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Abstract

Structural learning of directed acyclic graphs (DAGs) or Bayesian networks has been studied
extensively under the assumption that the data are independent. We propose a new Gaussian
DAG model for dependent data which assumes the observations are correlated according
to an undirected network. Under this model, we develop a method to estimate the DAG
structure given a topological ordering of the nodes. The proposed method jointly estimates
the Bayesian network and the correlations among observations by optimizing a scoring
function based on penalized likelihood. We show that under some mild conditions, the
proposed method produces consistent estimators after one iteration. Extensive numerical
experiments also demonstrate that, by jointly estimating the DAG structure and the sample
correlation, our method achieves much higher accuracy in structure learning. When the
node ordering is unknown, through experiments on synthetic and real data, we show that
our algorithm can be used to estimate the correlations between samples, with which we can
de-correlate the dependent data to significantly improve the performance of classical DAG
learning methods.

Keywords: Bayesian networks, causal discovery, matrix normal distribution, network
data

1. Introduction

Bayesian networks (BNs) with structure given by a directed acyclic graph (DAG) are a
popular class of graphical models in statistical learning and causal inference. Extensive
research has been done to develop new methods and theories to estimate DAG structures
and its parameters from data. In this study, we focus on the Gaussian DAG model defined
as follows. Let G = (V,E) be a DAG that represents the structure of a BN for p random
variables X1, . . . , Xp. The vertex set V = {1, . . . , p} represents the set of random variables
and the edge set E = {(j, i) ∈ V × V : j → i} represents the directed edges in G. Let
Πi = {j ∈ V : (j, i) ∈ E} denote the parent set of the vertex i. A data matrix X ∈ Rn×p is
generated by the following Gaussian linear structural equations induced by G:

Xj =
∑
k∈Πj

βkjXk + εj , εj = (ε1j , . . . , εnj) ∼ Nn
(
0, ω2

j In
)
, (1)

c©2024 Hangjian Li, Oscar Hernan Madrid Padilla, Qing Zhou.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/21-0846.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/21-0846.html


Li, Madrid-Padilla, and Zhou

for j = 1, . . . , p, where Xj is the jth column in X, ω2
j the error variance, and B = (βkj)p×p

is the weighted adjacency matrix (WAM) of G such that βkj 6= 0 if and only if (k, j) ∈ E,
and βjj = 0. The errors {εj} are independent and εj is independent of Xk for k ∈ Πj . The
goal is to estimate the structure of G from X, which is equivalent to estimating the support
of B.

A key assumption under (1) is that the rows of X are jointly independent since the
covariance matrix of each εj is diagonal. Under such i.i.d. assumption, many structure
learning algorithms for DAGs have been developed, which can be largely categorized into
three groups: score-based, constraint-based, and hybrid of the two. Score-based methods
search for the optimal DAG by maximizing a scoring function such as minimum description
length (Roos, 2017), BIC (E. Schwarz, 1978), and Bayesian scores (Heckerman et al., 1995;
Cooper and Herskovits, 1992) with various search strategies, such as order-based search
(Scanagatta et al., 2016; Schmidt et al., 2007; Ye et al., 2021), greedy search (Ramsey et al.,
2017; Chickering, 2003), and coordinate descent (Fu and Zhou, 2013; Aragam and Zhou,
2015; Gu et al., 2019). Constraint-based methods, such as the PC algorithm in Spirtes
et al. (2000), perform conditional independence tests among variables to construct a skeleton
and then proceed to orient some of the edges. There are also hybrid methods such as in
Tsamardinos et al. (2006) and Gasse et al. (2014) that combine the above two approaches.

In real applications, however, it is common for observations to be dependent as in network
data, which violate the i.i.d. assumption for the aforementioned methods. For example, when
modeling the characteristics of an individual in a social network, the observed characteristics
from different individuals can be dependent because they belong to the same social group
such as friends, family, and colleagues who often share similar features. Another example
appears when modeling a gene regulatory network from individuals that are potentially
genetically linked. When estimating brain functional networks, we often have a matrix
of fMRI measurements for each individual, X ∈ RT×ν , across T time points, and ν brain
regions of interest. The existence of correlations across both time points and brain regions
often renders the estimates of standard graphical modeling methods inaccurate (Kundu and
Risk, 2020). Motivated by these applications, we are interested in developing a Gaussian
DAG model that can take into account the dependence between observations. Based on this
model, we will develop a learning algorithm that can simultaneously infer the DAG structure
and the sample dependencies. Moreover, since many real-world networks are sparse, we also
want our method to be able to learn a sparse DAG and scale to a large number of vertices. A
sparsity constraint on the estimated DAG can also effectively prevent overfitting and greatly
improve the computational efficiency. Lastly, we would like to have theoretical guarantees
on the consistency and finite-sample accuracy of the estimators. With these requirements in
mind, we seek to

1. Develop a novel Bayesian network model for network data;

2. Develop a method that can jointly estimate a sparse DAG and the sample dependencies
under the model;

3. Establish finite-sample error bound and consistency of our estimators;

4. Achieve good empirical performance on both synthetic and real data sets.

2



Learning Gaussian DAGs from Network Data

When the data are no longer i.i.d., we need a more general model than (1) to capture
between-individual dependence, so what we propose is a union model where, in addition
to using directed edges to describe in-sample relationships, we will use undirected edges to
describe cross-sample relationships. Because X is defined by the Gaussian noise vectors
εj according to the structural equations in (1), dependence among the rows of X may
be introduced by modeling the covariance structure among the variables ε1j , . . . , εnj in εj .
Based on this observation, we will use an undirected graph H to define the sparsity pattern
in the precision matrix of εj . When H is an empty graph, the variables in εj are independent
as in the classical Gaussian DAG model. However, when H is not empty, X follows a more
complex matrix normal distribution, and the variance is defined by the product of two
covariance matrices, one for the DAG G and the other for the undirected graph H. Now, one
can view our proposed model as a more general model that consists of both the directed DAG
G in (1) and the undirected graph H, where cross-sample dependence is characterized by H
and in-sample features follow a distribution specified in (1). Estimating the structure of the
DAG G as well as other model parameters under the sparsity regularization in both graphs
is a challenging task. We will start by assuming that a topological ordering π of G is given
so that the search space for DAGs can be largely reduced. However, due to the presence of
the second graph for network data, the usual likelihood-based objective function used in
traditional score-based methods is nonconvex. Constraint-based methods do not naturally
extend to network data, either due to the dependence between individuals in X, which
complicates conditional independence tests. In order to find a suitable objective function
and develop an optimization algorithm, we exploit the biconvex nature of a regularized
likelihood score function and develop an effective blockwise coordinate descent algorithm
with a nice convergence property. If the topological ordering of the DAG is unknown, it
is impossible to identify a unique DAG from the data due to the Markov equivalence of
DAGs (Chickering, 2003). Moreover, due to the lack of independence, it is very difficult to
estimate the equivalence class defined by G. In this case, we take advantage of an invariance
property of the matrix normal distribution. Under some sparsity constraint on G, we show
that even with a random ordering, we can still get a good estimate of the covariance of
εj , which can be used to de-correlate X so that existing DAG learning algorithms can be
applied to estimate an equivalence class of G.

The remainder of the paper is structured as follows. In Section 2 we introduce a novel
Gaussian DAG model for network data and discuss its connections with some existing models.
We propose a structural learning algorithm for the model and go through its details in
Section 3. Section 4 is devoted to our main theoretical results, as well as their implications
under various high-dimensional asymptotic settings. Section 5 reports numerical results of
our method with detailed comparisons with some competing methods on simulated data.
Section 6 presents an application of our method on a real single-cell RNA sequencing data
set. All proofs are deferred to the Appendix.

Notations. For the convenience of the reader, we now summarize some notations to be
used throughout the paper. We write G∗ and H∗ for the true DAG and the true undirected
graph, respectively. Let Ω := diag(ω2

j ) be a p × p diagonal matrix of error variances,
B∗ denote the true WAM of G∗, and s := supj ‖β∗j ‖0 denote the maximum number of
parents of any node in G∗. Furthermore, Xj denotes the jth column of X for j = 1, . . . , p,
and xi denotes the ith row of X for i = 1, . . . , n. Given two sequences fn and gn, we
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write fn . gn if fn = O(gn), and fn � gn if fn . gn and gn . fn. Denote by [p] the
index set {1, . . . , p}. For x ∈ Rn, we denote by ‖x‖q its `q norm for q ∈ [0,∞]. For
A ∈ Rn×m, ‖A‖2 = supv{‖Av‖2 : ‖v‖2 ≤ 1, v ∈ Rm} is the operator norm of A, ‖A‖f is the
Frobenius norm of A, ‖A‖∞ = maxi,j |aij | is the element-wise maximum norm of A, and
|||A|||∞ = maxi∈[n]

∑m
j=1 |aij | is the maximum row-wise `1 norm of A. Denote by σmin(A)

and σmax(A), respectively, the smallest and largest singular values of a matrix A. Let |S| be
the size of a set S.

2. A Novel DAG Model for Dependent Data

We model sample dependency through an undirected graph H on n vertices, with each
vertex representing an observation xi, i ∈ [n], and the edges representing the conditional
dependence relations among them. More explicitly, let A(H) be the edge set of H so that

(i, j) /∈ A(H)⇒ xi ⊥⊥ xj |x[n]\{i,j}, ∀ i 6= j.

Suppose we observe not only the dependent samples {xi}ni=1 but also the graph (network)
H. We generalize the structural equation model (SEM) in (1) to

Xj =
∑
k∈Πj

βkjXk + εj , εj = (ε1j , . . . , εnj) ∼ Nn
(
0, ω2

jΣ
)
, (2)

where Σ ∈ Rn×n is positive definite. The support of the precision matrix Θ = (Σ)−1 is
restricted by supp(Θ) ⊆ A(H), where supp(Θ) = {(i, j) | Θij 6= 0} and for notional brevity
we put (i, i) ∈ A(H) for all i ∈ [n]. Note that when Σ = In, the SEM (2) reduces to (1).
Hence, the classical Gaussian DAG model in (1) is a special case of our proposed model (2).
Under the more general model (2), we face a more challenging structural learning problem:
Given dependent data X generated from a DAG G and the undirected graph H that encodes
the sample dependencies, we want to estimate the DAG coefficients B, the noise variance
Ω = diag(ω2

j ), and the precision matrix Θ of the samples. Before introducing our method,
let us first look at some useful properties of model (2).

2.1 Related Graphical Models

Let us demonstrate the distinction between (1) and (2) using a data matrix X = (xij)n×p with
n = 5 units and p = 4 variables. Under SEM (1), we model x1 = (x11, x12, x13, x14), . . . , x5 =
(x51, x52, x53, x54) using the same DAG, as shown in Figure 1a, and assume that they are
independent. In contrast, the model proposed in (2) allows units to be dependent by relaxing
the independence assumption among x1j , x2j , x3j , x4j , x5j for j ∈ {1, 2, 3, 4}. The dependence
between units is induced by the dependence between background variables ε1j , . . . , ε5j and is
modeled by an undirected graph as shown in Figure 1b. In general, the variables xi1, . . . , xip
in each unit satisfy the same conditional independence constraints defined by a DAG, while
the background variables ε1j , . . . , εnj across the n units are dependent. When estimating the
DAG structure with such data, the correlations among individuals will reduce the effective
sample size. Therefore, we need to take into account the distribution of the correlated εi.
Note that our model excludes edges between two variables of any two different units. That
is, we do not consider an edge of any type between xij and xk` for i 6= k and j 6= `.
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Figure 1: Graphical representation of the model (2) as a product of a DAG over features
and an undirected graph over units (individuals). (a) The same DAG structure is shared by
the features of every individual. (b) An undirected network of five individuals to represent
cross-unit dependence.

The model can also be viewed as a special case of a chain graph (Lauritzen, 1996;
Lauritzen and Richardson, 2002), where the same variable across all units, x1j , . . . , xnj ,
form a chain component. However, the key structure in our model is that our graph over
all variables and all units, {xij , i ∈ [n], j ∈ [p]}, is a Kronecker product of a DAG over p
variables and an undirected graph over n units (more details in Section 2.2). This special
structure is utilized in both our estimation algorithm introduced in Section 3 and theoretical
analysis in Section 4. If we regard the problem as a general structure learning of a chain
graph over all n× p nodes, we would have only a sample of size one, from which one may
not be able to construct consistent estimators in general. Another related model that has
been studied for interference analysis is the segregated graph model proposed by Shpitser
(2015), which represents the equivalence classes of latent variable chain graphs. Bhattacharya
et al. (2020) considered a closely related problem of estimating causal effects under partial
interference (Hudgens and Halloran, 2008). They assume the unit-level causal DAG is known
and proposed a method to estimate causal effects under unit dependence. In comparison,
we assume that the DAG structure is unknown (see Section 3.2), but instead the network
structure among units is a subgraph of a given undirected graph. In fact, we only need to
know a block structure among the units, and then the network structure within each block
can be learned from the data. Due to these different assumptions, the structure learning
algorithms in this work are very different from the one proposed by Bhattacharya et al.
(2020). In general, although there is some similarity between the model in (2) and the
models proposed in the interference causal inference literature, the motivation for our work
is quite different. We consider the structural equation model (1) at the single-unit level as
a map from extraneous variables ε1, . . . , εp to the observed variables X1, . . . , Xp. Then we
introduce association (symmetric and undirected) among the extraneous variables based on
a network (undirected graph).

2.2 Matrix Normal Distribution

Our model (2) defines a matrix normal distribution for X. To see this, note that ε = (εij)n×p
in (2) follows a matrix normal distribution:

ε ∼ Nn,p (0,Σ,Ω)⇔ vec(ε) ∼ Nnp(0,Ω⊗ Σ),
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where vec(·) is the vectorization operator and ⊗ is the Kronecker product. Then, the random
matrix X satisfies

X ∼ Nn,p(0,Σ,Ψ), (3)

where Ψ = (I −B)−>Ω (I −B)−1. We fix ω1 = 1 so that the parameters (Ω,Σ) are
identifiable under model (2). From the properties of a matrix normal distribution, we
can easily prove the following lemma which will come in handy when estimating the row
covariance matrix Σ from different orderings of nodes. Given a permutation π of the set [p],
define Pπ as a permutation matrix such that hPπ = (hπ−1(1), . . . , hπ−1(p)) for any row vector
h = (h1, . . . , hp).

Lemma 1 If X follows the model (2), then for any permutation π of [p] we have

XPπ ∼ Nn,p(0,Σ, P>π ΨPπ).

Although matrix normal distributions have been studied extensively in the past, the structural
learning problem we consider here is quite unique. First of all, previous studies on the
matrix normal model usually assume that we observe m copies of X and that MLE exists
when m ≥ max{p/n, n/p}+ 1 (Dutilleul, 1999). In our case, we only observe one copy of
X and thus the MLE does not exist without additional sparsity constraints. Allen and
Tibshirani (2010) proposed to use `1 regularization to estimate the covariance matrices
when m = 1, but the estimation relies on the assumption that the model is transposable,
which means that the two components (Σ,Ψ) of the covariance are symmetric and can be
estimated in a symmetric way. However, in the model (2), the two covariance components
have different structural constraints and cannot be estimated in the same way. Lastly,
practitioners are often interested in estimating large Bayesian networks with hundreds or
more nodes under certain sparsity assumptions on the WAM B. For example, for methods
that minimize a score function to estimate the covariances, adding a sparsity regularization
term on Ψ = (I −B)−>Ω (I −B)−1 to the score function does not necessarily lead to a
sparse estimate of B. In this paper, we propose a new DAG estimation method under the
assumption that both the underlying undirected network among individuals and the Bayesian
network are sparse. We are not interested in estimating Ψ but a sparse factorization of Ψ
represented by the WAM B. This would require imposing sparsity constraints on B itself
instead of on Ψ. This is different from the recent work by Tsiligkaridis et al. (2013), Allen
and Tibshirani (2010), and Zhou (2014) on the Kronecker graphical lasso.

2.3 Score-equivalence

The likelihood function of the proposed model (2) also satisfies the desired score-equivalence
property. To see this, let βj = (β1j , . . . , βpj)

> be the jth column of the WAM B. Define an
n× n sample covariance matrix of ε1/ω1, . . . , εp/ωp from X as

S(Ω, B) =
1

p

p∑
j=1

1

ω2
j

(Xj −Xβj) (Xj −Xβj)> . (4)

Then the negative log-likelihood `(B,Ω,Θ | X) from (2) is given by

2`(B,Ω,Θ | X) = n log det Ω− p log det Θ + p tr(ΘS(Ω, B)). (5)
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Due to the dependence among observations, it is unclear whether the well-known score-
equivalence property for Gaussian DAGs (Chickering, 2003) still holds for our model. Let
(B̂(G), Ω̂(G), Θ̂(G)) denote the MLE of (B,Ω,Θ) given a DAG G and the support restriction
on Θ. Then, the following theorem confirms the score-equivalence property for our DAG
model.

Theorem 2 (Score equivalence) Suppose G1 and G2 are two Markov equivalent DAGs on
the same set of p nodes. If the MLEs (B̂(Gm), Ω̂(Gm), Θ̂(Gm)), m = 1, 2, exist for the matrix
X = (xij)n×p, then the two MLEs will give the same log-likelihood value,

`(B̂(G1), Ω̂(G1), Θ̂(G1) | X) = `(B̂(G2), Ω̂(G2), Θ̂(G2) | X).

This property justifies the evaluation of estimated DAGs using a common model selection
criterion such as AIC and BIC. For examples, we show in Section 5 that one can use BIC
scores to select the optimal penalty level for our proposed DAG estimation algorithm.

3. Methods

We have discussed the properties of our novel DAG model for dependent data and the unique
challenges faced by the structural learning task. In this section, we develop a new method
to estimate the parameters in model (2). Our estimator is defined by the minimizer of a
score function that derives from a penalized log-likelihood. In order to explain our method,
let us start from the penalized negative log-likelihood function:

f(B,Ω,Θ) := 2`(B,Ω,Θ | X) + ρ1(B) + ρ2(Θ), B ∈ D, (6)

where D is the space of WAMs for DAGs and ρ1 and ρ2 are some penalty functions. This
loss function is difficult to minimize due to the non-convexity of ` and the exponentially large
search space of DAGs. One way to reduce the search space is to assume a given topological
ordering. Recall that a permutation π of p elements is a bijective map from [p] to [p]. A
topological ordering of a DAG G with p vertices is a permutation π such that for every
edge (i, j) ∈ E(G), π−1(i) < π−1(j). Recall that a WAM B is defined as (βkj)p×p such that
βkj 6= 0 if and only if (k, j) ∈ E(G); therefore, given a topological ordering π, we can define
a set D(π) of WAMs compatible with π such that all B ∈ D(π) are strictly upper triangular
after permuting its rows and columns according to π. Given a topological ordering π, the
loss function (6) becomes

f(B,Ω,Θ) =− p log det Θ + n log det Ω +

p∑
j=1

1

ω2
j

‖LXj − LXβj‖22

+ ρ1(B) + ρ2(Θ), B ∈ D(π),

(7)

where L is the Cholesky factor of Θ (i.e. Θ = L>L). If ρ1(·) and ρ2(·) are convex loss
functions and the noise covariance matrix Ω = diag(ω2

j ) is known, (7) will be a bi-convex
function in (B,Θ), which can be minimized using iterative methods such as coordinate
descent. Tseng (2001) showed that the coordinate descent algorithm in bi-convex problems
converges to a stationary point. Inspired by this observation, we propose the following
two-step algorithm:
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Step 1: Pre-estimate Ω to get Ω̂ = diag(ω̂2
j ).

Step 2: Estimate B̂ and Θ̂ by minimizing a biconvex score function derived from the
penalized negative log-likelihood conditioning on ω̂j .

Many existing noise estimation methods for high-dimensional linear models can be used
to estimate Ω̂ in Step 1 such as scaled lasso/MCP (Sun and Zhang, 2012), natural lasso
(Yu and Bien, 2019), and refitted cross-validation (Fan et al., 2012). We will present the
natural estimator of Ω and discuss some other alternatives in Section 4.2. Importantly, the
statistical properties of the chosen estimator Ω̂ in Step 1 will affect the properties of the
Θ̂ and B̂ we get in Step 2, and thus we must choose the estimator carefully. We leave the
detailed discussion of the theoretical properties of Ω̂ and their implications to Section 4.
Suppose Ω̂ is given, we propose the following estimator for Step 2:

(
Θ̂, B̂(π)

)
= arg min

Θ�0,B∈D(π)

−p log det Θ +

p∑
j=1

1

ω̂2
j

‖LXj − LXβj‖22

+
λ1

ω̂2
j

‖βj‖1 + λ2‖Θ‖1

}
.

(8)

The `1 regularization on βj/ω̂
2
j not only helps promote sparsity in the estimated DAG

but also prevents the model from overfitting variables that have small variances. The `1
regularization on Θ ensures that the estimator is unique and can improve the accuracy of Θ̂
by controlling the error carried from the previous step. We will discuss how to control the
estimation errors in more detail in Section 4.

In Section 3.1, we assume a topological ordering π∗ of the true DAG G∗ is known. In
this case, we will order the columns of X according to π∗ so that for each j, only the first
j − 1 entries in βj can be nonzero. When minimizing (8), we fix βkj = 0 for k ≥ j and the

resulting B̂ is guaranteed to be upper-triangular. If π∗ is unknown, we show in Section
3.2 how the score function in (8) is still useful for estimating Θ∗ and describe a method of
de-correlation so that standard DAG learning methods can be applied on the de-correlated
data.

3.1 Block Coordinate Descent

We denote an estimate of the true precision matrix Θ∗ at iteration t by Θ̂(t). We also write
L̂(t) and L∗ for the Cholesky factors of Θ̂(t) and Θ∗, respectively. Since (8) is biconvex, it
can be solved by iteratively minimizing over Θ and B, i.e., using block coordinate descent.
Consider the tth iteration of block coordinate descent. Fixing Θ̂(t), the optimization problem
in (8) becomes the standard Lasso problem (Tibshirani, 1996) for each j:

β̂
(t+1)
j = arg min

βj

1

2n
‖L̂(t)Xj − L̂(t)Xβj‖22 + λn‖βj‖1, λn = λ1/(2n), (9)

where Θ̂(t) = L̂(t)>L̂(t) is the Cholesky decomposition. Since the columns of X are ordered

according to π, we can set β̂
(t+1)
ij = 0 for i = j, j + 1, . . . , p and reduce the dimension of
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feasible βj in (9) to j− 1. In particular, β̂
(t+1)
1 is always a zero vector. Fixing B̂(t+1), solving

for Θ̂(t+1) is equivalent to a graphical Lasso problem with fixed support (Ravikumar et al.,
2011)

Θ̂(t+1) = arg min
Θ�0, supp(Θ)⊆A(H∗)

− log det Θ + tr(Ŝ(t+1)Θ) + λp‖Θ‖1, (10)

where Ŝ(t+1) = S(Ω̂, B̂(t+1)) and λp = λ2/p. The details of the method are given in
Algorithm 1.

Algorithm 1: Block coordinate descent (BCD) algorithm

Input: X, Θ(0), Ω̂, ρ,A(H∗), T

while max
{
‖Θ̂(t+1) − Θ̂(t)‖f , ‖B̂(t+1) − B̂(t)‖f

}
> ρ and t < T do

for j = 1, . . . , p do

β̂
(t+1)
j ←− Lasso regression (9)

end

Θ̂(t+1) ←− graphical Lasso with support restriction (10)
t←− t+ 1

end

Output: B̂ ← B̂(t), Θ̂← Θ̂(t)

As shown in Proposition 3, Algorithm 1 will converge to a stationary point of the
objective function (8). The stationary point here is defined as a point where all directional
directives are nonnegative (Tseng, 2001).

Proposition 3 Let {(B̂(t), Θ̂(t)) : t = 1, 2, . . .} be a sequence generated by Algorithm 1 for
any λ1, λ2 > 0. Then for almost all X ∈ Rn×p, every cluster point of {(B̂(t), Θ̂(t))} is a
stationary point of the objective function in (8).

3.2 Estimating DAGs with Unknown Ordering

Given any permutation π of [p], there exists a DAG Gπ such that (i) π is a topological sort of
Gπ and (ii) the joint distribution P of the p random variables admits a recursive factorization
according to Gπ (van de Geer and Bühlmann, 2013; Lauritzen, 1996, Chap. 3). Under the
assumption that the true DAG G∗ is sparse, i.e., the number of nonzero entries in β∗j is at
most s for all j, for any random ordering π′ we choose, the corresponding DAG Gπ′ is also
likely to be sparse so that the number of parents for each node is less than some positive
constant s′. Formally, we assume that s′ � n/ log p uniformly for all permutations π′.
Similar assumptions have been made in other works on DAG learning from high-dimensional
data, such as Condition 3.4 in van de Geer and Bühlmann (2013) and Theorem 4.1 in
Aragam et al. (2019a). Let us randomly pick a permutation π′ and apply Algorithm 1 to
Xπ′ := XPπ′ , where (XPπ′)ij = Xiπ′(j). Under the above assumption, the sparsity s′ is

small compared to the sample size n, and therefore, the estimate β̂′ij we get from solving

the Lasso problem (9) will be consistent as well (we discuss the error bound on β̂ij in detail
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in Section 4, Eq.(15)). Moreover, since the covariance Θ∗ is invariant to permutations by
Lemma 1, the resulting estimate Θ̂ under the random ordering π′ will also be a good estimate
of Θ∗ (Eq. (18)). Note that the DAG Gπ′ is not necessarily Markov equivalent to the true
DAG G∗. We merely assume that Gπ′ is sparse so that Θ can be accurately estimated even
with a random order. With the Cholesky factor L̂ of Θ̂, we de-correlate the rows of X and
treat

X̂ = L̂X, (11)

as the new data. Because the row correlations in X̂ vanish, we can apply existing structure
learning methods which require independent observations to learn the underlying DAG. We
find that this de-correlation step is able to substantially improve the accuracy of structure
learning by well-known state-of-the-art methods, such as the greedy equivalence search
(GES) (Chickering, 2003) and the PC algorithm (Spirtes et al., 2000). See Section 5 for
more details.

4. Main Theoretical Results

In this section, we present our main theoretical results for Algorithm 1 assuming a true
ordering is given. We state our main theorem, Theorem 4, in Section 4.1. Section 4.2 is
devoted to the error bounds of Ω̂ using a natural estimator, along with some important
corollaries. Finally, in Section 4.3, we compare the error rates of our estimators with those
in related problems.

Before we start, let us introduce some additional notations used in this section. Let the
errors of L̂ and Θ̂ be defined as ∆̂chol := L̂−L∗ and ∆̂prec := Θ̂−Θ∗. Let ∆̂j := β̂j−β∗j ∈ Rp
denote the estimation error of the jth column of B∗. Let

β̄ = sup
1≤i,j≤p

|β∗ij |, ω̄ = sup
1≤j≤p

ω∗j , ψ̄2 = sup
1≤j≤p

Ψ∗jj ,

where Ψ∗ = (I −B∗)−>Ω∗(I −B∗)−1. In the proofs, we also use Xi· and X·j to denote the

ith row and jth column of X, respectively. Let X̃ = L∗X ∼ N (0,Ψ∗ ⊗ In) and ε̃ = L∗ε.
Then the rows of X̃, i.e. x̃i, i ∈ [n], are i.i.d. from N (0,Ψ∗).

Recall from Section 3 that Ω̂ is pre-estimated at Step 1 in our two-step learning procedure.
As we will discuss in more detail in Section 4.1, the accuracy of Θ̂ obtained in Step 2 using
Algorithm 1 depends on the accuracy of Ω̂. Thus, let us define r(Ω̂) as a measure of the
estimation error of 1/ω̂2

j as follows:

r(Ω̂) := sup
1≤j≤p

∣∣∣∣ 1

ω̂2
j

− 1

ω∗2j

∣∣∣∣. (12)

Existing methods for estimating the error variance in linear models, such as scaled Lasso
(Sun and Zhang, 2012), square-root lasso (Belloni et al., 2011), and natural lasso (Yu and
Bien, 2019), often assume independence among samples, which is not necessarily true under
our network setting. We will discuss additional assumptions as well as possible choice of
consistent estimators of Ω under these assumptions in Section 4.2 under the network setting.
But our main result in Section 4.1, in particular the consistency of the estimated DAG
parameters B̂, does not require these additional assumptions (see Remark 10 for more
discussion).

10
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4.1 Error Bounds and Consistency of B̂(1) and Θ̂(1)

Applying Algorithm 1 with a pre-estimated Ω̂ as input gives us B̂(t) and Θ̂(t). In this
section, we study the error bounds and consistency of B̂(t) and Θ̂(t). Although Algorithm
1 is computationally efficient and has a desirable convergence behavior as described in
Proposition 3, there are technical difficulties in establishing the consistency of B̂(∞) and Θ̂(∞)

after convergence, due to the dependence between (B̂(t), Θ̂(t)) across iterations. However, we
show that as long as we have a suitable initial estimate satisfying Assumption 1, Algorithm
1 can produce consistent estimators after one iteration, i.e., (B̂(1), Θ̂(1)) is consistent.

Assumption 1 There exists a constant 0 < M ≤ σ2
min(L∗), such that the initial estimate

Θ̂(0) satisfies

‖Θ̂(0) −Θ∗‖2 ≤M.

Assumption 1 states that the initial estimate Θ̂(0) is inside an operator norm ball centered
at the true parameter Θ∗ with a radius smaller than a constant M . The constant M is less
than or equal to the smallest eigenvalue of Θ∗. Since σ2

min(L∗) is a constant, Assumption 1

requires that the initial estimate Θ̂(0) is not far from the truth. This is much weaker than,
for example, assuming Θ̂(0) is a consistent estimator. This condition may be written as
‖Θ̂(0)−Θ∗‖2 ≤ cλmin(Θ∗) for some c ∈ (0, 1]. Intuitively, λmin(Θ∗) can be understood as the
minimum “radius” of Θ∗ among all directions. In this sense, this assumption gives a rough
scale on how accurate the initial estimate needs to be. This assumption may not be easy to
verify in practice, but since it only requires Θ̂(0) to be within an `2-ball of constant radius
around Θ∗, it is not difficult for Assumption 1 to be met if Θ∗ is sparse and normalized.
Under Assumption 1 we can establish finite-sample error bounds for (B̂(1), Θ̂(1)). Let m
denote the maximum degree of the undirected graph H∗ and s = sup1≤j≤p ‖β∗j ‖0. Define

R̄(s, p, n) := max

{
6ω̄r(Ω̂),

72ω̄ψ̄s

b

√
log p log(max{n, p})2

n

}
, (13)

where r(Ω̂) is defined in (12) and b > 0 is a constant (see Lemma 7). Following the setup in
Ravikumar et al. (2011), the set of non-zero entries in the precision matrix is denoted as
supp(Θ∗) := {(i, j) | Θ∗ij 6= 0}. Let us use the shorthand S and Sc to denote the support
and its complement in the set [n]× [n], respectively. Define the following quantities:

κΣ∗ := |||Σ∗|||∞ = max
1≤i≤n

n∑
j=1

|Σ∗ij |,

κΓ∗ :=
∣∣∣∣∣∣(Γ∗SS)−1

∣∣∣∣∣∣
∞, Γ∗SS =

[
Θ∗−1 ⊗Θ∗−1

]
SS
.

(14)

The quantities κΓ∗ and κΣ∗ defined in (14) measure, respectively, the scale of the entries in
Σ∗ and the inverse Hessian matrix Γ∗−1

SS of the graphical Lasso log-likelihood function (10).

The L2 error bound of Θ̂ (Theorem 4) depends on these constants. In general, they may
scale with n and p. To simplify the asymptotic results, we assume the quantities are bounded
by a constant as n, p→∞ (Corollary 8 and 9). See Ravikumar et al. (2011) for a related
discussion.
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Theorem 4 Consider a sample matrix X from model (2). Let Θ̂(1), B̂(1) be the estimates
after one iteration of the Algorithm 1, given the initial estimator Θ̂(0) satisfying Assumption 1.
Suppose b > 0 as defined in Lemma 7. Pick the regularization parameters in (9) and (10)
such that

λn ≥ 12ψ̄ω̄

(√
2 log p

n
+

√
2 log 2 + 4 log p

n

)
,

λp ≥ 40
√

2

√
τ log n− log 4

p
+ R̄(s, p, n),

where τ > 2 and r(Ω̂) is defined in (12). Let κ̄ = σmin(Ψ∗). Then for some positive constant
c1, we have

sup
j
‖β̂(1)

j − β
∗
j ‖2 ≤

√
s

c1κ̄
λn, (15)

with probability at least (1− 2/p)2 −
{

1/(exp{n/32} − 1) + 1/nτ−2 + 5n2/max{n, p}4
}

. If
in addition n, p satisfy

3200 log(4nτ ) max {160, 24mC} ≤ p, (16)

and the following holds,

max

r(Ω̂),
4sω̄3

b

√
log p log2 max{n, p}

n

 ≤ 1/(24C), (17)

where C = max
{
κΣ∗κΓ∗ , κ

3
Σ∗κ

2
Γ∗
}

, we also have

‖Θ̂(1) −Θ∗‖2 ≤ 4κΓ∗mλp, (18)

with the same probability.

We leave the detailed proof for Theorem 4 to the Appendix. Note that Ω̂ is assumed to be
pre-specified in this result. In addition, assume κ̄, ψ̄, ω̄ stay bounded as well. Then, under
the conditions in Theorem 4, we have for fixed positive constants c2, c3, c4 that

sup
j
‖β̂(1)

j − β
∗
j ‖22 ≤ c2s

log p

n
,

‖Θ̂(1) −Θ∗‖2 ≤ c3m

√τ log n

p
+ max

r(Ω̂), c4s

√
log p log2 max{n, p}

n


 , (19)

with high probability.

Remark 5 The error bounds in Theorem 4 hold for any finite samples and for any values
of the sparsity measures s (maximum number of parents in the DAG) and m (maximum
degree in the undirected graph). If the DAG is dense so that s = p, then the corresponding

error bounds are given by the right sides of (19) with s = p. For example, supj ‖β̂
(1)
j −β∗j ‖ ≤

(c2p log p/n)1/2. This error bound would be small only if p� n. This is expected when the
DAG is not sparse. Similarly, we can obtain the error bounds when m is comparable to n
(i.e. the undirected graph is dense).
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4.2 Error bound on Ω̂ under Block-diagonal Θ∗

The error bound of Θ̂ in (19) depends on r(Ω̂), the convergence rate of the error variance
estimator Ω̂. In order to achieve the desired rate for the consistent estimator of Θ, we need
to make additional sparsity assumptions on Θ. Thus, we restrict our attention mainly to
the sparse undirected graphs H consisting of N connected components, which implies that
the row precision matrix Θ is block-diagonal:

Θ =


Θ1

Θ2
. . .

ΘN

 . (20)

The support of Θ inside each diagonal block Θi could be dense. This type of network is
often seen in applications where individuals in the network form clusters: nodes in the same
cluster are densely connected, and those from different clusters tend to be more independent
from each other. The underlying network H will be sparse if the individuals are from a
large number of small clusters. In other words, the sparsity of H depends mainly on the
number of diagonal blocks in Θ. More general network structures are also considered in the
numerical experiments in Section 5. If we assume that the network of the samples is block
diagonal and the samples form many small clusters, we would be able to collect independent
samples from different clusters. This intuition suggests that existing methods are readily
applicable in our setting to obtain consistent estimates of Ω∗, as long as there are enough
independent clusters in the undirected network H∗.

Given the block-diagonal structure of Θ in (20), there are a few ways to estimate Ω.
We use the natural estimator introduced by Yu and Bien (2019). We estimate ω̂2

j using
independent samples in X according to the block structure of Θ∗. Let Υ ⊆ [n] be a row index
set and AΥ denote the submatrix formed by selecting rows from a matrix An×m with row
index i ∈ Υ. We draw one sample from each block and form a smaller N × p design matrix
XΥ. It is not difficult to see that XΥ

j = XΥβ∗j + εΥ
j . Next define the natural estimator of

ω∗2j for j ∈ [p] as in Yu and Bien (2019):

ω̂2
j = min

βj

{
1

N
‖XΥ

j −XΥβj‖22 + 2λN‖βj‖1
}
, (21)

where λN > 0 is a tuning parameter. Alternative methods, such as scaled lasso (Sun and
Zhang, 2012) and Stein’s estimator (Bayati et al., 2013), can also be used to estimate ω2

j .
Formally, suppose that Θ∗ has a block-diagonal structure defined in (20). Let N be

the number of blocks. For simplicity, we assume that Θ∗ consists of N blocks as in (20)
hereafter. If we use the natural estimator from Yu and Bien (2019) introduced above to get
ω̂j , then we have the following error bound:

Lemma 6 Let X be generated from (2) and assume Θ∗ is block-diagonal with N blocks.
Recall that s = supj ‖β∗j ‖0. Let Ω̂ be the natural estimator defined in (21) with

λN = 12ψ̄ω̄

(√
2 log p

N
+

√
2 log 2 + 4 log p

N

)
,
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then with probability at least 1 + 1/p2 − 3/p (p ≥ 2),

sup
1≤j≤p

∣∣∣∣ω̂2
j − ω∗2j

∣∣∣∣ ≤ λNsβ̄ + 5ω̄

√
log 2 + log p

N
.

Lemma 6 shows that the maximum error of ω̂j is upper bounded by C · s
√

log p/N where
C > 0 is constant and therefore is consistent as long as s

√
log p/N → 0. When p is fixed

and N increases, there are more diagonal blocks in Θ∗, indicating more independent samples,
and thus ω̂2

j will be more accurate. When N = n, Θ∗ becomes a diagonal matrix and the
rows of X become i.i.d. We can easily show that the following lemma holds:

Lemma 7 Suppose inf1≤j≤pw
∗
j � 1 and 1

2 inf1≤j≤p ω
∗2
j −sup1≤j≤p

∣∣∣∣ω̂2
j −ω∗2j

∣∣∣∣ > b > 0. Then

r(Ω̂) ≤ 1

b4
sup

1≤j≤p

∣∣∣∣ω̂2
j − ω∗2j

∣∣∣∣.
When s(log p/N)1/2 is small enough, Lemma 6 implies that b can be taken as a positive
constant with high probability.

If Ω̂ satisfies the convergence rate specified in Lemmas 6 and 7, i.e., r(Ω̂) . s
√

log p/N ,
then the sample constraints in (16) are satisfied as long as

m log n . p, s2 log p . N, and s2 log3 max{n, p} . n. (22)

Here, p, s,m all may approach infinity as n→∞. As a result, we have the following two
asymptotic results based on Theorem 4. The first considers the scaling p� n under which
DAG estimation is high-dimensional. The second considers the case n � p so that the
estimation of Θ∗ is a high-dimensional problem.

Corollary 8 Suppose that the sample size and the number of blocks satisfy

p� N log2 p & n & N � log p→∞.

Assume β̄, ω̄, ψ̄, κΓ∗ , κΣ∗ < ∞ as n, p → ∞ and r(Ω̂) . s
√

log p/N . 1. Then under the
same assumptions as Theorem 4, we have

sup
j
‖β̂(1)

j − β
∗
j ‖22 = Op

(
s

log p

n

)
,

‖Θ̂(1) −Θ∗‖2 = Op

ms
√

log3 p

n

 .

Corollary 9 Suppose that the sample size and the block numbers satisfy

n� s2p log p log n & N & s2p→∞.

Assume β̄, ω̄, ψ̄, κΓ∗ , κΣ∗ < ∞ as n, p → ∞ and r(Ω̂) . s
√

log p/N . 1. Then under the
same assumptions as Theorem 4, we have

sup
j
‖β̂(1)

j − β
∗
j ‖22 = Op

(
s

log p

n

)
,

‖Θ̂(1) −Θ∗‖2 = Op

(
m

√
log n

p

)
.
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Remark 10 Although we derived the consistency of Θ̂(1) and B̂(1) in the above two corol-
laries in the setting where Θ∗ is block-diagonal, these consistency properties still hold even
when Θ∗ is not block-diagonal. The main purpose of the block-diagonal setting is to provide
an example in which we can conveniently control the error of Ω̂. But in practice Θ∗ does not
have to be block-diagonal. In particular, we did not assume any block-diagonal structure of
Θ∗ for the error bounds in Theorem 4. It can be seen that the error bound of B̂(1) does not
depend on the error of Ω̂ at all. Hence, the accuracy of Ω̂ has no impact on the accuracy
of B̂(1). The error bound of Θ̂(1) in (19) is determined by the trade-off among three terms,
one of which is the error rate r(Ω̂) as in (12). This is also supported by our numerical
results. In Section 5, we demonstrate, with both simulated and real networks where Θ∗ is
not block-diagonal, that our proposed BCD method can still accurately estimate Θ∗ and B∗

whenever a relatively accurate Ω̂ is provided.

4.3 Comparison to Other Results

If the data matrix X consists of i.i.d. samples generated from Gaussian linear SEM (1),
assuming the topological sort of the vertices is known, the DAG estimation problem in
(8) is reduced to solving the standard Lasso regression in (9) with L̂(t) = In, and thus
independent of the initial Θ̂(0) estimator. Under the restricted eigenvalue condition and
letting λn �

√
log p/n, it is known the Lasso estimator has the following optimal rate for `2

error (van de Geer and Bühlmann, 2009):

sup
j
‖β̂j − β∗j ‖22 = Op

(
s

log p

n

)
.

When the data are dependent, Theorem 4 shows that the estimator from Algorithm 1 can
achieve the same optimal rate if we make the extra assumptions above. In particular, what
we need is a reasonably good initial Θ̂(0) estimate such that ‖Θ̂(0) −Θ∗‖2 ≤M for a small
positive constant M .

On the other hand, if the underlying DAG is an empty graph and Ω∗ = Ip, the problem
of estimating Θ∗ can be solved using graphical Lasso in (10) because the data (columns in
X) are i.i.d. The sample variance Ŝ would also be an unbiased estimator of Σ∗. In this case,
Ravikumar et al. (2011) showed that

‖Θ̂−Θ∗‖2 = Op

(
m

√
log n

p

)
.

This result does not require knowing supp(Θ∗) but assumes a mutual incoherence condition on
the Hessian of the log likelihood function. In our case, Ŝ(1) is biased due to the accumulated
errors from the previous Lasso estimate, as well as Ω̂. As a result, there is an extra bias term
R̄(s, n, p) in ‖Ŝ(1) − Σ∗‖∞ (see Lemma 22 in Appendix A.3) compared to the i.i.d. setting:

‖Ŝ(1) − Σ∗‖∞ = δ̄f (p, nτ ) + R̄(s, n, p),

where δ̄f (p, nτ ) �
√

log n/p is the classical graphical Lasso error rate, and

R̄(n, p, s) � max
{
r(Ω̂), s

√
log p log max{n, p}/n

}
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depends on the estimation errors of B̂(1) and Ω̂. When n � p and r(Ω̂) is dominated by√
log(n)/p, we get the same rate for the `2 consistency of Θ̂ (Corollary 9) under a slightly

more strict constraint on sample size (22). If n� p, then the `2 error rate is determined
by max{r(Ω̂), s(log3 p/n)1/2}. Suppose Θ∗ is block-diagonal. If the number of blocks N
is much smaller than n, then the `2 rate will be dominated by r(Ω̂) � s

√
log p/N , which

could be slower than the optimal graphical Lasso rate. But that is expected due to the error
introduced in the DAG estimates B̂(1) and Ω̂.

5. Numerical Experiments

Under the assumption that observations generated from a DAG model are dependent, we will
evaluate the performance of the block coordinate descent (BCD) algorithm, i.e., Algorithm 1,
in recovering the DAG compared to traditional methods that treat data as independent.
We expect that the BCD method would give more accurate structural estimation than the
baselines by taking the dependence information into account. When a topological ordering
of the true DAG is known, we can identify a DAG from data using BCD. When ordering is
unknown, the BCD algorithm may still give an accurate estimate of row correlations that are
invariant to node-wise permutations according to Lemma 1. The estimated row correlation
matrix can then be used to de-correlate the data so that traditional DAG learning algorithms
would be applicable. We will demonstrate this idea of de-correlation with numerical results
as well.

5.1 Simulated Networks

We first perform experiments on simulated networks for both ordered and unordered cases.
To apply the BCD algorithm, we need to set values for λ1 and λ2 in (8). Since the support
of Θ∗ is restricted to the edge set of H∗, we simply fixed λ2 to a small value (λ2 = 0.01) in
all experiments. For each data set, we computed a solution path from the largest λ1 max, for
which we get an empty DAG, to λ1 min = λ1 max/100. The optimal λ1 was then chosen by
minimizing the BIC score over the DAGs on the solution path.

We generate random DAGs with p nodes and fix the total number of edges s0 in each
DAG to 2p. The entries in the weighted adjacency matrix B∗ of each DAG were drawn
uniformly from [−1,−0.1] ∪ [0.1, 1], and ω∗j ’s were sampled uniformly from [0.1, 2]. In our
simulations of Θ∗, we first considered networks with a clustering structure, i.e., Θ∗ was
block-diagonal as in (20). We fixed the size of the clusters to 20 or 30, and within each
cluster, the individuals were correlated according to the following four covariance structures.

• Toeplitz: Σ∗ij = 0.3|i−j|/5.

• Equal correlation: Σ∗ij = 0.7 if i 6= j, and Σ∗ii = 1.

• Star-shaped: Θ∗1j = Θ∗i1 = a, i, j ≥ 2, a ∈ (0, 1), and Θ∗ii = 1.

• Autoregressive (AR): Θ∗ij = 0.7|i−j| if |i− j| ≤ db/4e; Θ∗ij = 0 otherwise, where b is the
cluster size.

Toeplitz covariance structure implies that the observations are correlated as in a Markov
chain. The equal correlation structure represents the cases when all observations are fully
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connected in a cluster. Star-shaped and AR structures capture intermediate dependence
levels. In addition to these block-diagonal covariances, we also considered a more general
covariance structure defined through stochastic block models (SBM), in which H∗ consists
of several clusters and nodes within a cluster have a higher probability of being connected
than those from different clusters. More explicitly, we generated Θ∗ as follows:

1. Let B1, . . . ,BL be L clusters with varying sizes that form a partition of {1, . . . , n},
where the number of clusters L ranges from 5 to 10 in our experiments. Define a
probability matrix P ∈ Rn×n where Pij = 0.5 if i, j ∈ Bl, l ∈ {1, . . . , L}; otherwise,
Pij = 0.1.

2. Construct the adjacency matrix A of H∗:

Aij ∼ Bern(Pij).

3. Sample Θ′ij ∼ Unif[−5, 5] if Aij = 1. Otherwise, Θ′ij = 0. To ensure a positive-definite
Θ∗, we then perform the following transformations to get Θ∗:

Θ̃ = (Θ′ + Θ′
>

)/2,

Θ∗ = Θ̃−
(
σmin(Θ̃)− 0.01

)
· In.

(23)

In the stochastic block model, two nodes from different clusters in H∗ are connected with
probability 0.1, so Θ∗ is not block-diagonal in general. As explained in Section 4.1, our
proposed BCD algorithm does not require Θ∗ to be block-diagonal in practice to produce
accurate estimates of B∗ and Θ∗. Our numerical experiments will support this point and
demonstrate the robustness of the BCD method.

We compared the BCD algorithm with its competitors in both high-dimensional (p > n)
and low-dimensional (p < n) settings with respect to DAG learning. For each (n, p) and
each type of covariances, we simulated 10 random DAGs and then generated one data set
following equation (2) for each DAG. Thus, we had 10 results for each of the 2 × 5 = 10
simulation settings. In the end, we averaged the results over the 10 simulations under each
setting for comparison.

5.1.1 Learning with given ordering

Assuming that the nodes in a DAG are sorted according to a given topological order, we
compared our BCD algorithm against a baseline setting that fixes Θ∗ = In. In other words,
the baseline algorithm ignores the dependencies between observations when estimating the
DAG with BCD. The block sizes in Θ∗ were set to 20 in all cases except SBM whose block
sizes ranged from 5 to 25. Among other estimates, both algorithms return an estimated
weighted adjacency matrix B̂ for the optimal λ1 selected by BIC. For the BCD algorithm,
we use B̂ and Θ̂ for B̂(∞) and Θ̂(∞) after convergence (see Algorithm 1). Note that since
Θ̂(0) is initialized to In by default in the BCD algorithm, the estimated B̂ from the baseline
algorithm is the same as the estimate B̂(1) from BCD after one iteration.

We also included three other DAG learning algorithms in our comparison. The first is the
Kronecker graphical Lasso (KGLasso) algorithm (Allen and Tibshirani, 2010; Tsiligkaridis
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et al., 2013) mentioned in Section 2, which estimates both Ψ̂ and Θ̂ via graphical Lasso in
alternating fashion. When estimating Θ∗, KGLasso also makes use of its block-diagonal
structure. After KGLasso converges, we perform the Cholesky factorization on Ψ̂ = (I −
B̂)−>Ω̂(I − B̂)−1 according to the given order to obtain B̂ and Ω̂. A distinction between
BCD and KGLasso is that KGLasso imposes a sparsity regularization on Ψ instead of B,
so the comparison between these two will highlight the importance of imposing sparsity
directly on the Cholesky factor. The other two algorithms are PC (Spirtes et al., 2000) and
Greedy Equivalence Search (Chickering et al., 2004), both of which were applied with the
node ordering given as prior knowledge. Note that GES in this case is similar to a greedy
hill-climbing algorithm, since restricting to a given ordering, an equivalence class reduces to
a single DAG.

Given the estimate B̂ from a method, we hard-thresholded the entries in B̂ at a threshold
value τ̄ to obtain an estimated DAG. To compare the methods, we chose τ̄ such that they
predicted roughly the same number of edges (E). Then we calculated the number of true
positives (TP), false positives (FP) and false negatives (FN, missing edges), and two overall
accuracy metrics: Jaccard index (TP / (FP + s0)) and structural Hamming distances
(SHD = FP+FN). Note that, there were no reserved edges (i.e., estimated edges whose
orientation is incorrect) because the ordering of the nodes was given. Detailed comparisons
are summarized in Table 1 and Table 2. Our DAG model (2) defines a matrix normal
distribution in eq (3), for which the row-wise inverse covariance matrix is Θ∗ = (Σ∗)−1.
The matrix normal matches exactly the model assumption for KGLasso. So it is expected
to be accurate in estimating Θ∗ and Ψ∗. However, KGLasso showed lower accuracy (JI
and SHD) in estimating the DAG (B∗), because it does not impose sparsity on the DAG
coefficients B. In general, the BCD algorithm outperformed the competitors by having
more true positives and fewer false positives in all cases. Because the KGLasso method
does not impose sparsity directly on the DAG structure, it suffered from having too many
false negatives after thresholding when p > n. PC and GES had better performance than
KGLasso in terms of FDR, SHD and Jaccard index. When p < n, the correlations between
observations had a more significant impact on the estimation accuracy for DAGs. As a
result, by taking the correlations into account, BCD performed better than the baseline, PC,
and GES. In particular, BCD substantially reduced the number of missing edges (FNs) and
FDR, compared to baseline. Both BCD and KGLasso yielded accurate estimates of Θ̂ when
n < p except for the SBM. When n > p, as the sample size p for estimating Θ∗ ∈ Rn×n
decreased relative to dimension n, Θ̂ became less accurate. The difference in the accuracy of
Θ̂ = Θ̂(∞) and Θ̂(1) was not significant.

Figure 2 shows the ROC curves of all the methods over a sequence of τ̄ under the 10
settings. The τ̄ sequence contains 30 equally spaced values in [0, 0.5]. The BCD algorithm
uniformly outperformed the others in terms of the area under the curve (AUC) with
substantial margins when n < p. When n > p, the BCD still performed better than the
other four most of the time, but its lead over KGLasso was not as significant in some cases.
This was largely due to insufficient regularization on Θ̂. Fixing λ2 = 0.01 in this case
implies λp = 0.01/p = 0.0001 in the graphical Lasso step (10) of BCD, resulting in severe
overestimates of the magnitude of the entries in Θ∗. After we increased λp to 0.1 which is
still quite small, the BCD indeed outperformed the other methods by much larger margins.
KGLasso also performed much better when n > p as shown in Table 2 and Figure 2. This
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(n, p, s0)
Θ-Network

Method E FN TP FDR JI SHD err(Θ̂) (err(Θ̂(1)))

BCD 686.2 (98.9) 214.0 (19.3) 386.0 (19.3) 0.355(0.065) 0.443(0.021) 514.2(65.8) 0.00034 (0.00032)
equi-cor Baseline 642.4 (79.0) 240.3 (20.5) 359.7 (20.5) 0.383 (0.052) 0.410 (0.01) 523.0 (40.5) —

(150, 300, 600) KGLasso 756.2 (146.7) 504.9 (6.3) 95.1 (6.3) 0.822 (0.035) 0.080 (0.006) 1166.0 (135.8) 0.00019
PC 333.1 (6.3) 426.0 (3.6) 174.0 (3.6) 0.476 (0.012) 0.229 (0.005) 585.1 (7.7) —
GES 734.8 (80.9) 232.4 (18.8) 367.6 (18.8) 0.472 (0.028) 0.383 (0.007) 599.6 (45.7) —

BCD 535.0 (6.2) 306.4 (4.7) 493.6 (4.7) 0.077 (0.004) 0.586 (0.005) 347.8 (4.3) 0.00143 (0.00833)
toeplitz Baseline 549.5 (9.0) 425.2 (4.3) 374.8 (4.3) 0.317 (0.008) 0.384 (0.004) 599.9 (6.2) —

(200, 400, 800) KGLasso 550.6 (11.2) 634.3 (3.3) 165.7 (3.3) 0.698 (0.004) 0.139 (0.002) 1019.2 (7.8) 0.01617
PC 536.2 (6.7) 554.4 (3.1) 245.6 (3.1) 0.542 (0.006) 0.225 (0.003) 845.0 (6.6) —
GES 534.0 (5.5) 496.8 (3.1) 303.2 (3.1) 0.432 (0.005) 0.294 (0.003) 727.6 (4.9) —

BCD 543.1 (3.7) 301.1 (2.4) 498.9 (2.4) 0.081 (0.003) 0.591 (0.003) 345.3 (2.7) 0.00006 (0.00051)
star Baseline 515.7 (6.7) 338.3 (2.1) 461.7 (2.1) 0.103 (0.01) 0.541 (0.003) 392.3 (5.2) —

(200, 400, 800) KGLasso 495.8 (13.9) 504.3 (7.5) 295.7 (7.5) 0.403 (0.006) 0.295 (0.006) 704.4 (5.7) 0.00233
PC 544.1 (4.0) 375.7 (2.3) 424.3 (2.3) 0.220 (0.005) 0.461 (0.003) 495.5 (3.9) —
GES 543.6 (3.5) 329.7 (2.8) 470.3 (2.8) 0.135 (0.005) 0.539 (0.004) 403.0 (4.5) —

BCD 253.1 (5.7) 193.8 (2.9) 206.2 (2.9) 0.184 (0.008) 0.461 (0.004) 240.7 (1.5) 0.00247 (0.00219)
AR(5) Baseline 245.8 (8.5) 208.9 (2.6) 191.1 (2.6) 0.217 (0.018) 0.420 (0.004) 263.6 (4.6) —

(100, 200, 400) KGLasso 270.4 (9.3) 271.1 (3.1) 128.9 (3.1) 0.521 (0.007) 0.237 (0.004) 412.6 (4.1) 0.02587
PC 253.5 (6.1) 237.9 (1.8) 162.1 (1.8) 0.358 (0.015) 0.330 (0.005) 329.3 (6.1) —
GES 314.6 (2.8) 218.2 (2.2) 181.8 (2.2) 0.422 (0.007) 0.341 (0.005) 351.0 (4.2) —

BCD 343.3 (16.9) 313.6 (8.5) 286.4 (8.5) 0.159 (0.016) 0.435 (0.008) 370.5 (10.2) 0.51266 (0.52297)
SBM Baseline 344.6 (16.4) 338.4 (6.5) 261.6 (6.5) 0.233 (0.02) 0.383 (0.008) 421.4 (10.2) —

(100, 300, 600) KGLasso 301.3 (18.9) 510.7 (3.0) 89.3 (3.0) 0.696 (0.016) 0.110 (0.003) 722.7 (16.5) 0.46201
PC 302.7 (4.1) 438.3 (1.9) 161.7 (1.9) 0.465 (0.008) 0.218 (0.003) 579.3 (4.9) —
GES 411.3 (5.8) 335.2 (3.0) 264.8 (3.0) 0.356 (0.006) 0.355 (0.004) 481.7 (4.5) —

Table 1: Results for ordered DAGs on simulated data when n < p. E is the number of
estimated edges in the DAG. FN is the number of false negatives in the estimated DAG.
TP is the number of true positives in the estimated DAG. FDR = FP/(FP + TP ) is the
false discovery rate. JI = TP/(FP + s0) is the Jaccard Index. SHD = FP + FN is the
structural hamming distance. We highlight in boldface the best performance in terms of
FDR, JI, and SHD. The last column shows the `2-estimation errors of Θ̂ and Θ̂(1) normalized
by the true support size. The numbers in the brackets are errors after one iteration of BCD.
Each number corresponds to the average (standard error) over 10 simulations.
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(n, p, s0)
Θ-Network

Method E FN TP FDR JI SHD err(Θ̂) (err(Θ̂(1)))

BCD 143.0 (9.4) 75.1 (6.4) 124.9 (6.4) 0.119 (0.014) 0.570 (0.022) 93.2 (3.7) 0.00211 (0.00199)
equi-cor Baseline 143.6 (9.5) 102.8 (4.2) 97.2 (4.2) 0.311 (0.024) 0.393 (0.010) 149.2 (3.0) —

(200, 100, 200) KGLasso 142.7 (9.3) 129.5 (1.8) 70.5 (1.8) 0.490 (0.030) 0.260 (0.007) 201.7 (7.6) 0.00207
PC 141.8 (8.7) 135.9 (2.5) 64.1 (2.5) 0.539 (0.019) 0.231 (0.007) 213.6 (6.1) —
GES 191.2 (3.4) 103.3 (1.3) 96.7 (1.3) 0.493 (0.008) 0.329 (0.005) 197.8 (3.4) —

BCD 167.1 (7.3) 56.7 (4.0) 143.3 (4.0) 0.137 (0.015) 0.639 (0.010) 80.5 (1.4) 0.51735 (0.68703)
toeplitz Baseline 167.3 (7.2) 104.8 (2.1) 95.2 (2.1) 0.426 (0.015) 0.350 (0.005) 176.9 (4.0) —

(200, 100, 200) KGLasso 167.1 (7.2) 68.8 (2.2) 131.2 (2.2) 0.206 (0.023) 0.557 (0.007) 104.7 (3.7) 0.014
PC 162.6 (5.8) 130.0 (1.4) 70.0 (1.4) 0.566 (0.013) 0.240 (0.005) 222.6 (4.9) —
GES 235.2 (4.8) 109.7 (1.3) 90.3 (1.3) 0.615 (0.008) 0.262 (0.005) 254.6 (4.8) —

BCD 186.9 (7.3) 50.6 (4.0) 149.4 (4.0) 0.199 (0.015) 0.629 (0.010) 88.1 (1.4) 0.54769 (0.39316)
star Baseline 184.3 (7.2) 64.4 (2.1) 135.6 (2.1) 0.263 (0.015) 0.546 (0.005) 113.1 (4.0) —

(200, 100, 200) KGLasso 186.1 (7.2) 66.1 (2.2) 133.9 (2.2) 0.279 (0.023) 0.531 (0.007) 118.3 (3.7) 0.18472
PC 170.0 (2.5) 91.5 (1.3) 108.5 (1.3) 0.361 (0.009) 0.415 (0.006) 153.0 (2.5) —
GES 187.4 (3.9) 68.9 (2.2) 131.1 (2.2) 0.300 (0.005) 0.511 (0.006) 125.2 (1.8) —

BCD 185.9 (6.2) 52.2 (1.5) 147.8 (1.5) 0.200 (0.018) 0.622 (0.009) 90.3 (4.0) 0.01644 (0.01184)
AR(5) Baseline 187.7 (6.9) 63.8 (1.2) 136.2 (1.2) 0.268 (0.021) 0.544 (0.011) 115.3 (5.8) —

(200, 100, 200) KGLasso 186.0 (6.7) 59.8 (1.5) 140.2 (1.5) 0.240 (0.02) 0.572 (0.01) 105.6 (4.7) 0.01038
PC 175.0 (1.8) 90.7 (1.7) 109.3 (1.7) 0.375 (0.009) 0.412 (0.008) 156.4 (3.1) —
GES 185.9 (6.6) 78.9 (2.3) 121.1 (2.3) 0.345 (0.011) 0.457 (0.005) 143.7 (3.0) —

BCD 140.1 (3.5) 72.2 (2.4) 127.8 (2.4) 0.086 (0.008) 0.602 (0.009) 84.5 (1.7) 0.31189 (0.31448)
SBM Baseline 139.9 (4.0) 85.7 (2.4) 114.3 (2.4) 0.181 (0.01) 0.507 (0.009) 111.3 (2.1) —

(300, 100, 200) KGLasso 128.8 (11.0) 161.1 (3.5) 38.9 (3.5) 0.689 (0.023) 0.134 (0.011) 251.0 (8.5) 0.32263
PC 139.5 (3.3) 113.8 (1.6) 86.2 (1.6) 0.379 (0.017) 0.341 (0.009) 167.1 (4.4) —
GES 146.4 (2.5) 90.6 (1.95) 109.4 (1.95) 0.252 (0.011) 0.462 (0.009) 127.6 (2.9) —

Table 2: Results for ordered DAGs on simulated data when n > p.

is expected because when n is large compared to p, the dependence between individuals
will have a greater impact on the accuracy of the estimation of DAGs. Since KGLasso is
designed to iteratively estimate Θ∗ and Ψ∗, the more accurate estimates of Θ∗ as reported
in Table 2 compensated for the relatively inaccurate B̂.

We also compared test data log-likelihood among the five methods. Specifically, in
each setting, we generated a test sample matrix Xtest from the true distribution for each
of the 10 repeated simulations and computed −L(B̂, Θ̂, Ω̂ | Xtest) using the estimates
from a method following equation (5). Figure 3 shows the boxplots of the test data
log-likelihood, normalized by

√
np after subtracting the median of the baseline method:

`plot =
(
`0 −median(`baseline

0 )
)
/
√
np, where `0 is the original test data log-likelihood. The

top row shows the test log-likelihood when n < p, where we did not include the data for
KGLasso in four cases because its test data log-likelihood values were too small to fit in the
same plot. The bottom row shows the results for n > p. For both cases, we see that the test
data log-likelihood of the BCD method (in green) is consistently higher than that of the
other methods.

5.1.2 Learning with de-correlation

When true ordering is unknown, we focus on estimating the row-wise covariance Σ∗. Given
Σ̂ we can de-correlate the data by Equation (11) and apply existing structural learning
methods. In this study, we compared the performances of three structure learning methods
before and after de-correlation: GES (Chickering, 2003) and sparsebn (Aragam et al., 2019b)
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Figure 2: ROC curves of BCD, baseline, and KGLasso on simulated and sorted DAGs:
x-axis reports the number of false positive edges and y-axis true positive edges. Top row:
n < p. Bottom row: n > p. Each data point in the ROC curves corresponds to the average
over 10 simulations.
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Figure 3: Normalized test data log-likelihood of BCD and alternative methods on simulated
sorted DAGs. Top row: n < p. Bottom row: n > p. Bar height represents the median
log-likelihood from the 10 repeated experiments with error bars for the 25% and 75%
quantiles.
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Figure 4: Decrease in SHD (top row) and increase in Jaccard index (bottom row) via
de-correlation on simulated unsorted DAGs, with x-axis reporting the value of (n, p). In
each panle, the three boxplots on the left and the three on the right correspond to the cases
of n < p and n > p, respectively. Each boxplot contains 10 data points from 10 simulations.

which are score-based methods implemented respectively in the R packages rcausal (Ramsey
et al., 2017) and sparsebn, and PC (Spirtes et al., 2000) which is a constraint-based method
implemented in pcalg (Kalisch et al., 2012). All three methods rely on the independent data
assumption, so we expect the de-correlation step to improve their performances significantly.
Unlike the previous comparison, the ordering of the nodes is unknown, so GES and PC
return an estimated CPDAG (completed acyclic partially directed graph) instead of a DAG.
Thus, in the following comparisons, we converted both the estimated DAG from sparsebn
and the true DAG to CPDAGs, so that all the reported metrics are computed with respect
to CPDAGs.

As before, we divide the cases into n < p and n > p. The block size for the four
block-diagonal Θ was fixed to 30. The estimated Cholesky factor L̂ of Θ̂ used for de-
correlating X in (11) was calculated by our BCD algorithm with tuning parameter λ1

selected by BIC. Figure 4 shows the decrease in SHD and increase in the Jaccard index via
the de-correlation of GES, PC and sparsebn on 10 random DAGs, generated under each
row-covariance structure and each sample size. For almost all types of covariances and (n, p)
settings we considered, there is a significant improvement of all three methods in estimating
the CPDAG structures after de-correlation. Additional tables with detailed results can
be found in the Supplementary Material. Before de-correlation, GES and sparsebn, both
score-based methods, tend to significantly overestimate the number of edges, resulting in
high false positives, so does PC in some of the cases. After de-correlation, both GES and
sparsebn had significant improvements and outperformed PC, as long as Θ̂ was accurately
estimated. The test data log-likelihood (normalized by

√
np) of all three algorithms also

increased significantly after de-correlation as shown in Figure 5.
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Figure 5: Increase in the normalized test data log-likelihood after decorrelation on simulated
unsorted DAGs. Top row: n < p. Bottom row: n > p.

5.2 Experiments on Real Network Structures

In this section, we examine the performance of the BCD algorithm on real network structures.
We took four real DAGs from the bnlearn repository (Scutari, 2010): Andes, Hailfinder,
Barley, Hepar2, and two real undirected networks from tnet (Opsahl, 2009): facebook

(Opsahl and Panzarasa, 2009) and celegans n306 (Watts and Strogatz, 1998). Only the
structures (supports) of these real networks were used, and the parameters of the edges
were simulated as follows. Given a DAG structure, we sampled the coefficients β∗j uniformly
from [−1,−0.1] ∪ [0.1, 1]. Given the support of Θ∗, we generate Θ′ij uniformly from [−5, 5].
Then, we apply the transformations in (23) to get Θ∗. In order to increase the size of the
underlying DAG and show the scalability of the algorithm, we duplicated the DAGs above
to form larger networks. In Sections 5.2.1 and 5.2.2, we again consider undirected networks
consisting of several disconnected subgraphs, corresponding to a block-diagonal structure
in Θ∗. Each of the subgraphs was sub-sampled from the original real network. In Section
5.2.3 we present experiments on more general Θ∗ without a block-diagonal structure. The
ω∗j were uniformly sampled from [0.1, 2] as before. With these parameters, we generated
observational samples X following the structural equation (2).

5.2.1 Learning with given ordering

Similar to the previous section, we first look at the results on ordered DAGs. We considered
four different combinations of network structures, as shown in Table 3, with both n > p
and n < p. Because KGLasso does not make use the given ordering in its estimation of
the column-wise covariance matrix, it became very slow when p is large. Therefore, we did
not include it in our comparisons. GES performed significantly worse than the others in
some cases, so we removed it from those plots. Note that when n is much smaller than p,
as in the case of (Andes, facebook) in Table 3, the BIC score that GES maximizes over
may not be a good scoring function, resulting in much worse estimation. BCD continued to
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outperform the baseline method by modeling the sample correlation. This improvement was
more prominent when n > p, where BCD significantly reduced the number of false positive
edges, achieving higher JI and lower SHD compared to the baseline and to itself in the n < p
case. Figure 6 compares the test data log-likelihood across 10 simulations, and BCD scored
significantly higher test data log-likelihood in all the cases. The ROC curves are provided in
a figure in the Supplementary Material. Both figures indicate that the BCD method indeed
gives better DAG estimates than the baseline and the other standard methods.

DAG
(n, p, s0)

Θ-Network
Method E FN TP FDR JI SHD

BCD 440.9 (15.9) 314.7 (7.8) 361.3 (7.8) 0.176 (0.014) 0.478 (0.006) 394.3 (3.1)
facebook Baseline 436.6 (15.2) 334.2 (4.8) 341.8 (4.8) 0.211 (0.022) 0.444 (0.006) 429.0 (9.8)

(100 446, 676) PC 441.8 (16.2) 385.2 (6.5) 290.8 (6.5) 0.338 (0.012) 0.351 (0.005) 536.2 (6.6)
GES 895.7 (10.4) 504.4 (2.5) 171.6 (2.5) 0.808 (0.002) 0.123 (0.001) 1228.5 (7.2)

Andes
(2) BCD 500.0 (5.9) 197.3 (5.5) 478.7 (5.5) 0.043 (0.002) 0.686 (0.008) 218.6 (5.3)

facebook Baseline 499.1 (5.7) 206.4 (1.9) 469.6 (1.9) 0.058 (0.008) 0.666 (0.003) 235.9 (3.1)
(500 446, 676) PC 499.2 (6.6) 252.2 (3.3) 423.8 (3.3) 0.150 (0.006) 0.564 (0.003) 327.6 (3.1)

GES 507.6 (2.9) 295.8 (1.4) 380.2 (1.4) 0.251 (0.003) 0.473 (0.002) 423.2 (2.5)

BCD 178.5 (4.5) 113.9 (2.5) 150.1 (2.5) 0.157 (0.009) 0.513 (0.006) 142.3 (1.7)
celegan n306 Baseline 179.1 (4.8) 117.8 (1.8) 146.2 (1.8) 0.180 (0.016) 0.493 (0.006) 150.7 (3.1)

(100, 224, 264) PC 178.5 (5.0) 154.6 (2.4) 109.4 (2.4) 0.386 (0.005) 0.328 (0.005) 223.7 (1.2)
GES 435.4 (8.6) 128.1 (1.7) 135.9 (1.7) 0.687 (0.007) 0.242 (0.005) 427.6 (8.9)

Hailfinder
(4) BCD 198.6 (1.3) 72.7 (1.0) 191.3 (1.0) 0.037 (0.002) 0.705 (0.003) 80.0 (0.98)

celegan n306 Baseline 199.0 (1.5) 74.7 (1.2) 189.3 (1.2) 0.049 (0.005) 0.692 (0.005) 84.4 (1.6)
(500, 224, 264) PC 198.6 (1.3) 95.6 (1.2) 168.4 (1.2) 0.152 (0.006) 0.573 (0.006) 125.8 (2.3)

GES 198.2 (1.5) 93.8 (1.4) 170.2 (1.4) 0.141 (0.006) 0.583 (0.006) 121.8 (2.3)

BCD 261.7 (6.7) 133.8 (2.7) 202.2 (2.7) 0.225 (0.012) 0.511 (0.005) 193.3 (3.4)
facebook Baseline 261.8 (8.3) 140.3 (2.6) 195.7 (2.6) 0.247 (0.019) 0.488 (0.009) 206.4 (6.9)

(100, 192, 336) PC 219.3 (2.4) 180.0 (1.7) 156.0 (1.7) 0.288 (0.006) 0.391 (0.004) 243.3 (2.5)
GES 314.5 (4.9) 159.3 (1.5) 176.7 (1.5) 0.437 (0.008) 0.373 (0.004) 297.1 (4.7)

Barley
(4) BCD 260.5 (4.1) 91.3 (3.9) 244.7 (3.9) 0.061 (0.003) 0.696 (0.011) 107.1 (3.9)

facebook Baseline 260.2 (4.7) 97.6 (2.5) 238.4 (3.9) 0.083 (0.008) 0.666 (0.004) 119.4 (1.6)
(500, 192, 336) PC 259.9 (4.2) 135.6 (1.0) 200.4 (1.0) 0.227 (0.013) 0.507 (0.007) 195.1 (4.9)

GES 260.5 (4.1) 104.2 (3.2) 231.8 (3.2) 0.110 (0.005) 0.636 (0.008) 132.9 (2.9)

BCD 366.7 (13.7) 234.5 (6.2) 257.5 (6.2) 0.295 (0.010) 0.428 (0.006) 343.7 (3.2)
celegan n306 Baseline 373.9 (14.1) 238.0 (2.7) 254.0 (2.7) 0.314 (0.022) 0.416 (0.007) 357.9 (10.9)

(100, 280, 492) PC 308.4 (3.4) 327.6 (2.4) 164.4 (2.4) 0.466 (0.009) 0.259 (0.005) 471.6 (5.4)
GES 555.8 (7.3) 236.6 (1.4) 255.4 (1.4) 0.540 (0.004) 0.322 (0.002) 537.0 (5.3)

Hepar2
(4) BCD 417.5 (3.4) 122.2 (3.1) 369.8 (3.1) 0.114 (0.003) 0.685 (0.006) 169.9 (3.3)

celegan n306 Baseline 417.1 (4.0) 126.0 (2.1) 366.0 (2.1) 0.122 (0.006) 0.674 (0.005) 177.1 (3.3)
(500, 280, 492) PC 411.4 (2.9) 225.9 (1.3) 266.1 (1.3) 0.353 (0.005) 0.418 (0.003) 371.2 (3.3)

GES 418.6 (3.4) 114.3 (2.6) 377.7 (2.6) 0.098 (0.003) 0.709 (0.004) 155.2 (2.3)

Table 3: Results for ordered DAGs on real network data. Block size is 20 for n < p and 50
for n > p. The number under each DAG reports the number of times it is duplicated to
form a large DAG. All numbers represent the average (standard error) over 10 simulations.

5.2.2 Learning with de-correlation

When the ordering of the DAG nodes is not given, we compared the effect of de-correlation
as in Section 5.1.2. All network parameters were generated in the same way as before but
we randomly shuffled the columns of X. The decrease in the structural Hamming distance
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Figure 6: Test data log-likelihood normalized by
√
np on real sorted DAGs. Top row: n < p.

Bottom row: n > p.

and increase in Jaccard index from de-correlation over 10 simulations are summarized as
boxplots in Figure 7. PC performed uniformly better after de-correlation compared to before.
GES and sparsebn also improved after de-correlation in most cases. The changes in the test
data log-likelihood are shown in Figure 8, which are positive for almost all data sets, except
two outliers (removed from plots) of sparsebn in the second and fourth panels in the top
row.

5.2.3 Learning under general covariance structure

In the following experiments, we generate the support of Θ∗ without the block-diagonal
constraint by directly sampling the real undirected networks facebook and celegans n306.
In other words, the underlying undirected network may have only one connected subgraph
where all individuals are dependent. This setup poses a major challenge particularly for the
estimation of Θ because its support becomes much larger, and, as a result, we will need to
impose stronger regularization in the graphical Lasso step when n > p. Moreover, we use
Lasso regression loss (Hastie et al., 2015) to estimate Ω :

ω̂2
j = min

β

1

2n
‖Xj −XΠjβ‖22 + λ‖β‖1

as if the data were i.i.d., where λ =
√

log(p)/n and Πj = {1, . . . , j − 1} is the index set of
the potential parent nodes of j. This approximation performed well in our experiments For
simplicity, we focus on the setting p > n so that we can still fix λ2 = 0.01. Proceeding as
before, we generate B∗ from real DAGs with duplications: Andes, Hailfinder, Barley, and
Hepar2.
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Figure 7: Experiments on real unsorted DAGs. Decrease in SHD (top row) and increase in
JI (bottom row) via de-correlation for real networks, where the x-axis reports the value of
(n, p). In each panel, the three boxplots on the left and the three on the right correspond to
cases of n < p and n > p, respectively.

DAG Θ-Network Method (n, p, s0) E FN TP FDR JI SHD

Andes facebook BCD (100 446, 676) 424.1 (16.4) 319.9 (6.9) 356.1 (6.9) 0.155 (0.016) 0.478 (0.004) 387.9 (3.6)
(2) Baseline (100 446, 676) 422.2 (16.2) 326.2 (5.6) 349.8 (5.6) 0.165 (0.019) 0.467 (0.003) 398.6 (6.2)

PC (100 446, 676) 424.1 (16.4) 378.6 (4.9) 297.4 (4.9) 0.293 (0.016) 0.371 (0.003) 505.3 (7.9)
GES (100 446, 676) 1782.0 (11.9) 314.5 (2.2) 361.5 (2.2) 0.797 (0.002) 0.173 (0.002) 1735.0 (13.4)

Hailfinder celegans n306 BCD (100,224,264) 140.8 (6.5) 153.3 (2.8) 110.7 (2.8) 0.206 (0.019) 0.376 (0.007) 183.4 (2.5)
(4) Baseline (100,224,264) 139.0 (5.8) 154.8 (2.2) 109.2 (2.2) 0.205 (0.028) 0.372 (0.009) 184.6 (4.9)

PC (100,224,264) 141.5 (6.3) 160.0 (3.4) 104.0 (3.4) 0.261 (0.013) 0.344 (0.009) 197.5 (2.4)
GES (100,224,264) 312.3 (3.2) 136.6 (1.3) 127.4 (1.3) 0.592 (0.004) 0.284 (0.003) 321.5 (2.9)

Barley facebook BCD (100,192,336) 252.6 (10.1) 147.3 (4.6) 188.7 (4.6) 0.248 (0.014) 0.471 (0.007) 211.2 (3.0)
(4) Baseline (100,192,336) 249.4 (10.0) 155.1 (3.0) 180.9 (3.0) 0.268 (0.020) 0.448 (0.005) 223.6 (5.1)

PC (100,192,336) 206.7 (2.7) 187.2 (1.1) 148.8 (1.1) 0.279 (0.009) 0.378 (0.004) 245.1 (2.6)
GES (100,192,336) 288.4 (4.2) 161.2 (1.3) 174.8 (1.3) 0.393 (0.006) 0.389 (0.002) 274.8(2.5)

Hepar2 celegans n306 BCD (100, 420, 738) 492.3 (12.7) 386.7 (6.2) 351.3 (6.2) 0.285 (0.008) 0.399 (0.005) 527.7 (4.5)
(6) Baseline (100, 420, 738) 490.8 (12.9) 397.8 (4.1) 340.2 (4.1) 0.303 (0.018) 0.384 (0.007) 548.4 (12.9)

PC (100, 420, 738) 454.1 (4.0) 467.8 (1.7) 270.2 (1.7) 0.405 (0.007) 0.293 (0.003) 651.7 (5.5)
GES (100, 420, 738) 970.7 (7.3) 358.3 (2.6) 379.7 (2.6) 0.609 (0.004) 0.286 (0.003) 949.3 (8.5)

Table 4: Results for ordered DAGs on real network data without block structure.

First, we assume that the DAG ordering is known and compare the BCD method against
the baseline, PC, and GES methods. In the four cases that we considered, BCD gave better
estimates of the DAG structure in terms of the Jaccard index and structural Hamming
distance, as shown in Table 4. Next, without assuming a known DAG ordering, we compare
the performance of GES, PC, and sparsebn before and after de-correlation. The top row in
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Figure 8: Increases in test data log-likelihood on real unsorted DAGs. Top row: n < p.
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boxplots.
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Figure 9: Results on real unsorted DAGs with general Θ. Top row: increase in normalized test
data log-likelihood after de-correlation. Bottom row: Decrease in SHD after de-correlation.

Figure 9 shows the increase in the normalized test data log-likelihood after de-correlation,
and the increases are positive across the 10 simulations for each of the four scenarios. The
bottom row shows the distribution of the decrease in SHD across 10 simulations after
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de-correlation. In most cases, all three methods gave much more accurate estimates after
de-correlation. We defer the additional tables and figures containing more detailed results
to the Supplementary Material. The above results confirm that our methods can indeed
improve the accuracy in DAG estimation even though Θ∗ is not block-diagonal, as suggested
by the theoretical results in Section 4.

6. Application on RNA-seq Data

Gene regulatory networks (GRNs) enable biologists to examine the causal relations in
gene expression during different biological processes, and are usually estimated from gene
expression data. Recent advances in single-cell RNA sequencing technology have made
it possible to trace cellular lineages during differentiation and to identify new cell types
by measuring the gene expression of thousands of individual cells. A key question now is
whether we can discover the GRN that controls cellular differentiation and drives transitions
from one cell type to another using this type of data. Such GRNs can be interpreted as
causal networks among genes, where nodes correspond to different genes, and a directed
edge encodes a direct causal effect of one gene on another.

The RNA-seq data set used in this section were generated by Chu et al. (2016), and is
accessible through the Gene Expression Omnibus (GEO) series accession number GSE75748.
The data set contains measurements of gene expression of around 20,000 genes from n = 1018
cells. The cells are progenitor cells differentiated from human embryonic stem (ES) cells.
The cell types correspond to different lineage-specific progenitors, undifferentiated ES cells,
and foreskin fibroblasts (as a control). As lineage-specific progenitor cells were differentiated
from the same population of ES cells, it is reasonable to assume dependence among the cells.
This was also confirmed with the principal component analysis by Chu et al. (2016) (their
Figure 1b). Before conducting the experiment, we processed the data according to Li and
Li (2018) by imputing missing values and applying log transformation. In this study, we
focus on estimating a GRN among p = 51 target genes selected by Chu et al. (2016), while
the rest of the genes, which we call background genes, are used to estimate an undirected
network for all 1018 cells.

6.1 Pre-estimate the Undirected Network

An essential input to Algorithm 1 is H∗, the undirected network of observations (cells in this
case). In the dataset, progenitor cells differentiated from human ES cells included neuronal
progenitor cells (NPCs, n = 173), endoderm derivatives cells (DE, n = 138), endothelial cells
(ECs, n = 105), and trophoblast-like cells (TBs, n = 69). Undifferentiated H1 (n = 212)
and H9 (n = 162) human ES cells and human foreskin fibroblasts (HFFs, n = 159) as
control were also included. In total, the 1018 single cells in the dataset consist of the above
seven distinct cell types. It is reasonable to assume that the similarity between cells of
different types is minimal and we posit that the network of the 1018 cell consists of at least
7 connected components, i.e. N ≥ 7, where N denotes the number of diagonal blocks in Θ∗

as in Section 4. Although cells from different blocks may not be completely independent,
their dependence should be much weaker than those in the same clusters. We used the
block structure as an approximation, which greatly reduced the model and computational
complexities. Since it is unlikely that all cells of the same type are strongly associated
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(a) H1 (b) DEC

Figure 10: Cluster dendrograms of H1 and DEC cells from hierarchical clustering. The
y-axis represents 1− ρ and the leaf nodes are individual cells.

with one another, we further divided each type of cells into smaller clusters by applying
the classical clustering algorithm on the background genes. More specifically, we randomly
selected 8000 genes from the background genes and applied hierarchical clustering on each
type of cells. In this experiment, we used hierarchical clustering with complete-linkage and a
distance metric between two cells defined as 1− ρ, where ρ is the correlation between their
observed gene expression levels. We verified our choice of clustering algorithm by applying
it on the entire data set, and it clearly grouped the cells into 7 groups, coinciding with the 7
cell types. At the end of the hierarchical clustering step, we needed to pick cut-off levels in
order to finish clustering. Because the levels of dependence among cells are quite different
across cell types as shown in Figure 10, we pick the cutoff points separately for each cell
type. Generally, we chose the cutoff thresholds such that the largest cluster is smaller than
p = 51, so λ2 can be set to 0.01. By shifting the cutoff levels, we also obtained different
number N of blocks in Θ∗. In the end, this clustering process returned an adjacency matrix
A of the estimated network defined by the N clusters. In our experiments, we compared
results from three choices of N ∈ {383, 519, 698}, much larger than the number of cell types.
These refined small clusters will capture more subtle dependence relations among cells. The
cluster size varied from 1 (singleton clusters) to 43 across the three values of N .

6.2 Model Evaluation

In this experiment, the input to the BCD algorithm is a data matrix X1018×51 and the
network A estimated by the above hierarchical clustering. The matrix of error variances Ω̂
was obtained following the method described in Section 4.2. The output is a solution path of
(B̂, Θ̂) for a range of λ1’s. We computed the corresponding MLEs (B̂MLE , Ω̂MLE) given the
support of each B̂ on the solution path. We picked the (B̂MLE , Ω̂MLE) with the smallest
BIC from the solution path as in Section 5 and used the corresponding Θ̂ to de-correlate X.
Table 5 shows the results of GES, PC, and sparsebn before and after de-correlation. In each
case, we computed the BIC of the estimated GRN and used the Likelihood Ratio (LR) test
to determine whether the increase in log-likelihood from de-correlation is significant or not.
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Method N ∆(BIC) LR χ2 df p-value Z-scores

GES
383

6762.79 10148.79 3386 < 10−5 82.2
PC 18171.20 21596.19 3425 < 10−5 219.5
sparsebn 9341.59 12722.59 3381 < 10−5 113.6

GES
519

−1723.65 8.34 1732 > 0.99 −29.2
PC 4635.81 6388.81 1753 < 10−5 78.3
sparsebn 244.61 1976.61 1732 3.3× 10−5 4.2

GES
698

−114.97 573.03 688 > 0.99 −3.1
PC 2856.79 3552.79 696 < 10−5 76.6
sparsebn 1198.33 1875.33 677 < 10−5 32.5

Table 5: Compare goodness-of-fit of standard DAG learning methods with and without
de-correlation of the data. N denotes the number of clusters among cells. ∆(BIC) =
BIC(baseline) − BIC(decor) is the change in BIC scores before and after de-correlation
(positive value means improved model fitting). LR χ2 is the likelihood ratio statistic (24)
followed by its degree of freedom (df). p values are computed based on χ2-test. We also
include the Z-score = (LR− df)/

√
2df .

The LR test statistic is defined as follows:

LR = 2
[
log p(X | Θ̂, B̂MLE

decor , Ω̂
MLE
decor )− log p(X | In, B̂MLE

baseline, Ω̂
MLE
baseline)

]
, (24)

where (B̂MLE
baseline, Ω̂

MLE
baseline) and (B̂MLE

decor , Ω̂
MLE
decor ) denote the MLEs given the estimated graph

structures from GES, PC, and sparsebn before and after de-correlation, respectively. If the
baseline model (before de-correlation) is true, then the LR statistic follows approximately a
χ2 distribution with degrees of freedom

df =
| supp(Θ̂)| − n

2
+ | supp(B̂MLE

decor )| − | supp(B̂MLE
baseline)|.

As reported in Table 5, for most cases, we saw significant improvements, in terms of both the
BIC and the χ2 statistic, in all three DAG estimation methods by de-correlating X using the
estimated Θ̂ from the BCD algorithm. To better quantify the significance, we also include a
standardized Z-score of the LR statistic, Z = (LR− df)/

√
2df , as df and 2df are the mean

and the variance of the LR statistic under the null. Since most standard DAG structure
learning methods ignore data dependence, this application shows that considering such
dependence would improve goodness of fit of DAG models. This confirms the dependence
among individual cells and implies that our proposed network model fits this real-world data
better.

Figure 11 shows the estimated CPDAGs after de-correlation for the case N = 383, which
corresponds to the minimum BIC for all three methods in our experiments. It is interesting
to note that a directed edge NANOG→POU5F1, between the two master regulators in
embryonic stem cells, appears in all three estimated CPDAGs, consistent with previously
reported gene regulatory networks (Chen et al., 2008; Zhou et al., 2007).
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Figure 11: Estimated gene regulatory networks (CPDAGs) after de-correlation, with E
edges and U undirected edges colored in red.
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7. Discussion

In this paper our main goal is to generalize the existing Gaussian DAG model to dependent
data. We proposed to model the covariance between observations by assuming a non-diagonal
covariance structure of the noise vectors. Our main contributions include the development of
a consistent structural learning method for the DAG and the sample network under sparsity
assumptions and finite-sample guarantees for the estimators.

Our proposed BCD algorithm is built upon existing Lasso regression and graphical
Lasso covariance estimation methods. When a topological ordering of the true DAG is
known, it estimates the covariance between the observations Σ and the WAM of the DAG
B in an iterative way. The method is fast and often converges in a few iterations. Our
theoretical analysis shows that the estimates after one iteration are `2-consistent under
various asymptotic frameworks including both n � p and n � p, assuming a proper
initialization of the precision matrix Θ̂(0). The estimate of the DAG WAM B̂(1) achieves
the optimal rate as Lasso estimators. The estimate of the precision matrix Θ̂(1) achieves
the same optimal rate as the graphical Lasso method when n� p and there are sufficiently
many independent subgroups within the data. Otherwise, it has a slightly worse rate due
to the bias of the sample covariance matrix. We have shown that covariance Σ is invariant
under permutations of the DAG nodes. Therefore, when the ordering is unknown but the
true DAG is sparse, our BCD algorithm can still give a good estimate of Θ which can be
used to de-correlate the data. In addition to the theoretical analysis, we conducted extensive
experiments on both synthetic and real data to compare our method with existing methods.
When a true ordering of the DAG was given, the BCD algorithm significantly improved the
structural estimation accuracy compared to the baseline method which ignored the sample
dependency. When the ordering was unknown, classical DAG learning methods, such as
GES, PC, and sparsebn, can all be greatly improved with respect to structural learning
of CPDAGs by using our proposed de-correlation method based on the BCD algorithm.
In all cases, our estimation methods under the proposed network Gaussian DAG model
yielded significantly higher test data log-likelihood compared to other competing methods,
indicating better predictive modeling performance.

There are several unexplored directions from our research. First, the current error bounds
and consistency results are based on a known topological ordering of the true DAG. In
practice, however, it can be hard to obtain the order in advance. It would be interesting
to see if we can combine the method of estimating partial orders such as Niinimäki et al.
(2016) with our method and extend the theoretical results. Second, part of the reason the
current model relies on a known DAG ordering is the lack of experimental data. From
purely observational data, it is impossible to orient some of the edges and find a topological
ordering of the true DAG. In the next step, we would like to extend our method to handle
both observational and experimental data sets. Finally, there are recent methods that use
continuous optimization for DAG learning without imposing the acyclicity constraint, such
as NOTEARS (Zheng et al., 2018). It is a promising future direction to incorporate such
ideas into DAG learning on network data.
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Appendix A. Technical Details of Section 4

A.1 Some Auxiliary Results

Here we introduce four lemmas that we use to establish the error bounds of Θ̂(1) and
B̂(1). Let us start by deriving an upper bound on the `2 deviation of L̂(0) from L∗ under
Assumption 1.

Lemma 11 Suppose Assumption 1 holds and let L∗ and L̂(t) be the Cholesky factors of Θ∗

and Θ̂(t), respectively. Let ∆̂
(t)
chol = L̂(t) − L∗. Then,

‖∆̂(0)
chol‖2 ≤

M

2σmin(L∗)
,

where σmin(L∗) is the smallest singular value of L∗, and M is from Assumption 1.

To generalize the basic bound on ‖β̂lasso − β∗j ‖2 from Buhlmann and van de Geer (2011)
to dependent data, we need to control the `∞-norm of an empirical process component
2X>Θ̂(0)εj/n. Let us start with the case when the data are independent. Define the following

events, where X̃ = L∗X represents the independent data as explained in Section 4:

E :=

p⋂
k=1

{
‖X̃k‖2 ≤ 6ψ̄

√
n

}
. (25)

Then the following lemma follows from X̃ being sub-Gaussian.

Lemma 12 Let α ≥ 2 be an integer. If n > 2
√

2α log p, then the event E defined in (25)
holds with probability at least 1− 1/pα−1.

Next, let X̃[j−1] denote the first j − 1 columns in X̃ and define the following events that
depend on λn

Tj :=
{

2‖X̃>[j−1]ε̃j‖∞/n ≤ λn
}
, j = 1, . . . , p

T :=

p⋂
j=1

Tj , (26)

where ε̃j = L∗εj for j ∈ [p].

Lemma 13 Let X̃k consist of n i.i.d sub-Gaussian random variables with parameter ψ̄2 for
k = 1, . . . , p. If n > 4 log p and

λn = 12ψ̄ω̄

(√
2 log p

n
+

√
2 log 2 + 4 log p

n

)
,

then the probability of T satisfies

P(T ) ≥
(

1− 1

p

)2

.
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Lemma 13 implies that if λn �
√

log p
n , then the error terms will be uniformly under control

with high probability, especially when both n and p are large.

Lemma 14 (Maximal inequality) Let xi = (xi1, . . . , xip) be a random vector where each
element xij is sub-Gaussian with parameter ψ̄2, then

P
(
‖xi‖∞ ≥ 2ψ̄

√
log p

)
≤ 2/p.

From model (3), it is clear that each row in X̃ is sub-Gaussian with parameter ψ̄2. By
Lemma 14, we have ‖x̃i‖∞ .

√
log p w.h.p.

A.2 Error Bound of B̂(1)

The estimation error bound for the classical Lasso problem where samples are i.i.d. was
established by choosing a penalty parameter that dominates the measurement error term.
Specifically, as shown in Lemma 13, this can be achieved with high probability by setting

λn �
√

log p
n . In order to prove the consistency of B̂(1) from Algorithm 1, we need to control

a similar error term which depends on Θ̂(0). Notably, such error can be controlled under the
same rate as λn:

Theorem 15 (Control the empirical process) Let λn be the same as in Lemma 13.
Suppose the initial estimator Θ̂(0) satisfies Assumption 1. Then for n > 4 log p,

P

(
sup
j∈[p]

2‖X>Θ̂(0)εj‖∞/n ≤ λn

)
≥
(

1− 1

p

)(
1− 2

p

)
. (27)

Next, we show that the random matrix L̂(0)X satisfies the Restricted Eigenvalue (RE)
condition (Wainwright, 2019) w.h.p. Towards that end, we define the event K as in
Theorem 7.16 from Wainwright (2019) given as

K :=

{
‖X̃β‖22/n ≥ c̃1‖

√
Ψ∗β‖22 − c̃2ρ

2(Ψ∗)
log p

n
‖β‖21

}
, (28)

where ρ2(Ψ∗) is the maximum diagonal entry of Ψ∗, X̃ = L∗X is the de-correlated data,
and c̃1 < 1 < c̃2 are positive constants.

Lemma 16 (Restricted eigenvalue condition) Consider a random matrix X ∈ Rn×p
drawn from Nn×p(0,Σ∗,Ψ∗). Let Θ̂(0) be the initial estimate of Θ∗ = Σ∗−1 satisfying

Assumption 1, L̂(0) be the Cholesky factor of Θ̂(0), and ρ2(Ψ∗) be the maximum diagonal
entry of Ψ∗. Then under event K defined in (28), there are universal positive constants
c1 < 1 < c2 such that

‖L̂(0)Xβ‖22
n

≥ c1‖
√

Ψ∗β‖22 − c2ρ
2(Ψ∗)

log p

n
‖β‖21, (29)

for all β ∈ Rp.

34



Learning Gaussian DAGs from Network Data

Theorem 7.16 from Wainwright (2019) shows that the event K happens with high
probability. This event is a restriction on the design matrix X̃ and it holds with high
probability for a variety of matrix ensembles. With Theorem 15 and Lemma 16, it is possible
to prove an oracle inequality for the dependent Lasso problem, which yields a family of
upper bounds on the estimation error.

Theorem 17 (Lasso oracle inequality) Consider the Lasso problem in (9) for t = 0.
Suppose the inequality (29) and the event in (27) hold. Let κ̄ = σmin(Ψ∗). For j ∈ [p] and
any β∗j ∈ Rp, if

λn ≥ 12ψ̄ω̄

(√
2 log p

n
+

√
2 log 2 + 4 log p

n

)
,

then any optimal solution β̂
(1)
j satisfies:

‖β̂(1)
j − β

∗
j ‖22 ≤

144λ2
n

c2
1κ̄

2
|S|+ 32λn

c1κ̄
‖β∗j,Sc‖1 +

128c2

c1

ρ2(Ψ∗)

κ̄

log p

n
‖β∗j,Sc‖21, (30)

for any subset S with cardinality |S| ≤ c1
64c2

κ̄
ρ2(Ψ∗)

n
log p . Let L̂(0) be the Cholesky factor of

Θ̂(0). Then,

1

n

∥∥∥L̂(0)X(β̂
(1)
j − β

∗
j )
∥∥∥2

2
≤ 6λn‖β∗j ‖1. (31)

Theorem 17 implies, with high probability, that supj∈[p] ‖β̂
(1)
j −β∗j ‖22 ≤

768λ2n
c21κ̄

2 s � s log p
n , where

s is the maximum in-degree of the true DAG.

A.3 Error Bounds of Θ̂(1)

Recall that s denotes the maximum number of nonzero entries in β∗j for j ∈ [p]. In order to

control ‖Θ̂(1) −Θ∗‖2, we need to rely on certain type of error bound on Ŝ(1) − Σ∗, where
Ŝ(1) is the sample covariance defined in (10) for t = 0. Therefore, we adopt the definition of
tail condition on the sample covariance from Ravikumar et al. (2011).

Definition 18 (Tail conditions) We say the n×p random matrix X from model (2) satisfies
tail condition T (f, v∗) if there exists a constant v∗ ∈ (0,∞] and a function f : N× (0,∞)→
(0,∞) such that for any (i, j) ∈ [n]× [n],

P
[
|Ŝ(1)
ij − Σ∗ij | ≥ δ

]
≤ 1/f(p, δ) ∀δ ∈ (0, 1/v∗].

We require f(p, δ) to be monotonically increasing in p, so for a fixed δ > 0, define the inverse
function

p̄f (δ; r) := arg max {p | f(p, δ) ≤ r} .

Similarly, f should be increasing in δ for each fixed p, so we define an inverse function in
the second argument:

δ̄f (p; r) := arg max {δ | f(p, δ) ≤ r} . (32)

Under the setting of a Gaussian DAG model, we can derive a sub-Gaussian tail bound.
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Lemma 19 Let X be a sample from our Gaussian DAG model (2). The sample covariance
matrix

Σ̂ =
1

p

p∑
j=1

1

ω2∗
j

(
Xj −Xβ∗j

) (
Xj −Xβ∗j

)>
(33)

satisfies the tail bound

P

(
sup
i,j
|Σ̂ij − Σ∗ij | > δ

)
≤ 4 exp

{
− pδ2

3200

}
,

for all δ ∈ (0, 40).

Corollary 20 If f(p, δ) = 4 exp
{
pδ2

3200

}
, then the inverse function δ̄f (p;nτ ) takes the fol-

lowing form,

δ̄f (p;nτ ) = 40
√

2

√
τ log n− log 4

p
.

Based on the tail bound in Corollary 20, we can control the sampling noise Σ̂− Σ∗ as in
Lemma 21.

Lemma 21 (Lemma 8 in Ravikumar et al. 2011) Define event

A =
{
‖Σ̂− Σ∗‖∞ ≤ δ̄f (p;nτ )

}
, (34)

where δ̄f (p;nτ ) = 40
√

2
√

τ logn−log 4
p . For any τ > 2 and (n, p) such that δ̄f (p;nτ ) ≤ 1/40,

we have

P [Ac] ≤ 1

nτ−2
→ 0, as n→∞.

Recall r(Ω̂) defined in (12) and the constant b defined in Lemma 7.

Lemma 22 Suppose b > 0 and

sup
j
‖β̂(1)

j − β
∗
j ‖22 ≤ c · s

log p

n
≤ c · s2 log p

n
< 1, r(Ω̂) . 1, (35)

for a fixed positive constant c. Let Ŵ (1) := Ŝ(1) − Σ∗. Then, we have

‖Ŵ (1)‖∞ ≤ 40
√

2

√
τ log n

p
+ max

6ω̄r(Ω̂),
144ω̄ψ̄s

b

√
c log p log2 max{n, p}

n


with probability at least 1− 1/nτ−2 − 5n2/max{n, p}4.
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Theorem 23 Assume B̂(1) satisfies (35) and b > 0. Let

R̄(s, p, n) = max

6ω̄r(Ω̂),
144ω̄ψ̄s

b

√
log p log2 max{n, p}

n

 ,

δ̄f (p;nτ ) = 40
√

2

√
τ log n− log 4

p
.

Consider the graphical Lasso estimate Θ̂(1) from Algorithm 1 with λp = δ̄f (p;nτ ) + R̄ for
τ > 2. Assume

p̄f (1/max {160, 24mC} ;nτ ) ≤ p and R̄ ≤ 1

24mC
, (36)

where C = max
{
κΣ∗κΓ∗ , κ

3
Σ∗κ

2
Γ∗
}

, and m is the maximum degree of the undirected network
H∗. Then, with probability at least 1− 1/nτ−2 − 5n2/max{n, p}4, we have

‖Θ̂(1) −Θ∗‖∞ ≤ 4κΓ∗
(
δ̄f (p;nτ ) + R̄

)
,

‖Θ̂(1) −Θ∗‖2 ≤ 4κΓ∗(m+ 1)
(
δ̄f (p;nτ ) + R̄

)
.

Appendix B. Proofs of Main Results

We collect the proofs of our main theoretical results here, including Theorem 2 in Section 2,
Proposition 3 in Section 3, and Theorem 4, Corollary 8 and Corollary 9 in Section 4.

B.1 Proof of Proposition 3

Proof First, notice that, with probability one, X has full column rank. Also, because the
Cholesky factor L̂(t) is always positive definite for each iteration, L̂(t)X is in general position
a.s. Note that the two terms of (8) are differentiable (regular) and the whole function is
continuous. Furthermore, solving (8) with respect to each variable gives a unique coordinate-
wise minimum. Therefore, by Theorem 4.1 (c) in Tseng (2001), the block coordinate descent
converges to a stationary point.

B.2 Proof of Theorem 2

Proof According to the matrix normal presentation (3), we write L(B,Ω,Θ) = L(Ψ(B,Ω),Θ)
as the likelihood, where Ψ(B,Ω) = (I − B)−>Ω(I − B)−1. Since G1 and G2 are Markov
equivalent, they represent the same set of Gaussian distributions, each parameterized by a
covariance matrix Ψ. Let (B̂m, Ω̂m, Θ̂m) be any MLE given Gm for m = 1, 2. Then, there
exists (B̃2, Ω̃2), where B̃2 is a WAM for G2, such that Ψ(B̂1, Ω̂1) = Ψ(B̃2, Ω̃2). Therefore,

L(B̂1, Ω̂1, Θ̂1) = L(B̃2, Ω̃2, Θ̂1) ≤ L(B̂2, Ω̂2, Θ̂2).

By symmetry, L(B̂2, Ω̂2, Θ̂2) ≤ L(B̂1, Ω̂1, Θ̂1), and thus, L(B̂1, Ω̂1, Θ̂1) = L(B̂2, Ω̂2, Θ̂2).
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B.3 Proof of Theorem 4

Proof We first prove the consistency in B̂(1). Under Assumption 1, Theorem 15 shows that
for the given λn, the empirical process term of the noises can be uniformly bounded with high
probability. Therefore, in order to obtain the conclusion in Theorem 17, we only need the
inequality (29) in Lemma 16 to hold. Since the event K in (28) holds with high probability
by Theorem 7.16 in Wainwright (2019), (29) holds by Lemma 16. Next, we show Θ̂(1) is
consistent by invoking Theorem 23. For the chosen λp and under the constraint on (n, p)
specified in (16) and (17), the sample size requirement in (36) is satisfied. Therefore, the
results follow from Theorem 23. Combining Theorems 17 and 23, we get the desired results.

B.4 Proof of Corollary 8

Proof The rate of supj ‖β̂
(1)
j − β∗j ‖22 follows directly from the choice of λn �

√
log p
n . Since

r(Ω̂) = Op

(
s
√

log p
N

)
and p� n,

‖Θ̂(1) −Θ∗‖2 = Op

m
√ log n

p
+ smax


√

log p

N
,

√
log3 p

n




= Op

msmax


√

log p

N
,

√
log3 p

n


 (n & N)

= Op

ms
√

log3 p

n

 (N log2 p & n).

B.5 Proof of Corollary 9

Proof The rate of supj ‖β̂
(1)
j − β∗j ‖22 can be derived in the same way as in the proof of

Corollary 8. Since r(Ω̂) = Op

(
s
√

log p
N

)
and n� p,

‖Θ̂(1) −Θ∗‖2 = Op

m
√ log n

p
+ smax


√

log p

N
,

√
log p log2 n

n




= Op

m
√ log n

p
+ smax


√

log p

N
,

√
log p log2 n

n


 .
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Since N & s2p =⇒
√

logn
p &

√
s2 log p
N and n� s2p log p log n =⇒

√
logn
p &

√
s2 log p log2 n

n ,

we arrive at

‖Θ̂(1) −Θ∗‖2 = Op

(
m

√
log n

p

)
.

Appendix C. Proofs of Intermediate Results for Theorem 4

We include the proofs for all the intermediates results that lead to Theorem 4 in this section.

C.1 Proof of Theorem 15

Proof For any j = 1, . . . , p,

2

n
‖X>Θ̂(0)εj‖∞ =

2

n
‖X>(Θ∗ + ∆̂(0)

prec)εj‖∞ ≤
2

n
‖X̃>ε̃j‖∞ +

2

n
‖X>∆̂(0)

precεj‖∞

≤ 2

n
‖X̃>ε̃j‖∞ +

2

n
‖X̃>L∗−>∆̂(0)

precL
∗−1ε̃j‖∞.

Let K̂(0) = L∗−>∆̂
(0)
precL∗−1. Then following Assumption 1,

‖K̂(0)‖2 ≤ ‖∆̂(0)
prec‖2/σ2

min(L∗) ≤M/σ2
min(L∗).

Under event E defined in (25), for j ∈ [p],

‖K̂(0)X̃j‖2 ≤ 6ψ̄M
√
n/σ2

min(L∗) ≤ 6ψ̄
√
n.

For j ∈ [p], define the event

T j :=
{

2‖X̃>K̂(0)ε̃j‖∞/n < λn/2
}
.

Similar to the proof of Lemma 13, we can show

P
(
∪pj=1T

c
j

∣∣∣E ) ≤ 1

p
,

and together with Lemma 12 we have

P
(
T
⋂

T
)
≥ P

(
T
⋂

T | E
)
P (E ) ≥

(
1− 2

p

)(
1− 1

p

)
≥
(

1− 2

p

)2

,

where T is defined in (26).
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C.2 Proof of Lemma 16

Proof We observe that

‖L̂(0)Xθ‖2/
√
n ≥ ‖L∗Xθ‖2

√
n− ‖∆̂(0)

cholXθ‖2/
√
n

= ‖L∗Xθ‖2/
√
n− ‖∆̂(0)

cholL
∗−1L∗Xθ‖2/

√
n

≥
(

1− ‖∆̂(0)
chol‖2/σmin (L∗)

)
‖L∗Xθ‖2/

√
n

≥
(

1− M

2σ2
min (L∗)

)
‖X̃θ‖2/

√
n (By Assumption 1 and Lemma 11)

≥ 1

2
√
n
‖X̃θ‖2,

when n is sufficiently large. Since event K defined in (28) holds, by Theorem 7.16 in
Wainwright (2019), we have

‖L̂(0)Xθ‖22
n

≥ 1

4

(
c̃1‖
√

Ψ∗θ‖22 − c̃2ρ
2(Ψ∗)

log p

n
‖θ‖21

)
= c1‖

√
Ψ∗θ‖22 − c2ρ

2(Ψ∗)
log p

n
‖θ‖21,

where cj = c̃j/4, j = 1, 2.

C.3 Proof of Theorem 17

Proof Consider the penalized negative likelihood function from (9):

`(βj , λn) =
1

2n
‖L̂(0)Xj − L̂(0)Xβj‖22 + λn‖βj‖1.

For simplicity, we drop the superscript (t) in β̂(1) and L̂(0). Let ρ stand for ρ(Ψ∗), β∗j ∈ Rp ,

and ∆̂j = β̂j − β∗j . We start from the basic inequality (Wainwright, 2019):

`(β̂j , λn) ≤ `(β∗j , λn) =
1

2n
‖L̂εj‖22 + λn‖β∗j ‖1.

After rearranging some terms,

0 ≤ 1

2n
‖L̂X∆̂j‖22 ≤

ε>j Θ̂X∆̂j

n
+ λn

(
‖β∗j ‖1 − ‖β̂j‖1

)
. (37)

Next, for any subset S ⊆ [p], we have

‖β∗j ‖1 − ‖β̂j‖1 = ‖β∗j,S‖1 + ‖β∗j,Sc‖1 − ‖β∗j,S + ∆̂j,S‖1 − ‖∆̂j,Sc + β∗j,Sc‖1. (38)
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Combining (37) with (38), and applying triangle and Hölder’s inequalities,

0 ≤ 1

2n
‖L̂X∆̂j‖22 ≤

1

n
ε>j Θ̂X∆̂j + λn

(
‖∆̂j,S‖1 − ‖∆̂j,Sc‖1 + 2‖β∗j,Sc‖1

)
≤ ‖X>Θ̂εj‖∞/n‖∆̂j‖1 + λn

(
‖∆̂j,S‖1 − ‖∆̂j,Sc‖1 + 2‖β∗j,Sc‖1

)
≤ λn

2

(
‖∆̂j‖1 + 2‖∆̂j,S‖1 − 2‖∆̂j,Sc‖1 + 4‖β∗j,Sc‖1

)
≤ λn

2

[
3‖∆̂j,S‖1 − ‖∆̂j,Sc‖1 + 4‖β∗j,Sc‖1

]
, (39)

and so
‖∆̂j‖1 ≤ 4

(
‖∆̂j,S‖1 + ‖β∗j,Sc‖1

)
.

This inequality implies (by Cauchy-Schwarz inequality)

‖∆̂j‖21 ≤
(

4‖∆̂j,S‖1 + 4‖β∗j,Sc‖1
)2
≤ 32

(
|S| ‖∆̂j‖22 + ‖β∗j,Sc‖21

)
. (40)

Next, from (29) and (40), we know,

‖L̂X∆̂j‖22
n

≥
(
c1κ̄− 32c2ρ

2|S| log p

n

)
‖∆̂j‖22 − 32c2ρ

2 log p

n
‖β∗j,Sc‖21

≥ c1κ̄

2
‖∆̂j‖22 − 32c2ρ

2 log p

n
‖β∗j,Sc‖21, (41)

where the last inequality comes from the condition |S| ≤ c1
64c2

κ̄
ρ2(Ψ∗)

n
log p . Now we analyze

the following two cases regarding (41):

Case 1 Suppose that c1κ̄
4 ‖∆̂j‖22 ≥ 32c2ρ

2 log p
n ‖β

∗
j,Sc‖21, then from (39) we can get

c1κ̄

4
‖∆̂j‖22 ≤ λn

(
3
√
|S|‖∆̂j‖2 + 4‖β∗j,Sc‖1

)
.

Solving for the zeros of this quadratic form in ‖∆̂j‖2 yields

‖∆̂j‖22 ≤
144λ2

n

c2
1κ̄

2
|S|+

32λn‖β∗j,Sc‖1
c1κ̄

.

Case 2 Otherwise, we have c1κ̄
4 ‖∆̂j‖22 ≤ 32c2ρ

2 log p
n ‖β

∗
j,Sc‖21.

After combining the two cases, we obtain the claimed bound in (30). To get the prediction
bound in (31), we first show ‖∆̂j‖1 ≤ 4‖β∗j ‖1. From basic inequality, we have

0 ≤ 1

2n
‖L̂X∆̂j‖22 ≤

ε>j Θ̂X∆̂j

n
+ λn

(
‖β∗j ‖1 − ‖β̂j‖1

)
.

By Hölder’s inequality and Theorem 15, with high probability, we have that∣∣∣∣∣ε>j Θ̂X∆̂j

n

∣∣∣∣∣ ≤
∥∥∥∥∥X>Θ̂εj

n

∥∥∥∥∥
∞

‖∆̂j‖1 ≤
λn
2

(
‖β∗j ‖1 + ‖β̂j‖1

)
.
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Combine the two inequalities above, we get

0 ≤ 3λn
2
‖β∗j ‖1 −

λn
2
‖β̂j‖1,

which implies ‖β̂j‖1 ≤ 3‖β∗j ‖1. Consequently, we have

‖∆̂j‖1 ≤ ‖β̂j‖1 + ‖β∗j ‖1 ≤ 4‖β∗j ‖1.

Return to the basic inequality, we have

‖L̂X∆̂j‖22
2n

≤ λn
2
‖∆̂j‖1 + λn

(
‖β∗j ‖1 − ‖β∗j + ∆̂j‖1

)
≤ 3

2
λn‖∆̂j‖1 ≤ 6λn‖β∗j ‖1.

C.4 Proof of Lemma 19

Proof The proof follows a similar approach as the proof for Lemma 1 in Ravikumar et al.
(2011).

C.5 Proof of Corollary 20

Proof A little calculation using Lemma 19 and Definition 18 shows that the corresponding
inverse functions for data from the Gaussian DAG model (2) are:

δ̄f (p; r) = 40

√
2 log(r/4)

p
, and p̄f (δ; r) =

3200 log(r/4)

δ2
.

Setting r = nτ yields the desired result.

C.6 Proof of Lemma 22

Proof Let Ŝ
(t)
ij denote the (i, j) entry of the sample variance matrix Ŝ(t) defined in (10). Let

Xi· and X·j denote the ith row and jth column of X, respectively. Let ε∗ik := Xik −Xi·β
∗
k

where β∗k is the kth column of B∗, ρ∗k = 1/ω∗2k , ρ̂k = 1/ω̂2
k, ∆̂

(t)
k := β̂

(t)
k −β

∗
k , and δ̂k = ρ̂k−ρ∗k.
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Then,

Ŝ
(1)
ij =

1

p

p∑
k=1

ρ̂k

(
Xik −Xi·β̂

(1)
k

)(
Xjk −Xj·β̂

(1)
k

)
=

1

p

p∑
k=1

ρ̂k

(
ε∗ik −Xi·∆̂

(1)
k

)(
ε∗jk −Xj·∆̂

(1)
k

)
= Σ̂ij +

1

p

p∑
k=1

ρ∗k

(
−ε∗ikXj·∆̂

(1)
k − ε

∗
jkXi·∆̂

(1)
k +Xi·∆̂

(1)
k Xj·∆̂

(1)
k

)
+

1

p

p∑
k=1

δ̂k

(
ε∗ik −Xi·∆̂

(1)
k

)(
ε∗jk −Xj·∆̂

(1)
k

)
= Σ̂ij +

1

p

p∑
k=1

ρ̂k

(
−ε∗ikXj·∆̂

(1)
k − ε

∗
jkXi·∆̂

(1)
k +Xi·∆̂

(1)
k Xj·∆̂

(1)
k

)
+

1

p

p∑
k=1

δ̂kε
∗
ikε
∗
jk.

If we let Rij = 1
p

∑p
k=1 ρ̂k

(
−ε∗ikXj·∆̂

(1)
k − ε

∗
jkXi·∆̂

(1)
k +Xi·∆̂

(1)
k Xj·∆̂

(1)
k

)
+ 1

p

∑p
k=1 δ̂kε

∗
ikε
∗
jk,

we can upper bound |Rij | by dividing it into three terms and controlling each term separately.

Part 1.
Define the following events:

B1 =
n⋃
i=1

{
‖ε∗i·‖∞ ≥ 6ω̄

√
log max{n, p}

}
,

B2 =
n⋃
k=1

{
‖ε∗k·‖2 ≥ 6ω̄

√
p

}
,

B3 =
n⋃
k=1

{
‖Xk·‖∞ ≥ 6ψ̄

√
log max{n, p}

}
.

Under event B1, B2, and B3,∣∣∣∣1p
p∑

k=1

ρ̂kε
∗
ikXj·∆̂

(1)
k

∣∣∣∣ ≤ 1

b
sup
k
|ε∗ikXj·∆̂

(1)
k | (By Lemma 7)

≤ 6ω̄

b

√
log max{n, p} sup

k
‖Xj·‖∞‖∆̂(1)

k ‖1 (By Hölder’s Inequality and B1)

≤
6ω̄s

√
c log p log max{n, p}

b
√
n

‖Xj·‖∞ (From ‖∆̂(1)
k ‖1 ≤ 4

√
2s‖∆̂(1)

k ‖2)

≤ 36ω̄ψ̄s

b

√
c log p log2 max{n, p}

n
(By event B3).

=
36ω̄ψ̄

b
· log max{n, p} ·

√
cs2 log p

n
. (42)

where b > 0 is the same constant defined in Lemma 7. The second last inequality comes
from ‖∆̂(1)‖1 ≤ 4

√
2s‖∆̂(1)‖2 in the proof of Theorem 17.
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Part 2
Notice that ∣∣∣∣1p

p∑
k=1

ρ̂kXi·∆̂
(1)
k Xj·∆̂

(1)
k

∣∣∣∣ ≤ 2

b
sup
k
|Xj·∆̂

(1)
k ||Xi·∆̂

(1)
k |

≤ 2s2 log p

bn
‖Xj·‖∞‖Xi·‖∞

≤ 12ψ̄s2

b

√
c log2 p log2 max{n, p}

n2

=
12ψ̄

b
· log max{n, p} ·

√
c
s2 log p

n
. (43)

Since s2 log p
n . 1 from the assumption, E.q. (42) dominates E.q. (43).

Part 3
By definition, ‖δ̂‖∞ = supk |ρ̂k − ρ∗k| = supk |1/ω̂2

k − 1/ω∗2k | = r(Ω̂). Combining with B2, we
have ∣∣∣∣1p

p∑
k=1

δ̂kε
∗
ikε
∗
jk

∣∣∣∣ ≤ 1

p
‖δ̂‖∞

p∑
k=1

|ε∗ikε∗jk| ≤
1

p
‖δ‖∞‖ε∗i·‖2‖ε∗j·‖2 ≤ 6ω̄‖δ̂‖∞ = 6ω̄r(Ω̂).

Combine all three parts, we have

|Rij | ≤ max

6ω̄r(Ω̂),
144ω̄ψ̄s

b

√
c log p log2 max{n, p}

n

 .

Using Lemma 14 and Lemma 12, we can derive the upper bound for the probabilities of
B1,B2,B3:

P (B1) ≤ 2/max{n, p}4,
P (B2) ≤ 1/max{n, p}4 if n > 2

√
10 log max{n, p},

P (B2) ≤ 2/max{n, p}4,

P

(
3⋃
l=1

Bi

)
≤ 5/max{n, p}4.

Applying union bound,

‖R‖∞ ≤ max

6ω̄r(Ω̂),
144ω̄ψ̄s

b

√
c log p log2 max{n, p}

n

 ,

with probability at least 1− 5n2

max{n,p}4 . Take event A from Lemma 21 into account and apply

union bound one more time, we arrive at the desired conclusion.
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C.7 Proof of Theorem 23

Proof Let R̄(s, p, n) and δ̄f (p;nτ ) be defined as stated, then the monotonicity of the inverse
tail function (32) and condition (36) on (n, p) implies that δ̄f (p;nτ ) ≤ 1/40. Lemma 21 and
Lemma 22 imply that the event A defined in (34) and the events B1,B2,B3 defined in the
proof of Lemma 22 hold with high probability. Assume A,B1,B2,B3 hold. Then,

‖Ŵ (1)‖∞ ≤ δ̄f (p;nτ ) + R̄(s, p, n).

Choose λp = δ̄f (p;nτ ) + R̄. By Lemma 22, condition (36), and the monotonicity:

p > p̄f (δ, r) =⇒ δ̄f (p, r) ≤ δ for δ > 0,

we have that

2κΓ∗

(
‖Ŵ (1)‖∞ + λp

)
≤ 4κΓ∗

(
δ̄f (p;nτ ) + R̄

)
≤ min

{
1

3κΣ∗m
,

1

3κ3
Σ∗2κΓ∗m

}
.

Applying Lemma 6 in Ravikumar et al. (2011) we obtain

‖Θ̂(1) −Θ∗‖∞ ≤ 4κΓ∗
(
δ̄f (p;nτ ) + R̄

)
,

‖Θ̂(1) −Θ∗‖2 ≤ ‖A‖2‖Θ̂(1) −Θ∗‖∞ ≤ (m+ 1)‖Θ̂(1) −Θ∗‖∞.

Appendix D. Proofs of Other Auxiliary Results

This section includes the proofs for Lemma 6 and 7 as well as the four lemmas introduced in
Section A.1.

D.1 Proof of Lemma 6

Proof Notice that

sup
j

∣∣∣∣ω̂2
j − ω∗2j

∣∣∣∣ = sup
j

∣∣∣∣ω̂2
j −
‖ε(B)
j ‖22
N

+
‖ε(B)
j ‖22
N

− ω∗2j
∣∣∣∣

≤ sup
j

∣∣∣∣ω̂2
j −
‖ε(B)
j ‖22
N

∣∣∣∣+ sup
j

∣∣∣∣‖ε(B)
j ‖22
N

− ω∗2j
∣∣∣∣.

We will show separately that with the desired probability:

sup
j

∣∣∣∣ω̂2
j −
‖ε(B)
j ‖22
N

∣∣∣∣ ≤ λNsβ̄, (44)

sup
j

∣∣∣∣‖ε(B)
j ‖22
N

− ω∗2j
∣∣∣∣ ≤ 5ω̄

√
log 2 + log p

N
. (45)
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From Lemma 1 in Yu and Bien (2019) we know that if λN ≥ N−1‖X(B)>ε
(B)
j ‖∞, then∣∣∣∣ω̂2

j −N−1‖ε(B)
j ‖

2
2

∣∣∣∣ ≤ 2λN‖β∗j ‖1 ≤ λNsβ̄.

Pick λN = 12ψ̄ω̄

(√
2 log p
N +

√
2 log 2+6 log p

N

)
, then applying the tail bound for maxima of

sub-Gaussian random variables (e.g., see proof of Lemma 13) we can show that

λN ≥ sup
j
N−1‖X(B)>ε

(B)
j ‖∞

holds with probability at least (1− 1
p)2. This proves the inequality in (44). To prove the

second inequality, notice that, from χ2 concentration inequality (e.g. Wainwright 2019
Example 2.11),∣∣∣∣ω∗2j − 1

N
‖ε(B)
j ‖

2
2

∣∣∣∣ ≥ 2
√

2ω̄

√
log 2 + 3 log p

N
with probability at most 1/p3,

sup
j

∣∣∣∣ω∗2j − 1

N
‖ε(B)
j ‖

2
2

∣∣∣∣ ≥ 2
√

2ω̄

√
log 2 + 3 log p

N
with probability at most 1/p2.

Combining all the inequalities, we can show that the second inequality holds with probability
at least (1− 1/p)2 − 1/p.

D.2 Proof of Lemma 7

Proof Simply notice that

sup
1≤j≤p

∣∣∣∣ 1

ω̂2
j

− 1

ω∗2j

∣∣∣∣ = sup
1≤j≤p

∣∣∣∣ 1

ω̂2
jω
∗2
j

∣∣∣∣ sup
1≤j≤p

∣∣∣∣ω∗2j − ω̂2
j

∣∣∣∣ ≤ 1

b4
sup

1≤j≤p
|ω∗2j − ω̂2

j |.

D.3 Proof of Lemma 11

Proof The claim follows since

‖∆̂prec‖2 = ‖Θ̂−Θ∗‖2 = ‖
(
L∗ + ∆̂chol

)> (
L∗ + ∆̂chol

)
− L∗>L∗‖2

= ‖L∗>∆̂chol + ∆̂>cholL
∗ + ∆̂>chol∆̂chol‖2

≥ max
x∈Sn−1

x>
(
L∗>∆̂chol + ∆̂>cholL

∗ + ∆̂>chol∆̂chol

)
x

≥ max
x∈Sn−1

x>
(
L∗>∆̂chol + ∆̂>cholL

∗
)
x (as ∆̂>chol∆̂chol ≥ 0.)

= ‖L∗>∆̂chol + ∆̂>cholL
∗‖2 ≥ 2σmin (L∗) ‖∆̂chol‖2.

46



Learning Gaussian DAGs from Network Data

D.4 Proof of Lemma 12

Proof Notice that X̃k ∈ Rn is a sub-Gaussian random vector with variance smaller than ψ̄.
By Theorem 1.19 in Rigollet (2015), we have that

P
(
‖X̃k‖2 > 4ψ̄

√
n+ 2ψ̄

√
2 log(1/δ)

)
≤ δ ∀δ > 0.

Setting δ = 1/pα and using union bound we obtain the desired conclusion.

D.5 Proof of Lemma 13

Proof Lemma 12 implies that with probability at least 1− 1/p,

‖X̃k‖2 ≤ 4ψ̄
√
n+ 2ψ̄

√
2 log p ≤ 6ψ̄

√
n, (46)

for all k. Under the event E defined in (25), ‖X̃>[j−1]ε̃j‖∞/n corresponds to the absolute

maximum of j − 1 zero-mean Gaussian variables, each with variance at most 36ψ̄2ω̄2/n.
Next, we calculate the probability of the event T ∩ E , where δ = 1/p2. We also let

t =

√
2 log 2 + 4 log p

n
,

λn = 12ψ̄ω̄

(√
2 log p

n
+ t

)
.

Because both X̃ and ε̃ are random, we use the equivalence: p(y) = Ep(x) [p(y | x)] to apply
the properties of fixed-design Lasso: Let X[j−1] denote the first j − 1 columns in X,

1− P(Tj | E ) = EX[j−1]
P
{

2‖X̃>[j−1]ε̃j‖∞/n > λn | X[j−1],E
}

= EX[j−1]
P

{
‖X̃>[j−1]ε̃j‖∞/n > 6ψ̄ω̄

(√
2 log p

n
+ t

)∣∣∣∣∣X[j−1],E

}

≤ 2 exp

{
−nt

2

2

}
= 1/p2,

where in the last inequality we apply the tail bound on the maxima of sub-Gaussian random
variables (Duchi, 2017): If Xj ∼ subGaussian(σ2) are i.i.d., then

P
(

max
1≤j≤n

Xj ≥
√

2σ2 log n+ t

)
≤ exp

(
− t2

2σ2

)
.

Hence,

1− P (T | E ) = 1− P
(
∩pj=1Tj

∣∣∣E ) = P
(
∪pj=1T

c
j

∣∣∣E ) ≤ 1

p
. (47)

Finally, by Lemma 12 with α = 2 we get

P(T ) ≥ P(E )P (T | E ) ≥
(

1− 1

p

)2

. (48)
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D.6 Proof of Lemma 14

Proof By the sub-Gaussian maximal inequality (e.g., Theorem 1.14 in Rigollet 2015), we
know that if X1, . . . XN are random variables such that Xi ∼ sub-Gaussian with parameter
σ2, then for any t > 0,

P
(

max
1≤i≤N

|Xi| ≥ t
)
≤ 2N exp

(
− t2

2σ2

)
.

Letting t =
√

4ψ̄2 log p and taking σ2 = ψ̄2, we arrive at the desired result.
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