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Abstract

We consider solving the low-rank matrix sensing problem with the Factorized Gradient
Descent (FGD) method when the specified rank is larger than the true rank. We refer to this
as over-parameterized matrix sensing. If the ground truth signal X∗ ∈ Rd×d is of rank r, but
we try to recover it using FF> where F ∈ Rd×k and k > r, the existing statistical analysis
either no longer holds or produces a vacuous statistical error upper bound (infinity) due
to the flat local curvature of the loss function around the global maxima. By decomposing
the factorized matrix F into separate column spaces to capture the impact of using k > r,
we show that ‖FtFt −X∗‖2F converges sub-linearly to a statistical error of Õ

(
kdσ2/n

)
after Õ(σr

σ

√
n
d ) iterations, where Ft is the output of FGD after t iterations, σ2 is the

variance of the observation noise, σr is the r-th largest eigenvalue of X∗, and n is the
number of samples. With a precise characterization of the convergence behavior and the
statistical error, our results, therefore, offer a comprehensive picture of the statistical and
computational complexity if we solve the over-parameterized matrix sensing problem with
FGD.

Keywords: Computational complexity; Statistical complexity; Over-parameterization;
Matrix sensing; Matrix regression; Factorized gradient descent.

1. Introduction

We consider the low rank matrix sensing problem: we are given n i.i.d. observations
{Ai, yi}ni=1 from the data generating model yi = 〈Ai,X

∗〉 + εi, where Ai ∈ Rd×d is a
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symmetric random sensing matrix, X∗ ∈ Rd×d is the target rank r symmetric matrix we
want to recover, and εi is a zero-mean sub-Gaussian noise with variance proxy σ2. The low
rank matrix sensing problem has found applications in various scenarios, such as multi-task
regression, vector auto-regressive process, image processing, metric embedding, quantum
tomography, and so on (Candes and Plan, 2011; Negahban and Wainwright, 2011; Recht
et al., 2010; Jain et al., 2013; Gross et al., 2010; Candès et al., 2011; Waters et al., 2011;
Kalev et al., 2015). One common approach to recover a low-rank matrix X ∈ Rd×d is to
solve the following optimization problem:

arg min
X:X�0,rank(X)≤k

1

4n

n∑
i=1

(yi − 〈Ai,X〉)2 , (1)

where k is a chosen rank based on domain knowledge of the data. This problem can be solved
by relaxing the rank constraint to nuclear norm constraint (Recht et al., 2010; Candes and
Plan, 2011) or iterative hard-thresholding (IHT) procedures (Jain et al. (2014a)). However
for computational benefits in large-scale problems, i.e., when the dimension d is very large,
it is common to reformulate this as a non-convex problem by introducing F ∈ Rd×k such
that X = FF> and solving the transformed problem (Bhojanapalli et al., 2016a; Chen and
Wainwright, 2015; Jain et al., 2013; Hardt, 2014; Park et al., 2018):

arg min
F:F∈Rd×k

L(F) :=
1

4n

n∑
i=1

(
yi −

〈
Ai,FF>

〉)2
. (2)

Solving this formulation directly with gradient descent method on the matrix F is usually
referred to as the Factorized Gradient Descent (FGD) method, which is given by:

Ft+1 = Ft − ηGn
t , where Gn

t = ∇L(Ft) =
1

n

n∑
i=1

(〈
Ai,FtF

>
t

〉
− yi

)
AiFt, (3)

where η is the step size and Gn
t denotes the gradient evaluated at iteration t with n i.i.d.

samples.
When the specified rank k matches the ground truth rank r, namely, the true rank r

is known, FGD converges linearly to a statistical error (Chen and Wainwright, 2015), and
the statistical error is minimax optimal up to log factors (Candes and Plan, 2011). When
the rank is over-specified (i.e., k > r), we refer to that setting as the over-parameterized
matrix sensing problem. Over-parameterized matrix sensing appears naturally in the real
world applications, since the true rank r is often not known and the practitioners have to
perform cross-validation, which involves running with k > r. Moreover, over-parameterized
matrix sensing attracts extra attention lately since it is seen as a sandbox to study the
over-parameterization effect in deep learning (Li et al., 2018).

The over-parameterized matrix sensing comes with many challenges. One of the key
challenges is that the Hessian is degenerate around the global maxima, because of the over-
specification of the rank. Many previous works in the known rank settings (Bhojanapalli
et al., 2016a; Zheng and Lafferty, 2016; Tu et al., 2016) have analysis that critically de-
pends on non-degeneracy of the Hessian and hence local strong convexity around the global
maxima, and hence do not work in the degenerate Hessian setting we consider.
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Over-parameterized matrix sensing

The analysis of Chen and Wainwright (2015) is also not applicable, because the statistical
error upper bound that they obtain implicitly assumes knowledge of the rank, since it
scales with the ratio of the first and the k-th eigenvalue of X∗; when the problem is over-
parameterized, this ratio is infinity. Li et al. (2018) focus on the implicit regularization
effect with early stopping, and their analysis is limited to the setting where there is no
observation noise (εi = 0), k = d, and they can only guarantee recovery within a lower and
upper bounded iteration range (as in their Theorem 1).

However, this is not only a problem of analysis. As our simulations and theoretical
results below demonstrate, the over-parameterized setting has fundamentally different be-
havior, with statistical errors that are larger than the setting where the rank is known
and used in the algorithm. The computational convergence rate also drops from linear to
sublinear. In summary, despite the current progress on the matrix sensing problem, the
following questions remain unclear:

If we solve the over-parameterized matrix sensing problem with FGD, (1) what is the (com-
putational) convergence rate in recovering the solution to the optimization problem, X̂, and
(2) what is the statistical error, ‖X̂ −X∗‖?

In this work we attempt to answer the above two questions by offering analysis about both
the convergence rate and the statistical error of solving over-parameterized low-rank matrix
sensing with the FGD method.

Result overview. We show that when the number of samples n is sufficiently large,∥∥FtF
>
t −X∗

∥∥2
F

converges to a final statistical error of Õ
(
kdσ2/n

)
after Õ(σrσ

√
n
d ) number

of iterations, namely sub-linearly, where σr and σ are, respectively, the r-th largest eigen-
value of X∗ and the standard deviation of the observation noise. It is different from the
computational and statistical behavior of FGD when the true rank is known. In that setting,
FGD converges linearly to a radius of convergence Õ(rdσ2/n) around the true matrix X∗ af-
ter O(log(σrσ1 ·

n
d )) iterates (Chen and Wainwright, 2015), where σ1 is the largest eigenvalue of

X∗. Furthermore, the number of iterations Õ(σrσ
√

n
d ) is needed in the over-parameterized

setting as the local curvature of the loss function (1) around the global maxima is not
quadratic and therefore the FGD only converges sub-linearly to the global maxima; see the
simulations in Figure 1 for an illustration. Finally, when σ = 0, i.e., in the noiseless case,
we can guarantee the exact recovery similar to when we correctly specify the rank (Chen
and Wainwright, 2015).

1.1 Related Work

Works related to Matrix Sensing. Early works on matrix sensing often perform a
semidefinite programming (SDP) relaxation, and replace the nonconvex rank constraint
with a convex constraint based on the trace norm or nuclear norm; see for example (Candes
and Plan, 2011; Recht et al., 2010; Negahban and Wainwright, 2011; Chen et al., 2013)
and the references therein. Candes and Plan (2011) show that for any estimator X̂ based

on {Ai, yi}ni=1 observations,
∥∥∥X̂−X∗

∥∥∥2
F
≥ dr

n σ
2, where X∗ is the ground truth rank r

matrix that we want to recover, and σ is the standard deviation of the (sub)-Gaussian
observation noise (see Section 1.4 for details). This convex relaxation approach is nearly
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optimal in that it matches this lower bound, up to log factors. Although we can theoretically
solve this convex problem in polynomial time, the computational cost is often prohibitively
high for large scale problems, which motivates the researchers to study the FGD method
(Bhojanapalli et al., 2016a; Park et al., 2018).

It is also worth mentioning that the low rank matrix sensing problem is tightly connected
to the low rank matrix completion problem, since they have the same population update
when solved by (factorized) gradient method, and they can often be analyzed by very similar
techniques (Negahban and Wainwright, 2012; Koltchinskii et al., 2011; Chi et al., 2019; Jain
et al., 2014b).

Works related to FGD. The idea of factorizing the low rank matrix dates back to Bu-
rer and Monteiro (2003, 2005). Bhojanapalli et al. (2016a) characterize the computational
convergence behavior of FGD method for general convex and strongly convex function using
the restricted strong convexity argument. However, such analysis cannot be applied to the
case where k > r. Chen and Wainwright (2015) offer a general theoretical framework for
understanding FGD method from both computational and statistical perspective. Specif-
ically, they show that with suitable initialization, FGD converges geometrically up to a
statistical precision when we know the ground truth rank (k = r). However it is non-trivial
to establish their prerequisite lemma (Lemma 1) when k > r. Even if the analysis still holds
when k > r, their results only imply that the statistical error is upper bounded by infinity,
since the upper bound scales with the ratio of the first and the k-th eigenvalue of X∗, and
when k > r this ratio is infinity.

In this work we focus on local convergence as this is the crux in statistical analysis
(see (Chen and Wainwright, 2015)). Initialization condition can be achieved via spectral
methods (see (Bhojanapalli et al., 2016a; Tu et al., 2016; Zheng and Lafferty, 2016)). More-
over, the works by Bhojanapalli et al. (2016b), Ge et al. (2016), and Zhang et al. (2019)
show that reformulation (2) does not have any spurious local minima from optimization’s
perspective, indicating that it is possible to extend our analysis to random initialization.

Recently, Li et al. (2018) look into the implicit regularization effect in the learning of
over-parameterized matrix factorization with FGD. They show that if there is no observation
noise (εi = 0) and k = d, FGD tends to first recover the majority part of the true signal
(that is of rank r) due to the implicit regularization effect of the FGD method. However
their analysis can only address the noiseless case, and can not be extended to the more
realistic setting when the observation is noisy, i.e., εi 6= 0. Moreover, they only guarantee
recovery within an iteration lower bound and upper bound (e.g., as in the Theorem 1 in Li
et al. (2018), the number of iterations to reach the target accuracy has an upper bound and
lower bound). This is not in line with the common notion of statistical error where we care
about the sub-optimality to the true parameter when iteration counter t goes to infinity.
Such common notion of statistical error is, in contrast, the focus of our work. (Further
discussion can be found in Section 4).

Localized analysis for degenerate landscape. When the curvature around the local
optimum degenerates, first-order methods such as gradient descent slow down due to van-
ishing gradients as the estimator gets closer to the local optimum. This phenomenon is
reported in various optimization problems with degenerate landscapes in weakly separated
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(a) (b)

Figure 1. The motivating simulations. (a) When we correctly specify the rank (i.e.,
k = r = 3), the FGD method converges geometrically towards machine precision. But when
k > r, FGD only converges sub-linearly. (b) A zoom-in view of the convergence rate shows
that, FGD might first converge geometrically, and then converge sub-linearly.

mixture of distributions (Dwivedi et al., 2020a; Kwon et al., 2021). We can observe the same
phenomenon when the rank is over-specified for low-rank matrix factorization problems.

The localization technique is a powerful analysis tool to handle degenerate landscapes
with a tighter statistical rate (Dwivedi et al., 2020a; Kwon et al., 2021). This technique
has been used widely in the empirical process theory literature (van der Vaart and Wellner,
2000). We find that the localization argument can also be applied for a low-rank matrix
sensing when we over-specify the rank.

Follow-up work. Since the initial appearance of this work, there has been several studies
that offer more precise understanding of the computational and statistical performance of
FGD and its variants under this setting. We refer the readers to the above-mentioned
papers for the tighter results derived in terms of k Stöger and Soltanolkotabi (2021); Zhang
et al. (2021); Soltanolkotabi et al. (2023); Ma and Fattahi (2023); Xu et al. (2023), and the
faster linear convergence to true parameters with preconditioning Zhang et al. (2021); Xu
et al. (2023); Zhang et al. (2023).

1.2 Motivating Simulations

In the simulations, we consider the dimension d = 20, the true rank r = 3, and the
number of samples n = 200. We first generate random orthonormal matrices U and V
such that the union of their column spaces is Rd. We set D∗S to be a diagonal matrix,
with its (1, 1), (2, 2), (3, 3) entries be 1, 0.9, 0.8 respectively, and zero elsewhere. Hence
X∗ = UD∗SU>. The upper triangle entries of the sensing matrices Ai are sampled from
standard Gaussian distribution, and we fill the lower triangle entries accordingly such that
Ai are symmetric. We further assume that there is no observation noise, so that we have a
better understanding of the convergence behavior of the algorithm.

Let {Ft}t be the sequence generated by the FGD method as in equation (3) with η =
0.1. The simulation results are shown in Figure 1. When we correctly specify the rank
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(i.e., k = r = 3), the FGD method converges geometrically towards machine precision.
However, even if we increase the specified rank by 1, FGD will end up with a much slower
convergence rate. A zoom-in view of the convergence rate shows that, FGD might first
converge geometrically, and then converge sub-linearly. This phenomenon is not captured
by the recent works about FGD (Li et al., 2018; Chen and Wainwright, 2015). What exactly
is the convergence rate? And what about the statistical error? These are the questions that
we want to answer in this work.

1.3 Organization

The remainder of the paper is organized as follows. In Section 2, we present the convergence
rate of the FGD iterates under the over-parameterized matrix sensing setting. Then, we
present the proof sketch of the results in Section 3. The detailed proofs of the main results
are deferred to the Appendices while we conclude the paper with a few discussions in
Section 4.

1.4 Notations

In the paper, we use bold lower case letters to represent vectors, such as x, and bold upper
case letters to represent matrices, such as X. When X is a matrix, we use Xij to represent
the element on the i-th row and j-th column of X, unless otherwise specified. We use 〈·, ·〉
for matrix inner product. For example 〈A,X〉 =

∑
ij AijXij . We denote dxe as the smallest

integer greater than or equal to x for any x ∈ R. We write A � B (respectively A � B) if
A−B is positive definite (respectively positive semidefinite) for square matrices A and B.
We write {Ai}ti=1 to represent the sequence {A1,A2, ...,At}. We also use the short hand
{Ai}i to represent {A1,A2, ...} We use σ1 and σr to denote the first eigenvalue and the
r-th eigenvalue of X∗ respectively, which is the ground truth rank r matrix that we want
to recover. And we use κ to denote the conditional number: κ := σ1/σr.

We also use the standard asymptotic complexity notation. Specifically, f(x) = O(g(x))
implies |f(x)| ≤ C |g(x)| for some constant C and for large enough x, f(x) = Ω(g(x))
implies |f(x)| ≥ C |g(x)| for some constant C and for large enough x, and f(x) = Θ(g(x))
implies C1 |g(x)| ≤ |f(x)| ≤ C2 |g(x)| for some constant C1, C2 and for large enough x.
When log factors are omitted, we use Õ, Ω̃, Θ̃ to represent O, Ω, Θ respectively.

Definition 1. (Sub-Gaussian Random Variable). We call a random variable X with

mean µ sub-Gaussian with variance proxy σ > 0 if ∀λ ∈ R, E [exp (λ (X − µ))] ≤ e(σ2λ2/2).

Definition 2. (Sub-Gaussian Sensing Matrix). We call a matrix A a sub-Gaussian
sensing matrix if it is sampled as follow:

Ai =
1

2
(Ri +R>i ),

where Ri ∈ Rd×d, and all elements of Ri are independently sampled from an identical sub-
Gaussian distribution with zero-mean and variance proxy 1.
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Over-parameterized matrix sensing

2. Main Result

Before we present our main result, we formally introduce the decomposition notation for
X∗. Let the eigen-decomposition of X∗ (eigenvalues ordered by the absolute values) be
given by

X∗ = [U V]

[
D∗S 0
0 D∗T

]
[U V]> = UD∗SU> + VD∗TV>,

where U ∈ Rd∗r, V ∈ Rd∗(d−r), D∗S ∈ Rr∗r, D∗T ∈ R(d−r)∗(d−r). Without loss of generality
we assume that the both U and V are orthonormal and U>V = 0 (i.e., U and V together
span the entire Rd). Denote σ1 be the largest value in D∗S, σr be the smallest value in D∗S,
and σr+1 be the largest value in D∗T. If X∗ is exactly rank r, then D∗T is a zero matrix.
For generality, we allow X∗ to be only approximately rank r, where we assume that D∗T is
nonzero but σr+1 is very small. Since the union of the column space of U and V spans the
entire Rd, then for any Ft ∈ Rd∗k, there exist matrices St ∈ Rr∗k and Tt ∈ R(d−r)∗k such
that

Ft = USt + VTt.

As t goes to infinity, we hope that StS
>
t converges to D∗S, TtT

>
t converges to D∗T, and StT

>
t

and TtS
>
t converges to zero, and hence FtF

>
t = UStS

>
t U> + VTtT

>
t V> + UStT

>
t V> +

VTtS
>
t U> converges to X∗.

We introduce the decomposition and study the convergence of StS
>
t , TtT

>
t , and StT

>
t

separately. This decomposition technique is essential, since we can then bypass some tech-
nical difficulties when we over-specify the rank. For example we do not have to establish
the uniqueness (up to rotational ambiguity) of the optimal solution as in the Lemma 1 in
Chen and Wainwright (2015). Moreover, this gives more insights about which part is the
computational and/or statistical bottleneck. As we will see shortly (both in Theorem 4 and
Lemma 7), it is the convergence of

{∥∥TtT
>
t −D∗T

∥∥
2

}
t

that slows down the entire process of
the convergence. Similar decomposition technique is also employed in the work of Li et al.
(2018).

Here we focus on the local convergence of FGD method within the following basin of
attraction:

Assumption 1. (Initialization assumption)∥∥∥F0F
>
0 −X∗

∥∥∥
2
≤ ρσr, for ρ ≤ 0.07. (4)

Note that 0.07 is a universal constant and is chosen for the ease of presentation. Note
that one can use the spectral method to achieve this initialization (Chen and Wainwright,
2015; Bhojanapalli et al., 2016a; Tu et al., 2016). Connecting the initialization condition to
our decomposition strategy, we need to control max

{∥∥D∗T −T0T
>
0

∥∥
2
,
∥∥D∗S − S0S

>
0

∥∥
2
,
∥∥S0T

>
0

∥∥
2

}
in our analysis. The following lemma establishes the connection between what we need in
the analysis and Assumption 1.

Lemma 3. If
∥∥F0F

>
0 −X∗

∥∥
2
≤ 0.7ρσr, then

max
{∥∥∥D∗T −T0T

>
0

∥∥∥
2
,
∥∥∥D∗S − S0S

>
0

∥∥∥
2
,
∥∥∥S0T

>
0

∥∥∥
2

}
≤ ρσr.
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We leave the proof of Lemma 3 to Appendix C.1. Now we are ready to present our main
result.

Theorem 4. (Main result) Assume the following setting: (1) ‖D∗T‖2 <
√

d log d
n σ; (2)

we have good initialization as in Assumption 1; (3) the step size η = 1
100σ1

, (4) Ai’s are
sub-Gaussian sensing matrices. Let {Ft}t be the sequence generated by the FGD algorithm
as in equation (3). Then, the following holds:

(a) With sample size n > C1kκ
2d log3 d ·max(1, σ2/σ2r ) for some universal constant C1,

after t >
⌈
2 log σr

εcomp

⌉
steps, we have

max
{∥∥∥StS>t −D∗S

∥∥∥
2
,
∥∥∥StT>t ∥∥∥

2

}
< Cεcomp

for some universal constant C, where εcomp :=
√

kκ2d log d
n σr + κ

√
d log d
n σ.

(b) With sample size n > C ′1k
2κ2d(log3 d) ·max(1, σ2/σ2r ) for some universal constant C ′1,

after t ≥ Θ
(

σ1
εstat

)
steps, we find that

max
{∥∥∥StS>t −D∗S

∥∥∥
2
,
∥∥∥StT>t ∥∥∥

2
,
∥∥∥TtT

>
t −D∗T

∥∥∥
2

}
< C ′2εstat,

and
∥∥FtF

>
t −X∗

∥∥
2
≤ C ′3εstat for some universal constants C ′2, and C ′3, where εstat :=

κ
√

d log d
n σ.

The proof of Theorem 4 is in Appendix B.2. We now have a few remarks with these results:

(1) The sequences
{∥∥StS>t −D∗S

∥∥
2

}
t

and
{∥∥StT>t ∥∥2}t first converge linearly and then sub-

linearly. Theorem 4 indicates that the sequences
{∥∥StS>t −D∗S

∥∥
2

}
t

and
{∥∥StT>t ∥∥2}t first

converge linearly from 0.1σr to εcomp, and then converge sub-linearly to Ω (εstat). Further-
more, the sequence

{∥∥FtF
>
t −X∗

∥∥
2

}
t

always converges sublinearly towards Ω (εstat). This
is consistent with our simulations in Figure 2. As we will see later in Lemma 7, it is the
convergence of

∥∥D∗T −TtT
>
t

∥∥
2

that slows down the convergence of
{∥∥FtF

>
t −X∗

∥∥
2

}
t
, and

incurring the sublinear convergence of
{∥∥StS>t −D∗S

∥∥
2

}
t

and
{∥∥StT>t ∥∥2}.

(2) There is a convergence rate discrepancy between the population and finite-sample ver-
sions. It is often believed that the convergence rate is consistent even if we go from finite
n to infinitely large n (i.e., from finite sample scenario to the scenario when we have access
to the population gradient). However this is not the case in our setting. As we will show
shortly in Lemma 6, if we have access to the population gradient, the convergence rates of
the sequences

{∥∥StS>t −D∗S
∥∥
2

}
t

and
{∥∥StTT

t

∥∥
2

}
t

are linear all the way until zero. In our
setting, going from population to finite-sample creates an unusual tangling factor, causing
the convergence rate discrepancy between the finite-sample and population sequences.

(3) The statistical error is almost tight compared to the counterpart, with a caveat. At a
glance the statistical error seems too good to be true compared to the work in (Chen and
Wainwright, 2015), and even better than the minimax rate (Candes and Plan, 2011). In
fact the guarantees we offer are in spectral norm, while the typical rate in the related work
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Over-parameterized matrix sensing

is in Frobenius norm. Translating the spectral norm to Frobenius norm will introduce an

extra
√
k factor. That is, the statistical error is κ

√
kd log d
n σ if we evaluate

∥∥FtF
>
t −X∗

∥∥
F

.

This statistical error is similar to the results in Chen and Wainwright (2015) when the
rank is known, i.e., k = r. Furthermore, we are able to cover both the noisy and noiseless
matrix sensing settings. While one might read from the statistical error and claim that the
sample complexity is Ω

(
kκ2d log3 d ·max(1, σ2/σ2r )

)
, a caveat is that, in order to achieve

this statistical error, we do require n > C1k
2κ2d log3 d · max(1, σ2/σ2r ) for some universal

constant C1. The extra factor of k comes from the uniform concentration bound of random
matrices in Lemma 18. We believe that this is an artifact of our proof technique, and
this extra factor could potentially be sharpened, though it appears non-trivial, and would
require some new developments for the uniform concentration of random matrices. Finally,
we would like to remark that the FGD setup with over-specified rank should suffer from
dependence on k, not the true rank r. This is because the weak-signal part suffers from a
degenerate landscape, and FGD cannot distinguish whether the weak-signal part has indeed
0 or non-zero energy.

(4) The behaviors of FGD under the noiseless setting. When σ = 0, namely, the noiseless
setting of the matrix sensing problem, with the similar proof argument as that of Theorem 4
we have the following behaviors of the FGD:

Corollary 5. (Noiseless Setting) Assume the noiseless setting of the matrix sensing problem
with ‖D∗T‖2 = 0 while the other assumptions on the initialization, the step size, and the
sensing matrices are as in Theorem 4. Let {Ft}t be the sequence generated by the FGD
algorithm as in equation (3). Then, the following holds:

(a) With n > C1kκ
2d log3 d for some universal constant C1, after t >

⌈
2 log σr

εcomp noiseless

⌉
steps, we have

max
{∥∥∥StS>t −D∗S

∥∥∥
2
,
∥∥∥StT>t ∥∥∥

2

}
< Cεcomp noiseless

for some universal constant C, where εcomp noiseless =
√

kκ2d log d
n σr.

(b) For any ε > 0, with n > C ′1k
2κ2d(log3 d) for some universal constant C ′1, after t ≥

Θ
(
σ1
ε

)
steps, we find that

max
{∥∥∥StS>t −D∗S

∥∥∥
2
,
∥∥∥StT>t ∥∥∥

2
,
∥∥∥TtT

>
t −D∗T

∥∥∥
2

}
< C ′2ε.

and
∥∥FtF

>
t −X∗

∥∥
2
≤ C ′3ε for some universal constants C ′2, and C ′3.

The results of Corollary 5 indicate that in the noiseless setting of the matrix sensing problem,
the sequences

{∥∥StS>t −D∗S
∥∥
2

}
t

and
{∥∥StT>t ∥∥2}t first converge linearly and then sub-

linearly, which share similar behaviors to those in the general noise settings in Theorem 4.
The slow convergence is due to the rank over-specification, which significantly flattens the
landscape around the global optimum. This is the main distinction between our work and
existing literature on rank-specified noiseless cases.

9



(5) Computational benefits of the FGD over the Iterative Hard Thresholding (IHT) methods.
Now, we would like to compare the FGD to the IHT methods (Jain et al., 2014a), which
are useful for solving the over-parameterized matrix sensing problems. The main benefit
of the FGD over the IHT methods is its total computational complexity for reaching the
final statistical radius around the true matrix X∗. In particular, for the IHT methods,
the per iteration cost is O(nd2) where n is the sample size and d is the dimension while
for the FGD, the per iteration cost is O(ndk) where k is the chosen rank. Therefore,
based on Theorem 2 of (Jain et al., 2014a), with the computational complexity O(kd2)
from the spectral method for the initialization, the total computational complexity for the
IHT methods to reach the statistical radius O(kdσ2/n) around the true matrix X∗ is at
the order of O(kd2 + nd2 log(n/(kdσ2))). On the other hand, from Theorem 4, the total
computational complexity of the FGD to reach that final statistical radius is at the order of
O(kd2 + σr

σ n
3/2
√
dk). As a consequence, as long as n � d3 the FGD algorithm has better

computational complexity than that of the IHT methods in terms of the dimension d, which
is crucial in the high dimensional settings of the matrix sensing problems.

2.1 Simulation verification of the main result

In this subsection we use the same simulation setup as in Section 1.2. Let {Ft}t be the
sequence generated by the FGD method as in Equation (3), and let S,T be defined as in
the previous subsection.

The simulation results are shown in Figure 2. In Figure 2a, we plot
∥∥FF> −X∗

∥∥
2
,∥∥SS> −D∗S

∥∥
2
,
∥∥ST>

∥∥
2
, and

∥∥TT> −D∗T
∥∥
2

against the algorithm iterations. The simula-

tion results are aligned with our theory. As said in Theorem 4,
∥∥SS> −D∗S

∥∥
2

and
∥∥ST>

∥∥
2

first converge linearly, and then sublinearly. Furthermore,
∥∥FF> −X∗

∥∥
2

is soon dominated

by
∥∥TT> −D∗T

∥∥
2
, which converges sub-linearly all the time. Note that these phenomena

are when the true rank is 3 and we set k = 4. If we correctly specify the rank (k = r = 3),
the convergences will be linear, as shown in Figure 2b. In Figures 2c and 2d, we re-produce
the result as in Figures 2a and 2b with random initialization. This indicates that our as-
sumption of initialization could possibly be waived using recent insights about the global
landscape of the matrix sensing problem (Zhang and Zhang, 2020).

3. Proof of the main result

The proof of the main result follows the typical population-sample analysis (Balakrishnan
et al., 2017). We first analyze the convergence behavior of the algorithm when we have
access to the population gradient. Then in the finite sample setting, we quantify the dif-
ference between the population gradient and the finite sample gradient using concentration
arguments, and use this difference plus the convergence result in population analysis, to
characterize the convergence behavior in the finite sample setting.

While it is common to use the Restricted Isometric Property (RIP) as the building block
to encapsulate the concentration requirement (Chen and Wainwright, 2015; Chi et al., 2019;
Li et al., 2018), we build our results directly based on the concentration of sub-Gaussian
sensing matrices for technical convenience. While it is possible to control the Frobenius norm
directly, we find it technically easier and more reader friendly to show that the sequence

10
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(a) (b)

(c) (d)

Figure 2. Simulations that verify the main result. (a) Convergence rates of the
FGD iterates when we over-specify the rank (r = 3, k = 4). (b) Convergence rates of the
FGD method when we correctly specify the rank (r = k = 3). The Figures in (c) and (d)
are executed in the same setting as those in (a) and (b) respectively, except with random
initialization around the origin, instead of using Assumption 1.

∥∥FtF
>
t −X∗

∥∥
2

converges. However, RIP is defined in Frobenius norm since it was first
developed for vector and then extended to matrix (Recht et al., 2010; Candes and Plan,

2011). Translating the Frobenius norm directly to spectral norm will incur a Θ
(√

k
)

factor

of sub-optimality. That being said, we believe that it is possible to establish similar results
for
∥∥FtF

>
t −X∗

∥∥
F

directly, and hence we can use the general RIP notion. We leave this
for future work.

3.1 Population analysis

The first step of our analysis is to understand the contraction if we have access to the pop-
ulation gradient. One can check that E [〈Ai,B〉Ai] = B for any matrix B with appropriate
dimensions. Combined with the fact that yi = 〈Ai,X

∗〉+ε, the population gradient (taking

11



expectation over the observation noise ε and the observation matrices Ai) is

Gt := E[Gn
t ] =

(
FtF

>
t −X∗

)
Ft.

A closer look at the update in the Factored Gradient Method (Equation (3)) with population
gradient reveals that at each iteration, the update only changes the coefficient matrices S
and T. Simple algebra using the last observation yields:

Ft − ηGt

=Ft − η
(
FtF

>
t Ft −X∗Ft

)
=USt + VTt − η

[
(USt + VTt)

(
S>t St + T>t Tt

)
− (UD∗SSt + VD∗TTt)

]
=UMS (St) + VMT (Tt)

where we define the following operators:

MS(S) = S− η
(
SS>S + ST>T−D∗SS

)
,

MT(T) = T− η
(
TT>T + TS>S−D∗TT

)
.

Lemma 6. (Contraction per iteration with access to the population gradient.)
Set η = 1

100σ1
. We assume good initialization as in Assumption 1. Then we have:

(a)
∥∥D∗S −MS(S)MS(S)>

∥∥
2
≤ (1− ησr)

∥∥D∗S − SS>
∥∥
2

+ 3η
∥∥ST>

∥∥2
2
,

(b)
∥∥MS(S)MT(T)>

∥∥
2
≤
∥∥ST>

∥∥
2

(1− ησr),

(c)
∥∥MT(T)MT(T)>

∥∥
2
≤
∥∥TT>

∥∥
2

(
1− η

∥∥TT>
∥∥
2

+ 2η ‖D∗T‖2
)
,

(d)
∥∥MT(T)MT(T)> −D∗T

∥∥
2
≤
∥∥TT> −D∗T

∥∥
2

∥∥I− 2ηTT>
∥∥
2

+ 3η
∥∥ST>

∥∥2
2
.

The proof of Lemma 6 can be found in Appendix A.1.

According to Lemma 6 above, we have fast convergence in estimating SS>, ST>, but
slow convergence in estimating TT>. Intuitively, TT> is slow because the local curvature of
the population version of the loss function (2) is flat, namely, the Hessian matrix around the
global maxima D∗T is degenerate. We know that when the curvature of the target matrix is
undesirable, we can only guarantee sub-linear convergence rate (Bhojanapalli et al., 2016a).

Note that, we assume that k > r for the above analysis. The case when k ≤ r is
already covered by various existing works (see Chen and Wainwright (2015); Tu et al.
(2016); Bhojanapalli et al. (2016a) and the references therein); therefore, we will not focus
on this setting in our analysis.

3.2 Finite sample analysis

On top of our population analysis result, we consider the case when we only have access
to the gradient evaluated with finitely many samples. We consider the deviation of the

12
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population and sample gradient as follows:

Gn
t −Gt =

1

n

n∑
i=1

(〈
Ai,FtF

>
t

〉
− yi

)
AiFt −

(
FtF

>
t −X∗

)
Ft

=
1

n

n∑
i=1

(〈
Ai,FtF

>
t −X∗

〉
+ εi

)
AiFt −

(
FtF

>
t −X∗

)
Ft.

We define ∆t to quantify this deviation:

∆t =
1

n

n∑
i

(〈
Ai,FtF

>
t −X∗

〉
+ εi

)
Ai − (FtF

>
t −X∗),

and hence Gn
t −Gt = ∆tFt. If we can control ∆t, we can have contraction per-iteration,

as shown in the lemma below. Note that we make no attempts to optimize the constants.

Lemma 7. (Contraction per iteration.) Assume that we have the same setting as
Theorem 4. Denote Dt = max{

∥∥StS>t −D∗S
∥∥
2
,
∥∥TtT

>
t

∥∥
2
,
∥∥StT>t ∥∥2}, and assume that Dt

is still sub-optimal to the statistical error: Dt > 50κ
√

d log d
n σ. Suppose

‖∆t‖2 ≤ 5

√
kd log d

n
Dt +

√
d log d

n
σ. (5)

Then, we find that∥∥∥St+1S
>
t+1 −D∗S

∥∥∥
2
≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+

√
kd log d

n
Dt +

4

10

√
d log d

n
σ (6)

≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+
1

10
ησrDt +

4

10

√
d log d

n
σ, (7)∥∥∥St+1T

>
t+1

∥∥∥
2
≤ (1− ησr)

∥∥∥StT>t ∥∥∥
2

+

√
kd log d

n
Dt +

4

10

√
d log d

n
σ (8)

≤ (1− ησr)
∥∥∥StT>t ∥∥∥

2
+

1

10
ησrDt +

4

10

√
d log d

n
σ. (9)

Moreover, denote εstat = κ
√

d log d
n σ. Then we have

(Dt+1 − 50εstat) ≤
[
1− 1

2
η (Dt − 50εstat)

]
(Dt − 50εstat) . (10)

The proof of Lemma 7 can be found in Appendix B.1.

Implication of equations (7) and (9): Firstly, when n goes to infinity, the sequence
of
{∥∥StS>t −D∗S

∥∥
2

}
t

has constant contraction at each step, and hence achieves a linear
convergence after all. This matches our population results in Lemma 6. Secondly, if n is
finite, the sequence of

{∥∥StS>t −D∗S
∥∥
2

}
t

still has constant contraction, until roughly the

magnitude of
∥∥StS>t −D∗S

∥∥
2

reaches 5
√

kd log d
n Dt. This indicates that we will have a linear

convergence behavior in the beginning, and then sublinear convergence, as is indicated in
Theorem 4.
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3.3 Proof sketch for the main theorem

In this subsection we offer a proof sketch for Theorem 4. Detailed proof can be found in
Appendix B.2.

Lemma 7 is our key building block towards the main theorem. However there are two
missing pieces. (1) Firstly we have to establish equation (5) so that Lemma 7 can be invoked
for one iteration. (2) Secondly we have to find a way to correctly invoke Lemma 7 for all
iterations and obtain the correct statistical rate.

We resolve the first point by bounding ‖∆t‖2 using matrix Bernstein concentration
bound (Tropp, 2012) together with the ε-net discretization techniques.

Lemma 8. Let Ai be sub-Gaussian sensing matrices. Let εi follows N(0, σ). Then

P

(∥∥∥∥∥ 1

n

n∑
i

Aiεi

∥∥∥∥∥
2

≥ C
√
dσ2

n

)
≤ exp(−C).

Lemma 9. Let Ai be sub-Gaussian sensing matrices. Let U be a deterministic symmetric
matrix of the same dimension. Then as long as n > C1d log3 d for some universal C1, C2 >
10, we have

P

(∥∥∥∥∥ 1

n

n∑
i

(〈Ai,U〉Ai −U)

∥∥∥∥∥
2

≤
√
d log d

n
‖U‖F

)
≥ 1− exp (−C2 log d) .

The proof of the above two concentration results can be found in the Appendix D. If
we invoke these lemmas for ∆t to ensure that equation (5) holds, then we can immediately
have

‖∆t‖2 =

∥∥∥∥∥ 1

n

n∑
i

〈
Ai,FtF

>
t −X∗

〉
Ai − (FtF

>
t −X∗) +

1

n

n∑
i

εiAi

∥∥∥∥∥
2

≤ 5

√
kd log d

n
Dt +

√
d log d

n
σ

≤ 0.5ησrDt +

√
d log d

n
σ

where we use Lemma 9 with U = FtF
>
t − X∗ and Assumption 1 with converting it to

Frobenius bound (note that ‖FtF
>
t −X∗‖2 ≤ Dt), and the last inequality holds because we

set n > C1kκ
2d log3 d ·max(1, σ2/σ2r ).

In order to resolve the second challenge mentioned above, we need a uniform concentra-
tion result.

Lemma 10. Let Ai be sub-Gaussian sensing matrices. If U is of rank k and is in a bounded
spectral norm ball of radius R (i.e., ‖U‖2 ≤ R),

P

(
sup

U:‖U‖2≤R

∥∥∥∥∥ 1

n

n∑
i

(〈Ai,U〉Ai −U)

∥∥∥∥∥
2

≤
√
d log d

n
kR

)
≥ 1− exp (−C2 log d) .
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With n > C1k
2κ2d log3 d ·max(1, σ2/σ2r ), we can apply Lemma 10 with different values

of R. For instance, starting from R0 = σr, we can apply Lemma 10 with R0/2, R0/4, ...,
until reaching εcomp. Then, we can ensure equation (5) by choosing proper r such that
r < Dt ≤ 2r throughout all iterations. In fact, the use of Lemma 10 with multiple levels
of R is the key to obtain the correct statistical rate after linear convergence phase as we
describe below (The mathematical details of such argument are in the proof of part (b) of
Theorem 1 in Appendix B.2).

Note that, compared to the standard concentration result as in Lemma 9, we have an
extra factor of k in the uniform concentration lemma above. Since the localization analysis
for sub-linear convergence requires uniform concentration of random matrices, we naturally
introduce an extra factor of k, and hence resulting in the extra factor in the requirement of
n as in the part (b) in Theorem 4.

The linear convergence part. Claim (a) in the main theorem is about linear conver-
gence. We mention in the remark that equations (7) and (9) imply constant contractions for∥∥StS>t −D∗S

∥∥
2

and
∥∥StT>t ∥∥2 respectively. To make the argument more precise, we consider∥∥StS>t −D∗S

∥∥
2
> 1000

√
kκ2d log d

n σr > 1000
√

kκ2d log d
n Dt. Then, we find that

√
kd log d
n Dt ≤

0.1ησr
∥∥StS>t −D∗S

∥∥
2

since ησr = 0.01/κ. Also, 4
10

√
d log d
n σ < 0.1ησr

∥∥StS>t −D∗S
∥∥
2

by

the choice of the constants in the lower bound of n. Hence, when
∥∥StS>t −D∗S

∥∥
2
>

1000
√

kκ2d log d
n σr, we find that

∥∥∥St+1S
>
t+1 −D∗S

∥∥∥
2
≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+

√
kd log d

n
Dt +

4

10

√
d log d

n
σ

≤
(

1− 5

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2
.

The same arguments hold for
∥∥StT>t ∥∥2. Therefore to obtain the linear convergence result

as the part (a) in the main theorem, we can just invoke concentration lemmas for each
iteration to obtain constant contraction, and then take union bound over all the iterations.

The sub-linear convergence part. Claim (b) of the main theorem is about sublinear
convergence, and is built upon equation (10).

Before we discuss how equation (5) holds in this sub-linear convergence case for all
iteration t, we briefly illustrate how equation (10) implies convergence to Θ (εstat) after
O(1/εstat) iterations. By equation (10), we know that At+1 ≤

(
1− 1

2ηAt
)
At where At =

Dt − 50εstat. Hence, we obtain that

At+1 ≤
(

1− 1

2
ηAt

)
At

(1)

≤

(
1− 2

t+ 4
ηA0

)
4

ηt+ 4
A0

=

(
t+ 4

ηA0

)
− 2

t+ 4
ηA0

4

η
(
t+ 4

ηA0

)
(2)

≤ 4

η
(
t+ 1 + 4

ηA0

) ,
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where inequality (1) holds because
(
1− 1

2ηAt
)
At is quadratic with respect to At and we

plug-in the optimal At; inequality (2) holds because

(
t+ 4

ηA0

)
−2(

t+ 4
ηA0

)2 ≤ 1(
t+ 4

ηA0

)
+1

. Therefore,

after t ≥ Θ
(

1
ηεstat

)
number of iterations, At = Dt − 50κ

√
d log d
n σ ≤ Θ (εstat).

We still need to show that equation (5) holds (with probability at least 1− d−c) in this
sub-linear convergence case for all iteration t with high probability. To do so, we need to
use the localization technique (Kwon et al., 2021; Dwivedi et al., 2020b,a). Without the
localization technique, the statistical error will be proportional to n−1/4 which is not tight.
With the localization argument, we can improve it to n−1/2. We leave the details of this
argument to Appendix B.2.

4. Conclusions, discussions, and future works

In the paper, we provide a comprehensive analysis of the computational and statistical
complexity of the Factorized Gradient Descent method under the over-parameterized matrix
sensing problem, namely, when the true rank is unknown and over-specified. We show that
‖FtFt −X∗‖2F converges to a radius of Õ (kd/n) after Õ(

√
n
d ) number of iterations where

Ft is the output of FGD after t iterations. We now discuss a few natural questions with
this work.

Weaker initialization condition. In this work we focus on local convergence (see As-
sumption 1). This is a common practice in the related works (Chen and Wainwright, 2015;
Bhojanapalli et al., 2016a; Zheng and Lafferty, 2015), and this initialization can be achieved
by the standard spectral method. However, it is natural to ask what would happen if a
weaker initialization is performed. When the rank is known, and the number of samples is
sufficiently large, global convergence is achievable since factorized matrix sensing problem
has no spurious local minima (Zhang et al., 2019; Ge et al., 2017, 2016). However, when the
rank is unknown and over-specified, we believe that guaranteeing global convergence is still
an open problem and is an interesting future direction. Besides global convergence, another
weaker initialization condition is initialization around the origin, namely (randomly) gen-
erate a matrix F0 such that

∥∥F0F
>
0

∥∥
2
≤ δ for some small constant δ. While we show that

such initialization works in our simulation (see Figures 2c and 2d), we find that we need at
least a constant lower bound on the smallest eigenvalue of S0S

>
0 for the theoretical analysis.

Such a lower bound is automatically satisfied when k = d and we initialize F0 as δI where I
is the identity matrix, as in Li et al. (2018). However it is fundamentally challenging when
k < d and we cannot guarantee a constant lower bound on the smallest eigenvalue of S0S

>
0 .

Extension to asymmetric matrices. In this work we focus on the true symmetric
matrix X∗ and symmetric sensing matrices, because this captures the essential difficulties
of the over-parameterized matrix sensing problem already. For the matrix sensing problem
with asymmetric X∗ and asymmetric sensing matrices, one can convert such a problem
into a symmetric one without changing the asymptotically statistical and computational
complexity. We refer the readers to the Section 5 of Ge et al. (2017) for more details.

Extensions to other rank-constrained convex optimization problems. Suppose we
want to find a rank r PSD matrix X∗ ∈ Rd∗d by minimizing a convex function f (X) =
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f
(
FF>

)
where F ∈ Rd∗k and k > r. If the population gradient with respect to X is

X−X∗, and the sample gradients have good concentration around the population gradient
(examples can be found in Chen and Wainwright (2015)), our analysis techniques can be
directly applied. If the population gradient with respect to X is explicit and we can still
decompose the update process of {Ft}t into the strong signal part (namely {St}t) and the
weak signal part (namely {Tt}t), similar techniques might also be applicable. However,
non-trivial efforts are required to extend our current analysis to general convex functions.

Extension to projected factorized gradient descent. So far in our formulation we do
not assume structure in the factorized matrix {Ft}t. However for some low-rank problems
it is desirable to have constraints on {Ft}t. For example for matrix completion we wish all
the iterations {Ft}t to stay incoherent, and this can be achieved by performing a projection
step after each gradient step (Chen and Wainwright, 2015). As long as the projection step
is non-expansive (i.e.,

∥∥Π(F)Π(F)> −X∗
∥∥
2
≤
∥∥FF> −X∗

∥∥
2

where Π is the projection
operation), our analysis is still applicable. Unfortunately projection required to maintain
incoherence is expansive in our analysis (note that it is non-expansive in for example Chen
and Wainwright (2015) when we analyze the convergence of Frobenius norm and the corre-
sponding non-expansiveness is defined as

∥∥Π(F)Π(F)> −X∗
∥∥
F
≤
∥∥FF> −X∗

∥∥
F

). To get
around this issue, one option is to show that all {Ft}t stay incoherent automatically as in
Ma et al. (2018). We leave this direction for future development.

Can the results in Li et al. (2018) imply this work? We would like to explain the
difference between our results and those in Li et al. (2018). If we choose the specified
rank k as d, we have the same problem setting, and use the same algorithm. However,
the results are different. The key difference here is the sample complexity. As Li et al.
(2018) focus on over-parameterization, their analysis requires Õ(dr) samples, where r is the
rank of the ground truth matrix X∗, while our analysis requires Õ(dk) = Õ(d2) samples
when k = d. Since they only require Õ(dr) samples, they cannot control the error of the
over-parameterization part (equivalent to our TT> part). In fact in their analysis, they
only show that in a limited number of steps, this error does not blow up. While with Õ(dk)
samples we can show that the over-parameterization part also converges, although with a
slower convergence rate. Therefore, their results cannot imply ours.
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Appendix A. Proofs for population analysis

In this appendix, we provide all the proofs for population analysis of matrix sensing problem.

A.1 Proof of Lemma 6

We prove the four contraction results separately. To simplify the ensuing presentation, we
drop all subscripts t associated with the iteration counter.
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Proof of the contraction result (a) in Lemma 6: We would like to prove the following
inequality: ∥∥∥D∗S −MS(S)MS(S)>

∥∥∥
2
≤ (1− ησr)

∥∥∥D∗S − SS>
∥∥∥
2

+ 3η
∥∥∥ST>

∥∥∥2
2
.

Indeed, from the formulation of MS(S), we have

D∗S −MS(S)MS(S)>

=D∗S −
(
S− ηST>T + η

(
D∗S − SS>

)
S
)(

S− ηST>T + η
(
D∗S − SS>

)
S
)>

.

We can group the terms in the RHS of the above equation according to whether they contain
D∗S − SS> or not, namely, we find that

D∗S −MS(S)MS(S)> = I + II

where, I =
(
D∗S − SS>

)
− η

(
D∗S − SS>

)
SS> − ηSS>

(
D∗S − SS>

)
− η2

(
D∗S − SS>

)
SS>

(
D∗S − SS>

)
+ η2

(
D∗S − SS>

)
ST>TS> + η2ST>TS>

(
D∗S − SS>

)
,

II = 2ηST>TS> − η2ST>TT>TS>.

We first deal with the I term. A direct application of inequality with operator norm
leads to

‖I‖2 ≤
∥∥∥D∗S − SS>

∥∥∥
2

∥∥∥I− 2ηSS> − η2SS>
(
D∗S − SS>

)
+ 2η2ST>TS>

∥∥∥
2
.

From the choice of the step size and the initialization condition, the term I − 2ηSS> −
η2SS>

(
D∗S − SS>

)
+ 2η2ST>TS> is PSD matrix. Furthermore, for any ‖z‖ = 1, we have

z>
(
I− 2ηSS> − η2SS>

(
D∗S − SS>

)
+ 2η2ST>TS>

)
z

≤1− 2η ‖Sz‖22 + η2
∥∥∥SS>

∥∥∥
2

∥∥∥D∗S − SS>
∥∥∥
2

+ 2η2
∥∥∥TT>

∥∥∥
2
‖Sz‖22

(i)

≤1− 2ησr + 3η2σrσ1
(ii)

≤ 1− ησr,

where in step (i) we used 0.9σrI � SS> � (σ1 + 0.1σr)I,
∥∥D∗S − SS>

∥∥
2
≤ 0.1σr and∥∥TT>

∥∥
2
≤ 1.1σr by initialization condition and triangular inequality; step (ii) follows from

choice of step size η = 1
100σ1

, and definition of the conditional number κ = σ1/σr. Therefore,
we arrive at the following inequality:∥∥∥I− 2ηSS> − η2SS>

(
D∗S − SS>

)
+ 2η2ST>TS>

∥∥∥
2
≤ 1− ησr. (11)
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To deal with the II term, we have to establish the connection between D∗S − SS> and
ST>. Note that,

∥∥η2ST>TT>TS>
∥∥
2
≤ η2

∥∥TT>
∥∥
2

∥∥ST>TS>
∥∥
2
≤ η

∥∥ST>TS>
∥∥
2

since
η ≤ 1/σr. Hence, we have

‖II‖2 ≤
∥∥∥2ηST>TS>

∥∥∥
2

+
∥∥∥η2ST>TT>TS>

∥∥∥
2
≤ 3η

∥∥∥ST>TS>
∥∥∥
2
. (12)

Collecting the results from equations (11) and (12), we obtain∥∥∥D∗S −MS(S)MS(S)>
∥∥∥
2
≤ (1− ησr)

∥∥∥D∗S − SS>
∥∥∥
2

+ 3η
∥∥∥ST>

∥∥∥2
2
.

Therefore, we reach the conclusion with claim (a) in Lemma 6.

Proof of the contraction result (b) in Lemma 6: Recall that we want to demonstrate
that ∥∥∥MS(S)MT(T)>

∥∥∥
2
≤
∥∥∥ST>

∥∥∥
2

(1− ησr) .

Firstly, from the formulations of MS(S) and MT(T), we have the following equations:

MS(S)MT(T)>

=
(
S + η

(
D∗S − SS>

)
S− ηST>T

)(
T + η

(
D∗T −TT>

)
T− ηTS>S

)>
=

1

2

(
I− 2ηSS> + 2η

(
D∗S − SS>

)
− 2η2

(
D∗S − SS>

)
SS> + 2η2ST>TS>

)
ST>

+
1

2
ST>

(
I + 2η

(
D∗T −TT>

)
− 2ηTT> − 2η2TT>

(
D∗T −TT>

))
+ η2

(
D∗S − SS>

)
ST>

(
D∗T −TT>

)
. (13)

Recall that, we have 0.9σrI � SS> � (σ1 + 0.1σr)I,
∥∥D∗S − SS>

∥∥
2
≤ 0.1σr and

∥∥TT>
∥∥
2
≤

1.1σr by initialization condition and triangular inequality, and we choose η = 1
100σ1

.
For the term in the first line of the RHS of equation (13) we have∥∥∥∥1

2

(
I− 2ηSS> + 2η

(
D∗S − SS>

)
− 2η2

(
D∗S − SS>

)
SS> + 2η2ST>TS>

)
ST>

∥∥∥∥
2

≤1

2

∥∥∥ST>
∥∥∥
2

(∥∥∥1− 2ηSS>
∥∥∥
2

+ 2η
∥∥∥D∗S − SS>

∥∥∥
2

+ 2η2
∥∥∥D∗S − SS>

∥∥∥
2

∥∥∥SS>
∥∥∥
2

+ 2η2
∥∥∥ST>TS>

∥∥∥
2

)
≤1

2

∥∥∥ST>
∥∥∥
2

(
1− 1.8ησr + 0.2ησr + 0.0022ησr + 0.02η2σ2r

)
≤1

2

∥∥∥ST>
∥∥∥
2

(1− 1.5ησr) .

For the term in the second line of the RHS of equation (13), direct calculation yields that∥∥∥∥1

2
ST>

(
I + 2η

(
D∗T −TT>

)
− 2ηTT> − 2η2TT>

(
D∗T −TT>

))∥∥∥∥
2

≤1

2

∥∥∥ST>
∥∥∥
2

(∥∥∥I− 2ηTT>
∥∥∥
2

+ 0.2ησr + 2.2η2σ2r

)
≤1

2

∥∥∥ST>
∥∥∥
2

(1 + 0.3ηρσr) .
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Lastly, for the second order term in the third line of the RHS of equation (13) we have∥∥∥η2 (D∗S − SS>
)

ST>
(
D∗T −TT>

)∥∥∥
2
≤ η2ρ2σ2r

∥∥∥ST>
∥∥∥
2

=
1

1000
ησr

∥∥∥ST>
∥∥∥
2
.

Plugging the above results into equation (13) leads to∥∥∥MS(S)MT(T)>
∥∥∥
2
≤
∥∥∥ST>

∥∥∥
2

(1− ησr) .

Hence, we obtain the conclusion of claim (b) in Lemma 6.

Proof of the contraction result (c) in Lemma 6: We would like to establish that∥∥∥MT(T)MT(T)>
∥∥∥
2
≤
∥∥∥TT>

∥∥∥
2

(
1− η

∥∥∥TT>
∥∥∥
2

+ 2η ‖D∗T‖2
)
.

To check the convergence in low SNR, i.e., with small singular values, we assume that
‖D∗T‖ � σr. It suggests that the focus is how fast TT> converges to 0 when ‖TT>‖ �
‖D∗T‖. Indeed, simple algebra indicates that

MT(T)MT(T)>

=
(
T + η

(
D∗T −TT>

)
T− ηTS>S

)(
T + η

(
D∗T −TT>

)
T− ηTS>S

)>
=TT> + ηTT>

(
D∗T −TT>

)
− ηTS>ST>

+ η
(
D∗T −TT>

)
TT> + η2

(
D∗T −TT>

)
TT>

(
D∗T −TT>

)
− η2

(
D∗T −TT>

)
TS>ST>

− ηTS>ST> − η2TS>ST>
(
D∗T −TT>

)>
+ η2TS>SS>ST>

=III + IV + V,

where we use the following shorthand notation:

III =

(
TT> − 2η

(
TT>

)2
+ η2

(
TT>

)3)
,

IV =η
(
D∗TTT> + TT>D∗T

)
−
(
η2D∗T

(
TT>

)2
+ η2

(
TT>

)2
D∗T

)
+ η2D∗T

(
TT>

)
D∗T,

V =− 2ηTS>ST> − η2TS>ST>
(
D∗T −TT>

)>
− η2

(
D∗T −TT>

)
TS>ST>

+ η2TS>SS>ST>.

We first bound the IV term. Inequalities with operator norm show that∥∥∥D∗TTT>
∥∥∥
2
≤ ‖D∗T‖2

∥∥∥TT>
∥∥∥
2
,∥∥∥∥D∗T (TT>

)2∥∥∥∥
2

≤ σr ‖D∗T‖2
∥∥∥TT>

∥∥∥
2
,∥∥∥D∗T (TT>

)
D∗T

∥∥∥
2
≤ σr ‖D∗T‖2

∥∥∥TT>
∥∥∥
2
.
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Over-parameterized matrix sensing

Given these bounds, we find that

‖IV ‖2 ≤
(
η + 3η2σr

)
‖D∗T‖2

∥∥∥TT>
∥∥∥
2
. (14)

Now, we move to bound the V term. Indeed, we have

− 2ηTS>ST> − η2TS>ST>
(
D∗T −TT>

)>
− η2

(
D∗T −TT>

)
TS>ST> + η2TS>SS>ST>

�
(
−2η + 2η2ρσr + η2σ1

)
TS>ST> � 0. (15)

Since MT(T)MT(T)> is PSD, we can just relax this term to zero. Finally, we bound the
III term. Observe that,

TT> − 2η
(
TT>

)2
+ η2

(
TT>

)3
� TT> − η

(
TT>

)2
,

since η < 1/σ1 and ‖TT>‖ ≤ ρσr. The remaining task is to bound TT> − η
(
TT>

)2
. Let

the singular value decomposition of TT> as QDQ>. Note that D is a diagonal matrix with
diagonal entries less than (1 + ρ)σr. We can proceed as

‖TT> − η
(
TT>

)2
‖ = max

‖z‖=1

(
z>TT>z − ηz>

(
TT>

)2
z

)
= max
‖z‖=1

(
z>QDQ>z − ηz>QD2Q>z

)
= max
‖z′‖=1

(
z′>Dz′ − ηz′>D2z′

)
= max
‖z′‖=1

∑
i

(
di − ηd2i

)
z′

2
i .

Since di < σr and 1/2η � σ1, the above maximum is obtained at the largest singular value
of TT>. That is, we have∥∥∥∥TT> − η

(
TT>

)2∥∥∥∥
2

≤
∥∥∥TT>

∥∥∥
2

(
1− η

∥∥∥TT>
∥∥∥
2

)
. (16)

Now combining every pieces from equations (14), (15), and (16), we arrive at the following
inequality: ∥∥∥MT(T)MT(T)>

∥∥∥
2
≤
∥∥∥TT>

∥∥∥
2

(
1− η

∥∥∥TT>
∥∥∥
2

+ 2η ‖D∗T‖2
)
.

As long as ‖D∗T‖2 �
∥∥TT>

∥∥
2
, the contraction rate is roughly (1− η

∥∥TT>
∥∥
2
). Therefore,

we obtain the conclusion of claim (c) in Lemma 6.

Proof of the contraction result (d) in Lemma 6: Direct calculation shows that

MT(T)MT(T)> −D∗T

=
(
T− η

(
TS>S +

(
TT> −D∗T

)
T
))(

T− η
(
TS>S +

(
TT> −D∗T

)
T
))>

−D∗T

=V I + V II,
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where we denote VI and VII as follows:

V I =(TT> −D∗T)− η((TT> −D∗T)TT> + TT>(TT> −D∗T))

+ η2(TT> −D∗T)TT>(TT> −D∗T),

V II =η2(TT> −D∗T)TS>ST> + η2TS>ST>(TT> −D∗T)

− 2ηTS>ST> + η2TS>SS>ST>.

We first show that the ‖V II‖2 ≤ 3η
∥∥ST>

∥∥2
2
. Firstly, since η ≤ 1

10σ1
and the initialization

condition
∥∥TT> −D∗T

∥∥
2
≤ ρσr, we have

η2
∥∥∥(TT> −D∗T)TS>ST>

∥∥∥
2
≤ 1

10
η
∥∥∥TS>ST>

∥∥∥
2
.

Furthermore, by the choice of η and the fact that
∥∥SS>

∥∥
2
≤ σ1, we find that

η2
∥∥∥TS>SS>ST>

∥∥∥
2
≤ 1

10
η
∥∥∥TS>ST>

∥∥∥
2
.

Putting these results together we have ‖V II‖2 ≤ 3η
∥∥ST>

∥∥2
2
.

Now for the V I term, direct calculation shows that

V I =
(
TT> −D∗T

)
− η

(
TT> −D∗T

)
TT>

(
I − η

2

(
TT> −D∗T

))
− η

(
I − η

2

(
TT> −D∗T

))
TT>

(
TT> −D∗T

)
=
(
TT> −D∗T

)( I

2
− ηTT>

(
I − η

2

(
TT> −D∗T

)))
+

(
I

2
− η

(
I − η

2

(
TT> −D∗T

))
TT>

)(
TT> −D∗T

)
.

Note that, since
∥∥TT>

∥∥
2
≤ ρσr,

∥∥TT> −D∗T
∥∥
2
≤ ρσr, and η = 1

Cσ1
, we obtain that∥∥∥∥ I

2
− ηTT>

(
I − η

2

(
TT> −D∗T

))∥∥∥∥
2

≤
∥∥∥∥ I

2
− ηTT>

∥∥∥∥
2

.

Collecting the above upper bounds with VI and VII, we arrive at∥∥∥MT(T)MT(T)> −D∗T

∥∥∥
2
≤
∥∥∥TT> −D∗T

∥∥∥
2

∥∥∥I− 2ηTT>
∥∥∥
2

+ 3η
∥∥∥ST>

∥∥∥2
2
.

As a consequence, we reach the conclusion of claim (d) in Lemma 6.

A.2 Additional contraction results for population operators

In this appendix, we offer more population contraction (non-expansion) results, which are
useful in showing the contraction results in finite sample setting.

Lemma 11. Under the same settings as Lemma 6, we have
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Over-parameterized matrix sensing

(a)
∥∥D∗S −MS(S)S>

∥∥
2
≤ (1− ησr)

∥∥D∗S − SS>
∥∥
2

+ η
∥∥ST>

∥∥2
2
,

(b)
∥∥MS(S)T>

∥∥
2
≤
∥∥ST>

∥∥
2
,

(c)
∥∥MT(T)S>

∥∥
2
≤
∥∥ST>

∥∥
2
,

(d)
∥∥MT(T)T>

∥∥
2
≤
∥∥TT>

∥∥
2

+ η
∥∥ST>

∥∥2
2
.

Proof WithMS(S) = S−η
(
SS>S + ST>T−D∗SS

)
and simple algebraic manipulations,

we obtain

MS(S)S> −D∗S =
(
SS> −D∗S

)
− η

(
SS>SS> + ST>TS> −D∗SSS>

)
=
(
SS> −D∗S

)(
I− ηSS>

)
− ηST>TS>.

Since
∥∥SS>

∥∥
2
≥ 0.9σr by initialization condition and triangular inequality, we know that∥∥D∗S −MS(S)S>
∥∥
2
≤ (1− 0.9ησr)

∥∥D∗S − SS>
∥∥
2

+ η
∥∥ST>

∥∥2
2
. Therefore, we obtain the

conclusion of claim (a).
Move to claim (b), with simple algebraic manipulations, we can show that

MS(S)T> =ST> − η
(
SS>ST> + ST>TT> −D∗SST>

)
=

(
1

2
I− η

(
SS> −D∗S

))
ST> − ST>

(
1

2
I− ηTT>

)
.

By initialization condition and triangular inequality, we know that 0 ≤
∥∥(SS> −D∗S

)∥∥
2
≤

ρσr and 0 ≤
∥∥TT>

∥∥
2
≤ 1.1σr, and hence

∥∥MS(S)T>
∥∥
2
≤
∥∥ST>

∥∥
2
. Hence, we reach the

conclusion of claim (b).
With MT(T) = T− η

(
TT>T + TS>S−D∗TT

)
and direct calculation, we find that

MT(T)S> =TS> − η
(
TT>TS> + TS>SS> −D∗TTS>

)
=

(
1

2
I− η

(
TT> −D∗T

))
TS> −TS>

(
1

2
I− ηSS>

)
.

By initialization condition and triangular inequality, we know that 0 ≤
∥∥(TT> −D∗T

)∥∥
2
≤

ρσr and 0.9σr ≤
∥∥SS>

∥∥
2
≤ 0.1σr +σ1, and hence

∥∥MS(S)T>
∥∥
2
≤
∥∥ST>

∥∥
2
. It leads to the

conclusion of claim (c).
Finally, moving to claim (d), simple algebra shows that

MT(T)T> =TT> − η
(
TT>TT> + TS>ST> −D∗TTT>

)
=
(
I− η

(
TT> −D∗T

))
TT> − ηTS>ST>.

By initialization condition and triangular inequality, we know that
∥∥MT(T)T>

∥∥
2
≤
∥∥TT>

∥∥
2
+

η
∥∥ST>

∥∥2
2
. As a consequence, we obtain the conclusion of claim (d).
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Appendix B. Proofs for the finite sample analysis

Recall that, we denote Gt as the population gradient at iteration t and denote Gn
t as the

corresponding sample gradient with sample size n:

Gt =
(
FtF

>
t −X∗

)
Ft,

Gn
t =

1

n

n∑
i=1

(〈
Ai,FtF

>
t −X∗

〉
+ εi

)
AiFt.

Then, we can write our update as follows:

Ft+1 = Ft − ηGt + ηGt − ηGn
t .

We assume the following decomposition by notations: F = US + VT. Therefore, we find
that

St+1 (St+1)
> =U>Ft+1

(
U>Ft+1

)>
=U> (Ft − ηGt) (Ft − ηGt)

>U + η2U> (Gt −Gn
t ) (Gt −Gn

t )>U

+ ηU> (Ft − ηGt) (Gt −Gn
t )>U + ηU> (Gt −Gn

t ) (Ft − ηGt)
>U

=MS(St)MS(St)
> + η2U> (Gt −Gn

t ) (Gt −Gn
t )>U

+ ηMS(St) (Gt −Gn
t )>U + ηU> (Gt −Gn

t )MS(St)
>,

(17)

where we define MS(St) as follows:

MS(St) = U> (Ft − ηGt) = St − η
(
StS

>
t St + StT

>
t Tt −D∗SSt

)
.

Furthermore, direct calculation shows that

St+1 (Tt+1)
> =U>Ft+1

(
VTFt+1

)>
=U> (Ft − ηGt) (Ft − ηGt)

>V + η2U> (Gt −Gn
t ) (Gt −Gn

t )>V

+ ηU> (Ft − ηGt) (Gt −Gn
t )>V + ηU> (Gt −Gn

t ) (Ft − ηGt)
>V

=MS(St)MT(Tt)
> + η2U> (Gt −Gn

t ) (Gt −Gn
t )>V

+ ηMS(St) (Gt −Gn
t )>V + ηU> (Gt −Gn

t )MT(Tt)
>,

(18)

where MT(Tt) is given by:

MT(Tt) = V> (Ft − ηGt) = Tt − η
(
TtT

>
t Tt + TtS

>
t St −D∗TTt

)
.

Similarly, we also have

Tt+1 (Tt+1)
> =V>Ft+1

(
V>Ft+1

)>
=V> (Ft − ηGt) (Ft − ηGt)

>V + η2V> (Gt −Gn
t ) (Gt −Gn

t )>V

+ ηV> (Ft − ηGt) (Gt −Gn
t )>V + ηVT (Gt −Gn

t ) (Ft − ηGt)
>V

=MT(Tt)MT(Tt)
> + η2V> (Gt −Gn

t ) (Gt −Gn
t )>V

+ ηMT(Tt) (Gt −Gn
t )>V + ηV> (Gt −Gn

t )MT(Tt)
>.

(19)
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Over-parameterized matrix sensing

Note that, in the above equations,MS(St) andMT(Tt) are the updates of the coefficients
when we update S and T using the population gradient. Furthermore, η2U> (Gt −Gn

t ) (Gt −Gn
t )>,

η2U> (Gt −Gn
t ) (Gt −Gn

t )>V, and η2V> (Gt −Gn
t ) (Gt −Gn

t )>V are second order terms
and are relatively small. To facilitate the proof argument, we denote

∆t :=
1

n

n∑
i=1

(〈
Ai,FtF

>
t −X∗

〉
+ εi

)
Ai − (FtF

>
t −X∗).

We can see that ∆t is symmetric matrix, and

Gm
t −Gt = ∆tFt.

B.1 Proof for Lemma 7

Proof By Lemma 6 and Lemma 11, we have the following contraction results:∥∥∥MS(St)MS(St)
> −D∗S

∥∥∥
2
≤ (1− ησr)

∥∥∥StS>t −D∗S

∥∥∥
2

+ 3η
∥∥∥StT>t ∥∥∥2

2
,∥∥∥MS(St)MT(Tt)

>
∥∥∥
2
≤ (1− ησr)

∥∥∥StT>t ∥∥∥
2
,∥∥∥MT(Tt)MT(Tt)

>
∥∥∥
2
≤
∥∥∥TtT

>
t

∥∥∥
2

(
1− η

∥∥∥TtT
>
t

∥∥∥
2

+ 2η ‖D∗T‖2
)
,

(20)

and the following non-expansion results:∥∥∥MS(St)S
>
t −D∗S

∥∥∥
2
≤ (1− ησr)

∥∥∥StS>t −D∗S

∥∥∥
2

+ η
∥∥∥StT>t ∥∥∥2

2
,∥∥∥MS(St)T

>
t

∥∥∥
2
≤
∥∥∥StT>t ∥∥∥

2
,∥∥∥StMT(Tt)

>
∥∥∥
2
≤
∥∥∥StT>t ∥∥∥

2
,∥∥∥MT(Tt)T

>
t

∥∥∥
2
≤
∥∥∥TtT

>
t

∥∥∥
2

+ η
∥∥∥StT>t ∥∥∥2

2
.

(21)

For notation simplicity, let Dt = max{
∥∥StS>t −D∗S

∥∥
2
,
∥∥TtT

>
t

∥∥
2
,
∥∥StT>t ∥∥2}, and denote

the statistical error εstat =
√

d log d
n σ. Since Assumption 1 is satisfied, and ‖D∗T‖2 ≤ εstat,

we have Dt ≤ σr by triangular inequality. Since η
∥∥StT>t ∥∥2 ≤ 1

10ησr by initialization, and∥∥StT>t ∥∥2 ≤ Dt, we have η
∥∥StT>t ∥∥22 ≤ 0.1ησDt. Putting these results together, we have∥∥∥MS(St)MS(St)

> −D∗S

∥∥∥
2
≤
(

1− 7

10
ησr

)
Dt,∥∥∥MS(St)S

>
t −D∗S

∥∥∥
2
≤
(

1− 9

10
ησr

)
Dt,∥∥∥MT(Tt)T

>
t

∥∥∥
2
≤
(

1 +
1

10
ησr

)
Dt.

(22)

For the ease of the presentation we need to connect
√

kd log d
n with ησr for the devel-

opment of the proof. Since η = 1
100σ1

and n > C1kκ
2d log3 d · max(1, σ2/σ2r ), by choosing
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C1 ≥ 10002, we have √
kd log d

n
≤ 0.1ησr. (23)

Combining equation (23) with equation (5), we obtain that

‖∆t‖2 ≤ ησrDt + 4

√
d log d

n
σ. (24)

Upper bound for
∥∥StS>t −D∗S

∥∥
2
: According to equation (17), we have

St+1S
>
t+1 −D∗S =MS(St)MS(St)

> −D∗S︸ ︷︷ ︸
I

+ η2U> (Gt −Gn
t ) (Gt −Gn

t )>U︸ ︷︷ ︸
II

+ ηMS(St) (Gt −Gn
t )>U + ηU> (Gt −Gn

t )MS(St)
>,

where we can further expand ηMS(St) (Gt −Gn
t )>U and ηU> (Gt −Gn

t )MS(St)
> as

follows:

ηMS(St) (Gt −Gn
t )>U

=ηMS(St)F
>
t ∆tU = ηMS(St) (USt + VTt)

>∆tU

=ηMS(St)S
>
t U>∆tU + ηMS(St)T

>
t V>∆tU

= ηMS(St)S
>
t U>∆tU− ηD∗SU>∆tU︸ ︷︷ ︸

III

+ ηMS(St)T
>
t V>∆tU︸ ︷︷ ︸

IV

+ ηD∗SU>∆tU︸ ︷︷ ︸
V

,

and

ηU> (Gt −Gn
t )MS(St)

>

= ηU>∆tUStMS(St)
> − ηU>∆tUD∗S︸ ︷︷ ︸

VI

+ ηU>∆tVTtMS(St)
>︸ ︷︷ ︸

VII

+ ηU>∆tUD∗S︸ ︷︷ ︸
VIII

.

Clearly, our target can be bounded by bounding the eight terms, marked from I to VIII.
Note that the spectral norms of the terms (1) III and VI are the same, (2) IV and VII are
the same, and (3)V and VIII are the same, which can be upper bounded as follows:

III & VI:
∥∥∥ηMS(St)S

>
t U>∆tU− ηD∗SU>∆tU

∥∥∥
2
≤ η

∥∥∥MS(St)S
>
t −D∗S

∥∥∥
2
‖∆t‖2 ,

IV & VII:
∥∥∥ηMS(St)T

>
t V>∆tU

∥∥∥
2
≤ η

∥∥∥MS(St)T
>
t

∥∥∥
2
‖∆t‖2 ,

V & VIII:
∥∥∥ηD∗SU>∆tU

∥∥∥
2
≤ η ‖D∗S‖2 ‖∆t‖2 .

Lastly, consider the II term, we have the following bound:∥∥∥η2U> (Gt −Gn
t ) (Gt −Gn

t )>U
∥∥∥
2
≤η2

∥∥∥∆tFtF
>
t ∆t

∥∥∥
2

≤η2
(∥∥∥StS>t ∥∥∥

2
+
∥∥∥TtT

>
t

∥∥∥
2

+ 2
∥∥∥StT>t ∥∥∥

2

)
‖∆t‖22

≤ 1

100
η ‖∆t‖22 ,

(25)
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where the last inequality holds by assuming ρ ≤ 0.1. Putting all the above results together,
we obtain that∥∥∥St+1S

>
t+1 −D∗S

∥∥∥
2

(1)

≤
∥∥∥M(St)M(St)

> −D∗S

∥∥∥
2︸ ︷︷ ︸

I

+ 2η ‖D∗S‖2 ‖∆t‖2︸ ︷︷ ︸
V + VIII

+
1

100
η ‖∆t‖22︸ ︷︷ ︸
II

+ 2η
∥∥MS(St)S

T
t −D∗S

∥∥
2
‖∆t‖2︸ ︷︷ ︸

III + VI

+ 2η
∥∥MS(St)T

T
t

∥∥
2
‖∆t‖2︸ ︷︷ ︸

IV + VII

(2)

≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2︸ ︷︷ ︸

I

+
1

50
‖∆t‖2︸ ︷︷ ︸

V + VIII

+
1

100
η ‖∆t‖22︸ ︷︷ ︸
II

+ 4ηDt ‖∆t‖2︸ ︷︷ ︸
III + VI + IV + VII

(3)

≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+
1

10
‖∆t‖2

(4)

≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+

√
kd log d

n
Dt +

4

10

√
d log d

n
σ

(5)

≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+ 0.1ησrDt +
4

10

√
d log d

n
σ

where inequality (2) is obtained by the non-expansion property of population update (cf.
equations (21) and (22)) ; inequality (3) is obtained by the fact that 1

100η ‖∆t‖2 < 0.0001,
and 4ηDt < 0.04; inequality (4) is obtained by plugging in the relaxation of ‖∆t‖2 (cf.
equation (5)) and organizing according to Dt and σ; inequality (5) is obtained via the
bound (24).

That is, we proved the equations (6) and (7) in the Lemma 7, namely, we have∥∥∥St+1S
>
t+1 −D∗S

∥∥∥
2
≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+ 0.1ησrDt +
4

10

√
d log d

n
σ. (26)

This indicates a contraction with respect to Dt:∥∥∥St+1S
>
t+1 −D∗S

∥∥∥
2
≤
(

1− 6

10
ησr

)
Dt +

4

10

√
d log d

n
σ. (27)

From the above result, we can verify that∥∥∥St+1S
>
t+1 −D∗S

∥∥∥
2
≤
(

1− 6

10
ησr

)(
Dt − 50κ

√
d log d

n
σ

)
+ 50κ

√
d log d

n
σ. (28)

Upper bound for
∥∥StT>t ∥∥2: According to equation (18), we have

St+1T
>
t+1 =MS(St)MT(Tt)

>︸ ︷︷ ︸
I′

+ η2U> (Gt −Gn
t ) (Gt −Gn

t )T V︸ ︷︷ ︸
II′

+ ηMS(St) (Gt −Gn
t )>V + ηU> (Gt −Gn

t )MT(Tt)
>,

27



where we can expand ηMS(St) (Gt −Gn
t )>V and ηUT (Gt −Gn

t )MT(Tt)
> as follows:

ηMS(St) (Gt −Gn
t )>V =ηMS(St) (USt + VTt)

>∆tV

= ηMS(St)S
>
t U>∆tV − ηD∗SUT∆tV︸ ︷︷ ︸

III′

+ ηMS(St)T
>
t V>∆tV︸ ︷︷ ︸

IV′

+ ηD∗SU>∆tV︸ ︷︷ ︸
V′

,

ηU> (Gt −Gn
t )MT(Tt)

> =ηU>∆t (USt + VTt)MT(Tt)
>

= ηU>∆tUStMT(Tt)
>︸ ︷︷ ︸

VI′

+ ηU>∆tVTtMT(Tt)
>︸ ︷︷ ︸

VII′

.

Clearly, our target upper bound for
∥∥St+1T

>
t+1

∥∥
2

can be obtained by bounding the seven
terms: I’ to VII’. Specifically, direct application of inequalities with operator norms leads
to

III′ :
∥∥∥ηMS(St)S

>
t U>∆tV − ηD∗SU>∆tV

∥∥∥
2
≤ η

∥∥∥MS(St)S
>
t −D∗S

∥∥∥
2
‖∆t‖2 ,

IV′ :
∥∥∥ηMS(St)T

>
t V>∆tV

∥∥∥
2
≤ η

∥∥∥MS(St)T
>
t

∥∥∥
2
‖∆t‖2 ,

V′ :
∥∥∥ηD∗SU>∆tV

∥∥∥
2
≤ η ‖D∗S‖2 ‖∆t‖2 ,

VI′ :
∥∥∥ηU>∆tUStMT(Tt)

>
∥∥∥
2
≤ η

∥∥∥MT(Tt)S
>
t

∥∥∥
2
‖∆t‖2 ,

VII′ :
∥∥ηUT∆tVTtMT(Tt)

T
∥∥
2
≤ η

∥∥∥MT(Tt)T
>
t

∥∥∥
2
‖∆t‖2 .

Lastly, the II term is bounded as in Equation (25), namely, we have

∥∥∥η2U> (Gt −Gn
t ) (Gt −Gn

t )>V
∥∥∥
2
≤ 1

100
η ‖∆t‖22 .
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Collecting the above results, we find that∥∥∥St+1T
>
t+1

∥∥∥
2

≤
∥∥∥MS(St)MT(Tt)

>
∥∥∥
2︸ ︷︷ ︸

I′

+
1

100
η ‖∆t‖22︸ ︷︷ ︸
II′

+ η
∥∥∥MS(St)S

>
t −D∗S

∥∥∥
2
‖∆t‖2︸ ︷︷ ︸

III′

+ η ‖D∗S‖2 ‖∆t‖2︸ ︷︷ ︸
V′

+ η
∥∥∥MS(St)T

>
t

∥∥∥
2
‖∆t‖2︸ ︷︷ ︸

IV′

+ η
∥∥∥MT(Tt)S

>
t

∥∥∥
2
‖∆t‖2︸ ︷︷ ︸

VI′

+ η
∥∥∥MT(Tt)T

>
t

∥∥∥
2
‖∆t‖2︸ ︷︷ ︸

VII′

(1)

≤ (1− ησr)
∥∥∥StT>t ∥∥∥

2︸ ︷︷ ︸
I′

+
1

100
η ‖∆t‖22︸ ︷︷ ︸
II′

+
1

100
‖∆t‖2︸ ︷︷ ︸
V

+ 5ηDt ‖∆t‖2︸ ︷︷ ︸
III′+IV′+VI′+VII′

(2)

≤ (1− ησr)
∥∥∥StT>t ∥∥∥

2
+

1

10
‖∆t‖2

≤ (1− ησr)
∥∥∥StT>t ∥∥∥

2
+

√
kd log d

n
Dt +

4

10

√
d log d

n
σ

≤ (1− ησr)
∥∥∥StT>t ∥∥∥

2
+ 0.1ησrDt +

4

10

√
d log d

n
σ,

where inequality (1) is obtained by the non-expansion property of population update (cf.
equations (21) and (22)); inequality (2) is obtained by the fact that 1

100η ‖∆t‖2 < 0.001 and
5ηDt < 0.05. In summary, we have

∥∥∥St+1T
>
t+1

∥∥∥
2
≤ (1− ησr)

∥∥∥StT>t ∥∥∥
2

+ 0.1ησrDt +
4

10

√
d log d

n
σ. (29)

With similar treatment as in
∥∥StS>t −D∗S

∥∥
2
, we have the following contraction result with

respect to Dt: ∥∥∥St+1T
>
t+1

∥∥∥
2
≤
(

1− 9

10
ησr

)
Dt +

4

10

√
d log d

n
σ. (30)

Given the above result, we can verify that

∥∥∥St+1T
>
t+1

∥∥∥
2
≤
(

1− 9

10
ησr

)(
Dt − 50κ

√
d log d

n
σ

)
+ 50κ

√
d log d

n
σ. (31)

Upper bound for
∥∥TtT

>
t

∥∥
2
: According to equation (19) and similar deductions as in

previous bounds for
∥∥StS>t −D∗S

∥∥
2

and
∥∥StT>t ∥∥2, we have

Tt+1T
>
t+1 =MT(Tt)MT(Tt)

>︸ ︷︷ ︸
I′′

+ η2V> (Gt −Gn
t ) (Gt −Gn

t )>V︸ ︷︷ ︸
II′′

+ ηMT(Tt) (Gt −Gn
t )>V + ηV> (Gt −Gn

t )MT(Tt)
>,

29



where the following expansions hold:

ηMT(Tt) (Gt −Gn
t )>V = ηMT(Tt)S

>
t U>∆tV︸ ︷︷ ︸

III′′

+ ηMT(Tt)T
>
t V>∆tV︸ ︷︷ ︸

IV′′

,

ηV> (Gt −Gn
t )MT(Tt)

> = ηV>∆tUStMT(Tt)
>︸ ︷︷ ︸

V′′

+ ηV>∆tVTtMT(Tt)
>︸ ︷︷ ︸

VI′′

.

Given the formulations of the terms I′′-VI′′, we find that

III′′&V′′ :
∥∥∥ηMT(Tt)S

>
t U>∆tV

∥∥∥
2
≤ η

∥∥∥MT(Tt)S
>
t

∥∥∥
2
‖∆t‖2 ,

IV′′&VI′′ :
∥∥∥ηMT(Tt)T

>
t V>∆tV

∥∥∥
2
≤ η

∥∥∥MT(Tt)T
>
t

∥∥∥
2
‖∆t‖2 ,

II′′ :
∥∥∥η2U> (Gt −Gn

t ) (Gt −Gn
t )>U

∥∥∥
2
≤ 1

100
η ‖∆t‖22 .

Assume that
∥∥TtT

>
t

∥∥
2

= zDt for 0 < z ≤ 1. Note that, z is not necessarily a constant. For

notation simplicity we use the short hand that εstat =
√

d log d
n σ. With the choice of n and

equation (5), we have ‖∆t‖2 ≤ ησrDt + 4εstat. Therefore, we obtain that∥∥∥Tt+1T
>
t+1

∥∥∥
2

(1)

≤
∥∥∥MT(Tt)MT(Tt)

>
∥∥∥
2︸ ︷︷ ︸

I′′

+
1

100
η ‖∆t‖22︸ ︷︷ ︸
II′′

+ 2η
∥∥∥MT(Tt)S

>
t

∥∥∥
2
‖∆t‖2︸ ︷︷ ︸

III′′+V′′

+ 2η
∥∥∥MT(Tt)T

>
t

∥∥∥
2
‖∆t‖2︸ ︷︷ ︸

IV′′+VI′′

(2)

≤
(
z − z2ηDt + 2zη ‖D∗T‖2 + 4η (ησrDt + 4εstat)

)
Dt︸ ︷︷ ︸

I′′+III′′+V′′+IV′′+VI′′

+
1

100
η (ησrDt + 4εstat)

2︸ ︷︷ ︸
II

(3)

≤ (1− ηDt + 2η ‖D∗T‖2 + 4η (ησrDt + 4εstat))Dt +
1

100
η (ησrDt + 4εstat)

2 ,

where inequality (2) is obtained by the non-expansion property of population update (cf.
equations (21) and (22)) and the assumption on ‖∆t‖2 (cf. equation (5)). For inequality (3),
observe that the above quantity is a quadratic formula with respect to z, and the maximum

is taken when z =
1+2η‖D∗T‖2

2ηDt
> 1. Hence we can just safely plug-in z = 1. Now, we arrange

by organizing according to Dt and εstat and obtain that∥∥∥Tt+1T
>
t+1

∥∥∥
2

(1)

≤
(
1− ηDt + 2ηεstat + 4η2σrDt + 16ηεstat

)
Dt +

1

100
η
(
η2σ2rD

2
t + 16ε2stat + 8εstatησrDt

)
(2)
=
(
1− ηDt + 4η2σrDt + 0.01η3σ2rDt

)
Dt + (0.16εstat + 0.08ησrDt + 18Dt) ηεstat

(3)

≤ (1− 0.9ηDt)Dt + (0.16εstat + 19Dt) ηεstat,

where inequality (1) is obtained by ‖D∗T‖2 ≤ εstat, and inequality (2) is obtained by orga-
nizing according to Dt and σ.
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For notation simplicity we introduce At = Dt − 50εstat, and hence Dt = At + 50εstat

where εstat = κ
√

d log d
n σ. With some algebraic manipulations, we have

∥∥∥Tt+1T
>
t+1

∥∥∥
2
≤ (1− 0.9ηAt)At + 50κ

√
d log d

n
σ.

Furthermore, from equations (28) and (31), we have

Dt+1 ≤ (1− 0.5ηAt)At + 50κ

√
d log d

n
σ.

Putting all these results together yields that

At+1 ≤ (1− 0.5ηAt)At.

This completes the proof of the Lemma 7.

Note that Lemma 7 is established for Dt > 50εstat. To complete the proof of our main
theorem, we want to make sure that Dt do not expand too much after we reaches the
statistical accuracy.

Lemma 12. Consider the same setting as Lemma 7, except that Dt ≤ 50εstat. We claim
that Dt+1 ≤ 100εstat.

Proof The proof of this Lemma is a simple extension using the proof of Lemma 7. As in
the proof of Lemma 7, we know that

∥∥∥St+1S
>
t+1 −D∗S

∥∥∥
2
≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+
1

10
‖∆t‖2 .

From the hypothesis, ‖∆t‖2 ≤ Dt + εstat ≤ 51εstat. Hence, we have

∥∥∥St+1S
>
t+1 −D∗S

∥∥∥
2
≤ 100εstat.

Similarly for
∥∥St+1T

>
t+1

∥∥
2
, we have

∥∥∥St+1T
>
t+1

∥∥∥
2
≤ (1− ησr)

∥∥∥StT>t ∥∥∥
2

+
1

10
‖∆t‖2 ≤ 100εstat.

31



Finally, for
∥∥Tt+1T

>
t+1

∥∥
2
, we find that

∥∥∥Tt+1T
>
t+1

∥∥∥
2

(1)

≤
∥∥∥MT(Tt)MT(Tt)

>
∥∥∥
2︸ ︷︷ ︸

I

+
1

100
η ‖∆t‖22︸ ︷︷ ︸
II

+ 2η
∥∥∥MT(Tt)S

>
t

∥∥∥
2
‖∆t‖2︸ ︷︷ ︸

III + V

+ 2η
∥∥∥MT(Tt)T

>
t

∥∥∥
2
‖∆t‖2︸ ︷︷ ︸

IV + VI

(2)

≤
∥∥∥TtT

>
t

∥∥∥
2

(
1− η

∥∥∥TtT
>
t

∥∥∥
2

+ 2η ‖D∗T‖2
)

+ 5η · 50εstat · 51εstat

(3)

≤ (1 + 300ηεstat) 50εstat
(4)

≤100εstat

where inequality (1) is deducted in the proof of Lemma 7; inequality (2) is by relaxing term
I using Equation (20), relaxing ‖∆t‖2 ≤ 51εstat, and grouping all other terms; inequality
(3) is by the assumption that ‖D∗T‖2 ≤ εstat; inequality (4) is by the choice of n such that
εstat ≤ 0.1.

Putting all the results together, we obtain the conclusion of Lemma 12.

B.2 Proof of Theorem 4

Our proof is divided into verifying claim (a) and claim (b).

Proof for claim (a) with the linear convergence: Recall that

∆t =
1

n

n∑
i

〈
Ai,FtF

T
t −X∗

〉
Ai − (FtF

T
t −X∗) +

1

n

n∑
i

εiAi.

With Lemma 15 and Lemma 17, we know that with probability at least 1− exp(log d)

∆t ≤ 5

√
kd log d

n
Dt +

√
d log d

n
σ.

Therefore, with this inequality, the result from Lemma 7 indicates

∥∥∥St+1S
>
t+1 −D∗S

∥∥∥
2
≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+

√
kd log d

n
Dt +

4

10

√
d log d

n
σ.

We show later in part (b) that Dt converges sub-linearly and thus Dt ≤ σr throughout the
iterations with the initialization condition (Assumption 1). For now, let us assume this

is given. Note that an error accumulated each iteration is ε0 =
√

kd log d
n σr + 4

10

√
d log d
n σ.
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Thus, we have∥∥∥St+1S
>
t+1 −D∗S

∥∥∥
2
≤
(

1− 7

10
ησr

)∥∥∥StS>t −D∗S

∥∥∥
2

+ ε0

≤
(

1− 7

10
ησr

)2 ∥∥∥St−1S>t−1 −D∗S

∥∥∥
2

+

(
1 +

(
1− 7

10
ησr

))
ε0

≤ ...

≤
(

1− 7

10
ησr

)t+1 ∥∥∥S0S
>
0 −D∗S

∥∥∥
2

+O(η−1σ−1r )ε0.

We let εcomp = κ
√

d log d
n (
√
kσr + σ). We now have constant contraction for one iteration.

We can invoke the Lemma 15 for once, Lemma 17 for t iterations, and take the union
bounds, to quantify the probability that equation (5) holds for all iteration t. Shortly we
will show that this probability is at least 1 − d−c for some universal constant c. But first
we need to know how large we need the number of iterations t to be. Note that∥∥∥StS>t −D∗S

∥∥∥
2
≤
(

1− 7

10
ησr

)t ∥∥∥S0S
>
0 −D∗S

∥∥∥
2

+ εcomp ≤
(

1− 7

10
ησr

)t
0.1σr + εcomp,

where the final inequality holds by simply plugging in the initialization condition.

After at most t = 1
log 1

1−0.005/κ

· log 1

10000

√
kκ2d log d

n

iterations,
∥∥StS>t −D∗S

∥∥
2
< εcomp.

Since 1
log 1

1−0.005/κ

≤ 1.1, we further simplify this to t > log n
kκ2d log d

. As a consequence, we

claim that after t =
⌈
log n

kκ2d log d

⌉
iterations,

∥∥StS>t −D∗S
∥∥
2
< Cεcomp for some universal

constant C.

Now the remaining task is to show that equation (5) holds for all iteration t with
probability at least 1 − d−c. If n is not too large, i.e. n < dc5 for some constant c5, then
we invoke equation (36) in Lemma 17 for t iterations. This holds with probability at least
1 − td−c > 1 − d−c+1 for some universal constant c, since t < log n < C5 log d. If n is
large, i.e., nz1 > C2d log3 dkκ2 for some universal constant z1 ∈ (0, 1), then we should use

∆t ≤ 0.5ησrDt +
√

d log d
n σ and the fact that

√
kd log d
n � ησr to directly establish the above

results.

Therefore equation (5) holds with probability at least 1− d−c for all iteration t, and we
complete our proof with

∥∥StS>t −D∗S
∥∥
2
.

With the same argument, we also obtain
∥∥StT>t ∥∥2 < Cεcomp after t =

⌈
log n

kκ2d log d

⌉
iterations. Therefore, we obtain the conclusion of claim (a) in Theorem 4.

Proof for claim (b) with the sub-linear convergence: For the sublinear conver-
gence part in claim (b), we prove it by induction. We consider the base case. Since

n > C1κ
2d log3 d ·max(1, σ2/σ2r ), we have 50κ

√
d log d
n σ ≤ 0.05σr by choosing

√
C1 = 1000.

Therefore the base case is correct by the definitions of A0 and D0.

The key induction step is proven in the Lemma 7, as the equation (10). However, as the
convergence rate is sub-linear ultimately, it is sub-optimal to directly invoke concentration

33



result (Lemma 17) to establish equation (5) at each iteration and take union bound over all
the iterations. Hence, we adapt the standard localization techniques from empirical process
theory to sharpen the rates. Note that, these techniques had also been used to study the
convergence rates of optimization algorithms in mixture models settings (Dwivedi et al.,
2020a; Kwon et al., 2021).

The key idea of the localization technique is that, instead of invoking the concentration
result at each iteration, we only do so when Dt is decreased by 2. More precisely, we divide
all the iterations into epochs, where i-th epoch starts at iteration αi, ends at iteration
αi+1 − 1, and Dαi+1 ≤ 0.5Dαi . We invoke Lemma 18 at αi to establish equation (5) for all
the iterations in i-th epoch. Finally, we take a union bound over all the epochs.

By definition, we have

∆t =
1

n

n∑
i

〈
Ai,FtF

T
t −X∗

〉
Ai − (FtF

T
t −X∗) +

1

n

n∑
i

εiAi.

From Lemma 15, we know that with probability at least 1− exp(−C),

1

n

n∑
i

εiAi ≤
√
d log d

n
σ.

We only have to invoke this concentration result once for the entire algorithm analysis.
At iteration αi, note that

∥∥FαiF
T
αi −X∗

∥∥
2
≤
∥∥SαiSTαi −D∗S

∥∥
2

+
∥∥TαiT

T
αi −D∗T

∥∥
2

+

2
∥∥SαiTT

αi

∥∥
2
≤ 4Dαi + ‖D∗T‖2 < 5Dαi . By Lemma 18 we know that, with probability at

least 1− exp(−C), we have

sup
‖X‖2≤5Dαi

1

n

n∑
i

〈Ai,X〉Ai −X ≤ 5

√
k2d log d

n
Dαi .

Therefore, we find that

‖∆αi‖2 ≤5

√
k2d log d

n
Dαi +

√
d log d

n
σ

≤0.5ησrDαi +

√
d log d

n
σ

where the second inequality is by the choice of n. Hence equation (5) is satisfied at iteration

αi. For notation simplicity, we define At = Dt − 50κ
√

d log d
n σ. Invoking Lemma 7, we have

Dαi+1 = Aαi+1 + 50κ

√
d log d

n
σ ≤

(
1− 1

2
ηAαi

)
Aαi + 50κ

√
d log d

n
σ ≤ Dαi ,

where the last inequality just comes from Dαi = Aαi + 50κ
√

d log d
n σ. At iteration t ∈

(αi, αi+1 − 1), by induction Dt = At + 50κ
√

d log d
n σ, and Dt ≤ Dt−1 ≤ Dαi . Furthermore,

we also have 2Dt > Dαi . Therefore, the following bounds hold:

∆t =
1

n

n∑
i

〈
Ai,FtF

T
t −X∗

〉
Ai − (FtF

T
t −X∗) +

1

n

n∑
i

εiAi

34



Over-parameterized matrix sensing

≤ 0.5ησrDαi +

√
d log d

n
σ

≤ ησrDt +

√
d log d

n
σ.

Hence, equation (5) is satisfied for all iteration t ∈ (αi, αi+1 − 1). Invoking Lemma 7, we
have

Dt+1 = At+1 + 50κ

√
d log d

n
σ ≤

(
1− 1

2
ηAt

)
At + 50κ

√
d log d

n
σ

with probability at least 1− d−c for a universal constant c. This directly implies that

At+1 ≤
(

1− 1

2
ηAt

)
At. (32)

We first assume that equation (32) holds for all iterations t, and then show that this is true
with probability at least 1−d−c for some constant c. With this, we claim that At ≤ 4

ηt+ 4
A0

.

To see this, we have

At+1 ≤
(

1− 1

2
ηAt

)
At

(1)

≤

(
1− 2

t+ 4
ηA0

)
4

ηt+ 4
A0

=

(
t+ 4

ηA0

)
− 2

t+ 4
ηA0

4

η
(
t+ 4

ηA0

)
(2)

≤ 4

η
(
t+ 1 + 4

ηA0

)
where inequality (1) holds because

(
1− 1

2ηAt
)
At is quadratic with respect to At and we

plug-in the optimal At; inequality (2) holds because

(
t+ 4

ηA0

)
−2(

t+ 4
ηA0

)2 ≤ 1(
t+ 4

ηA0

)
+1

.

Therefore, after t ≥ Θ
(

1
ηεstat

)
number of iterations, At = Dt−50κ

√
d log d
n σ ≤ Θ (εstat),

which indicates that

max
{∥∥StSTt −D∗S

∥∥
2
,
∥∥TtT

T
t

∥∥
2
,
∥∥StTT

t

∥∥
2

}
≤ Θ (εstat) . (33)

Now what is left to be shown is that equation (32) holds for all iterations t with proba-

bility at least 1− d−c for some constant c. We first consider t = Θ
(

1
ηεstat

)
. If n is not too

large, i.e., n < dc5 for some constant c5, then we invoke Lemma 18 for each epochs. Let T
be the number of total epochs. For each epoch, the Dt shrinks by at least a half. To reach
εstat, we need T = Θ (log(1/εstat)) = Θ (log n). Equation (32) holds for all epochs with
probability at least 1−Td−c > 1−d−c+1 for some universal constant c, since T = Θ (log n).

If n is large, i.e., nz1 > C2d log3 dkκ2 for some universal constant z1 ∈ (0, 1), then
we establish equation (32), and we invoke equation (37) in Lemma 17 for T epochs. This
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holds with probability at least 1−T/ exp(nz1) > 1−d−c for some universal constant c, since

T < log n. If t > Θ
(

1
ηεstat

)
, we can show using above argument that after Θ

(
1

ηεstat

)
number

of iterations equation (33) holds. After this, by Lemma 12 we know that Dt = Θ (εstat).
Then, we can invoke Lemma 7 or without further invoking the concentration argument
anymore, since the radius in the uniform concentration result does not change.

As a consequence, after t ≥ Θ
(

1
ηεstat

)
number of iterations, by triangular inequality,

and the assumption that ‖D∗T‖2 ≤ εstat, we have
∥∥FtF

>
t −X∗

∥∥
2
≤ Θ (εstat). Combined

with Lemma 12, we complete the proof of Theorem 4.

Appendix C. Supporting Lemma

In this appendix, we provide proofs for supporting lemmas in the main text.

C.1 Proof of Lemma 3

Proof From the definition of operator norm, we have∥∥∥D∗T −T0T
>
0

∥∥∥
2

= max
x∈Rd−r:‖x‖2≤1

∣∣∣x> (D∗T −T0T
>
0

)
x
∣∣∣ .

Since V ∈ Rd∗(d−r) is an orthonormal matrix, for any x ∈ Rd−r, we can find a vector z ∈ Rd
such that V>z = x. Hence, we find that∥∥∥D∗T −T0T

>
0

∥∥∥
2

=
∥∥∥V (D∗T −T0T

>
0

)
V>
∥∥∥
2

= max
x∈Rd:‖x‖2≤1

∣∣∣x>V
(
D∗T −T0T

>
0

)
V>x

∣∣∣ .
Without loss of generality we can write any x ∈ Rd as x = xu + xv, such that Uz = xu for
some z ∈ Rr, and Vz′ = xv for some z′ ∈ Rd−r since U and V are perpendicular to each
other and they together span Rd. If x∗ = arg maxx∈Rd:‖x‖2≤1

∣∣x>V
(
D∗T −T0T

>
0

)
V>x

∣∣
then x∗u is zero. It is because if x∗u 6= 0, one can decrease x∗u to zero and increase x∗v to
x∗v/ ‖x∗v‖2, which does make the target quantity smaller. Therefore, we have∥∥∥D∗T −T0T

>
0

∥∥∥
2

= max
x∈Rd:‖x‖2≤1

∣∣∣x>V
(
D∗T −T0T

>
0

)
V>x

∣∣∣
= max

x:‖x‖2≤1,
U>x=0

∣∣∣x>V
(
D∗T −T0T

>
0

)
V>x + x>U

(
D∗S − S0S

>
0

)
U>x + 2x>

(
US0T

>
0 V>

)
x
∣∣∣

≤ max
x:‖x‖2≤1

∣∣∣x>V
(
D∗T −T0T

>
0

)
V>x + x>U

(
D∗S − S0S

>
0

)
U>x + 2x>

(
US0T

>
0 V>

)
x
∣∣∣

=
∥∥∥F0F

>
0 −X∗

∥∥∥
2
≤ 0.7ρσr,

where the final inequality is due to the Assumption 1. The same techniques can be applied
to obtain ∥∥∥D∗S − S0S

>
0

∥∥∥
2
≤
∥∥∥F0F

>
0 −X∗

∥∥∥
2
≤ 0.7ρσr.
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For
∥∥S0T

>
0

∥∥
2
, we claim that the following equations hold:∥∥∥S0T
>
0

∥∥∥
2

=
∥∥∥US0T

>
0 V>

∥∥∥
2

= 0.5
∥∥∥US0T

>
0 V> + VT0S

>
0 U>

∥∥∥
2
.

To see the last equality, let σ1 be the largest eigen-value (in magnitude) of US0T
>
0 V> and

let x̄ be the corresponding eigen-vector. For some c ∈ (0, 1), let x̄ = cx̄u +
√

1− c2x̄v such
that Uz = x̄u for some z ∈ Rr, Vz′ = x̄v for some z′ ∈ Rd−r, and ‖x̄u‖2 = 1 and ‖x̄v‖2 = 1.
Then, direct algebra leads to

σ1 = (x̄)>US0T
>
0 V>x̄ = c

√
1− c2 (x̄)>u US0T

>
0 V>x̄v.

For the RHS of the above equation, the optimal choice of c is 1/
√

2. We already know that
the largest eigen-value (in magnitude) of VT0S

>
0 U> is also σ1. Therefore, we obtain that

(x̄)>VT0S
>
0 U>x̄ = c

√
1− c2 (x̄)>u US0T

>
0 V>x̄v = σ1.

Collecting the above results, we have
∥∥US0T

>
0 V>

∥∥
2

= 0.5
∥∥US0T

>
0 V> + VT0S

>
0 U>

∥∥
2
.

Then, an application of triangular inequality yields that

2
∥∥∥S0T

>
0

∥∥∥
2

=
∥∥∥US0T

>
0 V> + VT0S

>
0 U>

∥∥∥
2

≤
∥∥∥F0F

>
0 −X∗

∥∥∥
2

+
∥∥∥D∗T −T0T

>
0 + D∗S − S0S

>
0

∥∥∥
2
.

We can check that
∥∥D∗T −T0T

>
0 + D∗S − S0S

>
0

∥∥
2
≤ 0.7 ·

√
2ρσr by decomposing the eigen-

vector x = cxu +
√

1− c2xv as above. Therefore,
∥∥S0T

>
0

∥∥
2
< ρσr.

As a consequence, we obtain the conclusion of the lemma.

Appendix D. Concentration bounds

In this appendix, we want establish the uniform concentration bound for the following term:

1

n

n∑
i=1

(〈
Ai,FF> −X∗

〉
+ εi

)
Ai − (FF> −X∗),

for any matrix F ∈ Rd∗k such that ‖FF> − X∗‖2 ≤ R for some radius R > 0. To do
so, we have to bound the spectral norm of each random observation, and then take Bern-
stein/Chernoff type bound.

Lemma 13. (Matrix Bernstein, Theorem 1.4 in Tropp (2012)) Consider a finite
sequence {Xk} of independent, random, self-adjoint matrices with dimension d. Assume
that each random matrix satisfies

E[Xk] = 0, and λmax(Xk) ≤ R almost surely.

Then, for all t ≥ 0,

P

(
λmax

(∑
k

Xk

)
≥ t

)
≤ d · exp

(
−t2/2

σ2 +Rt/3

)
where σ2 :=

∥∥∥∥∥∑
k

E(X2
k)

∥∥∥∥∥
2

. (34)
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Lemma 14. Let A be a symmetric random matrix in Rd∗d, with the upper triangle entries
(i ≥ j) being independently sampled from an identical sub-Gaussian distribution whose mean
is 0 and variance proxy is 1. Let ε follows N(0, σ). Then

P
(
‖εA‖2 > C1σ

√
d
)
≤ exp (−C2) .

Proof

As ε is sub-Gaussian, we know that for all t > 0

P (|ε| > tσ) ≤ 2 exp

(
− t

2

)
By standard ε-net argument (Tropp, 2012; Vershynin, 2018), for some universal constant
C1, C2, we have

P
(
‖A‖2 > C1

√
d
)
≤ exp

(
− d

C2

)
.

Applying the union bound to the above concentration results leads to

P
(
|ε| > C1σ or ‖A‖2 > C2

√
d
)
≤ 2 exp

(
−C1

2

)
+ exp

(
− d

C3

)
≤ exp (−C4) .

Note that, ‖Aε‖2 = |ε| ‖A‖2. Therefore, we have

P
(
‖εA‖2 > C1σ

√
d
)
≤ exp (−C2) .

As a consequence, we obtain the conclusion of the lemma.

Lemma 15. (Lemma 8 re-stated) Let Ai be symmetric random matrices in Rd∗d, with the
upper triangle entries (i ≥ j) being independently sampled from an identical sub-Gaussian
distribution whose mean is 0 and variance proxy is 1. Let εi follows N(0, σ). Then

P

(∥∥∥∥∥ 1

n

n∑
i

Aiεi

∥∥∥∥∥
2

≥ C
√
dσ2

n

)
≤ exp(−C).

Proof We prove the lemma by applying the matrix Bernstein bound. In fact, direct
calculation shows that

E
(

(Aiεi)
2
)

= σ2E
(
A2
i

)
= σ2dI.

Hence, we obtain ∥∥∥∥∥
n∑
i

E
(

(Aiεi)
2
)∥∥∥∥∥

2

≤ nσ2d.
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From the matrix Bernstein bound (Wainwright, 2019), we find that

P

(∥∥∥∥∥ 1

n

n∑
i

Aiεi

∥∥∥∥∥
2

≥ t

)
≤d · exp

(
−3t2n2

6dnσ2 + 2C1σ
√
dtn

)
= d · exp

(
−3t2n

6dσ2 + 2C1σ
√
dt

)
.

For any δ < 1/e, let t = log 1
δ

√
dσ2

n . Then, the above bound becomes

P

(∥∥∥∥∥ 1

n

n∑
i

Aiεi

∥∥∥∥∥
2

≥ log
1

δ

√
dσ2

n

)
≤ δ.

Or equivalently, for any C > 1, let t = C
√

dσ2

n ,

P

(∥∥∥∥∥ 1

n

n∑
i

Aiεi

∥∥∥∥∥
2

≥ C
√
dσ2

n

)
≤ exp(−C).

As a consequence, we reach the conclusion of the lemma.

Lemma 16. Let A be a symmetric random matrix in Rd∗d, with the upper triangle entries
(i ≥ j) being independently sampled from an identical sub-Gaussian distribution whose
mean is 0 and variance proxy is 1. Let U be a deterministic symmetric matrix of the same
dimension. Then, for some universal constant C1, C2, we have

P (‖〈A,U〉A−U‖2 ≥ C1d ‖U‖F ) ≤ exp (−d/C2) .

Proof We show this by standard ε-net argument. In particular, we have

‖〈A,U〉A−U‖2 = max
x∈Sd−1

x> (〈A,U〉A−U) x

= max
x∈Sd−1

〈A,U〉〈A,xx>〉 −
(
x>Ux

)
.

Note that 〈A,U〉 =
∑

i,j AijUij is sub-Gaussian with variance proxy ‖U‖2F , and 〈A,xx>〉 =∑
i,j Aijxixj is sub-Gaussian with variance proxy 1. Therefore P (|〈A,U〉| > t ‖U‖F ) ≤

exp
(
−t2
)

and P
(
|〈A,xx>〉| > t

)
≤ exp

(
−t2
)
. By the union bound,

P
(
|〈A,U〉〈A,xx>〉| > t ‖U‖F

)
≤ 2 exp (−t) .

Since
(
x>Ux

)
≤ ‖U‖2 ≤ ‖U‖F , we have

P
(
x> (〈A,U〉A−U) x ≥ t ‖U‖F

)
≤ exp

(
− t

C1

)
. (35)

By the standard ε-net argument, let V be the ε covering of Sd−1. Then, we find that

‖〈A,U〉A−U‖2 ≤
1

1− 2ε
max
x∈V

xT (〈A,U〉A−U) x.
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Now we fix ε to be 1/4. Then, for equation (35) we take union bound over V and we have

P
(

max
x∈V

x> (〈A,U〉A−U) x ≥ t ‖U‖F
)
≤ |V| exp

(
− t

C1

)
, for t > C2

and |V| = ed log 9. By choosing t = C1d for reasonably large universal constant C1 we have

P (‖〈A,U〉A−U‖2 ≥ C1d ‖U‖F ) ≤ exp (−d/C2) .

As a consequence, we obtain the conclusion of the lemma.

Lemma 17. Let Ai be a symmetric random matrix of dimension d by d, with the upper
triangle entries (i ≥ j) being independently sampled from an identical sub-Gaussian distri-
bution whose mean is 0 and variance proxy is 1. Let U be a deterministic symmetric matrix
of the same dimension. Then as long as n > C1d log3 d for some universal C1, C2 > 10, we
have

P

(∥∥∥∥∥ 1

n

n∑
i

(〈Ai,U〉Ai −U)

∥∥∥∥∥
2

≤
√
d log d

n
‖U‖F

)
≥ 1− exp (−C2 log d) . (36)

Moreover when n is larger than the order of d, that is, if there exists a constant z1 ∈ (0, 1)
such that nz1 > C2d log3 dkκ2, for some universal constant z2 ∈ (0, 1) we have

P

(∥∥∥∥∥ 1

n

n∑
i

(〈Ai,U〉Ai −U)

∥∥∥∥∥
2

≤ 1

κ log d
√
kC2
‖U‖F

)
≥ 1− exp (−nz2) . (37)

Proof Following Lemma 13, we want to first bound the second order moment of the random
matrices. Since E〈Ai,U〉Ai = U and U has no randomness, we have

E (〈Ai,U〉Ai −U)2 = E (〈Ai,U〉Ai)
2 −U2.

The (m,n) entry of E (〈A,U〉A)2 equals to

d∑
a,b,c,d,j=1

E (AabAcdUabUcdAmjAjn) .

For diagonal entries, i.e., m = n, the expectation is not zero if and only if Aab = Acd. Hence
for diagonal entry (m,m), its expectation is

d∑
a,b

E
(
A2
abA

2
mm

)
U2
ab =

d∑
a,b

U2
ab + 2U2

mm = ‖U‖2F + 2U2
mm.

For off diagonal entries, i.e., m 6= n, the expectation is not zero for that entry when (1)
Aab = Amj and Acd = Ajn, or when (2) Aab = Ajn and Acd = Amj . For both cases, the
expectation equals the (m,n) entry of U2. Therefore, we obtain that

d∑
j=1

E
(
A2
mjA

2
jnUmjUjn

)
=

d∑
j=1

UmjUjn.
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Hence the (m,n) entry of E (〈Ai,U〉Ai −U)2 equals 0 when m 6= n, and equals ‖U‖2F +

2U2
mm −

∑
j U

2
mj when m = n. Hence

∥∥∥E (〈Ai,U〉Ai −U)2
∥∥∥
2
≤ 3 ‖U‖2F and

∥∥∥∥∥
n∑
i

E (〈Ai,U〉Ai −U)2

∥∥∥∥∥
2

≤ 3n ‖U‖2F .

Then, the following inequality holds:

P

(
λmax

(
n∑
i

(〈Ai,U〉Ai −U)

)
≥ t

)
≤ d · exp

(
−t2/2

3n ‖U‖2F +
C1d log d‖U‖F t

3

)

where C1 is a universal constant inherited from Lemma 16 and

P

(
λmax

(
1

n

n∑
i

(〈Ai,U〉Ai −U)

)
≥ t

)
≤ d · exp

(
−3t2n

18 ‖U‖2F + 2C1d log d ‖U‖F t

)
.

Let t =
√

d log d
n ‖U‖F , and as long as n > C2d log3 d for some universal constant C4 >

1000, we have

P

(
λmax

(
1

n

n∑
i

(〈Ai,U〉Ai −U)

)
≥
√
d log d

n
‖U‖F

)

≤d · exp


−3

(√
d log d
n ‖U‖F

)2

n

18 ‖U‖2F + 2C1d log d ‖U‖F
(√

d log d
n ‖U‖F

)


≤d · exp

(
−d log d

C3d

)
(for

√
d log d

n
· log d < 1)

≤ exp (−C4 log d) (for some universal constant C4).

Hence we finish the proof for equation 36.

For the tightness of our statistical analysis, we need to consider the case when n is larger
than the order of polynomial of d. If there exists a constant z ∈ (0, 1) such that

nz > C2d log3 dkκ2,
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then plugging in t =
√

d log d
C2d log

3 dkκ2
‖U‖F = 1

κ log d
√
kC2
‖U‖F , we have

P

(
λmax

(
1

n

n∑
i

(〈Ai,U〉Ai −U)

)
≥ 1

κ log d
√
kC2
‖U‖F

)

≤d · exp

 −3
(

1
κ log d

√
kC2
‖U‖F

)2
n

18 ‖U‖2F + 2C1d log d ‖U‖F
(

1
κ log d

√
kC2
‖U‖F

)


=d · exp

(
−3n

18
(
κ log d

√
kC2

)2
+ 2C1d log d

(
κ log d

√
kC2

))

≤ exp

(
−n
C3nz1

)
≤ exp (−nz2) (for some universal constant z2 ∈ (0, 1)).

In summary, we reach the conclusion of the lemma.

Lemma 18. (Lemma 10 re-stated) Let Ai be a symmetric random matrix of dimension
d by d. Its upper triangle entries (i ≥ j) are independently sampled from an identical sub-
Gaussian distribution whose mean is 0 and variance proxy is 1. If U symmetric is of rank
k and is in a bounded spectral norm ball of radius R (i.e. ‖U‖2 ≤ R), then we have

P

(∥∥∥∥∥ 1

n

n∑
i

(〈Ai,U〉Ai −U)

∥∥∥∥∥
2

≤
√
d log d

n

√
kR

)
≥ 1− exp (−C2d) (38)

and

P

(
sup

U:‖U‖2≤R

∥∥∥∥∥ 1

n

n∑
i

(〈Ai,U〉Ai −U)

∥∥∥∥∥
2

≤
√
d log d

n
kR

)
≥ 1− exp (−C2kd) . (39)

Proof
By the standard symmetrization argument,

P

(
sup

U:‖U‖2≤R

∥∥∥∥∥ 1

n

n∑
i

(〈Ai,U〉Ai −U)

∥∥∥∥∥
2

≥ t

)

≤2P

(
sup

U:‖U‖2≤R

∥∥∥∥∥ 1

n

n∑
i

τi (〈Ai,U〉Ai)

∥∥∥∥∥
2

> t/2

)

=2P

(
sup

U:‖U‖2≤R
sup

x:‖x‖2≤1

1

n

n∑
i

τi 〈Ai,U〉
〈
Ai,xx>

〉
> t/2

)
,

where τis are independent Rademacher random variable. Note that 〈Ai,U〉 is sub-Gaussian
with Orcliz norm O (‖U‖F ) and

〈
Ai,xx>

〉
is sub-Gaussian with Orcliz norm O (1). Hence

the product is hence sub-exponential, with Orcliz norm O (‖U‖F ).
Now we need to study the tail behavior by looking at the moment generating function.

First we need the following Lemma:
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Lemma 19. (Lemma 5.15 in Vershynin (2011)) Let X be a centered sub-exponential ran-
dom variable. Then, for t such that t ≤ c/ ‖X‖ψ1

, one has

E [exp (tX)] ≤ exp
(
Ct2 ‖X‖2ψ1

)
.

Hence for λ ≤ c/
√
k

E

[
exp

(
sup

U:‖U‖2≤R
sup

x:‖x‖2≤1

λ

n

n∑
i

τi 〈Ai,U〉
〈
Ai,xx>

〉)]

=E

[
exp

(
sup

U:‖U‖2≤1
sup

x:‖x‖2≤1

λR

n

n∑
i

τi 〈Ai,U〉
〈
Ai,xx>

〉)]

≤ exp

(
C1λ

2kR2

n
+ C2(k + 1)d

)
,

where the factor of (k + 1)d comes from the standard ε-net argument over {U : ‖U‖2 ≤ 1}
and {x : ‖x‖2 ≤ 1}. By Chernoff inequality,

P

(
sup

U:‖U‖2≤R
sup

x:‖x‖2≤1

1

n

n∑
i

τi 〈Ai,U〉
〈
Ai,xx>

〉
> t/2

)

≤ exp

(
C1λ

2kR2

n
+ C2(k + 1)d− λt/2

)
.

Let λ = nt
4C1kR2 and choose t > C3

√
kd
n

√
kR. Then

P

(
sup

U:‖U‖2≤R

∥∥∥∥∥ 1

n

n∑
i

(〈Ai,U〉Ai −U)

∥∥∥∥∥
2

≥ t

)

≤2P

(
sup

U:‖U‖2≤R
sup

x:‖x‖2≤1

1

n

n∑
i

τi 〈Ai,U〉
〈
Ai,xx>

〉
> t/2

)

≤ exp

(
−C4nt

2

kR2
+ C5kd

)
≤ exp (−C6kd)

as long as we choose the constant C3 large enough.
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