
·

2 max|·|
+

1

2

)]
− 1 (34)

where round[·] is the rounding function and max|·| refers to calculating the absolute value of
the input first, and then finding its maximum value. In this way, a DNN using the discrete
function Q1(·) can be computed with the XNOR operation, while a DNN using the discrete
function Qk>1(·) can be computed with fixed-point multiplication.

7.2 Ablation Studies with STE Methods

To showcase the superiority of RF-DNN in addressing the problem of gradient mismatch,
we compare it with three other methods by training from scratch. In Table 1, Table 2, and
Table 3, we mark {−1,+1} in ‘Forward’ to indicate that the weights are binarized using
Equation (33), i.e., −1 or +1, in the forward pass of DNNs. In the backward pass, the
methods (Dorefa (Zhou et al., 2016), MultiFCG (Chen et al., 2019), and FCGrad (Chen
et al., 2019)) use different approximated gradients to update the weights. Here, we apply
different ResNet models (He et al., 2016) for ablation studies.

Batch normalization with a batch size of 128 is employed in the learning strategy, and
Nesterov momentum of 0.9 (Dozat, 2016) is used in SGD optimization. For CIFAR, we set
the total training epochs to 200 and a weight decay of 0.0005. The learning rate is reduced
by a factor of 10 at epoch 80, 150, and 190, starting with an initial value of 0.1. For
ImageNet, we set the total training epochs to 100 and use a cosine annealing schedule for
the learning rate of each parameter group with a weight decay of 0.0001. All experiments
are conducted 5 times, and the statistics of the test accuracies from the last 10/5 epochs
are reported for a fair comparison. Hence, we evaluate the accuracy performance in terms
of (mean ± std). Note that we perform standard data augmentation and pre-processing on
CIFAR and ImageNet datasets.

In Table 1, Table 2, and Table 3, we use the same the discrete function Q1(·), parameter
settings, and optimizer for fairness in the forward pass. The only difference is the gra-
dient in the backward propagation. The performance across various models and datasets
demonstrates that RF-DNN exhibits significant improvement over other STE methods. The
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Table 1: The experimental results on CIFAR10 with ResNet20/32/44. The accuracy of
full-precision (FP) baseline is reported by (Chen et al., 2019).

Network Forward Backward Test Acc (%) FP Acc (%)

ResNet20 {−1,+1}
Dorefa 88.28±0.81

91.50MultiFCG 88.94±0.46
RF-DNN 89.83±0.23

ResNet32 {−1,+1}
Dorefa 90.23±0.63

92.13MultiFCG 89.63±0.38
RF-DNN 90.75±0.19

ResNet44 {−1,+1}
Dorefa 90.71±0.58

93.56MultiFCG 90.54±0.21
RF-DNN 91.63±0.11

Table 2: The experimental results on CIFAR100 with ResNet56/110. The accuracy of full-
precision (FP) baseline is reported by (Chen et al., 2019).

Network Forward Backward Test Acc (%) FP Acc (%)

ResNet56 {−1,+1}

Dorefa 66.71±2.32

71.22
MultiFCG 66.58±0.37
FCGrad 66.56±0.35
RF-DNN 68.56±0.32

ResNet110 {−1,+1}

Dorefa 68.15±0.50

72.54
MultiFCG 68.27±0.14
FCGrad 68.74±0.36
RF-DNN 69.20±0.28

average results of multiple experiments surpass those of other methods, which likely benefit
from the alleviation of the gradient mismatch, making the loss function of DNNs more fully
descended. Additionally, the minor variances indicate that our training method is relatively
stable such that confirming our point of view.

7.3 Convergence and Stability Analysis

Since standard deviations can reflect the convergence and stability of training to a certain
extent, we visualize the data from Table 1 in Figure 6(a). Intuitively, when compared to
Dorefa and MultiFCG, our proposed RF-DNN better alleviates perturbations caused by
gradient mismatch, leading to more stable performance. Furthermore, we present the accu-
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(a) Comparison of different methods (b) Comparison of different bit widths

Figure 6: Accuracy performance (mean ± std) for ResNet20/32/44 on CIFAR10. The lines
and bars represent the mean and standard deviation of the results from different
random seeds, respectively. (a) We compare RF-DNN with Dorefa and MultiFCG
using 1-bit weight representation, also visualized in Table 1. (b) RF-DNN is
presented with different bit-width weight representations. Note that a higher
mean and lower deviation typically imply better convergence and stability.

(a) ResNet56 (b) ResNet110

Figure 7: Training and test curves of ResNet56/110 on CIFAR100 compared between
Dorefa and RF-DNN. Intuitively, RF-DNN exhibits more stable training per-
formance than Dorefa.
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Table 3: The experimental results on ImageNet with ResNet18. The accuracy of full-
precision (FP) baseline is reported by (Chen et al., 2019).

Network Forward Backward Test Top1/Top5 (%) FP Top1/Top5 (%)

ResNet18 {−1,+1}

Dorefa 58.34±2.07/81.47±1.56

69.76/89.08
MultiFCG 59.47±0.02/82.41±0.01
FCGrad 59.83±0.36/82.67±0.23
RF-DNN 60.83±0.41/83.54±0.18

racy performance of RF-DNN with different bit width weight representations in Figure 6(b).
We observe fairly consistent stability across different bit widths and backbone models.

As depicted in Figure 7, RF-DNN achieves higher accuracies than Dorefa on CIFAR100
dataset, i.e., 1.25% higher on the training dataset with ResNet56, 1.85% higher on the test
dataset with ResNet56, 1.97% higher on the training dataset with ResNet110, and 1.05%
higher on the test dataset with ResNet110. Additionally, the fluctuation of the test curves
in Figure 7 indicates that RF-DNN shows tremendous improvement compared to Dorefa in
terms of training stability. From the training curve, our method significantly outperforms
Dorefa. However, this superiority needs to be considered in conjunction with the test curve.
The accuracy of our method is consistently higher than that of Dorefa in the test curve,
thereby indicating an improvement in stability. The experimental results verify that our
theoretical framework is an effective solution against gradient mismatch, further enhancing
the training performance of DNNs.

7.4 Comparisons with Training-based Methods

Here, we compare RF-DNN with several state-of-the-art DNNs, such as DeepShift (Elhoushi
et al., 2019), QN (Yang et al., 2019), ADMM (Leng et al., 2018), MetaQuant (Chen et al.,
2019), INT8 (Zhu et al., 2020), SR+DR (Gysel et al., 2018), ELQ (Zhou et al., 2018),
MD (Ajanthan et al., 2021), and RQ (Louizos et al., 2019), all under the same bit width
using Equation (33) or Equation (34). Note that W and A represent the bit width of weights
and activations, respectively, in Table 4. The experimental results demonstrate that RF-
DNN outperforms other recent state-of-the-art training-based methods, which appears to
be attributed to our effective solution for addressing gradient mismatch.

8. Conclusion and Future Work

Traditional discretized neural networks (DNNs) suggest that both weights and activations
can only take low-precision discrete values, reducing the memory footprint compared to
full-precision floating-point networks. However, training such networks becomes challeng-
ing due to the need to maintain discrete weights. Generally, the gradient w.r.t. discrete
weights is approximated using the Straight-Through Estimator (STE), resulting in a gradi-
ent mismatch compared to the gradient w.r.t. continuous weights.
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Table 4: The classification accuracy results on ImageNet are compared with other training-
based methods, including AlexNet (Krizhevsky et al., 2012), ResNet18, ResNet50
and MobileNet (Howard et al., 2017). Note that the accuracy of full-precision
baseline is reported by Elhoushi et al. (2019).

Method W A
Top-1 Top-5

Accuracy Gap Accuracy Gap

AlexNet (Original) 32 32 56.52% - 79.07% -

RF-DNN (ours) 6 32 56.39% −0.13% 78.78% −0.29%
DeepShift (Elhoushi et al., 2019) 6 32 54.97% −1.55% 78.26% −0.81%

ResNet18 (Original) 32 32 69.76% - 89.08% -

RF-DNN (ours) 1 32 67.05% −2.71% 88.09% −0.99%
MD (Ajanthan et al., 2021) 1 32 66.78% −2.98% 87.01% −2.07%
ELQ (Zhou et al., 2018) 1 32 66.21% −3.55% 86.43% −2.65%
ADMM (Leng et al., 2018) 1 32 64.80% −4.96% 86.20% −2.88%
QN (Yang et al., 2019) 1 32 66.50% −3.26% 87.30% −1.78%
MetaQuant (Chen et al., 2019) 1 32 63.44% −6.32% 84.77% −4.31%
RF-DNN (ours) 4 4 66.75% −3.01% 87.02% −2.06%
RQ ST (Louizos et al., 2019) 4 4 62.46% −7.30% 84.78% −4.30%

ResNet50 (Original) 32 32 76.13% - 92.86% -

RF-DNN (ours) 8 8 76.07% −0.06% 92.87% +0.01%
INT8 (Zhu et al., 2020) 8 8 75.87% −0.26% - -

MobileNet (Original) 32 32 70.61% - 89.47% -

RF-DNN (ours) 5 5 61.32% −9.29% 84.08% −5.39%
SR+DR (Gysel et al., 2018) 5 5 59.39% −11.22% 82.35% −7.12%
RQ ST (Louizos et al., 2019) 5 5 56.85% −13.76% 80.35% −9.12%
RF-DNN (ours) 8 8 70.76% +0.15% 89.54% +0.07%
RQ (Louizos et al., 2019) 8 8 70.43% −0.18% 89.42% −0.05%

This paper introduces a novel analysis of the gradient mismatch phenomenon through
the lens of duality theory. The mismatch is interpreted as metric perturbations in a Rieman-
nian manifold. Theoretical insights, rooted in information geometry, lead to the construction
of the LNE manifold for neural networks. This manifold forms the background to effectively
address metric perturbations. The stability of LNE metrics with the L2-norm perturba-
tion under the Ricci-DeTurck flow is revealed, paving the way for practical introduction
of the Ricci flow Discretized Neural Network (RF-DNN). The constraints of the discrete
Ricci flow in the LNE manifold are used to alleviate metric perturbations, achieving an
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exponential convergence rate and providing a compelling solution for DNNs. Experimental
results demonstrate improvements in both the stability and performance of DNNs.

In this paper, information geometry plays a crucial role in combining geometric tool
(Ricci flow) with neural networks. For future research, we aim to further explore the
connection between neural networks and manifolds, leveraging geometric ideas to address
practical challenges in deep learning.
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Appendix A. Differential Geometry

1. Riemann curvature tensor (Rm) is a (1,3)-tensor defined for a 1-form ω:

Rlijkωl = ∇i∇jωk −∇j∇iωk

where the covariant derivative of F satisfies

∇pF j1...jli1...ik
= ∂pF

j1...jl
i1...ik

+
l∑

s=1

F j1...q...jli1...ik
Γjspq −

k∑
s=1

F j1...jli1...q...ik
Γqpis .

In particular, coordinate form of the Riemann curvature tensor is:

Rlijk = ∂iΓ
l
jk − ∂jΓlik + ΓpjkΓ

l
ip − ΓpikΓ

l
jp.

2. Christoffel symbol in terms of an ordinary derivative operator is:

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij).

3. Ricci curvature tensor (Ric) is a (0,2)-tensor:

Rij = Rppij .

4. Scalar curvature is the trace of the Ricci curvature tensor:

R = gijRij .

5. Lie derivative of F in the direction dϕ(t)
dt :

L dϕ(t)
dt

F =

(
d

dt
ϕ∗(t)F

)
t=0

where ϕ(t) :M→M for t ∈ (−ε, ε) is a time-dependent diffeomorphism of M to M.

Appendix B. Notation

For clarity of definitions in this paper, we list the important notations as shown in Table 5.

Appendix C. Proof of the Ricci Flow

C.1 Proof of Lemma 5

Lemma 22 The linearization of the Ricci curvature tensor is given by

D[Ric](h)ij = −1

2
gpq(∇p∇qhij +∇i∇jhpq −∇q∇ihjp −∇q∇jhip).

Proof Based on Appendix A, we have

∇q∇ihjp = ∇i∇qhjp −Rrqijhrp −Rrqiphjm.
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Table 5: Definitions of notations

W i:
weight matrix
for the i-th layer

Ŵ i:
discretized weight matrix
for the i-th layer

w:
vectorized weights
in each layer

ŵ:
discretized vectorized weights
in each layer

ai:
activation vector
for the i-th layer

âi:
discretized activation vector
for the i-th layer

ξ: parameter vector ξ̂: discretized parameter vector

Q1: 1-bit discrete function Qk>1:
k-bit discrete function
(over 1-bit)

δ:
Euclidean metric
(identity matrix)

Φ: convex function

g0: LNE metric under Ricci flow ḡ0:
LNE metric
under Ricci-DeTurck flow

g or g(t): the metrics under Ricci flow ḡ or ḡ(t):
the metrics
under Ricci-DeTurck flow

g(0): initial metric under Ricci flow ḡ(0):
initial metric
under Ricci-DeTurck flow

d(0): the initial perturbation d(t):
the time-evolving
perturbation

D: divergence L or L̃: loss function

Lg0 : Lichnerowicz operator L2 or L∞: norm

∂: partial derivative ∇: covariant derivative

L: Lie derivative ∆g0 : the Laplacian

Rm: Riemann curvature tensor f : nonlinear function

Ric: Ricci curvature tensor D[Ric]:
the linearization of
the Ricci curvature tensor

ϕ∗: pullback φ∗: pushforward

B(x, r):
the ball with a radius r
and a point x ∈M BL2(ḡ0, ε):

the ε-ball with respect to
the L2-norm induced by ḡ0

and centred at ḡ0

Combining with Lemma 22, we can obtain the deformation equation because of ∇g = 0,

D[−2Ric](h)ij =gpq∇p∇qhij +∇i
(

1

2
∇jhpq −∇qhjp

)
+∇j

(
1

2
∇ihpq −∇qhip

)
+O(hij)

=gpq∇p∇qhij +∇iVj +∇jVi +O(hij).

The proof is completed.
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C.2 Description of the DeTurck Trick

Based on the chain rule for the Lie derivative in Appendix A, we can calculate

∂

∂t
g(t) =

∂ (ϕ∗(t)ḡ(t))

∂t

=

(
∂ (ϕ∗(t+ τ)ḡ(t+ τ))

∂τ

)
τ=0

=

(
ϕ∗(t)

∂ḡ(t+ τ)

∂τ

)
τ=0

+

(
∂ (ϕ∗(t+ τ)ḡ(t))

∂τ

)
τ=0

= ϕ∗(t)
∂

∂t
ḡ(t) + ϕ∗(t)L ∂ϕ(t)

∂t

ḡ(t)

where ∂ϕ(t)
∂t is equal to V (t) (Sheridan and Rubinstein, 2006). With the help of Equation (5),

we have the following expression for the pullback metric g(t)

∂

∂t
g(t) = ϕ∗(t)

∂

∂t
ḡ(t) + ϕ∗(t)L ∂ϕ(t)

∂t

ḡ(t) = −2 Ric(ϕ∗(t)ḡ(t)) = −2ϕ∗(t) Ric(ḡ(t)). (35)

The diffeomorphism invariance of the Ricci curvature tensor is used in the last step. The
above equation is equivalent to

∂

∂t
ḡ(t) = −2 Ric(ḡ(t))− L ∂ϕ(t)

∂t

ḡ(t).

Based on Definition 23, we further yield

∂

∂t
ḡ(t) = −2 Ric(ḡ(t))−∇iVj −∇jVi.

Definition 23 (Sheridan and Rubinstein, 2006) On a Riemannian manifold (M, g), we
have

(LXg)ij = ∇iXj +∇jXi,

where ∇ denotes the Levi-Civita connection of the metric g, for any vector field X.

C.3 Curvature Explosion at Singularity

In general, we present the behavior of Ricci flow in finite time and show that the evolution of
the curvature is close to divergence. The core demonstration is followed with Theorem 27.

Theorem 24 (Sheridan and Rubinstein, 2006) Given a smooth Riemannian metric g0 on
a closed manifold M, there exists a maximal time interval [0, T ) such that a solution g(t)
of the Ricci flow, with g(0) = g0, exists and is smooth on [0, T ), and this solution is unique.

Theorem 25 LetM be a closed manifold and g(t) a smooth time-dependent metric onM,
defined for t ∈ [0, T ). If there exists a constant C <∞ for all x ∈M such that∫ T

0

∣∣∣∣ ∂∂tgx(t)

∣∣∣∣
g(t)

dt ≤ C, (36)
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then the metrics g(t) converge uniformly as t approaches T to a continuous metric g(T )
that is uniformly equivalent to g(0) and satisfies

e−Cgx(0) ≤ gx(T ) ≤ eCgx(0). (37)

Proof Considering any x ∈M, t0 ∈ [0, T ), V ∈ TxM, we have∣∣∣∣log

(
gx(t0)(V, V )

gx(0)(V, V )

)∣∣∣∣ =

∣∣∣∣∫ t0

0

∂

∂t
[log gx(t)(V, V )] dt

∣∣∣∣
=

∣∣∣∣∣
∫ t0

0

∂
∂tgx(t)(V, V )

gx(t)(V, V )
dt

∣∣∣∣∣
≤
∫ t0

0

∣∣∣∣ ∂∂tgx(t)

(
V

|V |g(t)
,

V

|V |g(t)

)∣∣∣∣ dt
≤
∫ t0

0

∣∣∣∣ ∂∂tgx(t)

∣∣∣∣
g(t)

dt

≤ C.

By exponentiating both sides of the above inequality, we have

e−Cgx(0)(V, V ) ≤ gx(t0)(V, V ) ≤ eCgx(0)(V, V ).

This inequality can be rewritten as

e−Cgx(0) ≤ gx(t0)(V, V ) ≤ eCgx(0)(V, V )

because it holds for any V . Thus, the metrics g(t) are uniformly equivalent to g(0).
Consequently, we have the well-defined integral:

gx(T )− gx(0) =

∫ T

0

∂

∂t
gx(t)dt.

We can show that this integral is well-defined from two perspectives. Firstly, as long as
the metrics are smooth, the integral exists. Secondly, the integral is absolutely integrable.
Based on the norm inequality induced by g(0), we can obtain

|gx(T )− gx(t)|g(0) ≤
∫ T

t

∣∣∣∣ ∂∂tgx(t)

∣∣∣∣
g(0)

dt.

For each x ∈ M, the above integral will approach zero as t approaches T . Since M is
compact, the metrics g(t) converge uniformly to a continuous metric g(T ) which is uniformly
equivalent to g(0) on M. Moreover, we can show that

e−Cgx(0) ≤ gx(T ) ≤ eCgx(0).

The proof is completed.
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Corollary 26 Let (M, g(t)) be a solution of the Ricci flow on a closed manifold. If |Rm |g(t)
is bounded on a finite time [0, T ), then g(t) converges uniformly as t approaches T to a
continuous metric g(T ) which is uniformly equivalent to g(0).

Proof The bound on |Rm |g(t) implies one on |Ric |g(t). Based on Equation (5), we can

extend the bound on | ∂∂tg(t)|g(t). Therefore, we obtain an integral of a bounded quantity
over a finite interval is also bounded, by Theorem 25. The proof is completed.

Theorem 27 If g0 is a smooth metric on a compact manifold M, the Ricci flow with
g(0) = g0 has a unique solution g(t) on a maximal time interval t ∈ [0, T ). If T <∞, then

lim
t→T

(
sup
x∈M

|Rmx(t)|
)

=∞. (38)

Proof For a contradiction, we assume that |Rmx(t)| is bounded by a constant. It follows
from Corollary 26 that the metrics g(t) converges smoothly to a smooth metric g(T ). Based
on Theorem 24, it is possible to find a solution to the Ricci flow on t ∈ [0, T ), as the smooth
metric g(T ) is uniformly equivalent to the initial metric g(0).

Hence, we can extend the solution of the Ricci flow after the time point t = T , which
contradicts the choice of T as the maximal time for the existence of the Ricci flow on [0, T ).
In other words, |Rmx(t)| is unbounded. The proof is completed.

As approaching the singular time T , the Riemann curvature |Rm |g(t) becomes no longer
convergent and tends to explode.

Appendix D. Proof of All Time Convergence in LNE Manifolds

D.1 Finite Time Stability

We first prove the finite-time stability of LNE manifolds.

Lemma 28 (Bamler, 2010, 2011) Let (Mn, ḡ0) be a complete Ricci-flat n-manifold. If ḡ(0)
is a metric satisfying ‖ḡ(0) − ḡ0‖L∞ < ε where ε > 0, then there exists a constant C < ∞
and a unique Ricci–DeTurck flow ḡ(t) that satisfies

‖ḡ(t)− ḡ0‖L∞ < C‖ḡ(0)− ḡ0‖L∞ < C · ε. (39)

Corollary 29 Let (Mn, ḡ0) be the LNE n-manifold. For a Ricci–DeTurck flow ḡ(t) on a
maximal time interval t ∈ [0, T ) and k ∈ N, there exists constants Ck = Ck(ḡ0, T ) such that

‖∇kd(t)‖L2 ≤ Ck · t−k/2 (40)

where d(t) = ḡ(t)− ḡ0 is the time-evolving perturbation.
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Proof When Lemma 28 is satisfied in a finite time, based on (Deruelle and Kröncke, 2021),
the Ricci-DeTurck flow with the LNE metric w.r.t. the L2-norm perturbation exists. The
proof is completed.

Corollary 29 guarantees the finite time existence of the Ricci-DeTurck flow w.r.t. L2-
norm perturbations and provides the necessary premise for proving its all time convergence.

D.2 All time Stability

Then, we prove the all-time stability of LNE manifolds. By rewriting the Ricci-DeTurck
flow (20) as an evolution of the difference d(t) := ḡ(t)− ḡ0, we have

∂

∂t
d(t) =

∂

∂t
ḡ(t) = −2 Ric(ḡ(t)) + 2 Ric(ḡ0) + L ∂ϕ′(t)

∂t

ḡ0 − L ∂ϕ(t)
∂t

ḡ(t)

= ∆d(t) + Rm ∗d(t) + Fḡ−1 ∗ ∇ḡ0d(t) ∗ ∇ḡ0d(t) +∇ḡ0
(
GΓ(ḡ0) ∗ d(t) ∗ ∇ḡ0d(t)

)
,

(41)

where the tensors F and G depend on ḡ−1 and Γ(ḡ0). Note that ḡ0 is the LNE metric which
satisfies the above formula.

In the follwing, we denote ‖ · ‖L2 or ‖ · ‖L∞ as the L2-norm or L∞-norm w.r.t. the LNE
metric ḡ0, and mark generic constants as C or C1.

Lemma 30 Let ḡ(t) be a Ricci–DeTurck flow on a maximal time interval t ∈ (0, T ) in an
L2-neighbourhood of ḡ0. We have the following estimate:∥∥∥∥ ∂∂td0(t)

∥∥∥∥
L2

≤ C
∥∥∥∇ḡ0(t) (d(t)− d0(t))

∥∥∥2

L2
. (42)

Proof According to the Hardy inequality (Minerbe, 2009), we have the same proofs by
referring the details (Deruelle and Kröncke, 2021).

To establish the all time stability of LNE metrics under Ricci–DeTurck flow, we need to
construct ḡ0(t) as a family of Ricci-flat reference metrics with ∂

∂t ḡ0(t) = O((ḡ(t)− ḡ0(t))2).
Let

F =
{
ḡ(t) ∈Mn

∣∣ 2 Ric(ḡ(t)) + L ∂ϕ(t)
∂t

ḡ(t) = 0
}

be the set of stationary points under the Ricci-DeTurck flow. Then, we establish a manifold
via an L2-neighbourhood U of integral ḡ0 in the space of metrics:

F̃ = F ∩ U . (43)

For all ḡ ∈ F̃ , the terms Ric(ḡ(t)) = 0 and L ∂ϕ(t)
∂t

ḡ(t) = 0 hold individually, as established

in the previous work (Deruelle and Kröncke, 2021).

Theorem 31 Let (Mn, ḡ0) be the LNE n-manifold which is linearly stable and integrable.
Then, there exists a constant αḡ0 satisfying

(∆d(t) + Rm(ḡ0) ∗ d(t), d(t))L2 ≤ −αḡ0
∥∥∇ḡ0d(t)

∥∥2

L2 (44)

for all ḡ(t) ∈ F̃ whose definition is given in Equation (43).
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Proof The similar proofs can be found in (Devyver, 2014) with some minor modifications.
Due to the linear stability requirement of LNE manifolds in Definition 13 and Definition 14,
−Lḡ0 is non-negative. Then there exists a positive constant αḡ0 satisfying

αḡ0 (−∆d(t), d(t))L2 ≤ (−∆d(t)− Rm(ḡ0) ∗ d(t), d(t))L2 .

By Taylor expansion, we repeatedly use elliptic regularity and Sobolev embedding (Pacini,
2010) to obtain the estimate. The proof is completed.

Corollary 32 Let (Mn, ḡ0) be the LNE n-manifold which is integrable. For a Ricci–DeTurck
flow ḡ(t) on a maximal time interval t ∈ [0, T ], if it satisfies ‖ḡ(t)− ḡ0‖L∞ < ε where ε > 0,
then there exists a constant C <∞ for t ∈ [0, T ] such that the evolution inequality satisfies

‖d(t)− d0(t)‖2L2 ≥ C
∫ T

0

∥∥∥∇ḡ0(t) (d(t)− d0(t))
∥∥∥2

L2
dt. (45)

Proof Based on Equation (41), we know

∂

∂t
(d(t)− d0) =∆(d(t)− d0) + Rm ∗(d(t)− d0)

+ Fḡ−1 ∗ ∇ḡ0(d(t)− d0) ∗ ∇ḡ0(d(t)− d0)

+∇ḡ0
(
GΓ(ḡ0) ∗ (d(t)− d0) ∗ ∇ḡ0(d(t)− d0)

)
.

Followed by Lemma 30 and Theorem 31, we further obtain

∂

∂t
‖d(t)− d0‖2L2 =2 (∆(d(t)− d0) + Rm ∗(d(t)− d0), d(t)− d0)L2

+
(
Fḡ−1 ∗ ∇ḡ0(d(t)− d0) ∗ ∇ḡ0(d(t)− d0), d(t)− d0

)
L2

+
(
∇ḡ0

(
GΓ(ḡ0) ∗ (d(t)− d0) ∗ ∇ḡ0(d(t)− d0)

)
, d(t)− d0

)
L2

+

(
d(t)− d0,

∂

∂t
d0(t)

)
L2

+

∫
M

(d(t)− d0) ∗ (d(t)− d0) ∗ ∂
∂t
d0(t)dµ

≤− 2αḡ0
∥∥∇ḡ0 (d(t)− d0)

∥∥2

L2

+ C ‖(d(t)− d0)‖L∞
∥∥∇ḡ0 (d(t)− d0)

∥∥2

L2

+

∥∥∥∥ ∂∂td0(t)

∥∥∥∥
L2

‖d(t)− d0‖L2

≤ (−2αḡ0 + C · ε)
∥∥∇ḡ0 (d(t)− d0)

∥∥2

L2 .

Let ε be a small enough constant that −2αḡ0 + C · ε < 0 holds, we can find

∂

∂t
‖d(t)− d0‖2L2 ≤ −C

∥∥∇ḡ0 (d(t)− d0)
∥∥2

L2

holds. The proof is completed.
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D.3 Proof of Theorem 15

By Lemma 28, we have a constant ε2 > 0 such that d(t) ∈ BL2(0, ε2) holds. By Lemma 30
(in the second step) and Corollary 32 (in the third step), we can obtain

‖d0(T )‖L2 ≤ C
∫ T

1

∥∥∥∥ ∂∂td0(t)

∥∥∥∥
L2

dt

≤ C
∫ T

1

∥∥∇ḡ0 (d(t)− d0(t))
∥∥2

L2 dt

≤ C ‖d(1)− d0(1)‖2L2 ≤ C‖d(1)‖2L2 ≤ C · (ε2)2 .

Furthermore, we can obtain from the above formulas

‖d(T )− d0(T )‖L2 ≤ ‖d(1)− d0(1)‖L2 ≤ C · ε2.

By the triangle inequality, we get

‖d(T )‖L2 ≤ C · (ε2)2 + C · ε2.

Followed by Corollary 29 and Lemma 30, T should be pushed further outward, i.e.,

lim
t→+∞

sup

∥∥∥∥ ∂∂td0(t)

∥∥∥∥
L2

≤ lim
t→+∞

sup
∥∥∇ḡ0 (d(t)− d0(t))

∥∥2

L2 = 0.

Thus, as t approaches +∞ based on the elliptic regularity, ḡ(t) will converge to ḡ(∞) =
ḡ0 + d0(∞). In other words, d(t) − d0(t) will converge to 0 as t approaches +∞ w.r.t. all
Sobolev norms (Minerbe, 2009),

lim
t→+∞

‖d(t)− d0(t)‖L2 ≤ lim
t→+∞

C
∥∥∇ḡ0 (d(t)− d0(t))

∥∥
L2 = 0.

Any Ricci-DeTurck flow that starts close to the LNE metric exists for all time, and it
will converge to the LNE metric, as discussed in (Deruelle and Kröncke, 2021).

Appendix E. Proof of the Information Geometry

E.1 Proof of Theorem 10

The LNE divergence can be defined between two nearby points ξ and ξ′, where the first
derivative of the LNE divergence w.r.t. ξ′ is:

∂ξ′DLNE [ξ′ : ξ]

=
∑
i

[
∂ξ′

1

τ2
log cosh(τξ′i)− ∂ξ′

1

τ2
log cosh(τξi)−

1

τ
∂ξ′(ξ

′
i − ξi) tanh(τξi)

]
=
∑
i

∂ξ′
1

τ2
log cosh(τξ′i)−

1

τ
tanh(τξ).

The second derivative of the LNE divergence w.r.t. ξ′ is:

∂2
ξ′DLNE [ξ′ : ξ] =

∑
i

∂2
ξ′

1

τ2
log cosh(τξ′i).

38



Learning Discretized Neural Networks under Ricci Flow

We deduce the Taylor expansion of the LNE divergence at ξ′ = ξ:

DLNE [ξ′ : ξ] ≈ DLNE [ξ : ξ] +

(∑
i

∂ξ′
1

τ2
log cosh(τξ′i)−

1

τ
tanh(τξ)

)> ∣∣∣∣
ξ′=ξ

dξ

+
1

2
dξ>

(∑
i

∂2
ξ′

1

τ2
log cosh(τξ′i)

)∣∣∣∣
ξ′=ξ

dξ

= 0 + 0 +
1

2τ2
dξ>∂

[
∂ cosh(τξ)

cosh(τξ)

]
dξ

=
1

2τ2
dξ>

∂2 cosh(τξ) cosh(τξ)− ∂ cosh(τξ)∂ cosh(τξ)>

cosh2(τξ)
dξ

=
1

2τ2
dξ>

(
∂2 cosh(τξ)

cosh(τξ)
− τ2

[
sinh(τξ)

cosh(τξ)

] [
sinh(τξ)

cosh(τξ)

]>)
dξ

=
1

2

∑
i,j

[
δij −

(
tanh(τξ) tanh(τξ)>

)
ij
dξidξj

]
.

E.2 Proof of Lemma 11

We would like to know in which direction minimizes the loss function with the constraints
of the LNE divergence, so that we do the minimization:

dξ∗ = arg min
dξ s.t. DLNE [ξ:ξ+dξ]=c

L(ξ + dξ)

where c is the constant. The loss function descends along the manifold with constant speed,
regardless the curvature.

Furthermore, we can write the minimization in Lagrangian form. Combined with The-
orem 10, the LNE divergence can be approximated by its second order Taylor expansion.
Approximating L(ξ + dξ) with it first order Taylor expansion, we get:

dξ∗ = arg min
dξ

L(ξ + dξ) + λ (DLNE [ξ : ξ + dξ]− c)

≈ arg min
dξ

L(ξ) + ∂ξL(ξ)>dξ +
λ

2
dξ>g(ξ)dξ − cλ.

To solve this minimization, we set its derivative w.r.t. dξ to zero:

0 =
∂

∂dξ
L(ξ) + ∂ξL(ξ)>dξ +

λ

2
dξ>

[
δ − tanh(τξ) tanh(τξ)>

]
dξ − cλ

= ∂ξL(ξ) + λ
[
δ − tanh(τξ) tanh(τξ)>

]
dξ

dξ = − 1

λ

[
δ − tanh(τξ) tanh(τξ)>

]−1
∂ξL(ξ)

where a constant factor 1/λ can be absorbed into learning rate. Therefore, we get the
optimal descent direction, i.e., the opposite direction of gradient, which takes into account

the local curvature defined by
[
δ − tanh(τξ) tanh(τξ)>

]−1
.

39



Chen, Chen, Wang, Dai, Tsang and Liu

References

Thalaiyasingam Ajanthan, Kartik Gupta, Philip Torr, Richad Hartley, and Puneet Dokania.
Mirror descent view for neural network quantization. In International Conference on
Artificial Intelligence and Statistics, pages 2809–2817. PMLR, 2021.

S-i Amari and H Nagaoka. Methods of information geometry, volume 191 of translations of
mathematical monographs, s. kobayashi and m. takesaki, editors. American Mathematical
Society, Providence, RI, USA, pages 2–19, 2000.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):
251–276, 1998.

Shun-ichi Amari. Information geometry and its applications, volume 194. Springer, 2016.

Alexander Appleton. Scalar curvature rigidity and ricci deturck flow on perturbations of
euclidean space. Calculus of Variations and Partial Differential Equations, 57(5):1–23,
2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via
proximal operators. arXiv preprint arXiv:1810.00861, 2018.

Richard H Bamler. Stability of hyperbolic manifolds with cusps under ricci flow. arXiv
preprint arXiv:1004.2058, 2010.

Richard Heiner Bamler. Stability of Einstein metrics of negative curvature. Princeton
University, 2011.
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