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Abstract

This paper studies the multi-armed bandit problem with a requirement of differential pri-
vacy guarantee or global differential privacy guarantee. We first prove that, the lower bound

for the extra regret to protect (ε, δ)-global differential privacy is Ω(Nε log (eε−1)T+δT
(eε−1)+δT ) (N

is the number of arms and T is the time horizon), which is independent with T for δ > 0
and large enough T . Moreover, the lower bound for the extra regret to protect (ε, δ)-
differential privacy can be no more than the above bound. This means that, different
with the case δ = 0, it is possible to design algorithms that protect privacy and achieve
the same asymptotical regret upper bound as the non-private algorithms when δ > 0.
Then we adapt the Follow the Perturbed Leader (FTPL) framework, and propose learning
policies with both Gaussian and Beta perturbed distributions (DP-FTPL-Gauss and DP-
FTPL-Beta) to protect (ε, δ)-differential privacy. The analysis shows that they achieve an
O(N log T

∆min
+N min{ 1

δ2 ,
1
ε2 log 1

δ }) regret upper bound, where ∆min is the minimum expected
reward gap between the optimal arm and any other ones. We also design a unique perturbed
distribution to protect (ε, δ)-differential privacy in the FTPL framework (DP-FTPL-New),

which reduces the regret upper bound to O(N log T
∆min

+ N
ε log (eε−1)T+δT

(eε−1)+δT ). We further show

that this perturbed distribution could also be used to protect (ε, δ)-global differential pri-
vacy, and design a corresponding algorithm GDP-Elim-New. We show that its regret upper

bound is O(∆max

∆min
(N log T

∆min
+ N

ε log (eε−1)T+δT
(eε−1)+δT )). This shows that our Ω(Nε log (eε−1)T+δT

(eε−1)+δT )

regret lower bound is tight (e.g. when ∆max

∆min
is bounded).

Keywords: Multi-armed bandits, differential privacy, follow the perturbed leader, Thomp-
son Sampling

1. Introduction

Multi-armed bandit (MAB) (Berry and Fristedt, 1985; Sutton and Barto, 1998) is an online
learning model that captures the basic tradeoff between exploration and exploitation. In
an MAB instance, there are totally N arms, and the player needs to choose one of them at
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each time step. Then the player receives a random reward, which is drawn independently
from an unknown distribution corresponding to the chosen arm. The goal of the player is
to maximize the cumulative reward by choosing the arms properly. To evaluate a learn-
ing policy π, we use the metric regret, which is defined as the expected gap between the
cumulative reward of π and the largest cumulative reward of any possible policies.

In recent years, due to the increasing scale of the Internet, online learning becomes a
popular framework to model Internet applications. There are many prior works on applying
the MAB model in reality, e.g., recommendation websites (Qin et al., 2014; Wang and Chen,
2017; Wang and Huang, 2018), online advertising (Schwartz et al., 2017; Chakrabarti et al.,
2008), social networks (Buccapatnam et al., 2013; Liu and Zhao, 2010; Chen et al., 2013),
search engines (Lu et al., 2010), etc. Along with the wide adoption, security problems in
the MAB model are becoming increasingly more important. For example, in online search
advertisement (Mishra and Thakurta, 2015), the system displays some advertisements to
user t after he/she requests for a search query. Then the user will click the advertisements
that he/she is interested in, and the search engine gets a reward of one if the user clicks
an advertisement. In this case, the random reward is whether the user t is interested in
the displayed advertisements and therefore it raises privacy concern for all the users, since
their private data is used in the online learning policy. If the learning policy does not
have any privacy guarantee, e.g., after one user who searches for keyword “a” clicks an
advertisement “b”, it then displays advertisement “b” to the next user who searches for
keyword “a” (to maximize the cumulative reward), then one can use such feedback to infer
private information of the other users. Because of this, Internet users will concern about
how their private information is protected, and refuse to use the systems that do not protect
private information well. Therefore, except for how to achieve good regret behavior, people
are also interested in privacy in MAB algorithms (Jain et al., 2012; Mishra and Thakurta,
2015; Debabrota et al., 2019). It is necessary to design algorithms for MAB problems that
not only perform well (i.e., with low regret bound), but also protect private information
properly.

In this paper, we mainly focus on the differential privacy (Dwork, 2008) in MAB prob-
lems. Specifically, we study the learning policies that protect (ε, δ)-differential privacy
(Mishra and Thakurta, 2015) and (ε, δ)-global differential privacy (Debabrota et al., 2019)
in MAB problems. Most of the existing MAB algorithms that guarantee differential pri-
vacy or global differential privacy suffer from an extra regret of Ω(N log T ) (here N is
the number of arms and T is the time horizon), which may become the majority term
when T is large enough. For example, to guarantee (ε, 0)-differential privacy, Private-UCB
(Mishra and Thakurta, 2015) has a regret upper bound of O(N(log T )3); DP-UCB (Tossou
and Dimitrakakis, 2016) has a regret upper bound of O(N log T (log log T )2); DP-UCB-
BOUND (Tossou and Dimitrakakis, 2016) has a regret upper bound of O(N log T log log T ).
To guarantee (ε, 0)-global differential privacy, AdaP-UCB and AdaP-KLUCB (Azize and
Basu, 2022) have an extra regret upper bound of O(N log T ).

Then a natural question is whether we can design learning policies that guarantee dif-
ferential privacy (or global differential privacy) but do not incur such large extra regrets,
especially when T goes to infinity. And in this paper, we show that the answer is “yes”
when δ > 0, no matter we are considering differential privacy or global differential privacy.
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When we are protecting differential privacy, we adopt the generic framework of Follow
the Perturbed Leader (FTPL) (Kim and Tewari, 2019), which uses perturbations to choose
arms and does not cause large extra regret, and design algorithms named DP-FTPL-Gauss,
DP-FTPL-Beta and DP-FTPL-New. These algorithms use different kinds of perturbations,
and their extra regret (to protect differential privacy) is independent of T when δ > 0.

Specifically, we first adapt the idea of Thompson Sampling (TS) (Thompson, 1933;
Agrawal and Goyal, 2013), the most famous learning policy under the generic FTPL frame-
work, where the player uses observations to update the corresponding perturbed distri-
butions via Bayes’ rule. Compared with other policies under the FTPL framework, the
perturbation in the vanilla TS often leads to a smaller cumulative regret in experiments.
Therefore, it is worth to study how to use the perturbed distributions of TS policy in the
differential privacy setting to reduce regret. Here, we consider to adapt two different kinds
of perturbed distributions from TS, i.e., Beta distribution and Gaussian distribution, in
our DP-FTPL framework. We show that they both guarantee (ε, δ)-differential privacy

with δ > 0, and their regrets are upper bounded by O(
∑

i
log T
∆i

+ min{ log 1
δ

ε2
, 1
δ2
}), where ∆i

represents the expected reward gap between the best arm and arm i.

We then further explore the flexibility of FTPL and design perturbations that guarantee
differential privacy with minimum extra regret. We show that using a specific perturbation
(i.e., DP-FTPL-New) can guarantee (ε, δ)-differential privacy, and achieve a regret upper

bound of O(
∑

i(
log T
∆i

+ 1
ε log (eε−1)T+δT

(eε−1)+δT )). We can see that for δ > 0 and large enough
T , the extra regret term is still independent with T . In fact, compared with Gaussian
or Beta distribution, the new perturbation can significantly reduce the extra regret, and
behave better when there is a high standard on the guarantee of differential privacy. On
the other hand, different from DP-FTPL-Gauss and DP-FTPL-Beta, the perturbation in
DP-FTPL-New could also deal with the case that δ = 0. In this case, it has a regret upper
bound O(

∑
i(

log T
∆i

+ 1
ε log T )), which matches with the best policy DP-SE before (Sajed and

Sheffet, 2019). Because of the fact that DP-SE can only work in the case that δ = 0, our
DP-FTPL-New algorithm could be much more general.

As for the case of protecting global differential privacy, we merge the elimination frame-
work (Maron and Moore, 1997; Evendar et al., 2006; Kaufmann and Kalyanakrishnan, 2013)
and the perturbed distribution we used in DP-FTPL-New, and design an algorithm GDP-
Elim-New to protect (ε, δ)-global differential privacy. We show that the regret upper bound

of our algorithm is O(
∑

i(
∆i log T

∆2
min

+ ∆i
ε∆min

log (eε−1)T+δT
(eε−1)+δT )), and the extra regret term is also

independent of T when δ > 0. On the other hand, we also prove a matching regret lower
bound, i.e., any algorithms that protect (ε, δ)-global differential privacy must suffer from

regret of at least Ω(Nε log (eε−1)T+δT
(eε−1)+δT ). This indicates that our regret lower bound is tight

(e.g., when ∆max/∆min is bounded).

2. Related Work

Thompson Sampling (TS) is first proposed by Thompson (1933). It follows the Bayesian
framework and fits the analysis in the Bayesian setting (i.e., the parameters of the game
follow a known prior distribution) naturally, and people propose its sub-linear regret upper
bound under the Bayesian setting as O(

√
NT log T ) (Russo and Van Roy, 2014). However,

3



Wang and Zhu

the analysis for using TS in the frequentist setting (i.e., the parameters of the game are fixed
but unknown) is much more different. Agrawal and Goyal (2012) obtain the first sub-linear
regret upper bound as O(N2 log T ). After that, Agrawal and Goyal (2013) and Kaufmann
et al. (2012) obtain an O(N log T ) regret upper bound, which is asymptotically optimal.

Follow the Perturbed Leader (FTPL) framework (Kim and Tewari, 2019) is a generation
of Thompson Sampling policy. In each time slot, it draws random parameter samples from
a series of perturbed distributions (which depend on the history information), and then
chooses the arm with largest random parameter sample. The main difference from TS is
that in FTPL the perturbed distributions are not updated by the Bayes’ rule. Instead,
FTPL chooses those perturbed distributions properly to fit the analysis in the frequentist
setting, leading to a sub-linear regret upper bound. For example, Kim and Tewari (2019)
show that using a uniform perturbed distribution (i.e., a uniform distribution between lower
confidence bound and upper confidence bound) also leads to O(N log T ) regret upper bound.

Mishra and Thakurta (2015) present a first attempt on the MAB problem with differ-
ential privacy. The authors derive a formal definition for the differential privacy in MAB
algorithms, and propose a UCB-based algorithm to guarantee both (ε, 0)-differential pri-

vacy and sub-linear regret upper bound of O(N(log T )3

ε∆min
). Similarly, Tossou and Dimitrakakis

(2016) also provide UCB-based algorithms, such as DP-UCB and DP-UCB-BOUND, to
guarantee (ε, 0)-differential privacy. All these algorithms incur an extra regret of at least
O(N log T log log T

ε ), which is worse than the O(N log T
ε ) extra regret term in our DP-FTPL-

New policy. The DP-UCB-INT algorithm (Tossou and Dimitrakakis, 2016) achieves a T -
independent additive term in its regret upper bound. However, its extra regret term is
larger than ours when ε is smaller than δ, and it behaves much worse than our algorithms
in experiments (see details in Section 8). Tossou and Dimitrakakis (2018) consider using a
TS policy (with Gaussian prior) to protect (ε, δ)-differential privacy with δ > 0, but their
algorithm only works when δ = T−4, and has a much larger extra regret term than ours.
Recently, Shariff and Sheffet (2018) show that the regret lower bound for the case δ = 0 is
Ω(
∑

i(
log T
∆i

+ log T
ε )). Based on their results, Sajed and Sheffet (2019) then design an optimal

learning policy DP-SE for the case δ = 0. Compared to the elimination-based algorithm
DP-SE, our FTPL-based algorithm has a better behaviour in experiments (see details in
Section 8), since the constant factor in the regret upper bounds of FTPL-based algorithms
is usually smaller than the elimination-based algorithms.

Debabrota et al. (2019) first propose the definition of (ε, δ)-global differential privacy,
and prove problem-independent regret lower bound for the case that δ = 0 in both the
Bayesian setting and the non-Bayesian setting. Following their works, Azize and Basu
(2022) design AdaP-UCB and AdaP-KLUCB that protects (ε, 0)-global differential privacy,
and gives their corresponding problem-dependent regret upper bounds. Besides, they also
propose problem-dependent and problem-independent regret lower bounds for the algo-
rithms that protect (ε, 0)-global differential privacy, and the regret lower bounds and regret
upper bounds match with each other (in order). Compared to these results, our regret
upper/lower bounds work in not only the case that δ = 0, but also the case that δ > 0, i.e.,
our analysis and algorithms are more general.

Chen et al. (2020), Zheng et al. (2020) and Gajane et al. (2018) go one step further
and consider to protect local differential privacy (Duchi et al., 2014) in MAB problems. To
guarantee local differential privacy, the learning policy needs to encrypt each user’s data
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before collection, so that the attacker cannot deduce other users’ data anyway. Therefore, a
natural solution is to add noise on all the observations, which leads to an O(N log T

∆minε2
) regret

upper bound. Ren et al. (2020) show that this is indeed optimal, i.e., any algorithm that
protects local differential privacy suffers from at least Ω(N log T

∆minε2
) regret. Except for regret

minimization problems, the local differential privacy is also considered in other kinds of
online learning models, e.g., the pure exploration problems (Féraud et al., 2019).

3. Model Setting

In this section, we present the basic setup of multi-armed bandits, as well as two definitions
of differential privacy in multi-armed bandits, which are widely adopted in existing litera-
ture (Mishra and Thakurta, 2015; Tossou and Dimitrakakis, 2016; Sajed and Sheffet, 2019;
Debabrota et al., 2019; Azize and Basu, 2022). These two differential privacy definitions
can be applied in many real-world scenarios to protect users’ privacy, such as search engines
and advertising websites.

3.1 Multi-armed Bandit Problems

A multi-armed bandit instance is a tuple {A,D, T}, where A = {1, 2, · · · , N} is the set
of arms, D = {D1, · · · , DN} are the corresponding distributions of the arms, and T is
the number of time steps. At each time step t, the player can choose an arm i(t) ∈ A
to pull, and then observe a reward x(t), which is drawn independently from Di(t), i.e.,
x(t) = xi(t)(t) ∼ Di(t). As assumed in many prior works (Mishra and Thakurta, 2015;
Tossou and Dimitrakakis, 2016; Sajed and Sheffet, 2019), in this paper, we assume that
Di’s are supported on [0, 1]. Let µi , Ex∼Di [x] be the expected reward of distribution Di,
and assume that µ1 > µ2 ≥ · · · ≥ µN . Then we denote ∆i , µ1 − µi, ∆min , mini≥2 ∆i.
Also let Ft−1 = {(i(τ), x(τ))}t−1

τ=1 be the history of the game, then the player chooses the
next arm i(t) ∼ π(Ft−1), where π(Ft−1) denotes the probability distribution of the chosen
arm by policy π given history Ft−1. We use “regret” to evaluate the player’s behaviour,
which is defined as:

Reg(T ) , Tµ1 − E

[
T∑
t=1

µi(t)

]
.

The goal of the player is to design learning policies with as small regret as possible.

In this paper, we mainly consider the case that the distributions Di’s are all Bernoulli.
If some of them are not, we can use the trick stated in the work of Agrawal and Goyal
(2013), i.e., for any reward xi(t) ∈ [0, 1], we draw a random observation yi(t) independently
from a Bernoulli distribution with parameter xi(t) and then use yi(t) as the observation in
the algorithms. It is easy to check that yi(t)’s are independent Bernoulli random variables
with mean µi.

3.2 Differential Privacy in Multi-armed Bandits

In a multi-armed bandit instance, the definition of differential privacy is given as follows
(Mishra and Thakurta, 2015):
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Definition 1 For learning policy π, it guarantees (ε, δ)-differential privacy if for any t > 1,
1 ≤ τ < t, x′(τ) ∈ [0, 1] and A′ ⊆ A, we have that

Pr[i(t) ∈ A′|Ft−1] ≤ eε Pr[i(t) ∈ A′|F ′t−1] + δ, (1)

where F ′t−1 denotes the history of the game if we substitute one pair of arm-observation
(i(τ), x(τ)) by (i(τ), x′(τ)).

Eq. (2) shows that when we arbitrarily change an observation x(τ) on arm i to be x′(τ),
the probability distribution of the chosen arm i(t) for any t > τ does not vary much. This
means that an attacker cannot deduce other users’ private information by collecting the
data of single arm selections. Therefore, it can be applied in search engines or advertising
websites to protect privacy (Mishra and Thakurta, 2015; Tossou and Dimitrakakis, 2016).

3.3 Global Differential Privacy in Multi-armed Bandits

For any bandit algorithm π, any action vector a ∈ AT and reward vector r ∈ [0, 1]T , we
define π(a|r) as

π(a|r) ,
T∏
t=1

Pr
at∼π

[i(t) = at|(a1, r1), · · · , (at−1, rt−1)].

That is, π(a|r) is the probability of π pulling arms according to a, given the fact that its
received observation vector is r.

Then we state our definition of (ε, δ)-global differential privacy. To make it clear, we
first define a data-revision rule as follows:

Definition 2 A data-revision rule R on time horizon T is a set of TN conditional prob-
abilities pRt (1|a) (and pRt (0|a)) for all t ∈ [T ] and a ∈ A. When considering a revision of
data vector r = [r1, · · · , rT ] corresponds to action vector a = [a1, · · · , aT ], for any step t,
we draw a random variable zt ∼ pRt (·|at), and only revise the data of rt when zt = 1.

Definition 3 ((ε, δ)-global differential privacy) For learning policy π, it guarantees (ε, δ)-
global differential privacy if for any bandit instance I, any time horizon T > 1, any action
vector set S ⊆ AT and any data-revision rule R such that for all a ∈ S∑

t∈[T ]

pRt (1|at) ≤ 1,

i.e., the expected number of revisions is less than 1, then∑
a∈S

∑
r

PI(r|a)π(a|r) ≤ eε
∑
a∈S

∑
r

PI(r|a)π(a|r ⊕R) + δ, (2)

where r⊕R represents the new vector by applying data-revision rule R on r, and PI(r|a) is
the probability of getting random reward vector r under bandit instance I and action vector
a.
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Compared to the definition of (ε, 0)-global differential privacy (Debabrota et al., 2019),
i.e., for any T > 1, action vector a and adjacent reward vectors r, r′ ∈ [0, 1]T , we have that
π(a|r) ≤ eεπ(a|r′), we can see that there are three differences between these two definitions,
and here we will explain them in detail.

The first difference is that instead of considering adjacent reward vectors r, r′, we in-
troduce the definition of the data-revision rule, and consider such rules with an expected
number of revisions at most 1. If we just let the data-revision rule R be: for some fixed
t ≤ T , pRt (1|at) = 1 for all at ∈ A. Then it is the same as the definition of adjacent reward
vectors, and protects the privacy of the user comes in time step t. Except for this user-level
privacy, our definition of the data-revision rule can also support action-level privacy. For
example, if only the data of pulling some arm i is private (or more sensitive), then for a
user who joins this system several times, as long as he/she chooses to pull this arm i for at
most one time, his/her private information is also protected (by setting only pRt (1|i) = 1
for this arm i and the steps t that he/she joins the system).

The second difference is that instead of any single action vector a, we are considering
any action vector set S ⊆ AT . In fact, only if δ = 0, i.e., the same as the work of Debabrota
et al. (2019), considering single action vector a is the same as considering action vector set
S ⊆ AT . When δ > 0, our definition of considering action vector set S ⊆ AT aligns with
the classical differential privacy definition.

The third difference is that PI(r|a) is involved in our definition. However, we want to
emphasize that this is reasonable. Note that in bandit problems, not only the action vector
a depends on the reward vector r, but the reward vector r also depends on the action vector
a (as a comparison, in classical definition of differential privacy in data sets, the data set is
fixed, and the outcome depends on the data set). Hence, if we observe some reward vector
r, the posterior distribution of observing action vector a is not proportional to π(a|r), but
proportional to PI(r|a)π(a|r). This implies that the classical way to define (ε, δ)-global
differential privacy should be

1

p(r)

∑
a∈S

PI(r|a)π(a|r) ≤ eε 1

p(r)

∑
a∈S

PI(r|a)π(a|r ⊕R) + δ,

where p(r) =
∑
a∈AT PI(r|a)π(a|r) is the probability of observing reward vector r. How-

ever, the influence of the 1
p(r) factor on the above equation makes designing such algo-

rithms much more complicated, e.g., the additive term between
∑
a∈S PI(r|a)π(a|r) and∑

a∈S PI(r|a)π(a|r ⊕ R) should be upper bounded by p(r)δ, which could be really small
when p(r) is small. Because of this, in this paper, we relax it a little bit, and consider the
expectation gap (takes expectation over r) rather than the gap for any fixed r. This leads
to our definition, i.e.,

∑
r

p(r) ·

(
1

p(r)

∑
a∈S

PI(r|a)π(a|r)

)
≤
∑
r

p(r) ·

(
eε

1

p(r)

∑
a∈S

PI(r|a)π(a|r ⊕R) + δ

)
,

which is the same as Eq. (2). The meaning of taking expectation in this equation is that if all
the other rewards are drawn according to a fixed bandit instance, then the attacker cannot
deduce other users’ private information by collecting the data of arm selection vectors.
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4. Regret Lower Bound

Now we present our theoretical results in this paper, and we start with a regret lower
bound for bandit algorithms that guarantee (ε, δ)-global differential privacy in this section
(as stated in Theorem 4). This lower bound can be used as an evaluation criteria for the
regret upper bounds in this paper.

Theorem 4 For any bandit algorithm that guarantees (ε, δ)-global differential privacy, and
achieves no more than c0T

α regret on any bandit instance for some constant c0 > 0, α < 1,
then for any T satisfies that

T ≥ 3

ε
log

(eε − 1)T 1−α + 5δT 1−α

40c0(eε − 1) + 5δT 1−α ,

there exists a two-arm bandit instance such that its regret is lower bounded by

Reg(T ) ≥ 1

16ε
log

(eε − 1)T 1−α + 5δT 1−α

40c0(eε − 1) + 5δT 1−α . (3)

Proof Let’s consider the following two problem instances:

• In Instance 1 (I1), there are 2 arms, where the first arm returns Bernoulli reward with
mean 1

2 , and the second arm returns Bernoulli reward with mean 1
2 −∆.

• In Instance 2 (I2), there are 2 arms, where the first arm returns Bernoulli reward with
mean 1

2 , and the second arm returns Bernoulli reward with mean 1
2 + ∆.

We will use Pr1[·],Pr2[·] and E1[·],E2[·] to denote the probability measures and expec-
tation under Instance 1 and Instance 2, respectively. Let Reg1(T ), Reg2(T ) denote the
expected regret under Instance 1 and Instance 2, i.e., Reg1(T ) = ∆E1[N2(T )], Reg2(T ) =
∆E2[N1(T )], where N1(T ), N2(T ) are the number of times we pull arm 1 and arm 2.

We want to prove that any algorithm that guarantees (ε, δ)-global differential privacy,
and achieves no more than c0T

α regret on Instance I2 (i.e., Reg2(T ) = ∆E2[N1(T )] ≤ c0T
α),

will suffer regret of at least 1
4N0∆ in Instance I1 (i.e., Reg1(T ) = ∆E1[N2(T )] > 1

4N0∆),
where

N0 ,
1

εp(∆)
log

(eε − 1)T 1−α + 5δT 1−α

5c′0(eε − 1) + 5δT 1−α . (4)

Here p(∆) = 2∆
1
2

+∆
, and c′0 = 2c0

∆ , the detailed definition of them will be explained after a

few lines.
We will prove this by contradiction.
Firstly, assume that algorithm π suffers regret at most 1

4N0∆ in Instance I1, i.e.,
∆E1[N2(T )] ≤ 1

4N0∆, or E1[N2(T )] ≤ 1
4N0.

We use Prq[r|a] ,
∏T
t=1 Prq[x(t) = rt|i(t) = at] (for q = 1, 2), then we know that

Prq[r|a]π(a|r) is the probability of observing action sequence a and reward sequence r
when we run policy π on Instance Iq (for q = 1, 2).

Therefore, under the assumption that π suffers regret at most 1
4N0∆ on Instance I1, by

Markov’s inequality, we must have that

Pr1[N2(T ) > N0] ≤ E1[N2(T )]

N0
≤

1
4N0

N0
=

1

4
.
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This implies that

Pr1[N2(T ) ≤ N0] =
∑

a:N2(a)<N0

∑
r

Pr1[r|a]π(a|r) ≥ 1− 1

4
=

3

4
, (5)

where N2(a) represents the number of 2s in arm vector a.

Similarly, under the assumption that π suffers regret at most c0T
α on Instance I2, by

Markov’s inequality, we also have that

Pr2[N1(T ) ≥ T −N0] ≤ E2[N1(T )]

(T −N0)
≤ c0T

α

(T −N0)∆
.

This implies that

Pr2[N1(T ) ≥ T −N0] = Pr2[N2(T ) ≤ N0] =
∑

a:N2(a)≤N0

∑
r

Pr2[r|a]π(a|r) ≤ c0T
α

(T −N0)∆
.

Note that we assume T ≥ 3
ε log (eε−1)T 1−α+5δT 1−α

40c0(eε−1)+5δT 1−α , then if we choose ∆ = 1
4 , we know

that N0 = 3
2ε log (eε−1)T 1−α+5δT 1−α

40c0(eε−1)+5δT 1−α ≤ T
2 (recall that p(∆) = 2∆

1
2

+∆
and c′0 = 2c0

∆ ). Therefore

∑
a:N2(a)≤N0

∑
r

Pr2[r|a]π(a|r) ≤ c′0Tα−1. (6)

Now let’s consider a data-revision rule R, given by for all t, pRt (1|at = 2) = p(∆) and
pRt (1|at = 1) = 0. And when we do revision, we just change rt to 0 (i.e., if rt is 1, we change
it to 0; and if rt is already 0, then we do nothing).

Then, it is easy to check that the rule R changes a reward vector that is drawn from
Instance 1 to a reward vector that is drawn from Instance 2 (recall that p(∆) = 2∆

1
2

+∆
).

Therefore, we can rewrite Eq. (5) as

∑
a:N2(a)≤N0

∑
r

Pr2[r|a]π(a|r ⊕R) ≥ 3

4
>

1

5
. (7)

Then, since π can protect (ε, δ)-global differential privacy, it has the guarantee that
for any S ⊆ AT ,

∑
a∈S

∑
r Pr2(r|a)π(a|r) ≤ eε

∑
a∈S

∑
r Pr2(r|a)π(a|r ⊕ R) + δ, if in

expectation, data revision rule R changes at most 1 reward in r under all a ∈ S.

Note that for all a such that N2(a) ≤ N0, the expected number of changes on the reward
vector r is N0p(∆). Hence, by geometric progression analysis, we have that∑

a:N2(a)≤N0

∑
r

Pr2[r|a]π(a|r ⊕R)

≤ eεN0p(∆)

 ∑
a:N2(a)≤N0

Pr2[r|a]π(a|r) +
δ

eε − 1

− δ

eε − 1
.

9
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Along with Eq. (7), we have

eεN0p(∆)

 ∑
a:N2(a)≤N0

∑
r

Pr2[r|a]π(a|r) +
δ

eε − 1

 >
1

5
+

δ

eε − 1
,

which is the same as

eεN0p(∆) δ

eε − 1
+ eεN0p(∆)

∑
a:N2(a)≤N0

∑
r

Pr2[r|a]π(a|r) >
1

5
+

δ

eε − 1
. (8)

By Eq. (6), and the fact that N0 = 1
εp(∆) log (eε−1)T 1−α+5δT 1−α

5c′0(eε−1)+5δT 1−α , we also have that

eεN0p(∆) δ

eε − 1
+ eεN0p(∆)

∑
a:N2(a)≤N0

∑
r

Pr2[r|a]π(a|r)

≤ eεN0p(∆) δ

eε − 1
+ eεN0p(∆)c′0T

α−1

= eεN0p(∆)

(
δ

eε − 1
+ c′0T

α−1

)
=

(eε − 1)T 1−α + 5δT 1−α

5c′0(eε − 1) + 5δT 1−α

(
δ

eε − 1
+ c′0T

α−1

)
=

1

5
+

δ

eε − 1
.

This contradicts with Eq. (8).
Therefore, the assumption cannot be true, i.e., algorithm π must suffer regret at least

1
4N0∆ in Instance I1.

Note that

1

4
N0∆ =

∆

4εp(∆)
log

(eε − 1)T 1−α + 5δT 1−α

5c′0(eε − 1) + 5δT 1−α

=
∆

4ε 2∆
1
2

+∆

log
(eε − 1)T 1−α + 5δT 1−α

5c′0(eε − 1) + 5δT 1−α

=
1
2 + ∆

8ε
log

(eε − 1)T 1−α + 5δT 1−α

5c′0(eε − 1) + 5δT 1−α

≥ 1

16ε
log

(eε − 1)T 1−α + 5δT 1−α

5c′0(eε − 1) + 5δT 1−α .

By choosing ∆ = 1
4 , we know that c′0 = 8c0, and this proves the regret lower bound

stated in Theorem 4 (i.e., Eq. (3)).

Remark 5 For large enough T , if δ = 0, then this regret lower bound becomes

Ω

(
1

ε
log

(eε − 1)T 1−α + 5δT 1−α

40c0(eε − 1)

)
= Ω

(
1

ε
log

(eε − 1)T + δT

(eε − 1)

)
10
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= Ω

(
1

ε
log

(eε − 1)T + δT

(eε − 1) + δT

)
.

If δ 6= 0, then this regret lower bound becomes

Ω

(
1

ε
log

(eε − 1)T 1−α + 5δT 1−α

5δT 1−α

)
= Ω

(
1

ε
log

(eε − 1)T + δT

δT

)
= Ω

(
1

ε
log

(eε − 1)T + δT

(eε − 1) + δT

)
.

Therefore, we can also write this regret lower bound as Ω(1
ε log (eε−1)T+δT

(eε−1)+δT ).

Remark 6 We only consider the two-arm case in Theorem 4. In fact, it is easy to use the
same analysis to show that when there are N arms, the regret lower bound is

Ω

(
N

ε
log

(eε − 1)T + δT

(eε − 1) + δT

)
.

Compared with Theorem 4, the analysis for the regret lower bound of algorithms that
protect (ε, δ)-differential privacy can be much more difficult. The reason is that the influence
of changing one observation in algorithms that protect (ε, δ)-differential privacy is much
larger than changing one observation in those who protect (ε, δ)-global differential privacy.
As a simple example, assume that the observation in time step t is changed. For algorithms
that protect (ε, δ)-differential privacy, we know that the distribution of the pulled arm in
time step t+ 1 will not change too much (by Definition 1). As for time step t+ 2, we only
know that if the pulled arm in time step t+ 1 is not changed, then the distribution of the
pulled arm in time step t + 2 will not change too much. However, if the pulled arm in
time step t + 1 is changed (which appears with small but non-zero probability), then the
distribution of the pulled arm in time step t + 2 can change more. In fact, this kind of
double influence on the trajectory of pulling arms makes the analysis for the lower bound
much more complex. As a comparison, for algorithms that protect (ε, δ)-global differential
privacy, when the observation in time step t is changed, we can directly bound its influence
on the whole trajectory of pulling arms by Definition 3. Because of this, we only give the
regret lower bound for algorithms that protect (ε, δ)-global differential privacy in this paper,
and leave the regret lower bound for algorithms that protect (ε, δ)-differential privacy as an
open problem.

Remark 7 Due to the fact that global differential privacy is stronger than differential pri-
vacy, the lower bound of the global differential privacy case (i.e., Ω(Nε log (eε−1)T+δT

(eε−1)+δT )) is an
upper bound for the lower bound of the differential privacy case.

5. Sufficient Conditions for Algorithms that Guarantee Differential
Privacy or Global Differential Privacy

After the lower bound analysis, we begin to design algorithms that can guarantee differential
privacy or global differential privacy. In this section, we first state two sufficient conditions
for those algorithms, one for the differential privacy guarantee and one for the global differ-
ential privacy guarantee. With these conditions, we can adapt the existing learning policies
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(such that these conditions hold) to protect differential privacy or global differential privacy
in bandit problems.

5.1 Differential Privacy Case

From Definition 1, we can obtain a sufficient condition for MAB algorithms that follow a
specific framework to guarantee (ε, δ)-differential privacy.

Lemma 8 For any MAB algorithm that satisfies: i) it draws random sample θi(t) from a
continuous probability distribution for each arm i and then pull the arm i(t) = argmaxi θi(t),
ii) the distribution of θi(t) remains the same under the same history of arm i. It guarantees
(ε, δ)-differential privacy if we have that:

F (x) ≤ eεF ′(x) + δ,

1− F (x) ≤ eε(1− F ′(x)) + δ,

where F (x) and F ′(x) are the cumulative distribution functions (CDFs) of random variable
θi(t) with the original history Ft−1 and the modified history F ′t−1 (as stated in Definition
1), respectively.

Proof Let’s consider the probability distribution of i(t) when one observation x(τ) changes
to be x′(τ). To simplify the notations, we denote i = i(τ) in this proof.

Note that when we change the observed reward x(τ) to be x′(τ), the sample distributions
of all the other arms j 6= i at the beginning of time step t remain the same. Thus. it is
sufficient to prove that for any fixed sample values θ−i(t) , {θj(t) : j 6= i} and any set
A′ ⊆ A, we have that Prθi(t)∼D[i(t) ∈ A′|θ−i(t)] ≤ eε Prθi(t)∼D′ [i(t) ∈ A′|θ−i(t)] + δ, where
D and D′ denote the probability distributions for θi(t), given the τ -th observation to be
x(τ) and x′(τ), respectively. If this holds, then we know that for any A′ ⊆ A,

Pr
θi(t)∼D

[i(t) ∈ A′] =
∑
θ−i(t)

Pr[θ−i(t)] Pr
θi(t)∼D

[i(t) ∈ A′|θ−i(t)]

≤
∑
θ−i(t)

Pr[θ−i(t)]

(
eε Pr
θi(t)∼D′

[i(t) ∈ A′|θ−i(t)] + δ

)

=
∑
θ−i(t)

(
Pr[θ−i(t)]e

ε Pr
θi(t)∼D′

[i(t) ∈ A′|θ−i(t)]
)

+ δ

= eε Pr
θi(t)∼D′

[i(t) ∈ A′] + δ.

For fixed θ−i(t), denote θmax,−i(t) = maxj 6=i θj(t). Then there are only two possible
events on the chosen arm i(t) when θ−i(t) is fixed, i.e., either θi(t) > θmax,−i(t) and we
choose i(t) = i or θi(t) < θmax,−i(t) and we choose i(t) = argmaxj 6=i θj(t). For fixed sample
values θ−i(t), θmax,−i(t) is also a fixed value. Therefore it is sufficient to prove that for any
fixed value x, we have Prθi(t)∼D[θi(t) < x] ≤ eε Prθ′i(t)∼D′ [θ

′
i(t) < x] + δ (for the case that

argmaxj 6=i θj(t) ∈ A′ but i /∈ A′) and Prθi(t)∼D[θi(t) > x] ≤ eε Prθ′i(t)∼D′ [θ
′
i(t) > x] + δ

(for the case that i ∈ A′ but argmaxj 6=i θj(t) /∈ A′), which means that we only need
F (x) ≤ eεF ′(x) + δ and 1 − F (x) ≤ eε(1 − F ′(x)) + δ to make sure that the algorithm

12



Optimal Learning Policies for Differential Privacy in Multi-armed Bandits

guarantees (ε, δ)-differential privacy.

In our proposed policies, θi(t) is drawn independently from the corresponding perturbed
distribution (which is always a continuous probability distribution) of arm i. Therefore,
Lemma 8 can be used as a sufficient condition of differential privacy guarantee, i.e., if the
perturbed distribution in our framework satisfies the inequalities in Lemma 8, then the
algorithm must guarantee (ε, δ)-differential privacy.

5.2 Global Differential Privacy Case

To protect global differential privacy, we want the influence of every observation to be
limited, i.e., instead of using the observation in time step t to compute all the empirical
means after t (as the algorithm framework in Lemma 8), we choose to use the observation
to compute an empirical mean for only one time. Motivated by this idea, we are going to
apply the elimination framework, and obtain a sufficient condition for MAB algorithms that
follow this specific framework to guarantee (ε, δ)-global differential privacy from Definition
3.

Lemma 9 For any MAB algorithm that satisfies: i) it divides the learning procedure into
several phases, and in each phase, it pulls each arm for N(k) times; ii) at the end of each
phase k, it draws random sample θi(k) for all the arms from a continuous distribution, and
turn to exploitation if there exists some arm i such that θi(k) ≥ maxj 6=i θj(k) + ∆(k) for
some constant ∆(k) (i.e., after this phase, we choose arm i forever); and iii) the distribution
of θi(k) remains the same under the same history of arm i in phase k. It guarantees (ε, δ)-
global differential privacy if for any −∞ ≤ x ≤ y ≤ +∞, we have that:

F (y)− F (x) ≤ eε(F ′(y)− F ′(x)) +
δ

2

1− F (y) + F (x) ≤ eε(1− F ′(y) + F ′(x)) +
δ

2
,

where F (x) and F ′(x) are the CDFs of random variable θi(k) with two adjunct reward
vectors of arm i in phase k, respectively.

Instead of eliminating the arms that are sub-optimal with high probability after each
phase (like normal elimination-based algorithms), here we choose to eliminate all the sub-
optimal arms together after one phase. The reason is that under this kind of elimination
rule, if some step t is not an exploitation step, then the pulled arm at this step is fixed.
This makes sure that the effect of any data-revision rule R on any non-exploitation step
t is the same (regardless of the action vector a), which plays a very important role in the
following proof.
Proof Let’s consider an arbitrary set of feasible action vectors S, and it is easy to see that
for any element in S, we can use a phase-arm pair (k, i) to represent it, i.e., it turns to
exploitation after phase k, and the chosen arm becomes arm i.

Let kmax be the maximum k in those (k, i) pairs in S. Then, for a data-revision rule R,
we know that: i) those t after phase kmax with pRt (1|at) ≥ 0 does not change the probability∑
a∈S

∑
r PI(r|a)π(a|r) at all. Hence we do not need to consider the case that we allocate
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data-revision on those time steps; and ii) since in Definition 3, it is required that for all
a ∈ S,

∑
t∈[T ] p

R
t (1|at) ≤ 1, and the pulled arm on any non-exploitation step t is the same,

we must have that the budget of data-revision in the first kmax phases is at most 1, otherwise
for those a that starts to exploit after phase kmax, the expected number of data-revision is
higher than 1.

Under the above two conditions, it suffices to show that when the data-revision rule R is
to change the reward in only one step in the first kmax phases,

∑
a∈S

∑
r PI(r|a)π(a|r) ≤

eε
∑
a∈S

∑
r PI(r|a)π(a|r ⊕R) + δ.

Now let (here we write PI(r) instead of PI(r|a) since there is only one feasible a in
phase k, if we do not start to exploit after phase k − 1 under this kind of algorithms)

qk,in =
∑

r∈{0,1}N·N(k)

PI(r) Pr[Start exploiting i after phase k, (k, i) is in S|r]

qk,cont =
∑

r∈{0,1}N·N(k)

PI(r) Pr[Do not start exploiting after phase k|r]

Then it is easy to check that

∑
a∈S

∑
r

PI(r|a)π(a|r) =
∑
k

qk,in

k−1∏
`=1

q`,cont

Now consider our data-revision rule R is to change a reward in phase k∗. In this case,
we can rewrite the above equation as∑

a∈S

∑
r

PI(r|a)π(a|r) = qk∗,inpk∗,in + qk∗,contpk∗,cont + pk∗,others,

with

pk∗,in =
k∗−1∏
`=1

q`,cont,

pk∗,cont =
∑
k>k∗

qk,in
∏

`<k, 6̀=k∗
q`,cont,

pk∗,others =
∑
k<k∗

qk,in

k−1∏
`=1

q`,cont.

It is also easy to check that pk∗,in, pk∗,cont, pk∗,others are in [0, 1].
On the other hand, after applying the data-revision rule R, we have another

q′k∗,in =
∑

r∈{0,1}N·N(k∗)

PI(r) Pr[Start exploiting i after phase k∗, (k∗, i) is in S|r ⊕R]

q′k∗,cont =
∑

r∈{0,1}N·N(k∗)

PI(r) Pr[Do not start exploiting after phase k∗|r ⊕R]

for this phase k∗.
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In this case,∑
a∈S

∑
r

PI(r|a)π(a|r ⊕R) = q′k∗,inpk∗,in + q′k∗,contpk∗,cont + pk∗,others,

Let the arm with the changed reward be arm i. Then if we consider all the possible
θi(k

∗)’s, there are three cases:

• If θi(k
∗) is higher than maxj 6=i θj(k

∗) + ∆, we start exploitation after phase k∗, and
the chosen arm is i;

• If θi(k
∗) is lower than maxj 6=i θj(k

∗) + ∆, but higher than maxj 6=i θj(k
∗)−∆, then we

do not start exploitation after phase k∗;

• If θi(k
∗) is lower than maxj 6=i θj(k

∗)−∆, then either we start exploitation after phase
k∗, and the chosen arm is arg maxj 6=i θj(k

∗), or we do not start exploitation after
phase k∗, depending on the other {θj(k∗)}j 6=i’s.

Similar to the proof of Lemma 8, it is easy to show that after if θi(k) satisfies the
constraint in Lemma 9, we must have that qk∗,cont ≤ eεq′k∗,cont + δ

2 and qk∗,in ≤ eεq′k∗,in + δ
2 .

For example, if we start exploitation after phase k∗ when θi(k
∗) is lower than maxj 6=i θj(k

∗)−
∆, and both (k∗, i) and (k∗, arg maxj 6=i θj(k

∗)) are in S, then letting x = maxj 6=i θj(k
∗) −

∆(k) and y = maxj 6=i θj(k
∗) + ∆(k), we can get qk∗,in ≤ eεq′k∗,in + δ

2 by

1− F (y) + F (x) ≤ eε(1− F ′(y) + F ′(x)) +
δ

2
;

and we can get qk∗,cont ≤ eεq′k∗,cont + δ
2 by

F (y)− F (x) ≤ eε(F ′(y)− F ′(x)) +
δ

2
.

As for the other cases, the analysis is almost the same.
Hence, we must have that∑

a∈S

∑
r

PI(r|a)π(a|r) = qk∗,inpk∗,in + qk∗,contpk∗,cont + pk∗,others

≤
(
eεq′k∗,in +

δ

2

)
pk∗,in +

(
eεq′k∗,cont +

δ

2

)
pk∗,cont + pk∗,others

≤ eεq′k∗,inpk∗,in + eεq′k∗,contpk∗,cont + eεpk∗,others + δ

= eε
∑
a∈S

∑
r

PI(r|a)π(a|r ⊕R) + δ

This means this kind of algorithms can protect (ε, δ)-global differential privacy.

Similar to the differential privacy case, Lemma 9 can also be used as a sufficient condition
of global differential privacy guarantee in an elimination framework. Specifically, in each
phase k, we pull all the arms for a fixed number of time steps, and then draw random
sample θi(k) independently from the corresponding perturbed distribution (which is always
a continuous probability distribution) of arm i.
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Algorithm 1 DP-FTPL-Gauss

1: Input: ε, δ, for each arm i, set Ni = 0, Ri = 0.
2: for i = 1, 2, · · · , N do
3: while Ni < N∗G , min{ 1

4πδ2
, 1
ε2

log( e
4πδ2

)} do
4: Pull arm i(t) = i and observe reward x(t) = xi(t) ∈ {0, 1}.
5: Ri ← Ri + xi(t), Ni ← Ni + 1.
6: end while
7: end for
8: while true do
9: For each arm i, draw sample θi(t) independently from Gaussian perturbed distribution

N (RiNi ,
2
Ni

).
10: Choose arm i(t) = argmaxi θi(t), and observe reward x(t) = xi(t)(t) ∈ {0, 1}.
11: Ri(t) ← Ri(t) + xi(t)(t), Ni(t) ← Ni(t) + 1.
12: end while

Remark 10 Note that the condition on CDF in Lemma 8 is a special case of Lemma 9,
i.e., either x = −∞ or y = ∞ in Lemma 9. This is because that when the other random
variables θ−i(t) (or θ−i(k)) are fixed, the feasible region of θi(t) to pull any specific arm
set (in Lemma 8) is either (−∞, y) or (x,+∞), while the feasible region of θi(k) to exploit
on any specific arm set or continue to do explorations (in Lemma 9) could be (x, y) or
(−∞, x) ∪ (y,∞) for some −∞ ≤ x ≤ y ≤ +∞.

6. Algorithms that Protect Differential Privacy in Multi-armed Bandits

We now introduce our learning algorithms to protect differential privacy in MAB problems,
following the idea of Lemma 8. Inspired by TS policy (Thompson, 1933; Agrawal and Goyal,
2013), we first consider to use the common Gaussian distribution and Beta distribution as
the perturbed distribution in Section 6.1 and Section 6.2. Then we design perturbations
that fit the differential privacy setting better in Section 6.3.

6.1 DP-FTPL-Gauss

The DP-FTPL-Gauss algorithm is described in Algorithm 1. In the start phase (lines
2-7), the algorithm chooses each arm for N∗G , min{ 1

4πδ2
, 1
ε2

log( e
4πδ2

)} times. After that,
the algorithm starts to follow the standard TS (or FTPL) procedure, i.e., at each time step

t, the algorithm first uses the perturbed distribution N (Ri(t)Ni(t)
, 2
Ni(t)

) to draw random sample

θi(t) for arm i, and then chooses the arm with the largest θi(t) to pull. Here Ni(t) denotes
the number of pulls on arm i until time t, and Ri(t) denotes the cumulative reward on arm
i until time t (in our setting, it equals to the number of times that we observe reward “1”).

Compared with the classic TS (or FTPL) policy (Agrawal and Goyal, 2013; Kim and
Tewari, 2019), here we add a start phase at the beginning of the game. Note that the
differential privacy is naturally guaranteed in this start phase, since in this phase the next
chosen arm is the same for any history Ft−1. The start phase makes sure that each arm
is pulled for a sufficient number of times. Then in the rest of the game, the perturbed
distributions of all the arms cannot change too much if only one observation is modified,
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which means that Lemma 8 holds (with appropriate start phase size N∗G). Therefore, our
algorithm can guarantee differential privacy.

Theorem 11 DP-FTPL-Gauss guarantees (ε, δ)-differential privacy, and its cumulative re-
gret satisfies

Reg(T ) ≤
N∑
i=2

max

{
2∆i log T

(∆i − 2λ)2
, N∗G∆i

}
+ Θ

(
N

λ4

)
for any λ < 1

2∆min.

Compared with the classic TS policy with Gaussian prior (Agrawal and Goyal, 2013;
Kim and Tewari, 2019), the major difference of DP-FTPL-Gauss is a start phase with size
N ·N∗G. Therefore, it is not surprising that there is an extra regret term of N ·N∗G. Because
of this, here we only provide the proof of the privacy part in Theorem 11, and defer the
proof of the regret part to Appendix A.

Proof (privacy part) Here we only prove the first inequality in Lemma 8, the second one
could be proved by symmetry.

Denote i the arm with one observation changed, Ni(t), Ri(t) the value of Ni, Ri at the
beginning of time step t, and R′i(t) the total cumulative reward of arm i after we change

one observation. Also let µ̂i(t) = Ri(t)
Ni(t)

, µ̂′i(t) =
R′i(t)
Ni(t)

and ∆ = µ̂′i(t) − µ̂i(t) =
x′i(τ)−xi(τ)

Ni(t)
,

then it is easy to check that Pr[θi(t) ≤ x] ≤ Pr[θ′i(t) ≤ x] when ∆ ≤ 0. Therefore we will
then focus on the case that ∆ > 0. Let f(x), f ′(x) denote the probability density functions
of θi(t), θ

′
i(t), respectively.

Then we have that

Pr[θi(t) ≤ x]− Pr[θ′i(t) ≤ x] =

∫ x

−∞
(f(y)− f ′(y))dy

=

∫ x

−∞
f(y)dy −

∫ x−∆

−∞
f(y)dy

=

∫ x

x−∆
f(y)dy

≤ ∆

√
Ni(t)

4π
.

Since xi(τ)−x′i(τ) ≤ 1, we must have that ∆ ≤ 1
Ni(t)

and therefore ∆

√
Ni(t)

4π ≤
√

1
4πNi(t)

.

Thus, for Ni(t) ≥ 1
4πδ2

, we must have that

Pr[θi(t) ≤ x] ≤ Pr[θ′i(t) ≤ x] + δ ≤ eε Pr[θ′i(t) ≤ x] + δ.

For Ni(t) ≤ 1
4πδ2

, let’s consider the value x∗ = µ̂i(t)−
√

2
Ni(t)

log 1
4πδ2Ni(t)

, and we have

that

∆ · f(x∗) ≤

√
1

4πNi(t)
exp

(
−Ni(t)(x

∗ − µ̂i(t))2

4

)
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=

√
1

4πNi(t)
exp

(
−1

2
log

1

4πδ2Ni(t)

)
= δ.

For any x > x∗, we also have that

f(x)

f ′(x)
= exp

(
−Ni(t)(x− µ̂i(t))2

4
+
Ni(t)(x− µ̂′i(t))2

4

)
= exp

(
2Ni(t)(µ̂i(t)− x)∆ +Ni(t)∆

2

4

)
≤ exp

(√
1

2Ni(t)
log

1

4πδ2Ni(t)
+

1

4Ni(t)

)
.

Thus, if Ni(t) ≥ 1
ε2

log( e
4πδ2

), then we have that:

1

4Ni(t)
+

√
1

2Ni(t)
log

1

4πδ2Ni(t)
≤

√
1

Ni(t)
log

e

4πδ2Ni(t)
≤

√
1

Ni(t)
log

e

4πδ2
≤ ε.

This implies that for any x ≤ x∗, we must have that

Pr[θi(t) ≤ x] ≤ Pr[θ′i(t) ≤ x] + δ ≤ eε Pr[θ′i(t) ≤ x] + δ,

and for any x > x∗, we must have that

Pr[θi(t) ≤ x] = Pr[θi(t) ≤ x∗] + Pr[x∗ ≤ θi(t) ≤ x]

≤ Pr[θ′i(t) ≤ x∗] + δ + eε Pr[x∗ ≤ θ′i(t) ≤ x]

≤ eε(Pr[θ′i(t) ≤ x∗] + Pr[x∗ ≤ θ′i(t) ≤ x]) + δ

= eε Pr[θ′i(t) ≤ x] + δ,

i.e., the condition in Lemma 8 holds.
Therefore, for Ni(t) ≥ N∗G = min{ 1

4πδ2
, 1
ε2

log( e
4πδ2

)}, i.e., after the start phase of DP-
FTPL-Gauss, the (ε, δ)-differential privacy is always guaranteed.

Here we also use some figures (i.e., Fig. 1) to explain the correctness of the (ε, δ)-
differential privacy guarantee in DP-FTPL-Gauss, as well as the necessity of the start phase.
In Fig. 1, the black line is F (x), the original CDF of θi(t), and the blue line is F ′(x), the
CDF of θi(t) after one observation is changed. The red region is the feasible region of F ′(x)
under constraints in Lemma 8 with (ε, δ) = (1, 0.01), i.e., if F ′(x) lays in this region, then
(1, 0.01)-differential privacy is protected. We can see that when Ni(t) < N∗G (Fig. 1(a)),
F ′(x) is out of the feasible region, which means we cannot make sure that it has differential
privacy guarantee. Hence the start phase that skips those small Ni(t)’s is necessary to
protect differential privacy. On the other hand, when Ni(t) = N∗G (Fig. 1(b)), F ′(x) begins
to lay in the feasible region. When Ni(t) becomes larger (Fig. 1(c)), F ′(x) becomes closer
to F (x) and thus it must lay in the feasible region as well. Since after the start phase we
always have Ni(t) ≥ N∗G, DP-FTPL-Gauss can guarantee differential privacy.

18



Optimal Learning Policies for Differential Privacy in Multi-armed Bandits

x
0.0

0.2

0.4

0.6

0.8

1.0

F(x)
F ′(x)

(a) Ni(t) < N∗G

x
0.0

0.2

0.4

0.6

0.8

1.0

F(x)
F ′(x)

(b) Ni(t) = N∗G

x
0.0

0.2

0.4

0.6

0.8

1.0

F(x)
F ′(x)

(c) Ni(t) > N∗G

Figure 1: Explanation about how DP-FTPL-Gauss protects (1, 0.01)-differential privacy.

Algorithm 2 DP-FTPL-Beta

1: Input: ε, δ, for each arm i, set Ni = 0, Ri = 0.
2: for i = 1, 2, · · · , N do

3: while Ni < N∗B , max
{

min
{

40e
9πδ2

,
8000 log e

2πδ2

81ε2

}
, 1000e

9π

}
do

4: Pull arm i(t) = i and observe reward x(t) = xi(t) ∈ {0, 1}.
5: Ri ← Ri + xi(t), Ni ← Ni + 1.
6: end while
7: end for
8: while true do
9: For each arm i, draw sample θi(t) independently from Beta perturbed distribution

B(ai + ki, bi + ki), where ai = Ri + 1, bi = Ni −Ri + 1 and ki = bNi/8c+ 1.
10: Choose arm i(t) = argmaxi θi(t), and observe reward x(t) = xi(t)(t) ∈ {0, 1}.
11: Ri(t) ← Ri(t) + xi(t)(t), Ni(t) ← Ni(t) + 1.
12: end while

Remark 12 The DP-UCB-INT algorithm (Tossou and Dimitrakakis, 2016) also achieves
a T -independent additive term O( 1

ε2
log 1

δ ) in its regret upper bound. However, its additive
regret term can be much larger than ours when ε is smaller than δ. Besides, DP-UCB-INT
behaves much worse than our algorithms in experiments (see details in Section 8).

6.2 DP-FTPL-Beta

The DP-FTPL-Beta algorithm is described in Algorithm 2. When we use Beta distri-
bution as the perturbed distribution, a change on observations does not only cause a simple
shift on the distribution of θi(t). In fact, it can change the entire shape of the perturbed
distribution. Moreover, when the observations contain a large proportion of 0s (or 1s), a
change on the observations can always lead to a large difference between perturbed dis-
tributions. To deal with these challenges, compared with the work of Agrawal and Goyal
(2013), we modify the perturbed distributions in our algorithm, i.e., in DP-FTPL-Beta, we

choose N∗(ε, δ, T ) = N∗B , max
{

min
{

40e
9πδ2

,
8000 log e

2πδ2

81ε2

}
, 1000e

9π

}
, and the perturbed distri-

bution to be the Beta distribution with parameters (ai + ki, bi + ki), where ai = Ri + 1,
bi = Ni − Ri + 1 and ki = bNi/8c + 1. Compared with the traditional TS policy with the
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perturbed distribution to be the Beta distribution with parameters (ai, bi), here we add ki
0s and ki 1s to the observations on arm i, where ki is approximately linear with the number
of total pulls on arm i. This ensures that both the number of 0s and the number of 1s are
larger than a constant (e.g., 0.1) proportion of all the observations on arm i, and makes sure
that our algorithm guarantees (ε, δ)-differential privacy (as stated in the next theorem).

Theorem 13 DP-FTPL-Beta guarantees (ε, δ)-differential privacy, and its cumulative re-
gret satisfies

Reg(T ) ≤
N∑
i=2

max

{
5∆i log T

2(∆i − 5/2λ)2
, N∗B∆i

}
+ Θ

(
N

λ4

)
for any λ < 2

5∆min.

Here we also provide the proof of the privacy part, and defer the proof of the regret part
to Appendix B. Note that the proof of the privacy part in Theorem 13 is very different from
that of Theorem 11, since they use totally different perturbed distributions. On the other
hand, our perturbed distribution in DP-FTPL-Beta is also different from that in the work
of Agrawal and Goyal (2013). Thus, the regret analysis also needs to be revised carefully to
fit the new setting, and some of the theoretical results in our analysis can be of independent
interest in other online learning models (please see Appendix B for details).
Proof (privacy part) We will use the following two facts in this proof.

Fact 1 (Stirling’s approximation, Olver et al. (2010))

√
2πn

(n
e

)n
≤ n! ≤

√
2πen

(n
e

)n
.

Fact 2 (Pinsker’s Inequality, Csiszar and Körner (2011))

KL(p, q) ≥ 1

2
(p− q)2.

Let’s consider the distribution of i(t), when one observation x(τ) changes to be x′(τ).
We denote i = i(τ), and ai(t), bi(t), ki(t) are the value of ai, bi, ki at the beginning of time
step t.

Note that the Beta distribution of θi(t) (when no observation is changed) is B(ai(t) +
ki(t), bi(t)+ki(t)). To simplify the notations, we let a = ai(t)+ki(t), and b = bi(t)+ki(t)−1.

Similar as the proof of Theorem 11, we only need to prove that Pr[θi(t) ≤ x] ≤
eε Pr[θ′i(t) ≤ x] + δ, where θi(t) follows probability distribution B(a, b+ 1), and θ′i(t) follows
probability distribution B(a+ 1, b).

Then we denote f, f ′ the probability density functions (PDFs) of Beta distributions with
parameters (a, b+1) and (a+1, b), respectively, and F, F ′ are the corresponding cumulative
distribution functions (CDFs).

Existing results (Olver et al., 2010) show that F (x)−F ′(x) = (a+b)!xa(1−x)b

a!b! . By Stirling’s
approximation (Fact 1), we have that

F (x)− F ′(x) =
(a+ b)!xa(1− x)b

a!b!
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≤
√

2πe(a+ b)(a+b
e )a+bxa(1− x)b

√
2πa(ae )a

√
2πb( be)

b

=

√
e(a+ b)

2πab

(a+ b)a+bxa(1− x)b

aabb
.

Note that xa(1−x)b ≤ aabb

(a+b)a+b
(when x = a

a+b , the equation holds). Thus if

√
e(a+b)
2πab ≤ δ,

then
Pr[θi(t) ≤ x] ≤ Pr[θ′i(t) ≤ x] + δ ≤ eε Pr[θ′i(t) ≤ x] + δ.

As for the case that

√
e(a+b)
2πab ≥ δ, consider the point x∗ = a

a+b −
√

1
a+b log e(a+b)

2πabδ2
, we

have that

1

a+ b
log

( a
a+b)

a( b
a+b)

b

x∗a(1− x∗)b
=

a

a+ b
log

a
a+b

x∗
+

b

a+ b
log

b
a+b

(1− x∗)

= KL

(
a

a+ b
, x∗
)

≥ 1

2

(
a

a+ b
− x∗

)2

(9)

=
1

2(a+ b)
log

e(a+ b)

2πabδ2
,

where KL(p, q) = p log p
q + (1 − p) log 1−p

1−q denotes the KL divergency, and Eq. (9) comes
from Pinsker’s Inequality (Fact 2).

Therefore,

F (x∗)− F ′(x∗) ≤
√
e(a+ b)

2πab

(a+ b)a+bx∗a(1− x∗)b

aabb

=

√
e(a+ b)

2πab

(a+ b)a+b( a
a+b)

a( b
a+b)

b

aabb
x∗a(1− x∗)b

( a
a+b)

a( b
a+b)

b

=

√
e(a+ b)

2πab
exp

(
−(a+ b)

1

a+ b
log

( a
a+b)

a( b
a+b)

b

x∗a(1− x∗)b

)

≤
√
e(a+ b)

2πab
exp

(
−(a+ b)

1

2(a+ b)
log

e(a+ b)

2πabδ2

)
= δ.

For any x ≥ x∗, we have that

f(x)

f ′(x)
=

(1−x)
b
x
a

=
a(1− x)

bx
.

When
√

1
a+b log e(a+b)

2πabδ2
≤ εab

(a+b)(a+b+bε) , f(x)
f ′(x) ≤ eε holds for any x ≥ x∗, which implies

that

Pr[θi(t) ≤ x] = Pr[θi(t) ≤ x∗] + Pr[x∗ ≤ θi(t) ≤ x]
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(a) Ni(t) < N∗B , ai(t) = 1 and
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Figure 2: Explanation about how DP-FTPL-Beta protects (1, 0.01)-differential privacy and
the necessity of the extra ki(t) in DP-FTPL-Beta.

≤ Pr[θ′i(t) ≤ x∗] + δ + eε Pr[x∗ ≤ θ′i(t) ≤ x]

≤ eε(Pr[θ′i(t) ≤ x∗] + Pr[x∗ ≤ θ′i(t) ≤ x]) + δ

= eε Pr[θ′i(t) ≤ x] + δ.

Therefore, we need a2b2

(a+b)3
≥

log e
2πδ2

ε2
or ab

a+b ≥
e

2πδ2
to guarantee (ε, δ)-differential privacy.

Note that the inequality (ai(t)+ki(t))(bi(t)+ki(t)) ≥ 0.09(ai(t)+bi(t)+2ki(t))
2 always

holds in DP-FTPL-Beta (since we choose ki(t) = bNi(t)8 c + 1). Thus when ai(t) + bi(t) ≥
min{ 40e

9πδ2
,

8000 log e
2πδ2

81ε2
} (after the start phase), the (ε, δ)-differential privacy must be guar-

anteed.

Here we also use some figures to show the correctness of the differential privacy guarantee
of DP-FTPL-Beta, and the necessity of the start phase and the extra ki(t) on parameters
(ai(t), bi(t)) (ai(t), bi(t), ki(t) are the values of ai, bi, ki at the beginning of time step t).
Similar as before, in Fig. 2, the black line is F (x), the origin CDF of θi(t) and the blue line
is F ′(x), the CDF of θi(t) after one observation is changed. The red region is the feasible
region of F ′(x) under constraints in Lemma 8 with (ε, δ) = (1, 0.01). In all these figures,
we choose ai(t) = 1.

Fig. 2(a), 2(b) and 2(c) show the correctness of the differential privacy guarantee of
DP-FTPL-Beta, and the necessity of the start phase. We can see that when Ni(t) < N∗B
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(Fig. 2(a)), F ′(x) is out of the feasible region, which means the start phase is also necessary
(similar to DP-FTPL-Gauss). On the other hand, when Ni(t) = N∗B (Fig. 2(b)), F ′(x)
begins to lay in the feasible region. When Ni(t) becomes larger (Fig. 2(c)), F ′(x) also
becomes closer to F (x) and thus it must lay in the feasible region as well. Since after the
start phase we must have Ni(t) ≥ N∗B, DP-FTPL-Beta can guarantee differential privacy.

Fig. 2(d), 2(e) and 2(f) show the necessity of the extra ki(t) on parameters (ai(t), bi(t)).
We can see that if we do not add extra ki(t) to parameters (ai(t), bi(t)), then no matter
how large Ni(t) is (Ni(t) = 10 in Fig. 2(d), Ni(t) = 104 in Fig. 2(e), and Ni(t) = 107 in
Fig. 2(f)), the CDF F ′(x) is always out of the feasible region. This demonstrates that the
usage of ki(t) is necessary.

Remark 14 Our analysis shows that DP-FTPL-Beta achieves a similar behaviour as DP-
FTPL-Gauss, i.e., after the start phase, the differential privacy is always protected. Simi-
larly, the additive term of regret is still O(min{ log(1/δ)

ε2
, 1
δ2
}). However, compared with the

Gaussian case, here the start phase size contains a much larger constant factor. Therefore,
for small value T , DP-FTPL-Beta can behave worse due to the long start phase (see details
in Section 8).

6.3 DP-FTPL-New

Theorems 11 and 13 show that the extra regret of DP-FTPL-Gauss and DP-FTPL-Beta
are both O(min{ log(1/δ)

ε2
, 1
δ2
}). They are much larger than the upper bound of the extra

regret lower bound, i.e., Ω(1
ε log (eε−1)T+δT

(eε−1)+δT ) (as stated in Remark 7). For example, when

δ → 0, min{ log(1/δ)
ε2

, 1
δ2
} becomes infinity, while 1

ε log (eε−1)T+δT
(eε−1)+δT = log T

ε ; and when ε → 0,

min{ log(1/δ)
ε2

, 1
δ2
} = 1

δ2
, while 1

ε log (eε−1)T+δT
(eε−1)+δT ≈ 1

δ . Therefore, the extra regret of DP-
FTPL-Gauss and DP-FTPL-Beta is much larger than necessary. The reason is that both
the Gaussian perturbed distribution and the Beta perturbed distribution do not suit the
differential privacy setting well. For example, in both Fig 1(b) and Fig 2(b), there is still
a large gap between the CDF F ′(x) and the boundary of the feasible region. Hence, if we
want to design algorithms that achieve smaller extra regret, we need to make sure that the
CDF F ′(x) is always the same as the boundary of the feasible region. Motivated by this
idea, we design a new perturbed distribution, and design the DP-FTPL-New algorithm.

Similar with DP-FTPL-Gauss, we also let the perturbed distribution be symmetric and
satisfy that a change on observations can only shift the distribution by at most 1

Ni(t)
. Then to

ensure the differential privacy, it is sufficient to make sure that for any −∞ ≤ x ≤ y ≤ +∞
and any z ∈ [− 1

Ni(t)
, 1
Ni(t)

], (F (y)− F (x)) ≤ eε(F (y + z)− F (x+ z)) + δ.
Hence, we come up with the following lemma.

Lemma 15 Consider the random distribution with the following CDF:

F (x) =



0, x < x0 −∆x(
eε−1
2δ

+1
)

exp(Ni(t)ε(x−x0))−1

eε−1 δ, x0 −∆x ≤ x ≤ x0

1−
(
eε−1
2δ

+1
)

exp(Ni(t)ε(x0−x))−1

eε−1 δ, x0 < x ≤ x0 + ∆x

1, x > x0 + ∆x
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where ∆x = 1
Ni(t)ε

log
(
eε−1

2δ + 1
)
. This distribution satisfies that for any −∞ ≤ x ≤ y ≤

+∞ and any z ∈ [− 1
Ni(t)

, 1
Ni(t)

],

(F (y)− F (x)) ≤ eε(F (y + z)− F (x+ z)) + δ; (10)

(1− F (y) + F (x)) ≤ eε(1− F (y + z) + F (x+ z)) + δ. (11)

Specifically, when δ = 0, then the CDF can take limits for δ → 0, i.e.,

F (x) =

{
1
2 exp(Ni(t)ε(x− x0)) x ≤ x0

1− 1
2 exp(Ni(t)ε(x0 − x)), x > x0

On the other hand, if ε = 0, then the CDF can take limits for ε→ 0, i.e.,

F (x) =


0, x < x0 −∆x

1
2 +Ni(t)δ(x− x0), x0 −∆x ≤ x ≤ x0

1
2 −Ni(t)δ(x0 − x), x0 < x ≤ x0 + ∆x

1, x > x0 + ∆x

where ∆x = 1
2Ni(t)δ

.

Proof We only prove Eq. (10) when ε 6= 0 and δ 6= 0. The proofs for Eq. (11), as well as
the case that one of (ε, δ) is 0 are almost the same.

Firstly, We divide the interval (x, y) to three parts, i.e., I1 = (x, y) ∩ (−∞, x0 − ∆x],
I2 = (x, y)∩ (x0−∆x, x0 + ∆x] and I3 = (x, y)∩ (x0 + ∆x,+∞). Then we denote F1, F2, F3

(and F z1 , F
z
2 , F

z
3 ) as the probability mass of distribution with CDF F (x) (and F (x+ z)) in

these three intervals, respectively.
For z ≥ 0, it is easy to check that F z1 ≤ F1 ≤ F (x0 −∆x) = δ, and F3 ≤ F z3 . As for the

comparison between F2 and F z2 , one can use the corresponding PDF of F , i.e.,

f(x) =


0, x < x0 −∆x

δ
eε−1( e

ε−1
2δ + 1)Ni(t)εe

Ni(t)ε(x−x0), x0 −∆x ≤ x ≤ x0

δ
eε−1( e

ε−1
2δ + 1)Ni(t)εe

Ni(t)ε(x0−x), x0 < x ≤ x0 + ∆x

0, x > x0 + ∆x

If both f(x) and f(x+ z) locates in the second part, then

f(x)

f(x+ z)
= exp(−Ni(t)εz) ≤ 1. (12)

If both f(x) and f(x+ z) locates in the third part, then (recall that z ≤ 1
Ni(t)

)

f(x)

f(x+ z)
= exp(Ni(t)εz) ≤ eε (13)

As for the case that f(x) locates in the second part but f(x + z) locates in the third
part, then (recall that z ≤ 1

Ni(t)
and in this case x ≤ x0)

f(x)

f(x+ z)
= exp(Ni(t)ε(x− x0 − x0 + x+ z)) ≤ eε. (14)
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Algorithm 3 DP-FTPL-New

1: Input: ε, δ
2: for t = 1, 2, · · · , N do
3: Pull arm i(t) = t and observe reward x(t) = xt(t) ∈ {0, 1}.
4: Rt ← xt(t), Nt ← 1.
5: end for
6: while true do
7: For each arm i, draw sample θi(t) independently from perturbed distribution

D(Ni, Ri) (whose CDF is given as Lemma 15, and x0 = µ̂i(t) +
√

log T
Ni(t)

+

1
Ni(t)ε

log T (eε−1)+2Tδ
2(eε−1)+2Tδ ).

8: Choose arm i(t) = argmaxi θi(t), and observe reward x(t) = xi(t)(t) ∈ {0, 1}.
9: Ri(t) ← Ri(t) + xi(t)(t), Ni(t) ← Ni(t) + 1.

10: end while

Eq. (12), (13) and (14) shows that F2 ≤ eεF z2 . Therefore, we must have that

F1 + F2 + F3 ≤ δ + eεF z2 + F z3 ≤ eε(F z1 + F z2 + F z3 ) + δ,

which implies that Eq. (10) holds.

Similarly, when z ≤ 0, one can also prove this equation by symmetry.

Now we introduce our DP-FTPL-New policy (as described in Algorithm 3), which uses
the perturbed distribution in Lemma 15 to protect differential privacy. For an arm i,

we can choose its x0 (which is used in the CDF in Lemma 15) to be µ̂i(t) +
√

log T
Ni(t)

+

1
Ni(t)ε

log T (eε−1)+2Tδ
2(eε−1)+2Tδ . In this case, if we change one observation, then µ̂i(t) can change for

at most 1
Ni(t)

, while the other terms
√

log T
Ni(t)

+ 1
Ni(t)ε

log T (eε−1)+2Tδ
2(eε−1)+2Tδ remain the same. This

means that the random distribution can shift for at most 1
Ni(t)

, and therefore based on

Lemma 15, the algorithm can protect (ε, δ)-differential privacy.

Note that we do not require a start phase in DP-FTPL-New, since for any Ni(t) >
0, the conditions in Lemma 8 holds (which is different with DP-FTPL-Gauss and DP-
FTPL-Beta). However, this does not mean that DP-FTPL-New incurs no extra regrets.
The reason is that in DP-FTPL-New, the confidence radius of the perturbed distribution
( 1
Ni(t)ε

log T (eε−1)+2Tδ
2(eε−1)+2Tδ ) is not the same as the confidence radius of the expected reward

(
√

log T
Ni

). In DP-FTPL-Gauss and DP-FTPL-Beta, we always choose the two confidence

radiuses to have the same order, which means that these algorithms are normal bandit
algorithms if they do not have the start phase (i.e., have regret upper bound O(

∑
i

log T
∆i

)).
Therefore, after we adding the start phase to guarantee differential privacy, the start phase
size becomes the only extra additional term in their regret upper bounds. In DP-FTPL-
New, the extra regret term comes from the different confidence radius 1

Ni(t)ε
log T (eε−1)+2Tδ

2(eε−1)+2Tδ .

We also need this confidence radius to be less than Θ(∆i) to make sure that with high

probability, arm i will not be pulled. This means that Ni(t) ≥ Θ( 1
∆iε

log T (eε−1)+2Tδ
2(eε−1)+2Tδ ),
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i.e., there is an extra additional term of O(Nε log T (eε−1)+2Tδ
2(eε−1)+2Tδ ) in the regret upper bound of

DP-FTPL-New, which is shown in detail in the next theorem.

Theorem 16 DP-FTPL-New can protect (ε, δ)-differential privacy, and its regret satisfies

Reg(T ) ≤
∑
i

max

{
16 log T

∆i
,
4

ε
log

T (eε − 1) + 2Tδ

2(eε − 1) + 2Tδ

}
+ 4N

Proof The privacy part can be directly obtained by Lemma 8 and Lemma 15, therefore we
only analyze the regret upper bound here, by showing that the used θi(t) is a kind of upper
confidence bound. In this proof, we will use the following two facts.

Fact 3 For any t > 0,

Pr

[
|µ̂i(t)− µi| ≥

√
log T

Ni(t)

]
≤ 2

T
.

Fact 4 For any t > 0,

Pr

[
|θi(t)− x0| ≥

1

Ni(t)ε
log

T (eε − 1) + 2Tδ

2(eε − 1) + 2Tδ

]
≤ 2

T
,

where x0 = µ̂i(t) +
√

log T
Ni(t)

+ 1
Ni(t)ε

log T (eε−1)+2Tδ
2(eε−1)+2Tδ .

Fact 3 is based on Chernoff-Hoeffding inequality (which is shown in detail as Fact 5 in
Appendix), i.e. by applying Chernoff-Hoeffding inequality to Eq. (15),

Pr

[
|µ̂i(t)− µi| ≥

√
log T

Ni(t)

]
=

T∑
n=1

Pr

[
|µ̂i(t)− µi| ≥

√
log T

Ni(t)
, Ni(t) = n

]
(15)

≤
T∑
n=1

2

T 2

≤ 2

T
.

(16)

Fact 4 is based on the CDF described as in Lemma 15, i.e.,

F

(
x0 −

1

Ni(t)ε
log

T (eε − 1) + 2Tδ

2(eε − 1) + 2Tδ

)
=

(
eε−1

2δ + 1
) 2(eε−1)+2Tδ
T (eε−1)+2Tδ − 1

eε − 1
δ

=
1

T
,

and similarly,

F

(
x0 +

1

Ni(t)ε
log

T (eε − 1) + 2Tδ

2(eε − 1) + 2Tδ

)
= 1− 1

T

26



Optimal Learning Policies for Differential Privacy in Multi-armed Bandits

Based on Facts 3 and 4, we know that with probability at least 1− 4
T , we have

θi(t)− µi = (θi(t)− x0) + (x0 − µ̂i(t)) + (µ̂i(t)− µi) ≥ 0,

and

θi(t)−µi = θi(t)−x0 +x0− µ̂i(t)+ µ̂i(t)−µi ≤ 2

(√
log T

Ni(t)
+

1

Ni(t)ε
log

T (eε − 1) + 2Tδ

2(eε − 1) + 2Tδ

)
,

Hence, Let Et be the event that ∀i, 0 ≤ θi(t) − µi ≤ 2(
√

log T
Ni(t)

+ 1
Ni(t)ε

log T (eε−1)+2Tδ
2(eε−1)+2Tδ ),

then the expected regret at time step t when event ¬Et happens is at most 4N
T .

On the other hand, under event Et, we will pull an sub-optimal arm i only if

2

(√
log T

Ni(t)
+

1

Ni(t)ε
log

T (eε − 1) + 2Tδ

2(eε − 1) + 2Tδ

)
≤ ∆i.

Otherwise

θi(t) ≤ µi + 2

(√
log T

Ni(t)
+

1

Ni(t)ε
log

T (eε − 1) + 2Tδ

2(eε − 1) + 2Tδ

)
≤ µ1 ≤ θ1(t),

and we will not pull sub-optimal arm i.
Note that by basic calculations, if Ni(t) ≥ max{16 log T

∆2
i
, 4

∆iε
log log T (eε−1)+2Tδ

2(eε−1)+2Tδ }, then

2(
√

log T
Ni(t)

+ 1
Ni(t)ε

log T (eε−1)+2Tδ
2(eε−1)+2Tδ ) must be smaller than ∆i.

This means that the regret of DP-FTPL-New is upper bounded by

Reg(T ) ≤
∑
i

∆i max

{
16 log T

∆2
i

,
4

∆iε
log

T (eε − 1) + 2Tδ

2(eε − 1) + 2Tδ

}
+ 4N

=
∑
i

max

{
16 log T

∆i
,
4

ε
log

T (eε − 1) + 2Tδ

2(eε − 1) + 2Tδ

}
+ 4N.

Here we use Fig. 3 to show the correctness of the differential privacy guarantee of DP-
FTPL-New. We can see that in DP-FTPL-New, no matter how large Ni(t) is, F ′(x) is
always the same as the boundary of the feasible region. Therefore, it does not require the
start phase, and always has differential privacy guarantee. Moreover, this is the best one
can do (i.e., the lowest extra regret) to protect (ε, δ)-differential privacy based on Lemma
8.

Remark 17 Note that Lemma 15 provides perturbed distributions not only for the case
that both ε and δ are not zero, but also for the case that either δ = 0 or ε = 0. Therefore,
Theorem 16 also works in the case that either δ = 0 or ε = 0 (and the extra regret term
just takes limits of either δ → 0 or ε → 0, i.e., O(N log T

ε ) and O(Nδ )). This means that
DP-FTPL-New not only has a better regret upper bound, but is also more general than the
existing algorithms, e.g., DP-UCB (only works when δ = 0), DP-UCB-BOUND (only works
when δ = 0), DP-UCB-INT (only works when δ 6= 0 and ε 6= 0), DP-FTPL-Gauss (only
works when δ 6= 0) and DP-FTPL-Beta (only works when δ 6= 0).
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Figure 3: Explanation about how DP-FTPL-New protects (0.1, 0)-differential privacy.

Algorithm 4 GDP-Elim-New

1: Input: ε, δ.
2: for Phase k = 1, 2, · · · do
3: ∆(k) = 2−k.

4: N(k) = max{32 log T
∆2(k)

, 4
∆(k)ε log T 2(eε−1)+T 2δ

2(eε−1)+T 2δ
}

5: For each arm i, pull it for N(k) times, and let its empirical mean in this N(k) times
of pull be µ̂i(k)

6: Let θi(k) be a random variable that is independently drawn from the distribution
described in Lemma 15 with ε, δ/2, x0 = µ̂i(k), Ni(t) = N(k).

7: if there exists i such that θi(k) ≥ maxj 6=i θj(k) + ∆(k) then
8: Start to exploit on this arm i.
9: end if

10: end for

7. Algorithm that Protect Global Differential Privacy in Multi-armed
Bandits

Note that the distribution in Lemma 15 satisfies not only the condition in Lemma 8 (the
differential privacy case), but also the condition in Lemma 9 (the global differential privacy
case). Therefore, we can also design an algorithm GDP-Elim-New that protects (ε, δ)-global
differential privacy based on this perturbed distribution.

The GDP-Elim-New is described as in Algorithm 4. Following Lemma 9, it divides the
learning procedure into several phases. In each phase k, GDP-Elim-New will pull all the
arms for N(k) times, and then estimate their empirical means µ̂i(k)’s in this phase. After
that, to protect (ε, δ)-global differential privacy, it draws random samples θi(k)’s from the
perturbed distribution described in Lemma 15, and then start to exploit if it makes sure
that some arm is the optimal arm with high probability.

Theorem 18 Algorithm 4 can protect (ε, δ)-global differential privacy, and its regret is
upper bounded by

Reg(T ) ≤
∑
i

(
1024∆i log T

∆2
min

+
32∆i

ε∆min
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ

)
+ 4N.
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Proof The privacy part can be directly obtained by Lemma 9 and Lemma 15, therefore
we only analyze the regret upper bound here, and we first define the following two kinds of
events:

• A(k) = {∀i, |µ̂i(k)− µi| <
√

2 log T
N(k) };

• B(k) = {∀i, |θi(k)− µ̂i(k)| < 1
N(k)ε log T 2(eε−1)+T 2δ

2(eε−1)+T 2δ
};

Similar with Fact 3 and Fact 4, we could prove that

Pr[¬A(k)] ≤ 2N

T 2
,

Pr[¬B(k)] ≤ 2N

T 2
.

Let G be the event that for any phase k, A(k) and B(k) happen. Then since there can
be at most T phases, we have

Pr[¬G] ≤ 4N

T 2
· T =

4N

T
.

Therefore the expected regret when ¬G happens is at most 4N .

Note that if we choose N(k) = max{32 log T
∆2(k)

, 4
∆(k)ε log T 2(eε−1)+T 2δ

2(eε−1)+T 2δ
}, then we must have√

2 log T

N(k)
≤ 1

4
∆(k),

and
1

N(k)ε
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ
≤ 1

4
∆(k).

Thus, under event A(k) and B(k), for any sub-optimal arm i ≥ 2, we must have that

θ1(k) ≥ µ1 −

√
2 log T

N(k)
− 1

N(k)ε
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ

≥ µi −
1

4
∆(k)− 1

4
∆(k)

≥ θi(k)−

√
2 log T

N(k)
− 1

N(k)ε
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ
− 1

4
∆(k)− 1

4
∆(k)

≥ θi(k)−∆(k).

This means that we can only exploit on arm 1 (the optimal arm).
As for sub-optimal arms j ≥ 2, we must have that

θj(k) ≤ µj +

√
2 log T

N(k)
+

1

N(k)ε
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ

≤ µj +
1

4
∆(k) +

1

4
∆(k)
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= µ1 −∆j +
1

4
∆(k) +

1

4
∆(k)

≤ θ1(k) +

√
2 log T

N(k)
+

1

N(k)ε
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ
−∆j +

1

4
∆(k) +

1

4
∆(k)

≤ θ1(k)−∆j + ∆(k)

≤ θ1(k)−∆(k)− (∆j − 2∆(k)).

This means that after phase k such that 2∆(k) ≤ ∆j , arm j should always satisfy
θj(k) ≤ θ1(k)−∆(k). Hence, if 2∆(k) ≤ ∆min, we must start to exploit.

Denote this phase be k∗, i.e., 2∆(k∗) ≤ ∆min but 4∆(k∗) ≥ ∆min.
Then, the expected regret when G happens is upper bounded by

∑
i

k∗∑
k=1

N(k)∆i =
∑
i

k∗∑
k=1

max

{
32 log T

∆2(k)
,

4

∆(k)ε
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ

}
∆i

≤
∑
i

k∗∑
k=1

(
32 log T

∆2(k)
+

4

∆(k)ε
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ

)
∆i

≤
∑
i

(
64∆i log T

∆2(k∗)
+

8∆i

∆(k∗)ε
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ

)
≤

∑
i

(
1024∆i log T

∆2
min

+
32∆i

ε∆min
log

T 2(eε − 1) + T 2δ

2(eε − 1) + T 2δ

)

Along with the fact that the expected regret when ¬G happens is at most 4N , we can
finally get the regret upper bound shown in Theorem 18.

Theorem 18 shows that when ∆max
∆min

is bounded, then the regret upper bound of GDP-
Elim-New has the same order as DP-FTPL-New, and matches the regret lower bound in
Theorem 4 (in order). This indicates that our regret lower bound is tight.

Remark 19 Similar to DP-FTPL-New, GDP-Elim-New works in not only the case that
δ 6= 0 and ε 6= 0, but also the case that either δ = 0 or ε = 0. Therefore, it is also more
general than existing algorithms such as AdaP-UCB and AdaP-KLUCB (Azize and Basu,
2022), which only work in the case that δ = 0.

8. Experiments

In this section, we mainly consider the differential privacy case, and compare our algorithms
with state-of-the-art baselines, including DP-UCB, DP-UCB-BOUND, DP-UCB-INT in the
work of Tossou and Dimitrakakis (2016) and DP-SE in the work of Sajed and Sheffet (2019).

We consider two problem instances. In Instance 1 we set N = 9 and the expected reward
vector is [0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7], in Instance 2 we set N = 101 and the
expected reward of arm i ∈ [N ] is µi = 0.3 + 0.004(i − 1). In both instances, we choose
T = 106, and all the results (the average cumulative regrets and the standard deviations of
cumulative regrets) take an average over 100 independent runs.
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(a) Instance 1, δ = 0.01
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(b) Instance 1, δ = e−10
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(c) Instance 2, δ = 0.01
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(d) Instance 2, δ = e−10

Figure 4: Experiments for (ε, δ)-differential privacy

We first consider the case that the learning policy needs to guarantee (ε, δ)-differential
privacy. Here we compare the regret performances of our algorithms (DP-FTPL-Gauss,
DP-FTPL-Beta and DP-FTPL-New) with DP-UCB-INT. In Fig. 4(a) and Fig. 4(b), we
use Instance 1 and set (ε, δ) to be (1, 0.01) or (1, e−10). In Fig. 4(c) and Fig. 4(d), we use
Instance 2 and set (ε, δ) to be (1, 0.01) or (1, e−10). From these experiments, we can see that
our algorithms outperform DP-UCB-INT significantly. As we have explained, DP-FTPL-
Beta suffers from a long start phase, and it behaves much worse when δ is small. However,
we can see that after the start phase, its regret does not increase at all. This accords with
our analysis, since its regret always equals to

∑
i ∆iN

∗
B when ∆iN

∗
B is larger than log T

∆i
. As

for DP-FTPL-Gauss, since it has a short start phase, its regret increases continuously as
T grows up. On the other hand, DP-FTPL-New is always the optimal one in these four
algorithms, since its extra regret term is the smallest.

Then we consider the case that the policy needs to guarantee (ε, 0)-differential privacy.
In this case, we compare the regret performance of our DP-FTPL-New policy with DP-
UCB, DP-UCB-BOUND and DP-SE. In Fig. 5(a) and Fig. 5(b), we use Instance 1 and set
ε to be 1 or 0.1. In Fig. 5(c) and Fig. 5(d), we use Instance 2 and set ε to be 1 or 0.1. From
these experiments, we can see that DP-FTPL-New outperforms all the other algorithms
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(a) Instance 1, ε = 1
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(b) Instance 1, ε = 0.1
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Figure 5: Experiments for (ε, 0)-differential privacy

significantly. This accords with our analysis, i.e., the extra regret term of DP-FTPL-New
is the smallest. As a contrast, another optimal algorithm DP-SE is an elimination-based
algorithm and suffers from a large constant factor in its regret upper bound. Therefore
it behaves even worse than the non-optimal UCB-based algorithms, e.g., DP-UCB and
DP-UCB-BOUND.

Finally, we compare the performance of the same algorithm under different ε or δ to see
how ε and δ influence the algorithms’ regret. Here we use DP-FTPL-Gauss and DP-FTPL-
New as examples, and consider their performances on Instance 1 with T = 106.

In Fig. 6(a), we fix ε = 0 and in Fig. 6(b), we fix ε = 0.1. We can see that when
ε = 0, the regret of both DP-FTPL-Gauss and DP-FTPL-New do not increase a lot when δ
decreases from 1 to 0.01. However, when δ is less than 0.01, then the regret of DP-FTPL-
Gauss grows much faster than DP-FTPL-New. In fact, from this log-log figure, one can see
that the regret of DP-FTPL-Gauss is about 1

δ2
, while the regret of DP-FTPL-New is about

1
δ . This accords with our analysis, since when ε = 0, the extra regret of DP-FTPL-Gauss is
O(N

δ2
), while the extra regret of DP-FTPL-New is O(Nδ ).

When ε = 0.1, we can see that the curve of DP-FTPL-Gauss can be divided into three
parts. This also accords with our analysis, i.e., when δ ∈ (0.02, 1), the major term in the
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Figure 6: Experiments for fixed ε

regret bound is O(
∑

i
log T
∆i

), hence the regret does not increase at all; when δ ∈ (0.01, 0.02),

the major term in the regret bound is O(N
δ2

), and the regret increases with rate about 1
δ2

;

when δ < 0.01, the major term in the regret bound becomes O(
N log 1

δ
ε2

), and therefore the
increasing rate of the regret becomes much slower than before. On the other hand, the extra
regret of DP-FTPL-New is O(Nε log T (eε−1)+Tδ

(eε−1)+Tδ ), and this term becomes O(N log(1 + 1
δ )) in

this figure. Therefore, the regret of DP-FTPL-New is smaller than DP-FTPL-Gauss, and
the curve of DP-FTPL-New is more smooth than DP-FTPL-Gauss.

Then we fix the value δ: in Fig. 7(a), we fix δ = 10−10 (since DP-FTPL-Gauss cannot
deal with the case δ = 0, we choose an extreme small δ instead of 0) and In Fig. 7(b), we
fix δ = 0.001.

We can see similar phenomena in Fig. 7(a) and Fig. 7(b) (as the case when we fix ε).
When δ = 10−10, both the regret of DP-FTPL-Gauss and the regret of DP-FTPL-New do
not increase a lot at the beginning. Then the regret of DP-FTPL-Gauss increases with rate
about 1

ε2
, while the regret of DP-FTPL-Gauss increases with rate about 1

ε , since the extra

regret in their corresponding regret upper bounds are O(
N log 1

δ
ε2

) and O(N log T
ε ), respectively.

When δ = 0.001, the curve of DP-FTPL-Gauss can also be divided into three parts, and the
only difference here is that in the third part, the extra regret becomes O(N

δ2
), and does not

increase at all (as ε decreases). As for DP-FTPL-New, its curve is more smooth, and the
regret almost stops increasing after ε < 10−4. This is because that its regret in this figure
is about O(Nε log(1 + eε−1

δ )). When ε < 10−4, N
ε log(1 + eε−1

δ ) ≈ N
ε log(1 + ε

δ ) ≈ N
ε ·

ε
δ = N

δ ,
which does not increase as ε decreases.

9. Conclusions

In this paper, we study the algorithms that guarantee (ε, δ)-differential privacy or (ε, δ)-
global differential privacy in MAB problems. We first adapt the famous Thompson Sampling
policies to protect (ε, δ)-differential privacy (i.e., DP-FTPL-Gauss and DP-FTPL-Beta),
and propose their regret upper bounds. Then we design a new perturbed distribution
that suits the (ε, δ)-differential privacy setting well, and show that using this perturbed
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Figure 7: Experiments for fixed δ

distribution in FTPL framework (i.e., DP-FTPL-New) can significantly reduce the extra
regret for privacy guarantee. This new kind of perturbed distribution, on the other hand,
can also be used to protect (ε, δ)-global differential privacy. Based on this fact, we design
the GDP-Elim-New algorithm, and give its regret upper bound. We also prove a regret
lower bound for algorithms that protect (ε, δ)-global differential privacy, and this lower
bound matches (in order) with the regret upper bound of GDP-Elim-New, indicating that
the upper/lower bounds are tight. Compared to existing researches that only work in the
case ε > 0 and δ = 0 (or only work in the case ε > 0 and δ > 0), our results work for any
(ε, δ) as long as one of them is not zero. This means that our results are more general.
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Appendix

Appendix A. Proof of Theorem 11

Theorem 11 DP-FTPL-Gauss guarantees (ε, δ)-differential privacy, and its cumulative re-
gret satisfies

Reg(T ) ≤
N∑
i=2

max

{
2∆i log T

(∆i − 2λ)2
, N∗G∆i

}
+ Θ

(
N

λ4

)
for any λ < 1

2∆min.

Proof (regret part) In this proof, we need to use the following three facts.
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Fact 5 (Chernoff-Hoeffding Inequality, Hoeffding (1963))

FBinon,p ((p− λ)n) ≤ exp
(
−2nλ2

)
,

where FBinon,p denotes the cumulative distribution function of Binomial distribution with pa-
rameter (n, p).

By Fact 5, one could get that: for any fixed n,

Pr

[
µ̂i(t)− µi ≤ −

√
log T

Ni(t)
, Ni(t) = n

]
≤ FBinon,µi

((
µi −

√
log T

n

)
n

)
≤ 1

T 2
, (17)

and similarly,

Pr

[
µ̂i(t)− µi ≥

√
log T

Ni(t)
, Ni(t) = n

]
≤ FBinon,1−µi

((
1− µi −

√
log T

n

)
n

)
≤ 1

T 2
. (18)

These equations are widely used in our analysis (e.g., to prove Fact 3).

Fact 6 (Feller, 2008) For any fixed mean-variance pair (µ̂i(t),
2

Ni(t)
), if θi(t) is drawn from

Gaussian distribution N (µ̂i(t),
2

Ni(t)
), then

Pr

[
θi(t) ≥ µ̂i(t) +

√
2 log T

Ni(t)

]
≤ 1

T
.

Fact 7 (Birnbaum, 1942)

∀x > 0, φ(x, 0, 1) ≥
√

2/π

x+
√
x2 + 4

exp

(
−x2

2

)
.

Recall that Ni(t), Ri(t) denote the value of Ni, Ri at the beginning of time step t, and

µ̂i(t) = Ri(t)
Ni(t)

is the empirical mean of arm i at time t. Then similar as prior works (Agrawal

and Goyal, 2013), we can define the following events:

Ai(t) = {i(t) = i, µ̂i(t) ≥ µi + λ};
Bi(t) = {i(t) = i, µ̂i(t) < µi + λ, θi(t) ≥ µ1 − λ};
Ci(t) = {i(t) = i, θi(t) < µ1 − λ}.

By definitions, we have that

E[Ni(T )] = N∗G +

T∑
t=T ∗

E[I[i(t) = i]]

= N∗G +

T∑
t=T ∗

E[I[Ai(t) ∪ Bi(t) ∪ Ci(t)]]
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≤ N∗G +
T∑

t=T ∗

(E[I[Ai(t)]] + E[I[Bi(t)]] + E[I[Ci(t)]])

≤
T∑

t=T ∗

E[I[Ai(t)]] +

(
N∗G +

T∑
t=T ∗

E[I[Bi(t)]]

)
+

T∑
t=T ∗

E[I[Ci(t)]],

where T ∗ = N ·N∗G + 1 is the first time step after the start phase.

For the term E[I[Ai(t)]], denote tn as the time step that Ni(tn) = n − 1 and i(tn) = i,
i.e., the time step we choose arm i for the n-th time (also denote t0 = 0), then we have that

T∑
t=T ∗

E[I[Ai(t)]] = E

[
T∑

t=T ∗

I[Ai(t)]

]

≤ E

[ ∞∑
n=0

tn+1∑
t=tn

I[Ai(t)]

]

= E

[ ∞∑
n=0

tn+1∑
t=tn

I[i(t) = i, µ̂i(t) ≥ µi + λ]

]

= E

[ ∞∑
n=0

I[µ̂i(tn+1) ≥ µi + λ]

]

=

∞∑
n=0

Pr[µ̂i(t) ≥ µi + λ|Ni(t) = n]

≤
∞∑
n=0

exp
(
−2nλ2

)
(19)

≤ 1

1− exp(−2λ2)

≤ 1
2
eλ

2

=
e

2λ2
,

where Eq. (19) comes from Chernoff-Hoeffding Inequality (Fact 5).

As for the second term, when Ni(t) ≥ Li(T ) , 2 log T
(µ1−µi−2λ)2

, we must have that (Eq. (20)

is given by Fact 6)

Pr [θi(t) ≥ µ1 − λ; µ̂i(t) ≤ µi + λ]

≤ Pr [θi(t) ≥ µ̂i(t) + (µ1 − µi)− 2λ]

= Pr

[
θi(t) ≥ µ̂i(t) +

√
2 log T

Li(t)

]

≤ Pr

[
θi(t) ≥ µ̂i(t) +

√
2 log T

Ni(t)

]
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=
∑

n≥Li(T )

∑
µ∈{0/n,1/n,··· ,n/n}

Pr[Ni(t) = n, µ̂i(t) = µ]

·Pr

[
θi(t) ≥ µ̂i(t) +

√
2 log T

Ni(t)
| Ni(t) = n, µ̂i(t) = µ

]
≤

∑
n≥Li(T )

∑
µ∈{0/n,1/n,··· ,n/n}

Pr[Ni(t) = n, µ̂i(t) = µ] · 1

T
(20)

≤ 1

T
.

Therefore, if Li(T ) ≤ N∗G, then

T∑
t=T ∗

E[I[Bi(t)]] = E

[
T∑

t=T ∗

I[Bi(t)]

]

≤ E

 T∑
t=tLi(T )+1

I[Bi(t)]


= E

 T∑
t=tLi(T )+1

I[i(t) = i, µ̂i(t) < µi + λ, θi(t) ≥ µ1 − λ]


≤ E

 T∑
t=tLi(T )+1

I[θi(t) ≥ µ1 − λ; µ̂i(t) ≤ µi + λ]


≤

T∑
t=tLi(T )+1

Pr[θi(t) ≥ µ1 − λ; µ̂i(t) ≤ µi + λ]

≤
T∑

t=tLi(T )+1

1

T

≤ 1.

Otherwise if Li(T ) > N∗G, then

T∑
t=T ∗

E[I[Bi(t)]] = E

[
T∑

t=T ∗

I[Bi(t)]

]

≤ E

tLi(T )∑
t=T ∗

I[Bi(t)] +
T∑

t=tLi(T )+1

I[Bi(t)]


= E

Li(T )∑
n=N∗G

tn+1∑
t=tn

I[Bi(t)]

+ E

 T∑
t=tLi(T )+1

I[Bi(t)]


≤ (Li(T )−N∗G) + E

 T∑
t=tLi(T )+1

I[Bi(t)]


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= (Li(T )−N∗G) + E

 T∑
t=tLi(T )+1

I[i(t) = i, µ̂i(t) < µi + λ, θi(t) ≥ µ1 − λ]


≤ (Li(T )−N∗G) + E

 T∑
t=tLi(T )+1

I[θi(t) ≥ µ1 − λ; µ̂i(t) ≤ µi + λ]


≤ (Li(T )−N∗G) +

T∑
t=tLi(T )+1

Pr[θi(t) ≥ µ1 − λ; µ̂i(t) ≤ µi + λ]

≤ (Li(T )−N∗G) +
T∑

t=tLi(T )+1

1

T

≤ (Li(T )−N∗G) + 1.

These imply that

N∗G +

T∑
t=T ∗

E[I[Bi(t)]] ≤ max{Li(T ), N∗G}+ 1.

Then we come to the third term, and we will use the following lemma, which is similar
with Lemma 1 in the work of Agrawal and Goyal (2013). We defer the proof of Lemma 20
to Appendix A.1.

Lemma 20 Denote pt = Pr[θ1(t) ≥ µ1 − λ|Ft−1], then we have that

Pr[i(t) = i, θi(t) ≤ µ1 − λ|Ft−1] ≤ 1− pt
pt

Pr[i(t) = 1, θi(t) ≤ µ1 − λ|Ft−1].

According to the analysis in the work of Agrawal and Goyal (2013), by Lemma 20, we
have that

T∑
t=T ∗

E[I[Ci(t)]] ≤
∞∑

n=N∗G

E
[

1

pn
− 1

]
,

where pn denotes the random probability (due to the randomness on observations of arm
1) that θ1(t) ≥ µ1 − λ when there are totally n observations on arm 1, i.e., Ni(t) = n.

Note that the observations on arm 1 follow a Binomial distribution with parameters
n, µ1. Denote fBinon,p the probability mass function of Binomial distribution with parameters

n, p, and φ(x, µ, σ2) = PrX∼N (µ,σ2)[X ≥ x], then the term E
[

1
pn

]
can be written as

E
[

1

pn

]
=

n∑
s=0

fBinon,µ1 (s)

φ(µ1 − λ, sn ,
2
n)
.

Now we divide this sum into three parts: SH = {s : s > (µ1 − λ
2 )n}, SM = {s :

(µ1 − λ)n ≤ s ≤ (µ1 − λ
2 )n}, and SL = {s : s < (µ1 − λ)n}.
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For the part SH , when n ≤ 8
λ2

, we always have that φ(µ1 − λ, sn ,
2
n) ≥ 1

2 , therefore

∑
s∈SH

fBinon,µ1 (s)

φ(µ1 − λ, sn ,
2
n)
≤ 2.

When n > 8
λ2

, we have that φ(µ1 − λ, sn ,
2
n) ≥ 1− exp(−nλ22 ) (for s in SH), therefore

∑
s∈SH

fBinon,µ1 (s)

φ(µ1 − λ, sn ,
2
n)
≤ 1

1− exp(−nλ22 )
.

For the part SM , we always have that
∑

s∈SM fBinon,µ1 (s) ≤ Pr[µ̂1(t) ≤ µ1 − λ
2 |Ni(t) =

n] ≤ exp(−nλ22 ) (by Fact 5), and φ(µ1 − λ, sn ,
2
n) ≥ 1

2 , therefore

∑
s∈SM

fBinon,µ1 (s)

φ(µ1 − λ, sn ,
2
n)
≤ 2 exp

(
−nλ

2

2

)
.

As for the part SL, we have that

∑
s∈SL

fBinon,µ1 (s)

φ(µ1 − λ, sn ,
2
n)

=
∑
s∈SL

n!
s!(n−s)!µ

s
1(1− µ1)n−s

φ(µ1 − λ, sn ,
2
n)

≤
∑
s∈SL

√
2πen(n

e
)nµs1(1−µ1)n−s

√
2πs( s

e
)s
√

2π(n−s)(n−s
e

)n−s

φ(µ1 − λ, sn ,
2
n)

(21)

=
∑
s∈SL

√
en

2πs(n−s)
nnµs1(1−µ1)n−s

ss(n−s)n−s

φ(µ1 − λ, sn ,
2
n)

≤
∑
s∈SL

√
e

2π

(µ1)s(1−µ1)n−s

( s
n

)s(n−s
n

)n−s

φ(µ1 − λ, sn ,
2
n)

=
∑
s∈SL

√
e

2π

(
(µ1)

s
n (1−µ1)

n−s
n

( s
n

)
s
n (n−s

n
)
n−s
n

)n
φ(µ1 − λ, sn ,

2
n)

=
∑
s∈SL

√
e

2π

exp(−nKL( sn , µ1))

φ(µ1 − λ, sn ,
2
n)

≤
∑
s∈SL

√
e

2π

exp(−n
2

(
µ1 − s

n

)2
)

φ(µ1 − λ, sn ,
2
n)

(22)

≤
∑
s∈SL

√
e

2π

exp(−n
2

(
µ1 − s

n

)2
)

φ(µ1 − λ− s
n , 0,

2
n)

≤
∑
s∈SL

√
e

2π

exp(−n
2

(
µ1 − s

n

)2
)

φ(
√

n
2

(
µ1 − λ− s

n

)
, 0, 1)
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≤
∑
s∈SL

√
e

2π

exp(−n
2

(
µ1 − s

n

)2
)

√
2/π

√
n
2 (µ1−λ− s

n)+
√
n
2 (µ1−λ− s

n)
2
+4

exp(−n
2

(
µ1 − λ− s

n

)2
)

(23)

≤
∑
s∈SL

√
e

2π

exp(−n
2

(
µ1 − s

n

)2
)

√
2/π√

2n(µ1−λ− s
n)+2

exp(−n
2

(
µ1 − λ− s

n

)2
)

≤
∑
s∈SL

√
e

exp(−n
2

(
µ1 − s

n

)2
)

1√
n+1

exp(−n
2

(
µ1 − λ− s

n

)2
)

≤
∑
s∈SL

√
e(1 + n)

exp(−n
2

(
µ1 − s

n

)2
)

exp(−n
2

(
µ1 − λ− s

n

)2
)

≤
√
e(1 + n)

∑
s∈SL

exp
(
−n

2
(µ1 −

s

n
)λ
)

=
√
e(1 + n)

∑
s∈SL

exp

(
−λ

2
(nµ1 − s)

)
≤
√
e(1 + n)

(
exp

(
−λ

2
nλ

)
+ exp

(
−λ

2
(nλ+ 1)

)
+ · · ·

)
=
√
e(1 + n) exp

(
−λ

2
nλ

)(
1 + exp

(
−λ

2

)
+ · · ·

)
=
√
e(1 + n) exp

(
−λ

2
nλ

)
1

1− exp
(
−λ

2

)
≤ 2

√
e(1 + n) exp

(
−nλ

2

2

)
,

where KL(p, q) = p log p
q + (1− p) log 1−p

1−q is the KL-divergence between p and q. Eq. (21)
comes from Stirling’s approximation (Fact 1), Eq. (22) comes from Pinsker’s Inequality
(Fact 2) and Eq. (23) comes from the inequality on Millo’s ratio (Fact 7).

Therefore, we have that:

T∑
t=T ∗

E[I[Ci(t)]] ≤
∞∑

n=N∗G

E
[

1

pn
− 1

]

≤
∞∑
n=1

E
[

1

pn
− 1

]

=

∞∑
n=1

2
√
e(1 + n) exp

(
−nλ

2

2

)
+

∞∑
n=1

2 exp

(
−nλ

2

2

)

+

8
λ2∑
n=1

(2− 1) +

∞∑
n= 8

λ2

(
1

1− exp(−nλ22 )
− 1

)

= Θ

(
1

λ4

)
.
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Summing over the three terms, the cumulative regret of DP-FTPL-Gauss is upper
bounded by

N∑
i=2

E[Ni(T )]∆i ≤
∑
i

(
T∑

t=T ∗

E[I[Ai(t)]] +

(
N∗G +

T∑
t=T ∗

E[I[Bi(t)]]

)
+

T∑
t=T ∗

E[I[Ci(t)]]

)
∆i

≤
N∑
i=2

max

{
2 log T∆i

(∆i − 2λ)2
, N∗G∆i

}
+ Θ

(
N

λ4

)
.

A.1 Proof of Lemma 20

Lemma 19 Denote pt = Pr[θ1(t) ≥ µ1 − λ|Ft−1], then we have that

Pr[i(t) = i, θi(t) ≤ µ1 − λ|Ft−1] ≤ 1− pt
pt

Pr[i(t) = 1, θi(t) ≤ µ1 − λ|Ft−1].

Proof We first define event Mi(t) as follows:

Mi(t) , {∀2 ≤ j ≤ N, θj(t) ≤ θi(t)} ∩ {θi(t) ≤ µ1 − λ}.

Then we have that

{i(t) = i, θi(t) ≤ µ1 − λ} ⊆ Mi(t) ∩ {θ1(t) ≤ µ1 − λ},
{i(t) = 1, θi(t) ≤ µ1 − λ} ⊇ Mi(t) ∩ {θ1(t) ≥ µ1 − λ}.

Also note that {θ1(t) ≥ µ1−λ} (or {θ1(t) ≤ µ1−λ}) and Mi(t) are independent events,
therefore, we have that

Pr[i(t) = i, θi(t) ≤ µ1 − λ|Ft−1] ≤ (1− pt) Pr[Mi(t)|Ft−1],

Pr[i(t) = 1, θi(t) ≤ µ1 − λ|Ft−1] ≥ pt Pr[Mi(t)|Ft−1].

This implies that

Pr[i(t) = i, θi(t) ≤ µ1 − λ|Ft−1] ≤ 1− pt
pt

Pr[i(t) = 1, θi(t) ≤ µ1 − λ|Ft−1].

Appendix B. Proof of Theorem 13

Theorem 13 DP-FTPL-Beta guarantees (ε, δ)-differential privacy, and its cumulative re-
gret satisfies

Reg(T ) ≤
N∑
i=2

max

{
5∆i log T

2(∆i − 5/2λ)2
, N∗B∆i

}
+ Θ

(
N

λ4

)
for any λ < 2

5∆min.
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Proof (regret part) Recall that ai(t), bi(t), ki(t) are the value of ai, bi, ki at the beginning
of time step t, and also denote Ni(t) = ai(t) + bi(t) − 2, Mi(t) = ai(t) + bi(t) + 2ki(t) − 2,

µ′i(t) = µiNi(t)+ki(t)
Mi(t)

, µ̂′i(t) = ai(t)+ki(t)−1
Mi(t)

.

Then in this proof, the following fact holds (note that θi(t) is drawn from the Beta
distribution B(ai(t) + ki(t), bi(t) + ki(t))).

Fact 8 (Agrawal and Goyal, 2013) For any fixed pair (µ̂′i(t),Mi(t)), we have that

Pr

[
θi(t) ≥ µ̂′i(t) +

√
2 log T

Mi(t)

]
≤ 1

T
.

We can also define the following events:

Ai(t) = {i(t) = i, µ̂′i(t) ≥ µ′i(t) + λ};
Bi(t) = {i(t) = i, µ̂′i(t) < µ′i(t) + λ, θi(t) ≥ µ′1(t)− λ};
Ci(t) = {i(t) = i, θi(t) < µ′1(t)− λ}.

Similar as the proof of Theorem 11, by definitions, we have that

E[Ni(T )] ≤
T∑

t=T ∗

E[I[Ai(t)]] +

(
N∗B +

T∑
t=T ∗

E[I[Bi(t)]]

)
+

T∑
t=T ∗

E[I[Ci(t)]],

where T ∗ = N ·N∗B + 1 is the first time step after the start phase.
For the term E[I[Ai(t)]], denote tn as the time step that Ni(tn) = n − 1 and i(tn) = i,

i.e., the time step we choose arm i for the n-th times (also denote t0 = 0), then we have that
(note that different with the proof of Theorem 11, here Ai(t) = {i(t) = i, µ̂′i(t) ≥ µ′i(t) + λ}
but not {i(t) = i, µ̂i(t) ≥ µi(t) + λ})

T∑
t=T ∗

E[I[Ai(t)]] = E

[
T∑

t=T ∗

I[Ai(t)]

]

≤ E

[ ∞∑
n=0

tn+1∑
t=tn

I[Ai(t)]

]

= E

[ ∞∑
n=0

tn+1∑
t=tn

I[i(t) = i, µ̂′i(t) ≥ µ′i(t) + λ]

]

= E

[ ∞∑
n=0

I[µ̂′i(tn+1) ≥ µ′i(t) + λ]

]

=
∞∑
n=0

Pr[µ̂′i(t) ≥ µ′i(t) + λ|Ni(t) = n]

=

∞∑
n=0

Pr

[
ai(t) + ki(t)− 1

Mi(t)
≥ µiNi(t) + ki(t)

Mi(t)
+ λ|Ni(t) = n

]

=

∞∑
n=0

Pr

[
ai(t)− 1

Ni(t)
≥ µi +

Mi(t)

Ni(t)
λ|Ni(t) = n

]
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≤
∞∑
n=0

Pr

[
ai(t)− 1

Ni(t)
≥ µi +

5

4
λ|Ni(t) = n

]

≤
∞∑
n=0

exp

(
−25

8
nλ2

)
(24)

≤ 1

1− exp(−25
8 λ

2)

≤ 1
25
8eλ

2

=
8e

25λ2
,

where Eq. (24) is because of Chernoff-Hoeffding Inequality (Fact 5).
For the second term, by Fact 8, when Ni(t) ≥ Li(T ) = 5 log T

2(µ1−µi− 5
2
λ)2

, we must have that

Pr
[
θi(t) ≥ µ′1(t)− λ; µ̂′i(t) ≤ µ′i(t) + λ

]
≤ Pr

[
θi(t) ≥ µ̂′i(t) + (µ′1(t)− µ′i(t))− 2λ

]
≤ Pr

[
θi(t) ≥ µ̂′i(t) +

4

5
(µ1 − µi)− 2λ

]
= Pr

[
θi(t) ≥ µ̂′i(t) +

√
2 log T
5
4Li(t)

]

≤ Pr

[
θi(t) ≥ µ̂′i(t) +

√
2 log T
5
4Ni(t)

]

≤ Pr

[
θi(t) ≥ µ̂′i(t) +

√
2 log T

Mi(t)

]

=
∑
m,µ′

Pr[Mi(t) = m, µ̂′i(t) = µ′] Pr

[
θi(t) ≥ µ̂′i(t) +

√
2 log T

Mi(t)
|Mi(t) = m, µ̂′i(t) = µ′

]

≤
∑
m,µ′

Pr[Mi(t) = m, µ̂′i(t) = µ′]
1

T

≤ 1

T
.

Therefore one could use a similar way (as bounding the second term in the proof of
Theorem 11) to show that

N∗B +

T∑
t=T ∗

E[I[Bi(t)]] ≤ max{Li(T ), N∗B}+ 1.

Then we come to the third term. The following lemma is also similar to Lemma 1 in
the work of Agrawal and Goyal (2013), and its proof is almost the same as that for Lemma
20.
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Lemma 21 Denote pt = Pr[θ1(t) ≥ µ′1 − λ|Ft−1], then we have that

Pr[i(t) = i, θi(t) ≤ µ′1(t)− λ|Ft−1] ≤ 1− pt
pt

Pr[i(t) = 1, θi(t) ≤ µ′1(t)− λ|Ft−1].

Similarly, by Lemma 21, we also have that

T∑
t=T ∗

E[I[Ci(t)]] ≤
∞∑

n=N∗B

E
[

1

pn
− 1

]
,

where pn denotes the random probability (due to the randomness on observations of arm
1) that θ1(t) ≥ µ′1(tn) − λ when there are totally n observations on arm 1, i.e., Ni(t) = n.
Note that for fixed Ni(t) = n, the value of ki(t) is also fixed (and we denote it by k), also
denote m = n+ 2k.

Then we know that observations on arm 1 follow a Binomial distribution with parameters
n, µ1. For a history of observations with a − 1 number of 1s and b − 1 number of 0s (here
a+b−2 = n), the random probability pn equals to 1−FBetaa+k,b+k(µ

′
1(tn)−λ), where FBetaa+k,b+k

denotes cumulative distribution function of B(a+ k, b+ k).
Therefore

E
[

1

pn

]
=

n∑
s=0

fBinon,µ1 (s)

1− FBetas+1+k,n−s+1+k(µ
′
1(tn)− λ)

=
n∑
s=0

fBinon,1−µ1(s)

FBetas+1+k,n−s+1+k(1− µ′1(tn) + λ)
.

Prior analysis in Agrawal and Goyal (2013) also proves the following two inequalities:

Fact 9 (Agrawal and Goyal, 2013) For any n ≥ 1, we have that

n∑
s=0

fBinon,1−µ1(s)

FBetas+1,n−s+1(1− µ1 + 5
4λ)
≤ 12

5λ
.

For n ≥ 8
λ2

, we have that

n∑
s=(1−µ1+λ/2)n

fBinon,1−µ1(s)

FBetas+1,n−s+1(1− µ1 + 5
4λ)

= Θ

(
1

λ2
e−

25n
32
λ2
)
.

The following lemma is the key lemma in our regret analysis of DP-FTPL-Beta, and its
complete proof is stated in Appendix B.1.

Lemma 22 For any y ∈ [0, 1], and a, b, k ∈ N+, denote y′ = a+b−2
a+b−2+2ky + k

a+b−2+2k , then

if a+ b+ 2k− 2 ≥ 1250e
9π and k ≥ 1

8(a+ b− 2), we always have that FBetaa+k,b+k(y
′) ≥ FBetaa,b (y)

10 .

Using Lemma 22 with y = 1 − µ1 + 5
4λ, a = s + 1, b = n − s + 1 and k = bn8 c + 1, we

have that FBetas+1+k,n−s+1+k(1− µ′1(tn) + λ) ≥ FBetas+1,n−s+1(1−µ1+ 5
4
λ)

10 . Note that our start phase

size N∗B is larger than 1000e
9π , therefore ai(t) + bi(t) + 2ki(t)− 2 ≥ 1250e

9π always holds. Then
by Fact 9, for any value n after the start phase, we have that

n∑
s=0

fBinon,1−µ1(s)

FBetas+1+k,n−s+1+k(1− µ′1(tn) + λ)
≤ 24

λ
.
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For n ≥ 8
λ2

, we have that

n∑
s=(1−µ1+λ/2)n

fBinon,1−µ1(s)

FBetas+1+k,n−s+1+k(1− µ′1(tn) + λ)
= Θ

(
1

λ2
e−

25n
32
λ2
)
.

For the case that n ≥ 8
λ2

and s < (1− µ1 + λ/2)n, we can use the following fact.

Fact 10 (Beta-Binomial Trick, Agrawal and Goyal (2013)) Denote FBinon,p as the cumulative
distribution function of Binomial distribution with parameters n, p, then

FBetaa,b (x) = 1− FBinoa+b−1,x(a− 1).

By Fact 10 and Chernoff-Hoeffding inequality (Fact 5), for s < (1−µ1 +λ/2)n, we have
that

FBetas+1+k,n−s+1+k(1− µ′1(tn) + λ) = 1− FBinon+2k+1,1−µ′1(tn)+λ(s+ k + 1) ≥ 1− exp

(
−nλ2

2

)
.

Therefore,

(1−µ1+λ/2)n∑
s=0

fBinon,1−µ1(s)

FBetas+1+k,n−s+1+k(1− µ′1(tn) + λ)
≤ 1

1− exp
(
−nλ2

2

) = 1 +
1

exp
(
nλ2

2

)
− 1

.

Thus we have that

T∑
t=T ∗

E[I[Ci(t)]] ≤
∞∑

n=N∗B

E
[

1

pn
− 1

]

≤

8
λ2∑
n=1

24

λ
+

∞∑
n= 8

λ2
+1

Θ

(
1

λ2
e−

25n
32
λ2
)

+ 1 +
1

exp
(
nλ2

2

)
− 1
− 1


= Θ

(
1

λ3

)
+ Θ

(
1

λ4

)
+ Θ

(
1

λ2

)
= Θ

(
1

λ4

)
.

Summing over the three terms, the cumulative regret of DP-FTPL-Beta is upper bounded
by

N∑
i=2

E[Ni(T )]∆i ≤
∑
i

(
T∑

t=T ∗

E[I[Ai(t)]] +

(
N∗B +

T∑
t=T ∗

E[I[Bi(t)]]

)
+

T∑
t=T ∗

E[I[Ci(t)]]

)
∆i

≤
N∑
i=2

max

{
5 log T∆i

2(∆i − 5/2λ)2
, N∗B∆i

}
+ Θ

(
N

λ4

)
.
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B.1 Proof of Lemma 22

Before the proof of Lemma 22, we first prove two other lemmas.

Lemma 23 For any y ∈ [0, 1] and a, b ∈ N+, denote y′ = a+b−2
a+b y + 1

a+b and FBetaa,b (x) the

cumulative distribution function of B(a, b). Then for any y′ ≤ a−2
a+b , we always have that

FBetaa,b (y) ≤ FBetaa+1,b+1(y′).

Proof First we consider the case that y ≥ 1
2 , in this case y > y′ > 1

2 and y − y′ = 2y−1
a+b .

For the cumulative distribution function FBetaa,b (x), prior works (Olver et al., 2010) show
that

FBetaa+1,b+1(y) = FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

(a− 1)!b!
− (a+ b)!ya(1− y)b+1

a!b!
.

Since y ≥ y′, then denote fa,b the probability density function of distribution B(a, b),

i.e., fa,b(y) = ya−1(1−y)b−1(a+b−1)!
(a−1)!(b−1)! , and we have that

FBetaa+1,b+1(y′) = FBetaa+1,b+1(y)−
∫ y

y′
fa+1,b+1(x)dx

= FBetaa,b (y)+
(a+ b− 1)!ya(1− y)b

(a− 1)!b!
− (a+ b)!ya(1− y)b+1

a!b!
−
∫ y

y′
fa+1,b+1(x)dx.

Note that y′ ≤ a−2
a+b and y ≥ 1

2 imply that y′ ≤ y ≤ a
a+b , and fa+1,b+1 is first increasing

and then decreasing with maximum value at point a
a+b . Therefore, for all x ∈ [y′, y],

fa+1,b+1(x) ≤ fa+1,b+1(y). This implies that

FBetaa+1,b+1(y′)

= FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

(a− 1)!b!
− (a+ b)!ya(1− y)b+1

a!b!
−
∫ y

y′
fa+1,b+1(x)dx

≥ FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

(a− 1)!b!
− (a+ b)!ya(1− y)b+1

a!b!
− (y − y′)fa+1,b+1(y)

= FBetaa,b (y)+
(a+ b− 1)!ya(1− y)b

(a− 1)!b!
− (a+ b)!ya(1− y)b+1

a!b!
−(y − y′)y

a(1− y)b(a+ b+ 1)!

a!b!

= FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

a!b!

(
a− (a+ b)(1− y)− (y − y′)(a+ b+ 1)(a+ b)

)
= FBetaa,b (y) +

(a+ b− 1)!ya(1− y)b

a!b!

(
a− (a+ b)(1− y)− 2y − 1

a+ b
(a+ b+ 1)(a+ b)

)
= FBetaa,b (y) +

(a+ b− 1)!ya(1− y)b

a!b!
(a− (a+ b)(1− y)− (2y − 1)(a+ b+ 1))

= FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

a!b!
(a− (a+ b)(1− y)− (2y − 1)(a+ b)− (2y − 1))

= FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

a!b!
(a− y(a+ b)− (2y − 1))

≥ FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

a!b!
(a− 1− y(a+ b)) .
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For y′ ≤ a−2
a+b , we must have that y ≤ a−1

a+b , therefore a− 1− y(a+ b) ≥ 0, which implies

that FBetaa+1,b+1(y′) > FBetaa,b (y).

Then we consider the case that y < 1
2 , in this case y < y′ < 1

2 and y′ − y = 1−2y
a+b .

Similar as before, we have the following equations (note that now y < y′)

FBetaa+1,b+1(y′) = FBetaa+1,b+1(y) +

∫ y′

y
fa+1,b+1(x)dx

= FBetaa,b (y)+
(a+ b− 1)!ya(1− y)b

(a− 1)!b!
− (a+ b)!ya(1− y)b+1

a!b!
+

∫ y′

y
fa+1,b+1(x)dx.

In this case, y < y′ ≤ a−2
a+b , which implies that for all x ∈ [y, y′], fa+1,b+1(x) ≥ fa+1,b+1(y).

This means that

FBetaa+1,b+1(y′)

= FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

(a− 1)!b!
− (a+ b)!ya(1− y)b+1

a!b!
+

∫ y′

y
fa+1,b+1(x)dx

≥ FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

(a− 1)!b!
− (a+ b)!ya(1− y)b+1

a!b!
+ (y′ − y)fa+1,b+1(y)

= FBetaa,b (y)+
(a+ b− 1)!ya(1− y)b

(a− 1)!b!
− (a+ b)!ya(1− y)b+1

a!b!
+(y′ − y)

ya(1− y)b(a+ b+ 1)!

a!b!

= FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

a!b!

(
a− (a+ b)(1− y) + (y′ − y)(a+ b+ 1)(a+ b)

)
= FBetaa,b (y) +

(a+ b− 1)!ya(1− y)b

a!b!

(
a− (a+ b)(1− y) +

1− 2y

a+ b
(a+ b+ 1)(a+ b)

)
= FBetaa,b (y) +

(a+ b− 1)!ya(1− y)b

a!b!
(a− (a+ b)(1− y) + (1− 2y)(a+ b+ 1))

= FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

a!b!
(a− (a+ b)(1− y) + (1− 2y)(a+ b) + (1− 2y))

= FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

a!b!
(a− y(a+ b) + (1− 2y))

≥ FBetaa,b (y) +
(a+ b− 1)!ya(1− y)b

a!b!
(a− y(a+ b)) .

For y′ ≤ a−2
a+b , we must have that y ≤ a

a+b , therefore a− y(a+ b) ≥ 0, which implies that

FBetaa+1,b+1(y′) > FBetaa,b (y) and we finish the proof of this lemma.

From Lemma 23, we can then prove the following Lemma 24.

Lemma 24 For any y ∈ [0, 1], a, b, k ∈ N+, denote y′ = a+b−2
a+b−2+2ky + k

a+b−2+2k and

FBetaa,b (x) the cumulative distribution function of B(a, b), then if y′ ≤ a−3+k
a+b−2+2k , we always

have that FBetaa+k,b+k(y
′) ≥ FBetaa,b (y).
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Proof Let y = y0 and ym = a+b−2+2(m−1)
a+b−2+2m ym−1 + 1

a+b−2+2m . Then it is easy to check that

yk =
a+ b− 2 + 2(k − 1)

a+ b− 2 + 2k
yk−1 +

1

a+ b− 2 + 2k

=
a+ b− 2 + 2(k − 2)

a+ b− 2 + 2k
yk−2 +

2

a+ b− 2 + 2k
= · · ·

=
a+ b− 2 + 2

a+ b− 2 + 2k
y1 +

k − 1

a+ b− 2 + 2k

=
a+ b− 2

a+ b− 2 + 2k
y0 +

k

a+ b− 2 + 2k

=
a+ b− 2

a+ b− 2 + 2k
y +

k

a+ b− 2 + 2k

= y′.

By the above equations, yk = y′ ≤ a−3+k
a+b−2+2k implies that ym ≤ a−3+m

a+b−2+2m holds for any
1 ≤ m ≤ k. Therefore we can use Lemma 23 for k times and get that

FBetaa+k,b+k(y
′) = FBetaa+k,b+k(yk) ≥ FBetaa+k−1,b+k−1(yk−1) ≥ · · · ≥ FBetaa,b (y0) = FBetaa,b (y).

Based on Lemma 24, we can finally prove Lemma 22.
Lemma 21 For any y ∈ [0, 1], and a, b, k ∈ N+, denote y′ = a+b−2

a+b−2+2ky + k
a+b−2+2k , then

if a+ b+ 2k− 2 ≥ 1250e
9π and k ≥ 1

8(a+ b− 2), we always have that FBetaa+k,b+k(y
′) ≥ FBetaa,b (y)

10 .

Proof By Lemma 24, we know that for y′ ≤ a−3+k
a+b−2+2k , FBetaa+k,b+k(y

′) ≥ FBetaa,b (y) ≥ FBetaa,b (y)

10
always holds.

For y′ > a−3+k
a+b−2+2k , Fact 10 shows that that FBetaa+k,b+k(y

′) = 1−FBinoa+b+2k−1,y′(a+k−1) =

FBinoa+b+2k−1,1−y′(b+ k).

Note that (a + b + 2k − 1)(1 − y′) < b+1+k
a+b+2k−2(a + b + 2k − 1) < b + 2 + k, therefore

FBinoa+b+2k−1,1−y′(b+ 2 + k) ≥ 1
2 . This implies that

FBinoa+b+2k−1,1−y′(b+ k) ≥ 1

2
− fBinoa+b+2k−1,1−y′(b+ k + 1)− fBinoa+b+2k−1,1−y′(b+ k + 2),

where fBinon,p denotes the probability mass function of Binomial distribution with parameters
n, p.

Note that

fBinon,p (s) =
n!ps(1− p)n−s

s!(n− s)!

≤
√

2πen(ne )nps(1− p)n−s
√

2πs( se)
s
√

2π(n− s)(n−se )n−s

=

√
en

2πs(n− s)
nnxs(1− x)n−s

ss(n− s)n−s
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≤
√

en

2πs(n− s)
.

Therefore

fBinoa+b+2k−1,1−y′(b+ k + 1) ≤

√
e(a+ b+ 2k − 1)

2π(b+ k + 1)(a+ k − 2)
≤
√

e

0.18π(a+ b+ 2k − 1)
.

Similarly,

fBinoa+b+2k−1,1−y′(b+ k + 2) ≤

√
e(a+ b+ 2k − 1)

2π(b+ k + 1)(a+ k − 2)
≤
√

e

0.18π(a+ b+ 2k − 1)
.

All these imply that

FBinoa+b+2k−1,1−y′(b+ k) ≥ 1

2
− fBinoa+b+2k−1,1−y′(b+ k + 1)− fBinoa+b+2k−1,1−y′(b+ k + 2)

≥ 1

2
−

√
4e

0.18π(a+ b+ 2k − 1)
.

If a + b + 2k − 2 ≥ 1250e
9π , then FBetaa+k,b+k(y

′) = FBinoa+b+2k−1,1−y′(b + k) ≥ 1
10 holds, and

therefore FBetaa+k,b+k(y
′) ≥ FBetaa,b (y)

10 must hold, and we finish the proof of this lemma.
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