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Abstract

Estimation of Gaussian graphical models is important in natural science when modeling
the statistical relationships between variables in the form of a graph. The sparsity and clus-
tering structure of the concentration matrix is enforced to reduce model complexity and
describe inherent regularities. We propose a model to estimate the sparse Gaussian graphi-
cal models with hidden clustering structure, which also allows additional linear constraints
to be imposed on the concentration matrix. We design an efficient two-phase algorithm
for solving the proposed model. Specifically, we develop a symmetric Gauss-Seidel based
alternating direction method of multipliers (sGS-ADMM) to generate an initial point to
warm start the second phase algorithm, which is a proximal augmented Lagrangian method
(pALM), to get a solution with high accuracy. Numerical experiments on both synthetic
data and real data demonstrate the good performance of our model, as well as the efficiency
and robustness of our proposed algorithm.

Keywords: sparse Gaussian graphical model, clustered lasso regularizer, proximal aug-
mented Lagrangian method

1. Introduction

Let z ∈ Rn be a random vector following a multivariate Gaussian distribution N (0,Σ)
with an unknown covariance matrix Σ. The Gaussian graphical model (Lauritzen, 1996) is
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commonly-used to estimate the concentration matrix Σ−1 from samples of z, which can be
represented by an undirected graph G = (V, E), where the vertices V contain n coordinates
and the edges E = (eij)1≤i<j≤n describe the conditional independence relationships among
z1, · · · , zn. There is no edge between zi and zj if and only if (Σ−1)ij = 0, which means that
zi and zj are conditionally independent, given all the other variables. To detect nonzero
elements in the concentration matrix Σ−1, researchers have proposed sparse Gaussian graph-
ical models (Yuan and Lin, 2007; Banerjee et al., 2008). Given a sample covariance matrix
C ∈ Sn+, the sparse Gaussian graphical model attempts to estimate the concentration matrix
X∗ := Σ−1 by solving the following `1-regularized log-likelihood minimization problem:

min
X�0

{
〈C,X〉 − log det(X) + ρ

∑
i<j

|Xij |
}
, (1)

where ρ is a given positive parameter, 〈C,X〉 is the standard trace inner product between
C and X, and X � 0 means that X ∈ Sn is positive semidefinite. We adopt the convention
that log 0 := −∞. The `1-norm penalty, which is motivated by the lasso idea (Tibshirani,
1996), enforces element-wise sparsity on X. There are many methods for solving the sparse
Gaussian graphical model, such as the well-known GLasso algorithm (Friedman et al., 2008),
the Newton-CG primal proximal point algorithm (Wang et al., 2010), and QUIC (Hsieh
et al., 2014).

In the general setting of concentration matrix estimations with non-Gaussian variables,
the model (1) is also called as the regularized log-determinant Bregman divergence model
(Kulis et al., 2006; Davis et al., 2007; Dhillon and Tropp, 2008; Ravikumar et al., 2011),
whose derivation is based on minimizing the Bregman divergence between the estimated
concentration matrix and the true concentration matrix:

D(X‖Σ−1) := − log detX + log det Σ−1 + 〈Σ, X − Σ−1〉,

with the unknown true covariance matrix Σ replaced by the sample covariance matrix C.
The edge weights learned by the log-determinant Bregman divergence model quantify the
similarities between nodes. This is because the trace term can be written as the Laplacian
quadratic form (Kalofolias, 2016; Dong et al., 2016; Kumar et al., 2019; Ying et al., 2020),
which tends to assign a large weight between nodes if their signal values are similar to each
other. Indeed, the similarities represented by the edges in the log-determinant Bregman
divergence model can be seen as a generalization of the conditional dependence represented
by the edges in the Gaussian graphical model. Furthermore, the model (1) and its variants
has been widely-used to study the similarity graph of observations, see Kumar et al. (2020);
Ying et al. (2020).

The concentration matrix may have additional structures other than sparsity. For ex-
ample, Honorio et al. (2009) enforce the local constancy to find connectivities between two
close or distant clusters of variables; Højsgaard and Lauritzen (2005, 2008a) propose the
restricted concentration models where parameters associated with edges or vertices of the
same class are restricted to being identical; Duchi et al. (2012) penalize certain groups of
edges together. In all these models, the clustering structure of the edges or vertices is as-
sumed to be known. However, in many real applications like the gene expression in cancer
data (Hughes et al., 2000; Yu et al., 2017), the group/cluster information may be unknown in
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advance. In order to deal with the unknown group assignments, some researchers construct
hierarchical probabilistic models with variational and Bayesian methods to infer the group
structure and estimate the concentration matrix. For example, Marlin and Murphy (2009)
propose a two stage method, wherein a variational Bayes algorithm is proposed to learn the
block structure in the first stage, and then the concentration matrix is estimated by using
the block `1 method in the second stage; Ambroise et al. (2009) and Marlin et al. (2012)
introduce latent variables with Laplace distributions as the priori information to indicate
group assignments, and then perform an EM algorithm and a variational algorithm to learn
the group structure and perform the estimation; Sun et al. (2014) propose a nonparametric
Bayesian method which uses Chinese Restaurant Process and Wishart prior to model the
group assignments and the concentration matrix, respectively, and adopts Gibbs sampling
to estimate the posterior distribution of the group assignment variables; Sun et al. (2015)
propose a generative model to describe graphical models on exponential families with soft
clusters as well as overlapping blocks by applying an EM algorithm with variational infer-
ence. In addition to the hierarchical probabilistic models, Hosseini and Lee (2016) propose
a non-convex optimization model to learn the group structure and the concentration matrix
jointly, but it needs to know the number of clusters in advance.

Here we aim to propose a convex optimization model to estimate the sparse concentra-
tion matrix with hidden clustering structure. Note that in the context of a linear regression
model where the regression coefficients are expected to be clustered into groups, the clus-
tered lasso regularizer (Bondell and Reich, 2008; She, 2010; Petry et al., 2011; Lin et al.,
2019) has been widely used. We borrow the idea of the regularization term to discover
the sparsity and unknown clustering structure in the Gaussian graphical models. Thus we
modify the sparse Gaussian graphical model (1) as follows:

min
X�0

{
〈C,X〉 − log det(X) + ρ

∑
i<j

|Xij |+ λ
∑
i<j

∑
s<t

|Xij −Xst|
}
, (2)

where ρ, λ > 0 are given parameters. In the above model, the penalty on the pairwise
differences is to force those entries of the concentration matrix associated with the same
cluster of the edges to be the same. The idea of clustering the off-diagonal entries of
the concentration matrix can be traced back to the work of Højsgaard and Lauritzen in
(Højsgaard and Lauritzen, 2005, 2008a,b; Lauritzen and Højsgaard, 2008; Højsgaard, 2008).
This line of research focuses on estimating the edge coloring graph via Gaussian graphical
models, where the entries of the concentration matrix associated with the edges of the same
color are restricted to be identical. As the number of ways of coloring edges in a given
graph is enormous, the estimation of the concentration matrix has always been difficult.
The additional clustered lasso regularzier on the off-diagonal entries will help us explore the
unknown edge coloring structure without the need of brute-force search.

As pointed out in Friedman et al. (2001) and Dahl et al. (2008), the multivariate Gaus-
sian distribution may be known to be Markov with respect to a given undirected network,
that is, the sparsity pattern of Σ−1 may be a priori known in advance. In some more compli-
cated cases, the conditional independence pattern may be partially known from some prior
knowledge of the random variables, as stated in Lu (2010). In addition, in some applications
such as the zero mean AR(k) process {Yt} with Yt =

∑k
j=1 φjYt−j + εt, it is known that the

concentration matrix Σ−1 is a bandlimited matrix with (Σ−1)ij = 0 if |i− j| > k. To deal

3



Lin, Sun, Toh and Wang

with these cases, one can impose additional constraints on X to get the following model:

min
X∈Sn

{
〈C,X〉−log det(X)+ρ

∑
i<j

|Xij |+λ
∑
i<j

∑
s<t

|Xij−Xst|
∣∣ Xij =0, (i, j)∈J , X � 0

}
, (3)

where J is the set of pairs of nodes (i, j) such that zi and zj are known to be conditionally
independent.

Motivated by the above discussions, in this paper, we consider a more general problem
which allows for general linear equality constraints to be imposed on X, that is,

min
X∈Sn

{
〈C,X〉 − log det(X) + ρ

∑
i<j

|Xij |+ λ
∑
i<j

∑
s<t

|Xij −Xst|︸ ︷︷ ︸
Q(X)

∣∣ AX = b, X � 0
}
, (P)

where A : Sn → Rm is a given linear map, b ∈ Rm is a given vector, ρ, λ > 0 are given
parameters. Without loss of generality, we always assume that A : Sn → Rm is surjective.
Notice that by introducing the general linear constraints in (P), we can treat different linear
constraints in a unified manner during the analysis and algorithm design. For example, it
enables us to deal with the case when the conditional independence pattern is partially
known (Friedman et al., 2001; Dahl et al., 2008; Lu, 2010) as stated in (3). Moreover,
in some applications where the covariance matrix is known to have a Toeplitz structure,
like the weakly-stationary continuous-time stochastic process, one knows that the entries of
the concentration matrix must satisfy some additional constraints (Rodman and Shalom,
1992), for example, the ith row of the concentration matrix is equal to its (n − i + 1)th
column in reverse order for each i = 1, . . . , n. Another example comes from the matrix
nearness problem (Kulis et al., 2006; Davis et al., 2007; Dhillon and Tropp, 2008), where
we may have similarity constraints like (ei − ej)TX(ei − ej) ≤ u for (i, j) in a given index
set S or dissimilarity constraints like (ei − ej)TX(ei − ej) ≥ l for (i, j) in a given index
set D. Furthermore, more complicated linear constraints arising from various scenarios are
also possible, such as 1) click-through feedback in unsupervised learning; 2) must-link and
cannot-link constraints in semi-supervised learning; 3) points in the same class have “small”
distance in supervised learning. Such additional constraints can then be handled by the
general linear constraints in (P), with an additional nonnegative slack variable to handle
inequality constraints when necessary.

Solving the problem (P) with a large n is a challenging task due to the combined effects
of the n×n positive semidefinite variable, and the complicated regularization term, together
with the linear constraints. At a first glance, it would appear to be extremely expensive to
evaluate the second part of Q(X) as it involves approximately n4/8 terms, thus it becomes
unthinkable to even compute the objective function value of (P) for the case when n is
large. Fortunately, as we shall see later, the symmetric nature of the summation allows
us to carry out the evaluation of the regularization term in O(n2 log n) operations. This
reduction in the computation cost makes it possible to solve the problem (P) for large n.

Our contributions in this paper can be summarized in three parts.
1 Firstly, we propose the convex optimization model (P) to estimate the sparse Gaussian

graphical model with hidden clustering structure, which also allows additional linear
constraints to be imposed on the concentration matrix.
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2 Secondly, we design an efficient two-phase algorithm for solving the dual of (P). We
develop a symmetric Gauss-Seidel based alternating direction method of multipliers
(sGS-ADMM) to generate an initial point to warm start the second phase algorithm,
which is a proximal augmented Lagrangian method (pALM), to get a solution with
high accuracy. For solving the pALM subproblems, we use the semismooth Newton
method (SSN) where the sparsity and clustering structure is carefully analysed and
exploited in the underlying generalized Jacobians to reduce the computational cost in
each semismooth Newton iteration.

3 Thirdly, we conduct comprehensive numerical experiments on both synthetic data and
real data to demonstrate the performance of our model comparing with the sparse
Gaussian graphical model (Yuan and Lin, 2007; Banerjee et al., 2008) and Graph-
ical models with overlapping blocks (GRAB) (Hosseini and Lee, 2016), as well as
the efficiency and robustness of our proposed algorithm comparing with the stand-
alone sGS-ADMM proposed in Section 3.1 and the alternating linearization method
proposed in Scheinberg et al. (2010). The numerical results show that our model
can rather successfully estimate the concentration matrix as well as uncovering its
clustering structure.

The remaining parts of the paper are organized as follows. In Section 2, we state the
problem setup, derive the asymptotic property of the proposed estimator and discuss some
useful results associated with the problem (P). In Section 3, we describe the proposed two-
phase algorithm for solving our model. In Section 4, we present the numerical results on
both synthetic data and real data. Finally, in Section 5, we make some concluding remarks.

Notation. Throughout the paper, we use diag(X) to denote a vector in Rn consisting of the
diagonal entries of a matrix X ∈ Rn×n, and Diag(x) to denote a diagonal matrix in Rn×n
whose diagonal is given by a vector x ∈ Rn. For Z ∈ Rm×n, ‖Z‖ denotes its Frobenius norm,
and Zi denotes its i-th row. For any symmetric matrix Y , σmin(Y ) denotes the smallest
eigenvalue of Y .

2. Problem Setup and Preliminaries

In this section, we set up the problem, analyse the asymptotic property of the proposed
estimator, and then derive some useful results of the regularization term Q(·) and the
function log det(·), respectively. Note that these properties play an important role in the
algorithm design which will be presented later.

2.1 Asymptotic Property of the Proposed Estimator

In this subsection, we derive the asymptotic properties of the proposed (unconstrained)
estimator (2), which are analogous to those for the lasso (Fu and Knight, 2000) and the
sparse Gaussian graphical model (Yuan and Lin, 2007). For simplicity, we consider the
case when the dimension n is fixed, and the sample size p → ∞. The following theorem
establishes some properties of the proposed estimator (2).

Theorem 1 Let z ∈ Rn be a random vector following a multivariate Gaussian distribution
N (0,Σ) with an invertible covariance matrix Σ. Set X∗ = Σ−1. If the sequences {ρp} and

{λp} satisfy
√
pρp → ρ0 and

√
pλp → λ0 as p → ∞, the estimator X̂p, that is, the optimal
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solution to (2) with the parameters (ρp, λp), satisfies

√
p(X̂p −X∗)→ arg min

V ∈Sn
Υ(V )

in distribution as p→∞, where

Υ(V ) =
1

2
〈ΣV, V Σ〉+ 〈V,W 〉+ ρ0

∑
i<j

{
Vijsign(X∗ij)1(X∗ij 6= 0) + |Vij |1(X∗ij = 0)

}
+ λ0

∑
i<j

∑
s<t

{
(Vij − Vst)sign(X∗ij −X∗st)1(X∗ij 6= X∗st) + |Vij − Vst|1(X∗ij = X∗st)

}
,

in which 1(Event B) = 1 if event B happens, and 1(Event B) = 0 otherwise. Here W is a
random matrix in Sn such that its vectorized form vec(W ) satisfies vec(W ) ∼ N (0,Λ) with
Λ(i,j),(s,t) = cov(Wij ,Wst) = cov(zizj , zszt), for any i, j, s, t = 1, · · · , n.

Proof For any p = 1, 2, · · · , define the function Υp : Sn → R as

Υp(V ) =

〈
C,X∗ +

V
√
p

〉
− log det

(
X∗ +

V
√
p

)
+ ρp

∑
i<j

∣∣∣∣X∗ij +
Vij√
p

∣∣∣∣
+λp

∑
i<j

∑
s<t

∣∣∣∣X∗ij+ Vij√
p
−X∗st−

Vst√
p

∣∣∣∣−〈C,X∗〉+log det(X∗)−ρp
∑
i<j

|X∗ij |−λp
∑
i<j

∑
s<t

|X∗ij−X∗st|.

Then the unique minimizer V ∗p of the above convex function satisfies X̂p = X∗ +
V ∗
p√
p .

Therefore, we have V ∗p =
√
p(X̂p −X∗) minimizes the function Υp(V ). Note that〈

C,X∗ +
V
√
p

〉
− 〈C,X∗〉 =

〈
C,

V
√
p

〉
=

1
√
p
〈Σ, V 〉+

1
√
p
〈C − Σ, V 〉,

and

−log det

(
X∗+

V
√
p

)
+log det(X∗)=−log det

(
I+

Σ1/2V Σ1/2

√
p

)
=− 1
√
p
〈Σ, V 〉+ 1

2p
〈ΣV, V Σ〉+o(1

p
),

where the last equality follows from the fact that

log det

(
I +

Σ1/2V Σ1/2

√
p

)
=

n∑
i=1

log

(
1 +

σi(Σ
1/2V Σ1/2)
√
p

)

=

n∑
i=1

σi(Σ
1/2V Σ1/2)
√
p

−
n∑
i=1

σ2
i (Σ

1/2V Σ1/2)

2p
+ o(

1

p
)

=
1
√
p

tr(Σ1/2V Σ1/2)− 1

2p
tr(Σ1/2V ΣV Σ1/2) + o(

1

p
) =

1
√
p
〈Σ, V 〉 − 1

2p
〈ΣV, V Σ〉+ o(

1

p
),

where {σi(X)}ni=1 denotes the eigenvalues of X ∈ Sn. Moreover, when p→∞, we have

p

ρp∑
i<j

∣∣∣∣X∗ij +
Vij√
p

∣∣∣∣− ρp∑
i<j

|X∗ij |

→ ρ0

∑
i<j

{
Vijsign(X∗ij)1(X∗ij 6= 0) + |Vij |1(X∗ij = 0)

}
,
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and

p

λp∑
i<j

∑
s<t

∣∣∣∣X∗ij +
Vij√
p
−X∗st −

Vst√
p

∣∣∣∣− λp∑
i<j

∑
s<t

|X∗ij −X∗st|


→ λ0

∑
i<j

∑
s<t

{
(Vij − Vst)sign(X∗ij −X∗st)1(X∗ij 6= X∗st) + |Vij − Vst|1(X∗ij = X∗st)

}
.

Therefore, combining the above results, we have

pΥp(V ) =
√
p〈C − Σ, V 〉+

1

2
〈ΣV, V Σ〉+ o(1) + p

ρp∑
i<j

∣∣∣∣X∗ij +
Vij√
p

∣∣∣∣− ρp∑
i<j

|X∗ij |


+ p

λp∑
i<j

∑
s<t

∣∣∣∣X∗ij +
Vij√
p
−X∗st −

Vst√
p

∣∣∣∣− λp∑
i<j

∑
s<t

|X∗ij −X∗st|

 .

By noting that Wp :=
√
p(C − Σ) → N (0,Λ), we have pΥp(V ) → Υ(V ) in distribution as

p→∞. Furthermore, since Υ(·), Υp(·) are convex and Υ(·) admits a unique minimizer V ∗p ,
it follows from Geyer (1994) that

V ∗p =
√
p(X̂p −X∗) = arg min

V ∈Sn
pΥp(V )→ arg min

V ∈Sn
Υ(V ),

in distribution as p→∞. This completes the proof.

Before studying the regularization term Q(·) and the function log det(·), we give the
definition of the proximal mapping and the Moreau envelope. Let f : H → R be a given
closed convex function, where H is a finite dimensional real Euclidean space equipped with
an inner product 〈·, ·〉 and its induced norm ‖ · ‖. The Fenchel conjugate f∗ of the function
f is then defined as

f∗(u) := sup
x∈H
{〈x, u〉 − f(x)}, u ∈ H. (4)

The Moreau envelope of f at x ∈ H is defined as

Ef (x) := min
y∈H

{1

2
‖y − x‖2 + f(y)

}
,

whose corresponding unique minimizer, which is called the proximal mapping of f at x,
is denoted as Proxf (x). It is proved in Moreau (1965); Rockafellar (1976) that Proxf (·)
is globally Lipschitz continuous with modulus 1 and Ef (·) is finite-valued, convex and
continuously differentiable with

∇Ef (x) = x− Proxf (x).

The Moreau identity states that for any t > 0, it holds that

Proxtf (x) + tProxf∗/t(x/t) = x, ∀x ∈ H,

where f∗ is the Fenchel conjugate of f defined in (4).
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2.2 Duality and Optimality Conditions

The minimization form for the dual of (P) is given by

min
y∈Rm,Z∈Sn,S∈Sn

− 〈b, y〉 − log det(Z) +Q∗(−S)− n (D)

s.t. C −A∗y − Z − S = 0, Z � 0,

where A∗ : Rm → Sn is the adjoint map of A, Q∗ is the Fenchel conjugate of Q. Note that
the linear maps A and A∗ can be expressed as

AX = [〈A1, X〉, · · · 〈Am, X〉]T , A∗y =

m∑
k=1

ykAk,

where A1, A2, · · · , Am are given matrices in Sn.

Remark 2 For better illustration of the linear maps A and A∗, we give a simple example
where the conditional independence pattern is partially known, that is, the feasible set of
(P) is

FJ := {X ∈ Sn | Xij = 0, (i, j) ∈ J , X � 0},

where the set of pairs of nodes J := {(ik, jk)}mk=1. Without loss of generality, we as-
sume ik < jk for all k = 1, · · · ,m. Define the linear map A : Sn → Rm as AX =
[Xi1j1 , · · · , Ximjm ]T . Then we have FJ = {X ∈ Sn | AX = 0, X � 0}. By the definition
of the adjoint map, we know that the linear map A∗ : Rm → Sn is given as follows: for any
y ∈ Rm, A∗y ∈ Sn satisfies (A∗y)ikjk = (A∗y)jkik = yk/2, k = 1, · · · ,m and (A∗y)ij = 0
otherwise. In addition, it can be seen that AA∗ = Im/2. This example indicates that
when the conditional independence pattern is partially known, the general linear constraints
will not increase the difficulty in our computation, but help us to unify the mathematical
notations during the analysis and the algorithm design.

The Karush-Kuhn-Tucker (KKT) conditions associated with (P) and (D) are given as
C −A∗y − Z − S = 0,

XZ = In, Z � 0, X � 0,

0 ∈ ∂Q(X) + S,

AX = b.

(5)

Throughout this paper, we make the following blanket assumption.

Assumption 1 The problem (P) admits an optimal solution X∗.

Under Assumption 1, we can see that X∗ must be the unique minimizer of (P), since the
objective function of (P) is strictly convex with respect to X. In addition, the assumption
also implies that the constraint qualification holds, that is, there exists X0 ∈ Sn++ such that
AX0 = b. According to Rockafellar (1997, Corollary 28.2.2 and Corollary 28.3.1), we have
that the set

Ω(X∗) := {(y, Z, S) ∈ Rm × Sn × Sn | (X∗, y, Z, S) satisfies the KKT system (5)}

is nonempty. Moreover, any (y, Z, S) ∈ Ω(X∗) is an optimal solution to (D).
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2.3 Properties of the Regularization Term Q(·)

Let B : Sn → Rn̄ be the linear map such that BX is the vector obtained from X ∈ Sn
by concatenating the columns of the strictly upper triangular part of X sequentially into
a vector of dimension n̄ := n(n − 1)/2. The adjoint B∗ : Rn̄ → Sn is such that B∗x is the
operation of first putting the entries of the vector x ∈ Rn̄ into the strictly upper triangular
part of an n× n matrix X, and then symmetrizing it. That is, for any X ∈ Sn,

BX = [X12, X13, X23, · · · , X1n, · · · , Xn−1,n]T ∈ Rn̄,

and for any x ∈ Rn̄,

B∗x =
1

2



0 x1 x2 · · · xn̄−n+2

x1 0 x3 · · · xn̄−n+3

x2 x3 0 · · · xn̄−n+4
...

...
...

. . .
...

xn̄−2n+4 xn̄−2n+5 xn̄−2n+6 · · · xn̄
xn̄−n+2 xn̄−n+3 xn̄−n+4 · · · 0


∈ Sn.

Denote

q(x) = ρ‖x‖1 + λp(x), p(x) =
∑

1≤k<l≤n̄
|xk − xl|, ∀x ∈ Rn̄.

Based on the linear map B, we could see that

Q(X) = q(BX), ∀X ∈ Sn.

Note that the function q(·) is the clustered lasso regularizer in the context of the linear
regression models, which has been studied in Bondell and Reich (2008); She (2010); Petry
et al. (2011); Lin et al. (2019).

Before going into details of the properties of the regularization term Q(·), we first present
the properties of the clustered lasso regularizer q(·). The following proposition provides an
explicit formula of Proxq(·) as well as the formula of q∗(·). Note that the proposition enables
us to compute Proxq(y) in O(n̄ log(n̄)) operations. The results in the parts (a) and (b) follow
from Lin et al. (2019) and the proof of the part (c) is given in the appendix.

Proposition 3 Denote the convex set D = {x ∈ Rn̄ | Bx ≥ 0}, where the matrix B ∈
R(n̄−1)×n̄ is defined as Bx = [x1 − x2, x2 − x3, · · · , xn̄−1 − xn̄]T ∈ Rn̄−1 for any x ∈ Rn̄.
Define w ∈ Rn̄ as wk = n̄ − 2k + 1, k = 1, . . . , n̄. For any y ∈ Rn̄, let Py ∈ Rn̄×n̄ be a
permutation matrix such that Pyy is sorted in a non-increasing order. Then for any y ∈ Rn̄,
the following statements hold.

(a) The computational cost of evaluating p(y) can be reduced from O(n̄2) to O(n̄ log n̄) as

p(y) =
∑

1≤k<l≤n̄
|yk − yl| = 〈w,Pyy〉. (6)

9
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(b) The proximal mapping of q at y can be computed as

Proxq(y) = Proxρ‖·‖1(Proxλp(y)) = sign(Proxλp(y)) ◦max(|Proxλp(y)| − ρ, 0), (7)

where sign(·), | · | and max(·, ·) are taken component-wise, and

Proxλp(y) = P Ty ΠD(Pyy − λw).

Here ΠD(·) (the metric projection onto D) can be computed by the pool-adjacent-
violators algorithm (Best and Chakravarti, 1990) in O(n̄) operations.

(c) Moreover, for any u ∈ Rn̄, the Fenchel conjugate q∗ at u is

q∗(u) =


0, if

k∑
i=1

((Puu−λw)i−ρ)≤0,
n∑
i=k

((Puu−λw)i+ρ)≥0, ∀k=1, · · · , n̄,

+∞, otherwise.

(8)

In order to design second-order algorithms for solving the problems involving the clus-
tered lasso regularizer q(·), we need the generalized Jacobian of Proxq(·). However, the
Clarke generalized Jacobian ∂Proxq(·) is not easily computable. Fortunately, we can de-
fine the following multifunction M which could be viewed as the generalized Jacobian of
Proxq(·). In particular, following the idea in Lin et al. (2019), we define the multifunction
M : Rn̄ ⇒ Rn̄×n̄ by

M(y)=
{
M ∈Sn̄ |M=ΘP Ty Q̂Py,Θ∈∂BProxρ‖·‖1(Proxλp(y)), Q̂∈∂HSΠD(Pyy−λw)

}
, (9)

where ∂BProxρ‖·‖1(·) is the B-subdifferential of Proxρ‖·‖1(·) and ∂HSΠD(·) is the HS-Jacobian
(Han and Sun, 1997) of ΠD(·). In the implementation of our proposed algorithm later, we
need an explicitly computable element in M(y) for any given y ∈ Rn̄, which is provided in
the following proposition.

Proposition 4 For any y ∈ Rn̄, define Σy := Diag(σ) ∈ R(n̄−1)×(n̄−1) with σi = 1 if
BiΠD(Pyy − λw) = 0 and σi = 0 otherwise. Also define Θy := Diag(θ) ∈ Rn̄×n̄ with θi = 0
if |Proxλp(y)|i ≤ ρ and θi = 1 otherwise. Then it holds that

Wy := ΘyP
T
y (In̄ −BT (ΣyBB

TΣy)
†B)Py ∈M(y),

where (·)† denotes the pseduoinverse.

Remark 5 Further details on the computation of Wy given in the previous proposition
could be found in Lin et al. (2019, Proposition 2.8).

Based on the results associated with the clustered lasso regularizer q(·), we could study the
properties of the function Q(·) in (P), which are summarized in the following proposition.

Proposition 6 For any Y ∈ Sn, the following statements hold.

10
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(a) The computational cost of evaluating Q(Y ) can be reduced from O(n4) to O(n2 log n)
as

Q(Y ) = q(BY ) = ρ‖BY ‖1 + λ〈w,PBY (BY )〉.

(b) The Fenchel conjugate Q∗ at Y could be computed as

Q∗(Y ) =

{
q∗(2BY ), if diag(Y ) = 0,

+∞, otherwise,

where the formula of q∗(·) could be found in (8).

(c) The proximal mapping ProxQ(Y ) could be computed as

ProxQ(Y ) = Diag
(
diag(Y )

)
+ B∗Proxq(2BY ), (10)

where the explicit formula of Proxq(·) could be found in (7).

Proof (a) The reformulation of the clustered lasso regularizer as a weighted ordered-lasso
regularizer in (6) enables us to evaluate the function value Q(Y ) in O(n2 log n) operations
instead of O(n4) operations.
(b) By the definition of Q∗(·), we can see that

Q∗(Y ) = sup
X∈Sn

{
〈X,Y 〉 −Q(X)

}
= sup

X∈Sn

{ n∑
i=1

XiiYii + 2〈BX,BY 〉 − q(BX)
}

=

{
q∗(2BY ), if diag(Y ) = 0,

+∞, otherwise.

(c) According to the definition of ProxQ(·), it can be seen that

ProxQ(Y ) = arg min
X∈Sn

{1

2
‖diag(X)− diag(Y )‖2 + ‖BX − BY ‖2 + q(BX)

}
= Diag

(
diag(Y )

)
+ B∗Proxq(2BY ).

This completes the proof.

To design second-order algorithms, we need the generalized Jacobian of ProxQ(·). Note
that according to Hiriart-Urruty et al. (1984, Example 2.5), for any Y ∈ Sn, it holds that

∂ProxQ(Y )[H] = Diag
(
diag(H)

)
+ 2B∗∂Proxq(2BY )[BH], ∀H ∈ Sn, (11)

where ∂ProxQ(Y ) is the Clarke generalized Jacobian of ProxQ(·) at Y , ∂Proxq(2BY ) is the
Clarke generalized Jacobian of Proxq(·) at 2BY . As already mentioned, though the Clarke
generalized Jacobian ∂Proxq(·) is not easily computable, we can use the multifunction M
defined in (9) as the proxy of the Clarke generalized Jacobian of Proxq(·). Inspired by
the relationship in (11), we provide a computable surrogate of ∂ProxQ(·) in the following
proposition.

11



Lin, Sun, Toh and Wang

Proposition 7 For any Y ∈ Sn, define the generalized Jacobian ∂̂ProxQ(Y ) : Sn ⇒ Sn as

follows: P ∈ ∂̂ProxQ(Y ) if and only if there exists M ∈M(2BY ) such that

PH = Diag
(
diag(H)

)
+ 2B∗M [BH], ∀H ∈ Sn.

Then the multifunction ∂̂ProxQ(·) is nonempty, compact, and upper-semicontinuous. In

addition, ProxQ(·) is strongly semismooth with respect to ∂̂ProxQ(·).

Proof According to Lin et al. (2019, Theorem 2.10), we know that the multifunction M
defined in (9) is nonempty, compact, and upper-semicontinuous. Thus the multifunction
∂̂ProxQ(·) is also nonempty, compact, and upper-semicontinuous. In addition, we can see
that ProxQ(·) is directionally differentiable. Given Y ∈ Sn, for any ∆Y ∈ Sn with ‖∆Y ‖
sufficiently small, by the strong semismoothness of Proxq(·) with respect to M (Lin et al.,
2019, Theorem 2.10), we have that

Proxq(2BY + 2B∆Y )− Proxq(2BY )−M [2B∆Y ] = 0, ∀M ∈M(2BY + 2B∆Y ).

Therefore, for any H ∈ ∂̂ProxQ(Y + ∆Y ) with ∆Y ∈ Sn sufficiently small, it holds that

ProxQ(Y + ∆Y )− ProxQ(Y )−H[∆Y ]

= Diag(diag(∆Y )) + B∗
(

Proxq(2BY + 2B∆Y )− Proxq(2BY )
)
−H[∆Y ].

By the definition of ∂̂ProxQ(·), there must exist M ∈M(2BY + 2B∆Y ) such that

H[∆Y ] = Diag(diag(∆Y )) + 2B∗M [B∆Y ].

Thus, for any ∆Y ∈ Sn with ‖∆Y ‖ sufficiently small we have

ProxQ(Y + ∆Y )− ProxQ(Y )−H[∆Y ]

= B∗
(

Proxq(2BY + 2B∆Y )− Proxq(2BY )−M [2B∆Y ]
)

= 0,

which means that ProxQ(·) is strongly semismooth with respect to ∂̂ProxQ(·).

2.4 Properties of the log det(·) Function

The following proposition states the computation of the proximal mapping of − log det(·)
and the corresponding Jacobian, which is obtained from Wang et al. (2010, Lemma 2.1).
For simplicity, we denote r(X) := − log det(X) for any X � 0.

Proposition 8 For any given X ∈ Sn, with its eigenvalue decomposition X = PDiag(d)P T ,
where d is the vector of eigenvalues and the columns of P are the corresponding orthonormal
set of eigenvectors. We assume that d1 ≥ · · · ≥ dt > 0 ≥ dt+1 ≥ · · · dn. Given µ > 0 and the
scaler function φ+

µ (x) := (
√
x2 + 4µ+ x)/2 for all x ∈ R, we define its matrix counterpart:

φ+
µ (X) := PDiag(φ+

µ (d))P T , (12)

where φ+
µ (d) ∈ Rn is such that its i-th component is given by φ+

µ (di).

12
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(a) The proximal mapping of µr(·) can be computed as

Proxµr(X) = φ+
µ (X). (13)

(b) φ+
µ is continuously differentiable and its Fréchet derivative (φ+

µ )′(X) at X is given by

(φ+
µ )′(X)[H] = P (Ω ◦ (P THP ))P T , ∀H ∈ Sn,

where Ω ∈ Sn is defined by

Ωij =
φ+
µ (di) + φ+

µ (dj)√
d2
i + 4µ+

√
d2
j + 4µ

, i, j = 1, · · · , n.

3. A Two-phase Algorithm

In this section, we propose a two-phase algorithm to solve the problem (P) based on the
augmented Lagrangian function of (D). In Phase I, we design a symmetric Gauss-Seidel
based alternating direction method of multipliers to solve the problem to a moderate level
of accuracy. In Phase II, we employ a proximal augmented Lagrangian method with its
subproblems solved by the SSN method to get a solution with high accuracy. Note that
the sGS-ADMM not only can be used to generate a good initial point to warm start the
pALM, it can also be used alone to solve the problem. But as a first-order method, the
sGS-ADMM may not be efficient enough in some cases to solve a problem to high accuracy.
Thus in the second phase, we switch to the superlinearly convergent pALM to compute an
accurate solution.

3.1 Phase I: sGS-ADMM

A natural way to solve the problem (D) is the popular alternating direction method of
multipliers (ADMM), but as shown via a counterexample in Chen et al. (2016), the directly
extended sequential Gauss-Seidel-type multi-block ADMM may not be convergent even with
a small step length. Thus, in this paper, we employ a more powerful symmetric Gauss-
Seidel-type multi-block ADMM, that is, the sGS-ADMM to solve (D). As is shown in Chen
et al. (2017), the sGS-ADMM is not only guaranteed to converge theoretically, in practice it
also performs better than the possibly nonconvergent directly extended multi-block ADMM.

The Lagrangian function associated with (D) is given by

l(y, Z, S;X) := −〈b, y〉 − log det(Z) +Q∗(−S) + δSn+(Z)− n− 〈C −A∗y − Z − S,X〉,
∀ (y, Z, S,X) ∈ Rm × Sn × Sn × Sn.

The associated augmented Lagrangian function is

Lσ(y, Z, S;X) := l(y, Z, S;X) +
σ

2
‖C −A∗y − Z − S‖2, (14)

where σ > 0 is a given parameter. Based on the augmented Lagrangian function (14), we
design the sGS-ADMM for solving (D). To be specific, we update Z and (y, S) alternatively

13
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as in the commonly used 2-block ADMM, but with the key difference of applying the sGS
iteration technique (Li et al., 2018) to the second block. The template for the algorithm is
given as follows:



Zk+1 = arg minLσ(yk, Z, Sk;Xk),

yk+1 = arg minLσ(y, Zk+1, Sk;Xk),

Sk+1 = arg minLσ(ȳk+1, Zk+1, S;Xk),

yk+1 = arg minLσ(y, Zk+1, Sk+1;Xk),

Xk+1 = Xk − τσ(C −A∗yk+1 − Zk+1 − Sk+1),

where τ ∈ (0, (1 +
√

5)/2) is a given step length that is typically set to be 1.618. The
implementation of updating each variable can be given as follows.

Updating of Z. Given ŷ, Ŝ, X̂, the unique minimizer of Lσ(ŷ, Z, Ŝ; X̂) can be obtained
by

Z = arg min
Z�0

{σ
2

∥∥∥∥Z +
1

σ
M̂

∥∥∥∥2

− log det(Z)
}

=
1

σ
φ+
σ (−M̂) =

1

σ
(φ+
σ (M̂)− M̂),

where M̂ = X̂ − σ(C −A∗ŷ − Ŝ).

Algorithm 1 : sGS-ADMM

Input: Given C ∈ Sn, b ∈ Rm, linear map A : Sn → Rm, parameters ρ, λ > 0. Set the
maximum iteration number as Maxiter. Choose X0 ∈ Sn++, S0 ∈ Sn, y0 ∈ Rm, σ > 0,
τ ∈ (0, (1 +

√
5)/2), and set k = 0.

1: Compute

Zk+1 = (φ+
σ (Mk)−Mk)/σ, Mk = Xk − σ(C −A∗yk − Sk),

where the definition of φ+
σ (·) could be found in (12).

2: Compute
yk+1 = (AA∗)−1

(
A(C − Sk − Zk+1 −Xk/σ) + b/σ

)
,

Sk+1 = −V k + ProxQ(V k), V k = −(C −A∗yk+1 − Zk+1 −Xk/σ),

yk+1 = (AA∗)−1
(
A(C − Sk+1 − Zk+1 −Xk/σ) + b/σ

)
,

where the explicit formula of ProxQ(·) could be seen in (10).
3: Compute

Xk+1 = Xk − τσ(C −A∗yk+1 − Sk+1 − Zk+1).

4: If k = Maxiter or the stopping criterion (17) is satisfied, terminate; otherwise
k ← k + 1, go to Step 1.

14
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Updating of y. Given Ẑ, Ŝ, X̂, the unique minimizer of Lσ(y, Ẑ, Ŝ; X̂) can be obtained
by solving the linear system as

y = arg min
y∈Rm

{
−〈b, y〉+σ

2

∥∥∥∥C−A∗y−Ẑ−Ŝ− 1

σ
X̂

∥∥∥∥2 }
= (AA∗)−1

(
A(C−Ŝ−Ẑ− 1

σ
X̂)+

1

σ
b
)
.

Updating of S. Given ŷ, Ẑ, X̂, the unique minimizer of Lσ(ŷ, Ẑ, S; X̂) could be given as

S = arg min
S∈Sn

{
Q∗(−S) +

σ

2
‖S + V̂ ‖2

}
= −ProxQ∗(V̂ ) = −V̂ + ProxQ(V̂ ),

where V̂ = −(C −A∗ŷ − Ẑ − X̂/σ).
The whole sGS-ADMM for solving (D) is summarized in Algorithm 1. The convergence

result of this algorithm can be obtained from Chen et al. (2017, Theorem 5.1) as stated in
the following theorem.

Theorem 9 Let {(yk, Zk, Sk, Xk)} be the sequence generated by Algorithm 1. Then the
sequence {(yk, Zk, Sk)} converges to an optimal solution of (D) and {Xk} converges to the
optimal solution X∗ of (P).

3.2 Phase II: pALM

The augmented Lagrangian method (ALM) is a widely used method for solving the con-
vex optimization problem in the literature. It has the important property of possessing
superlinear convergence guarantee.

We write the dual problem (D) in the following unconstrained form

min
y∈Rm,S∈Sn

{
f(y, S) =−〈b, y〉−log det(C−A∗y−S)+Q∗(−S) + δSn+(C−A∗y−S)−n

}
. (D′)

Denote

f̃(y, S, Z, V ) = −〈b, y〉 − log det(C−A∗y−S−Z) +Q∗(−S+V ) + δSn+(C−A∗y−S−Z)− n.

Then by Rockafellar and Wets (2009, Example 11.46), the Lagrangian function associated
with (D′) is

l̃(y, S;X,U) = inf
Z∈Sn,V ∈Sn

{
f̃(y, S, Z, V )− 〈Z,X〉 − 〈U, V 〉

}
= −〈b, y〉 − 〈C −A∗y − S,X〉+ log detX − δSn+(X)− 〈U, S〉 −Q(U).

By Rockafellar and Wets (2009, Example 11.57), the corresponding augmented Lagrangian
function is

L̃σ(y, S;X,U) = sup
X̃∈Sn,Ũ∈Sn

{
l̃(y, S; X̃, Ũ)− 1

2σ
‖X − X̃‖2 − 1

2σ
‖U − Ũ‖2

}
=−〈b, y〉− 1

σ
Eσr(M(y, S))+

1

2σ
‖M(y, S)‖2− 1

2σ
‖X‖2− 1

σ
EσQ(U−σS)+

1

2σ
‖U−σS‖2− 1

2σ
‖U‖2,

where M(y, S) = X − σ(C −A∗y − S), σ > 0 is a given parameter.

15



Lin, Sun, Toh and Wang

Based on the above notations, we describe the pALM for solving (D′) as follows.

Algorithm 2 : pALM

Input: Given C ∈ Sn, b ∈ Rm, linear map A : Sn → Rm, parameters ρ, λ > 0. Denote the
approximate solution obtained from Phase I as (X0, y0, S0) ∈ Sn++ × Rm × Sn. Define
U0 = X0. Let τ > 0, 0 < σ0 < σ∞ ≤ ∞, and set k = 0.

1: Compute

(yk+1,Sk+1)≈ arg min
y∈Rm,S∈Sn

{
Ψk(y, S)= L̃σ(y, S;Xk, Uk)+

τ

2σk
(‖y−yk‖2+‖S−Sk‖2)

}
. (15)

2: Compute

Xk+1 = Proxσkr(X
k − σ(C −A∗yk+1 − Sk+1)),

Uk+1 = ProxσkQ(Uk − σSk+1),

where the formulae of Proxσkr(·) and ProxσkQ(·) could be found in (13) and (10),
respectively.

3: If the stopping criterion (17) is satisfied, terminate; otherwise update σk+1 ↑ σ∞,
k ← k + 1, go to Step 1.

3.2.1 Convergence result of the pALM

The global convergence and global linear-rate convergence of the pALM are provided in this
subsection. To establish the convergence result, we define the maximal monotone operator

T
l̃
(y, S,X,U) :=

{
(y′, S′, X ′, U ′) | (y′, S′,−X ′,−U ′) ∈ ∂l̃(y, S;X,U)

}
,

and its inverse operator

T −1

l̃
(y′, S′, X ′, U ′) := arg min

y,S
max
X,U

{
l̃(y, S;X,U)− 〈y′, y〉 − 〈S′, S〉+ 〈X ′, X〉+ 〈U ′, U〉

}
.

As we note in the pALM, we need to specify the stopping criterion of computing the
approximate solution (yk+1, Sk+1) in (15). Denote the operator

Λ = Diag(τIm, τIn, In, In),

where In is the identity operator over Sn. We use the following stopping criteria for solving
(15):

‖∇Ψk(y
k+1, Sk+1)‖ ≤ min{

√
τ , 1}

σk
εk, (A)

‖∇Ψk(y
k+1, Sk+1)‖ ≤ min{

√
τ , 1}

σk
δk‖(yk+1, Sk+1, Xk+1, Uk+1)− (yk, Sk, Xk, Uk)‖Λ, (B)

where {εk} and {δk} are summable nonnegative sequences satisfying δk < 1 for all k.
Based on the above preparation, we could present the convergence result of the pALM

in the following theorem, which is an application of Li et al. (2020, Theorem 1 and Theorem
2).
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Theorem 10 Let {(yk, Sk, Xk, Uk)} be the sequence generated by Algorithm 2 with the
stopping criterion (A).

(a) Then {(yk, Sk, Xk, Uk)} is bounded, {(yk, Sk)} converges to an optimal solution of
(D′), and both {Xk} and {Uk} converge to the optimal solution X∗ of (P).

(b) Assume that for ζ := distΛ((y0, S0, X0, U0), T −1

l̃
(0)) +

∑∞
k=0 εk, there exists κ > 0

such that

distΛ((y, S,X,U), T −1

l̃
(0)) ≤ κdist(0, T

l̃
(y, S,X,U)),

for all (y, S,X,U) satisfying distΛ((y, S,X,U), T −1

l̃
(0)) ≤ ζ. Suppose the stopping

criteria (B) is also satisfied. Then for k ≥ 0, it holds that

distΛ((yk+1, Sk+1, Xk+1, Uk+1), T −1

l̃
(0)) ≤ µkdistΛ((yk, Sk, Xk, Uk), T −1

l̃
(0)),

where

µk =
δk + (1 + δk)κmax{τ, 1}/

√
σ2
k + κ2 max{τ2, 1}

1− δk
→ µ∞ :=

κmax{τ, 1}√
σ2
∞ + κ2 max{τ2, 1}

.

3.2.2 An SSN method for solving the pALM subproblems

As one can see, the main task in the pALM is to solve the subproblem (15) in an efficient
way. Note that given (ỹ, S̃, X̃, Ũ), the subproblem (15) takes the form of

min
y∈Rm,S∈Sn

{
Ψ(y, S) := L̃σ(y, S; X̃, Ũ) +

τ

2σ
(‖y − ỹ‖2 + ‖S − S̃‖2)

}
.

Since Ψ(·, ·) is a strongly convex, continuously differentiable function on Rm × Sn, the
above minimization problem has a unique optimal solution, denoted as (y, S), which can be
computed by solving the nonsmooth optimality condition:

∇Ψ(y, S) =

(
−b+AProxσr(M̃(y, S)) + τ

σ (y − ỹ)

Proxσr(M̃(y, S))− ProxσQ(Ũ − σS) + τ
σ (S − S̃)

)
= 0, (16)

where M̃(y, S) = X̃ − σ(C −A∗y − S).
For any (y, S) ∈ Rm×Sn, define the generalized Hessian ∂̂2Ψ(y, S) : Rm×Sn ⇒ Rm×Sn

as follows: Q ∈ ∂̂2Ψ(y, S) if and only if there exists P ∈ ∂̂ProxσQ(Ũ − σS) such that

Q

(
dy

dS

)
=σ

(
A
In

)
(φ+
σ (M̃(y, S)))′(A∗dy+dS) + σ

(
0

PdS

)
+
τ

σ

(
dy

dS

)
, ∀(dy, dS) ∈ Rm × Sn.

We can treat ∂̂2Ψ(y, S) as a surrogate of the Clarke generalized Jacobian of∇Ψ(·, ·) at (y, S),
according to the analysis of the regularization term Q(·) and the function r(·) in Section 2.
In addition, we have that ∇Ψ(·, ·) is strongly semismooth with respect to ∂̂2Ψ(·, ·). Thus
we could apply the SSN method to solve (16), which has the following template.
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Algorithm 3 : SSN

Input: Given (ỹ, S̃, X̃, Ũ) ∈ Rm × Sn × Sn × Sn, choose y0 ∈ Rm, S0 ∈ Sn, β ∈ (0, 1],
η ∈ (0, 1), and ζ ∈ (0, 1

2), δ ∈ (0, 1), and set j = 0.

1: Choose Hj ∈ ∂̂ProxσQ(Ũ − σSj), use the conjugate gradient method (CG) to solve the
linear system

σ

(
A
In

)
(φ+
σ (M̃(yj , Sj)))′(A∗djy + djS) + σ

(
0

HjdjS

)
+
τ

σ

(
djy

djS

)
= −∇Ψ(yj , Sj)

to obtain djy and djS such that the residual is no larger than min{η, ‖∇Ψ(yj , Sj)‖1+β}.
2: Set αj = δmj , where mj is the first nonnegative integer m for which

Ψ(yj + δmdjy, S
j + δmdjS) ≤ Ψ(yj , Sj) + ζδm

〈
∇Ψ(yj , Sj),

(
djy

djS

)〉
.

3: Set yj+1 = yj + αjd
j
y, Sj+1 = Sj + αjd

j
S , j ← j + 1, go to Step 1.

Since the operator ∂̂2Ψ(·, ·) is positive definite, we can obtain the following superlinear
or even quadratic convergence result of the SSN method from Zhao et al. (2010).

Theorem 11 Let {(yj , Sj)} be the sequence generated by Algorithm 3, then {(yj , Sj)} con-
verges to the unique minimizer (y, S) of Ψ(·, ·) and

‖(yj+1, Sj+1)− (y, S)‖ = O(‖(yj , Sj)− (y, S)‖1+β),

where β ∈ (0, 1] is from the algorithm.

4. Numerical Experiments

In this section, we present some numerical experiments on both synthetic and real data to
demonstrate the performance of our proposed model and the efficiency of our two-phase
algorithm. The experiments are mainly in three aspects:

• comparing our model with the sparse Gaussian graphical model (Yuan and Lin, 2007;
Banerjee et al., 2008) and GRAB (Hosseini and Lee, 2016) on the performance of
estimating concentration matrices, in the sense of Fscore and ROC curve.

• comparing our proposed two-phase algorithm for solving the model (P) with the stand-
alone sGS-ADMM proposed in Section 3.1 and the alternating linearization method
proposed in Scheinberg et al. (2010), in the sense of computation time;

• giving an illustration on real data to show how our proposed model could learn simi-
larities among items and detect some meaningful clusters.

All experiments are implemented in Matlab R2022b on a windows workstation (16-core,
Intel Xeon Gold 6244 @ 3.60GHz, 128 G RAM).
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4.1 Stopping Criteria of the Two-phase Algorithm

In this paper, we use the relative KKT residual to measure the quality of the obtained
solution. That is, we stop the algorithm when

max{RP , RD, RC} < Tol, (17)

with Tol = 10−6 as the default, where

RP =
‖AX−b‖
1 + ‖b‖

, RD=
‖C−A∗y−S−Z‖

1 + ‖C‖
, RC =max

{ ‖XZ − In‖
1+‖X‖+‖Z‖

,
‖X−ProxQ(X−S)‖

1+‖X‖+ ‖S‖

}
.

Furthermore, we also provide the duality gap for reference, which is

RG :=
|pobj− dobj|

1 + |pobj|+ |dobj|
,

where pobj and dobj are the primal and dual objective function values given by

pobj = 〈C,X〉 − log det(X) +Q(X), dobj = 〈b, y〉+ log det(Z) + n.

As a side note, in Phase II, the variable Z could be constructed according to the derivation
of the Lagrangian function as (φ+

σ (M)−M)/σ, where M = X − σ(C −A∗y − S).
In our two-phase algorithm, we fix the iteration number of the sGS-ADMM in Phase I

to be 200 in consideration of the trade-off between the computation time and the effect of
warm start, and then run Phase II until the stopping criterion (17) is satisfied.

4.2 Experiments on Synthetic Data

In this subsection, we conduct experiments on edge coloring models, autoregressive models
and modular graph models, to demonstrate the performance of our proposed estimator and
the two-phase algorithm. Specifically, we will test the performance of different forms of our
estimator: the unconstrained one (2), the one with constraints from a given zero pattern
(3), and the one with general linear constraints (P).

4.2.1 Data construction

Given a true concentration matrix Σ−1 ∈ Sn, we first generate p samples {z(i)}pi=1 with
z(i) ∼ N (0,Σ), then construct the sample covariance matrix C as

C =
1

p

p∑
i=1

(z(i) − z̄)(z(i) − z̄)T , z̄ =
1

p

p∑
i=1

z(i).

We consider three kinds of concentration matrices with sparsity and clustering structure as
follows.

(1) (Edge coloring models) We generate a sparse edge coloring graph Σ−1 ∈ Sn as in
Lauritzen and Højsgaard (2008); Højsgaard and Lauritzen (2008a) with nG clusters of
the coordinates, which is taken as a block matrix, where the probability of having a
nonzero (i, j)-block is 0.3 for 1 ≤ i 6= j ≤ nG, and 1 for i = j = 1, · · · , nG. Within each
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nonzero block, the entries are drawn i.i.d. from the Gaussian distribution N (µ, 1),
where µ is uniformly chosen from [−1, 1]. To ensure the positive definiteness of Σ−1,
we apply the same procedure in d’Aspremont et al. (2008); Wang et al. (2010) to
compute

Σ−1 = Σ−1 + max{−1.2σmin(Σ−1)), 0.001}In.

(2) (Autoregressive models) Consider an AR(k) process Yt =
∑k

j=1 φjYt−j + εt, where
εt’s are i.i.d. such that E[εt] = 0 and Var[εt] = 1. We generate each element of
φ ∈ Rk randomly from a standard Gaussian distribution, then scale φ such that
‖φ‖2 = 0.9 < 1 to ensure the stationarity of the process. Consider ε0 = Y0, then
we have ε = LY , where ε = [ε0, · · · , εn−1]T , Y = [Y0, · · · , Yn−1]T and L is a lower
triangular matrix with its diagonal elements being 1 and jth off diagonal elements
being −φj for j = 1, · · · , k. Denote the covariance matrix of Y as Σ. Then the fact
that Var(ε) = LΣLT = In implies that Σ−1 = LTL.

(3) (Modular graph models) We generate a modular graph via the procedure in Egilmez
et al. (2017) with n vertices and nG modules, where the vertex attachment proba-
bilities across and within modules are 0.01 and 0.3. The edge weights are randomly
selected based on a uniform distribution from [0.1, 3]. Take Σ−1 as the Laplacian
matrix of the graph.

4.2.2 Experiments on edge coloring problems

We compare three methods for estimating edge coloring graphs: our proposed unconstrained
estimator (2) with λ = ρ

n2 , the sparse Gaussian graphical model (1) and GRAB (Hosseini
and Lee, 2016) (with the true number of clusters as a prior). Note that here we test the
performance of our proposed unconstrained estimator with only one tuning parameter ρ by
fixing the ratio of ρ and λ to fairly compare different models. From the experimental results,
we will see that this estimator with a fixed ratio on the two parameters already provide
better performance than the other two estimators. In practice, one can further improve the
performance of our estimator by tuning ρ and λ simultaneously.

Note that in each method, we always have one tuning parameter ρ, which will be selected
by grid search. Specifically, for our estimator, we select ρ in the range of 5×10−5 to 5×10−3

with 20 equally divided grid points; for the sparse Gaussian graphical model, we select ρ in
the range of 5 × 10−5 to 3 × 10−3 with 20 equally divided grid points; and for GRAB, we
select ρ in the range of 8× 10−5 to 2× 10−3 with 20 equally divided grid points.

Consider the edge coloring graphs with n = 100, nG = 10. All simulation experiments
involve 100 independent trials. In each trial, we draw p ∈ {0.5n, n, 5n, 10n, 20n, 50n} inde-
pendent samples from the underlying edge coloring model, which are used to compute the
sample covariance matrix and the concentration matrix estimators. Here we use

Fscore :=
2tp

2tp + fp + fn
,

to measure the estimation accuracy, where tp, fp, and fn denote the number of true posi-
tive, false positive, and false negative edges between the truth Σ−1 and the estimator X̂,
respectively.
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Figure 1: Experimental results on edge coloring models. First three figures shows Fscore
v.s. the parameter ρ of different models and different sample sizes over 100
independent trials. Last six figures show the ROC curve of three estimators for
each sample size in the first trial.

Figure 1 shows the results on edge coloring problems, wherein the first three figures
show Fscore versus the parameter ρ of different models and different sample sizes. Lines in
the figures represent averages, and shaded areas capture the tubes between the empirical
10% and 90% quantiles across all 100 trials. We can see that three models show similar
best Fscore, while our model performs slightly better than the other two. In order to better
compare the three estimators, we further use the ROC curve to investigate the accuracy of
each estimator, which is selected as the one that maximizes the Fscore over all ρ for that
method. The results for different samples sizes in the first trial are shown in the last six
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figures of Figure 1. We find that the AUC (Area Under the ROC Curve) of our estimator
is always much larger than that of the other two estimators, especially in the low-sample
cases. This further demonstrates the superior performance of our proposed estimator.

4.2.3 Experiments on autogressive models

Consider the problem of estimating the concentration matrices of AR(10) models when
n = 100 and p ∈ {0.5n, n, 5n, 10n}. We compare the performance of four estimators: our
unconstrained estimator (2) with λ = ρ

n2 ; our estimator (3) with λ = ρ
n2 and the prior

knowledge of AR(k) structure, where k = 10 or k = 20; and the sparse Gaussian graphical
model (1). Specifically, our estimator (3) with λ = ρ

n2 and the prior knowledge of AR(k)
structure takes the form as:

min
X∈Sn++

{
〈C,X〉 − log det(X) + ρ

∑
i<j

|Xij |+
ρ

n2

∑
i<j

∑
s<t

|Xij −Xst|
∣∣ Xij = 0 if |i− j| > k

}
.

Each estimator has one parameter ρ, which we select from 4×10−5 to 0.04 (resp. 0.01 to
0.2) with 20 equally divided grid points for the first three estimators (resp. the last one).

Figure 2 shows the experimental results of estimating the concentration matrices of
AR(10) models, wherein the first four figures show Fscore versus the parameter ρ of different
estimators and different sample sizes. It reveals that the estimator obtained by our model
with constraints (k = 10) dominates the other three estimators, as it imposes the exact
prior knowledge. In addition, the superior performance of our model with constraints
(k = 20) provides the numerical evidence that, in practice, it would be a good choice
to randomly guess a relatively large and reasonable value of k when imposing the AR(k)
structure without the prior knowledge of k. As for the remaining two estimators, it can
be seen that our model without constraints provides slightly better Fscore than the sparse
Gaussian graphical model. We further use the ROC curve to investigate the accuracy of
each estimator, which is selected as the one that maximizes the Fscore over all ρ for different
methods. The results in the first trial are shown in the last four plots of Figure 2. We can
see that the two estimators with prior knowledge both give excellent performance and have
AUC greater than 94%. Moreover, the performance of our model without constraints is also
much better than that of the sparse Gaussian graphical model, which demonstrates that the
`1 penalty imposed on the pairwise differences indeed helps in estimating the concentration
matrix for autogressive models.

4.2.4 Experiments on modular graph recovery

In this part, we consider the problem of modular graph recovery with n = 200, nG = 10 and
the sample size p ∈ {0.5n, n, 5n, 10n}. We compare three estimators: our unconstrained
estimator (2) with λ = ρ

n2 , the sparse Gaussian graphical model (1), and our estimator with
λ = ρ

n2 and linear constraints:

min
X∈Sn+

{
〈C,X〉 − log det(X) + ρ

∑
i<j

|Xij |+
ρ

n2

∑
i<j

∑
s<t

|Xij −Xst|
}

(18)

s.t. (ei − ej)TX(ei − ej) ≥ l, (i, j) ∈ D,
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where l = 0.7 max1≤i,j≤n{(Σ−1)ii + (Σ−1)jj − 2(Σ−1)ij}, the dissimilarity constraint set D
is generated by randomly choosing a subset of D̂ := {(i, j) | (Σ−1)ii + (Σ−1)jj − 2(Σ−1)ij ≥
l, i, j = 1, · · · , n} with |D| = b0.5|D̂|c.
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Figure 2: Estimation results for AR(10) model. First four figures shows Fscore v.s. the
parameter ρ. Last four figures show the ROC curve of four estimators for each
sample size in the first trial.

In each tested estimator, we have one tuning parameter ρ, where we select ρ in the range
of 0.005 to 0.05 with 20 equally divided grid points for our estimators and select ρ in the
range of 0.01 to 0.1 with 20 equally divided grid points for the sparse Gaussian graphical
model. Note that the problem (18) is not expressed in the standard form given in (P), but
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it can easily be expressed as such by introducing an additional slack variable. To be precise,
the standard form reformulation of (18) is given as follows:

min
X∈Sn,x∈Rm

{
〈C,X〉−log det(X)+ρ

∑
i<j

|Xij |+
ρ

n2

∑
i<j

∑
s<t

|Xij−Xst|
∣∣ AX−x = b,X�0, x≥0

}
,

where AX = [(ei−ej)TX(ei−ej)](i,j)∈D ∈ R|D| and b = l1|D|. Then our proposed algorithm
in Section 3 can be extended to solve the above standard form reformulation.
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Figure 3: Numerical results on modular graph recovery. First three figures shows Fscore
v.s. the parameter ρ of different models and different sample sizes. Last four
figures show the ROC curve of three estimators for each sample size in the first
trial.
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Figure 3 shows the experimental results of three estimators for modular graph recovery,
where the first three plots show the Fscore versus the parameter ρ of different estimators
and different sample sizes. We can see that among the three estimators, our model with
contraints performs better than the one without constraints, and both of them perform
much better than the sparse Gaussian graphical model. The ROC curve of each estimator
in the first trial is shown in the last four plots of Figure 3. We find our estimators have
higher AUC than the sparse Gaussian graphical model in all cases, which demonstrates the
superior performance of our proposed estimators in modular graph recovery. Moreover, our
model with constraints also performs better than the one without constraints in the sense
of AUC.
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Figure 4: Comparison among algorithms for solving the model (P) on modular graph re-
covery.

4.2.5 Comparison with other algorithms

Up to our knowledge, there is no other existing algorithm in the literature which is suitable
to solve (P) for large n. It is widely accepted that the interior-point methods (IPMs) with
direct solvers are generally efficient and robust for small- and medium-sized log-determinant
problems as can be seen in Toh (1999); Tütüncü et al. (2003). However, the complicated
structure of our model (P) makes it very difficult to apply the IPMs directly. In order to
apply the IPMs, we need to introduce additional constraints and variables to reformulate
the problem (P) as follows:

min
X∈Sn,y±∈Rn̄,z±∈Rn̂

{
〈C,X〉 − log detX + ρ

n̄∑
i=1

(y+
i + y−i ) + λ

n̂∑
i=1

(z+
i + z−i )

}
s.t. AX = b, BX − y+ + y− = 0, Dy+ −Dy− − z+ + z− = 0,

X � 0, y+, y−, z+, z− ≥ 0,

where n̂ = n̄(n̄ − 1)/2, B : Sn → Rn̄ is the linear map defined in Section 2.3, D ∈ Rn̂×n̄ is
defined as Dy := B(yeT − eyT ). Even for the small-sized problem when n = 50, the above
problem contains more than 800, 000 constraints. The penalty on the pairwise differences
makes it impossible to apply the IPMs to solve the model (P) even for small-sized problems.
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Here, we compare our two-phase algorithm with the stand-alone sGS-ADMM proposed
in Section 3.1, and the alternating linearization method in Scheinberg et al. (2010). Note
that the authors in Scheinberg et al. (2010) proposed the alternating linearization method
to solve the sparse Gaussian graphical models, which could be modified to solve the uncon-
strained form (2) of our model by changing the soft-thresholding operator to the proximal
mapping of Q(·) provided in (10). Figure 4 shows the comparison among three algorithms
for solving the model (P) with and without constraints on modular graph recovery prob-
lems, where the alternating linearization method is not used in the constrained case as it is
not applicable. We fix bn/nGc = 20, ρ = 0.1 and λ = ρ/n2. Note that both the two-phase
algorithm and the stand-alone sGS-ADMM perform better than the alternating lineariza-
tion method, especially for the relatively large n. In addition, we can see that the pALM
in Phase II indeed accelerates the computation.

(n, nG,m) ρ max{RP , RD, RC} RG Iteration Time

T S T S T S T S

(500,10,11981) 0.1 1.68e-7 9.99e-7 4.03e-9 8.75e-7 11(195) 5451 00:02:42 00:38:05

(500,10,11981) 0.05 5.84e-7 1.00e-6 8.47e-9 5.22e-7 17(305) 17732 00:04:42 02:04:02

(1000,20,47971) 0.1 4.10e-7 8.12e-4 4.05e-8 1.32e-3 19(351) 3751 00:36:47 05:00:01

(1000,20,47971) 0.05 9.50e-7 1.30e-3 5.07e-8 7.89e-4 20(363) 3391 00:39:13 05:00:00

(2000,50,38006) 0.1 9.24e-7 1.07e-5 5.96e-8 3.23e-5 16(294) 4044 00:45:36 05:00:02

(3000,50,43498) 0.1 4.63e-7 1.28e-5 9.18e-7 4.09e-5 5(78) 2485 00:34:22 05:00:01

(4000,50,62395) 0.1 4.17e-7 1.70e-5 1.44e-7 5.63e-5 7(116) 1235 00:57:59 05:00:04

Table 1: Performance of the algorithms for autogressive models. ‘11(195)’ means ‘pALM
iterations (total inner SSN iterations)’ in Phase II of our two-phase algorithm. A
value in bold means that the algorithm fails to solve the instance to the required
accuracy.

(n, nG,m) ρ max{RP , RD, RC} RG Iteration Time

T S T S T S T S

(64,4,1008) 0.1 4.64e-7 1.00e-6 1.32e-7 1.73e-7 3(19) 2341 00:00:02 00:00:18

(64,4,1008) 0.05 7.24e-7 9.96e-7 5.44e-8 6.17e-8 5(22) 2394 00:00:02 00:00:21

(400,40,7980) 0.1 1.86e-7 1.00e-6 1.05e-8 3.17e-7 4(59) 3974 00:01:04 00:14:59

(400,40,7980) 0.05 6.35e-7 1.00e-6 2.96e-8 2.25e-7 13(233) 6073 00:02:21 00:24:53

(800,80,31960) 0.1 1.61e-7 1.00e-6 1.04e-9 5.31e-8 4(48) 2612 00:08:11 01:29:39

(800,80,31960) 0.05 6.46e-7 9.99e-7 2.25e-9 1.17e-7 16(293) 2945 00:15:56 02:08:03

(1000,100,49950) 0.1 1.08e-7 9.99e-7 1.08e-7 3.36e-8 2(12) 1475 00:13:05 02:02:43

Table 2: Performance of the algorithms for modular graph recovery.

Next we show more experimental results on the cases with larger n to demonstrate the
efficiency and robustness of our proposed two-phase algorithm, see Table 1 and Table 2.
In Table 1, we compare our two-phase algorithm (T) and the stand-alone sGS-ADMM (S)
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for estimating large-scale concentration matrices for autogressive models. The alternating
linearization method is not performed here since in Figure 4(a), we can see that it performs
not as well as the other two algorithms for relatively large n, and it is not applicable for
constrained cases. We set the maximum computation time of each algorithm as 5 hours. We
can see that our two-phase algorithm outperforms the stand-alone sGS-ADMM by a large
margin. For example, we are able to compute a highly accurate solution for a large instance
with matrix dimension n = 1000 and 47971 linear constraints in about half an hour, while
the sGS-ADMM takes 5 hours to get an approximate solution with lower accuracy. Table
2 shows the performance of two algorithms for solving large-scale modular graph recovery
problems. It can also be seen that our two-phase algorithm gives much better performance
than the stand-alone sGS-ADMM.

(a) Sparse Gaussian graphical model (b) Our proposed model

Figure 5: Visualization of the estimated result for the Cancer genome data set.

4.3 Experiments on Real Data

In this subsection, we apply our proposed model on some real data to see how it works
on estimating the Gaussian graphical model with sparsity and clustering structure. The
visualization is constructed using the software spectralGraphTopology 1.

Cancer genome data set. We consider the RNA-Seq Cancer Genome Atlas Research
Network (Weinstein et al., 2013; Kumar et al., 2020). In the data set, there are n = 801
labeled samples, and each of them has p = 20531 features. The data set consists of five types
of cancer, which are labeled with dots with five colors in the figure. Our goal is to study
the similarities among the samples based on the given features assuming that we do not
know the true labels. We apply the unconstrained model (2) with ρ = 0.09 and λ = ρ/n2.
The problem is solved by the two-phase algorithm in 59 seconds. Figure 5 presents the
visualization of the estimated results of our estimator and the sparse Gaussian graphical

1. https://CRAN.R-project.org/package=spectralGraphTopology
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model. Note that as we set λ = ρ/n2 in our estimator (2), both of these two models contain
one tuning parameter, which allows for a fair comparison. The edges between the vertices
represent the similarities between them. That is, there is an edge between dot i and dot j
if and only if the estimated Σ−1 satisfies (Σ−1)ij 6= 0. One can see from the figure that the
penalty on the pairwise differences that we add to the original sparse Gaussian graphical
model indeed helps us to give better estimation of the graph and detect more meaningful
clusters. For the estimated result of the sparse Gaussian graphical model in Figure 5(a), the
clustering result is not clear and there are many redundant edges. As for the result of our
proposed model in Figure 5(b), we can see that the samples are clustered into true groups
except for four samples. The clustering result is consistent with the label information and
the samples in different groups are completely separated.
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(a) Sparse Gaussian graphical model
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(b) Our proposed model

Figure 6: Visualization of the estimated result for the Animals data set.

Animals data set. Following the idea in Egilmez et al. (2017), we also present some
illustrations on how our model performs on categorical (non-Gaussian) data. To deal with
the categorical data, we compute the input matrix C as the sum of the sample covariance
matrix and the identity matrix scaled by 1/3, where the 1/3In term is added based on
the variational Bayesian approximation result in Banerjee et al. (2008) for binary data.
We use the Animals data set (Kemp and Tenenbaum, 2008; Egilmez et al., 2017; Kumar
et al., 2020) consisting of binary values which are answers to p = 102 questions for n = 33
animals. In the graph, vertices denote animals and edge weights represent the similarities
between them. We aim to find the similarities among the animals. Since the conditional
independence pattern is unknown in this real application, we apply the unconstrained model
(2) with ρ = 0.05 and λ = ρ/n2, which means that there is only one tuning parameter ρ
involved in our estimator. The problem is solved by our two-phase algorithm within 1
second. The visualization of the estimated graphs by our model and the sparse Gaussian
graphical model is presented in Figure 6. One can see from the estimated result by our
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model that the animals are clustered into various meaningful groups. For example, the
cluster of animals consisting of Horse, Elephant, etc, are large herbivorous mammals, while
the cluster of animals consisting of Tiger, Lion, etc, are carnivorous mammals.
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Figure 7: Visualization of the estimated result for the Zoo data set.

Zoo data set. We consider the Zoo data set from the UCI Machine Learning Repository,
which contains n = 100 animals and each animal has p = 17 Boolean-valued attributes.
Note that in this data set, the sample size p is much smaller than the number of animals n,
which makes it difficult to estimate the concentration matrix. The data set contains seven
types of animals which are known. To be specific, the set contains 41 kinds of mammals, 20
kinds of birds, 5 kinds of reptiles, 13 kinds of fish, 3 kinds of amphibians, 8 kinds of bugs
and 10 invertebrates. Each type is labeled in the figure by a different color: black, violet,
red, green, blue, yellow and pink, respectively. Since the data is the categorical data, we
use the same technique as the case for the Animals data set to compute the input matrix
C as the sum of the sample covariance matrix and the identity matrix scaled by 1/3. In
the experiment we take ρ = 0.05 and λ = ρ/n2. The problem is solved by the two-phase
algorithm within 1 second. We compare the clustering result of the model (2) with the
true groups in Figure 7. As one can see, the animals belonging to each group are clustered
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together except for the reptiles. Since the sample size is much smaller than the number of
animals in this data set, there exist some wrong connections across different clusters, which
are indicated by the grey colored edges in the figure. Some of the wrong connections are
consistent with our usual expectation. For example, there exists an edge between platypus
and penguin since they are both vertebrate warm blooded animals that lay eggs. Note that
the animals belonging to the relatively large groups: mammals, birds and fish, are clearly
separated. In addition, the cluster consisting of mammals is further divided into three sub
groups: the carnivorous mammals like lion, the large herbivorous mammals like elephant,
and the small herbivorous mammals like squirrel.

5. Conclusion

In this paper, we propose a new model to estimate the concentration matrix via learning
the sparsity and hidden clustering structure. In addition, we design an efficient two-phase
algorithm to solve the underlying large scale convex optimization to high accuracy. Specif-
ically, we design the sGS-ADMM in the first phase to generate an initial point to warm
start the second phase of the pALM, where each of its subproblems is solved by the SSN
method. Numerical experiments on both synthetic data and real data have demonstrated
the good performance of our model, as well as the efficiency and robustness of our proposed
algorithm.
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Appendix A. Proof of Proposition 3(c)

For any u ∈ Rn̄, we can see that

q∗(u) = sup
x∈Rn̄

{
〈x, u〉 − ρ‖x‖1 − λ〈w,Pxx〉

}
= sup

x̂∈D
sup
P∈Pn

{
〈Px̂, u〉 − ρ‖x̂‖1 − λ〈w, x̂〉

}
,

where Pn denotes the set of n× n permutation matrices. Given x̂ ∈ D, we have that

〈Px̂, u〉 = 〈x̂, P Tu〉 ≤ 〈x̂, Puu〉, ∀P ∈ Pn,
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according to Chebyshev’s sum inequality. Therefore

q∗(u) = sup
x̂∈D

{
〈x̂, Puu− λw〉 − ρ‖x̂‖1

}

=


0, if

k∑
i=1

((Puu−λw)i − ρ) ≤ 0,
n∑
i=k

((Puu−λw)i + ρ) ≥ 0, ∀k = 1, · · · , n̄,

+∞, otherwise,

where the last equality follows from the following lemma.

Lemma 12 Given any y ∈ Rn̄ and ρ > 0, it holds that

sup
x∈D

{
φ(x)=〈x, y〉−ρ‖x‖1

}
=


0, if

k∑
i=1

(yi−ρ) ≤ 0,
n̄∑
i=k

(yi+ρ) ≥ 0, ∀k = 1, · · · , n̄,

+∞, otherwise,

where the convex set D is defined in Proposition 3.

Proof Suppose for all k = 1, · · · , n̄,

k∑
i=1

(yi − ρ) ≤ 0,
n̄∑
i=k

(yi + ρ) ≥ 0.

For any x ∈ D, we have

x1 ≥ x2 ≥ · · · ≥ xn̄−1 ≥ xn̄.

There must exists j ∈ {0, 1, · · · , n̄} such that

+∞ = x0 ≥ x1 ≥ · · · ≥ xj ≥ 0 ≥ xj+1 ≥ · · · ≥ xn̄ ≥ xn̄+1 = −∞.

Define u ∈ Rn̄ as

u1 = x1 − x2, · · · , uj−1 = xj−1 − xj , uj = xj ,

uj+1 = −xj+1, uj+2 = xj+1 − xj+2, · · · , un̄ = xn̄−1 − xn̄.

Then we can see that u ≥ 0 and

x1 = u1 + u2 + · · ·+ uj , x2 = u2 + · · ·+ uj , xj = uj ,

xj+1 = −uj+1, xj+2 = −uj+1 − uj+2, xn̄ = −uj+1 − · · · − un̄.

Thus it holds that

φ(x) =

j∑
i=1

xi(yi − ρ) +

n̄∑
i=j+1

xi(yi + ρ)

=

j∑
i=1

(ui + · · ·+ uj)(yi − ρ) +

n̄∑
i=j+1

(−uj+1 − · · · − ui)(yi + ρ)

=

j∑
i=1

ui(y1 + · · ·+ yi − iρ) +
n̄∑

i=j+1

(−ui)(yi + · · ·+ yn̄ − (n̄+ 1− i)ρ) ≤ 0.
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Together with the fact that 0 ∈ D and φ(0) = 0, we have

sup
x∈D

φ(x) = 0.

Next we consider the case when there exists k0 ∈ {1, · · · , n̄} such that
∑k0

i=1(yi−ρ) > 0.
Take x ∈ D as

x1 = x2 = · · · = xk0 = a > 0, xk0+1 = xk0+2 = · · · = xn̄ = 0.

Then

φ(x) = a

k0∑
i=1

(yi − ρ)→ +∞, as a→ +∞,

which means supx∈D φ(x) = +∞. Similarly, it could be proved that when there exists
k0 ∈ {1, · · · , n̄} such that

∑n
i=k0

(yi + ρ) < 0, we have supx∈D φ(x) = +∞. This completes
the proof.
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