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Abstract

Random forests are a statistical learning method widely used in many areas of scientific
research because of its ability to learn complex relationships between input and output
variables and also its capacity to handle high-dimensional data. However, current random
forest approaches are not flexible enough to handle heterogeneous data such as curves,
images and shapes. In this paper, we introduce Fréchet trees and Fréchet random forests,
which allow to handle data for which input and output variables take values in general
metric spaces. To this end, a new way of splitting the nodes of trees is introduced and
the prediction procedures of trees and forests are generalized. Then, random forests out-
of-bag error and variable importance score are naturally adapted. A consistency theorem
for Fréchet regressogram predictor using data-driven partitions is given and applied to
Fréchet purely uniformly random trees. The method is studied through several simulation
scenarios on heterogeneous data combining longitudinal, image and scalar data. Finally,
one real data set about air quality is used to illustrate the use of the proposed method in
practice.

Keywords: random forests, nonparametric regression, metric spaces regression, longitu-
dinal data, heterogeneous data, random objects

1. Introduction

Random Forests (Breiman, 2001) are one of the state-of-the-art machine learning methods.
It owes its success to very good predictive performance coupled with very few parameters
to tune. Moreover, as a tree-based method, it is able to handle regression and classifica-
tion (2-class or multi-class) problems in a consistent manner and deals with quantitative
or qualitative input variables. Finally, its non-parametric nature allows to proceed high-
dimensional data where the number of input variables is very large in regards of statistical
units.

The general principle of a tree predictor is to recursively partition the input space in
a binary manner. Starting from the root node which contains all learning observations, it
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repeatedly splits each node into two or more child nodes until a stopping rule is reached.
When the input variables are quantitative, splits consist in an input variable Xj and a
threshold s, leading to two child nodes containing observations that verify {Xj ≤ s} and
{Xj > s} respectively (Breiman et al., 1984). For a categorical input variable, a split is
a partition of the variable categories into two groups. The splitting variable as well as
the threshold or the categories partition are usually sought to minimize an heterogeneity
criterion on child nodes. The main idea is to partition the input space into more and more
homogeneous regions in terms of the output variable.

A limitation of the splitting strategy described above is that all input variables must
either live in R or be categorical, which is not the case with non-Euclidean data such as
images, shapes or curves. As an illustrative example, the real data set to be analyzed in
this paper is from an air quality study made of input variables which are discretely sampled
curves representing repeated measurements over time. This example typically corresponds
to observations contained in longitudinal (or functional) data. In such settings, the main
objective is to predict, for a given observation, its output using the knowledge of inputs
trajectories. If we consider the input data at the trajectory level, then standard ways of
splitting nodes cannot be used anymore. However, ignoring the fact that measurements
are repeated observations over time generally leads to an important loss of information for
prediction. Thus, one way of analyzing this kind of data is to generalize the notion of split
in metric spaces.

Focusing on the framework of functional (or longitudinal) data, some works have been
done to tackle this kind of problem, mainly in the functional data analysis literature. For
instance, Kadri et al. (2010) introduced a functional reproducing kernel Hilbert space ap-
proach, which go beyond the functional linear regression (Ramsay and Silverman, 2005).
Later on, Oliva et al. (2015) proposed a nonparametric fast function-to-function regression
estimator that uses basis representation of input and output functions. In this paper, we
focus on the family of tree-based methods, in which several adaptations to the context of
functional data have been proposed. On one hand, some authors deal with functional out-
puts (while the inputs are standard). Yu and Lambert (1999) expressed output curves as
linear combinations of a spline functions basis and then use multivariate regression tree. Ner-
ini and Ghattas (2007) changed the heterogeneity criterion by using Csiszár’s f -divergence
to adapt regression trees to the case where outputs are probability densities. Geurts et al.
(2006b) used the kernel trick to project complex outputs onto an Hilbert space to pro-
duce a new notion of heterogeneity. In the context of heterogeneous treatment effects, Du
et al. (2021) proposed to adapt random forests to the problem of estimating the conditional
distribution by using the Wasserstein distance between empirical measures. On the other
hand, some works have been done to deal with functional inputs and standard outputs.
Möller et al. (2016) proposed an adaptation of random forests by using averages of func-
tions values on their respective domains partitions. Belli and Vantini (2020) proposed to
extract summaries of functional inputs, (called functional feature extractors). Finally, in
the context of functional inputs and functional outputs, Brockhaus et al. (2017) proposed
a regression method called FDboost to fit an additive regression model where each partial
effect function is modeled according to a functions basis, such as B-splines. Each partial
effect is estimated by a component-wise gradient boosting algorithm. The FDboost method
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is able to handle function-to-function, function-to-scalar and scalar-to-function regression,
which makes it our main competitor in this paper.

In the more general framework of metric spaces, Haghiri et al. (2018) proposed an
adaptation of random forests in the special case where neither the representation of the data
nor the distances between data points are available. New innovative regression methods have
also emerged for the framework of a metric space valued output variable with Euclidean
predictors (Petersen and Müller, 2019). In the present work, we consider the most general
possible framework where inputs and outputs lie in metric spaces.

Hence, we consider the framework of a learning sample Ln = {(X1, Y1), . . . , (Xn, Yn)}
made of i.i.d. observations of a pair of random variable (X,Y ) ∈ X × Y, where X is a
product of p metric spaces (X1, d1) × · · · × (Xp, dp), and where Y is also a metric space
with distance dY . The main contributions of our work are two-fold: first we introduce a
general notion of split in order to tackle inputs that lie in metric spaces. We define a split
as a couple of elements c1 and c2 of a given metric space which allows to build a Voronöı
partition, i.e. to separate input elements that are closer to c1 from those closer to c2. The
second contribution is to replace the split criterion in regression trees using the notion of
Fréchet variance (Fréchet, 1906) in order to cope with outputs in a metric space. Moreover,
to predict outputs we propose to use the Fréchet mean (Fréchet, 1906) (which is the natural
extension of the standard mean in metric spaces) of the outputs values corresponding to
observations belonging to a given tree leaf. This justifies the names Fréchet trees and
Fréchet random forests hereafter. Finally, with this generalization of CART trees, Fréchet
random forests are derived in a rather standard way: a forest predictor is an aggregation of
a collection of randomized trees. In our framework, the aggregation step therefore consists
in taking the Fréchet mean of individual tree predictions. Therefore, we propose a new class
of random forests based on general metric able to take into account various type of data
including spatially or timely correlated measurements.

In this paper, we first present the Fréchet tree predictor in Section 2 before introducing
Fréchet random forests in Section 3. We introduce an extremely randomized version of the
Fréchet random forests method in Section 3.3. Section 4 is dedicated to the analysis of the
consistency of Fréchet regressogram estimators using data-driven partitions with output
lying in a metric space. We report numerical experiments using simulated longitudinal
data to compare our approach with competitive methods, then we analyze two scenarios
of heterogeneous data simulations involving curves, images and scalars in Section 5. An
application of Fréchet random forests on daily measured air quality data is presented in
Section 6. Finally, we discuss in Section 7 potential extensions of this work. All the
numerical experiments of this paper are reproducible using our R package FrechForest.1

2. Fréchet Trees

Fréchet trees are built using the same main principle as standard decision trees, by adapting
the splitting rule and the way outputs are averaged in the leaves of the tree.

1. The package is available at https://github.com/Lcapitaine/FrechForest
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2.1 Fréchet Means and Fréchet Variance

The notions of mean and variance are central to the construction of regression trees (Breiman
et al., 1984). We introduce in this section the notions of Fréchet empirical mean and
Fréchet empirical variance (Fréchet, 1948), which are the natural generalization of mean
and variance in metric spaces.The use of the Fréchet mean has now become a standard tool
for statistical inference from manifold-valued data. For example, it is the key notion allowing
to perform PCA for non-Euclidean data such as functional data on Riemannian manifolds
(see e.g., Dai and Müller, 2018; Fletcher et al., 2004; Sommer et al., 2010) or histograms
(Cazelles et al., 2018), and to analyze ensemble of complex objects with their shapes, such as
ECG curves (Bigot, 2013) or phylogenetic trees (Nye et al., 2017). The methods proposed
in this paper allow to perform nonparametric regression between predictors taking their
values in different metric spaces and a metric space valued output.

Let (z1, . . . , zn) a sample from a metric space (Z, d), the empirical Fréchet function is
given by

Fn : Z 7−→ R+

z 7−→ 1
n

n∑
i=1
d2(z, zi)

the function Fn(z) measures the average squared distance between z ∈ Z and z1, . . . , zn.
We define the empirical Fréchet means zn of the sample (z1, . . . , zn) as any minimizer of
the empirical Fréchet function, i.e.

zn ∈ arg min
z∈Z

Fn(z)

Note that in general, the Fréchet mean does not always exist and can be non unique. The
empirical Fréchet variance Vn of the sample (z1, . . . , zn) is then given by

Vn = Fn(zn) =
1

n

n∑
i=1

d2(zi, zn)

Note that even if the empirical Fréchet mean may not be a unique element of the metric
space, the Fréchet variance is unique.

We give some examples of commonly encountered metric spaces on which the Fréchet
mean exists. Agueh and Carlier (2011) prove the existence of the Fréchet mean in the space
of probability measures of finite variance with Wasserstein distance. Petersen and Müller
(2019) show the existence and uniqueness of the Fréchet mean in the set of correlation
matrices with fixed dimension. Charlier (2013) gives a necessary and sufficient condition
for the existence of the Fréchet mean on the unit circle in R2, he also discusses about the
non-uniqueness of the Fréchet mean in such space. General results about the existence and
(non-)uniqueness of Fréchet mean on Riemannian manifolds are given in Kendall (1990)
and Bhattacharya and Patrangenaru (2003). Finally, Le Gouic and Loubes (2017) study
the existence of Fréchet mean for random probabilities on geodesic space.

Throughout the paper, Fréchet mean and Fréchet variance will always refer to Fréchet
empirical mean and Fréchet empirical variance. For the sake of simplicity, we assume in the
rest of the paper that the Fréchet mean is unique.
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2.2 Splitting Rule

One key ingredient in the building of a decision tree is the way its nodes are split (Breiman
et al., 1984). Splitting a node t of a tree according to some variable X(j) amounts to find a
way of grouping observations of this node into two subsets constituting the child nodes. This
grouping is usually performed to maximize the differences between the two resulting child
nodes according to the output variable. However, if variable X(j) is strongly related to the
output variable Y , then it is expected that for two observations with “close” X(j) values in
(Xj , dj), associated outputs will be “close” in (Y, dY). From this idea, we introduce a way of
splitting nodes in general metric spaces. Let (Z, d) be a metric space, a split is any couple
of distinct elements (c1, c2) of Z. We define the partition P = {P1, P2} associated with
elements (c1, c2) by P1 = {z ∈ Z, d (z, c1) ≤ d (z, c2)} and P2 = {z ∈ Z, d (z, c2) < d (z, c1)}.
Let A be a subset of the input space X and for any j = 1, . . . , p, let Aj = {x(j), x =(
x(1), . . . , x(p)

)
∈ A} denotes the set of the j-th coordinates of the components of A. Let

(cj,l, cj,r) be a split on (Aj , dj), denote Aj,r and Aj,l the right and left child nodes (i.e. the
associated partition) obtained from the split (cj,l, cj,r).
The quality of the split (cj,l, cj,r) is then defined by the following measure of Fréchet variance
decrease:

Hn,j(A, cj,l, cj,r) = Vn(A)− Nn (Aj,r)

Nn (A)
Vn(Aj,r)−

Nn (Aj,l)

Nn (A)
Vn(Aj,l) (1)

where Nn(A), Nn(Aj,l) and Nn(Aj,r) are the number of observations of the learning set
Ln belonging to A, Aj,l, Aj,r and Vn(A), Vn(Aj,l) and Vn(Aj,r) are the empirical Fréchet
variances of outputs in A, Aj,r and Aj,l i.e.

Vn(A) =
1

Nn(A)

∑
i:Xi∈A

d2
Y(Yi, Y A) (resp. for Aj,l and Aj,r).

Y A, Y Aj,l and Y Aj,r are the Fréchet means of outputs associated to observations belonging
to nodes A, Aj,l and Aj,r i.e.

Y A = arg min
y∈Y

∑
i:Xi∈A

d2
Y(y, Yi) (resp. for Y Aj,l and Y Aj,r).

It is worth noting that the decrease in Fréchet variance for each possible split is compared
with the output space metric, which makes it possible to compare splits made on input
variables from different metric spaces. At last, the split variable j∗n, chosen for splitting the
node is the one that maximizes Hn,j , that is

j∗n = arg max
j∈{1,...,p}

Hn,j . (2)

It is easy to show that Hn,j∗n ≥ 0 for all n, thanks to the use of the Fréchet mean, which
means that each split leads to a decrease of Fréchet variance.

To determine the successive splits (cj,l, cj,r), the user defines, in a preliminary step, a
split function i.e. a way to find the two representatives (cj,l, cj,r). More precisely, a split
function is an application which associates a couple (c1, c2) ∈ Z to any sample {h1, . . . , hn}
from a general metric space (Z, d). For example, the 2-means algorithm (k-means with
k = 2) can be used to determine the representatives. Note that for each metric space
(Xj , dj) we can use a different split function.
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2.3 Tree Building

Starting from the root node (associated with the whole input space X ), nodes are recursively
split in order to give a partition of the input space X . A node t of the tree is not split if
it is pure, that is if the Fréchet variance of this node is null. As a first step in the building
process, the tree is developed until all nodes are pure, leading to the so-called maximal tree.
Then, the pruning algorithm of CART (Breiman et al., 1984) is applied, with the use of
the Fréchet variance instead of the standard empirical variance. At the end of this step, a
sequence of nested sub-trees of the maximal tree is obtained. Next, the sub-tree associated
to the lowest prediction error (estimated by cross-validation) is selected as the final tree
predictor. The way a Fréchet tree predicts new inputs is detailed in the next section.

2.4 Prediction

Let Tn be a Fréchet tree, we note T̃n the set of leaves (i.e., terminal nodes) of Tn. For each
leaf t ∈ T̃n, the Fréchet mean of the outputs of observations belonging to t is associated
to t. Then the prediction of the output variable associated with any x ∈ X is given by
ŷ = Tn(x) =

∑
t∈T̃n Y t1x∈t, where 1S denotes the indicator function of a set S and Y t is

the Fréchet mean of outputs in t

Y t = arg min
y∈Y

∑
i:Xi∈t

d2
Y (y, Yi)

In order to determine to which leaf belongs an observation x, it is dropped down the tree
as follows. Starting from the root node, the associated split variable X(j1) is considered,
together with its two child nodes Aj1,l and Aj1,r, as well as the corresponding representatives
cj1,l and cj1,r. To decide in which child node x must fall, its dj1-distance with cj1,l and
cj1,r must be computed and x goes to Aj1,l if dj1(x(j1), cj1,l) < dj1(x(j1), cj1,r) and to Aj1,r
otherwise. This process is then repeated until x falls into a leaf. The error made by Tn on
x is defined as:

err(Tn(x)) = d2
Y(Tn(x), y) .

3. Fréchet Random Forests

In this section, we naturally extend Fréchet trees into Fréchet random forests following
standard random forests princple.

3.1 An Aggregation of Fréchet Trees

A Fréchet random forest is derived as standard random forests (Breiman, 2001): it consists
in an aggregation of a collection of randomized Fréchet trees. Here, the same random
perturbations as standard random forests Breiman (2001) are used. Let l ∈ {1, . . . , q},
consider the l-th tree built on a bootstrap sample of the learning sample LΘl

n (n observations
drawn with replacement among Ln), the search for the optimized split for each node of this
tree is restricted to a subset of mtry variables randomly drawn among the p input variables
(those random subsets are denoted by Θ′l hereafter). The l-th randomized Fréchet tree is
denoted by Tn (.,Θl,Θ

′
l) and can be viewed as a doubly-randomized Fréchet tree. Once all
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randomized trees are built, the Fréchet mean is again used to aggregated them. Thus, for
any x ∈ X the prediction made by the Fréchet random forest is:

ŷ = arg min
z∈Y

q∑
l=1

d2
Y(z, Tn(x,Θl,Θ

′
l)) .

3.2 OOB Error and Variable Importance Scores

Fréchet random forests inherit from standard random forest quantities: OOB (Out-Of-
Bag) error and variable importance scores. The OOB error provides a direct estimation of
the prediction error of the method and proceeds as follows. The predicted output value,
Ŷ OOB
i , of the i-th observation (Xi, Yi) ∈ Ln, is obtained by aggregating only trees built on

bootstrap samples that do not contain (Xi, Yi). The OOB error is then computed as the
average squared distance between those predictions and the Yi:

errOOB =
1

n

n∑
i=1

d2
Y(Yi, Ŷ

OOB
i ) .

Variable importance (VI) provides information on the use of input variables in the learn-
ing task that can be used e.g. to perform variable selection. There are several ways of com-
puting variable importance scores. Some of them are based on the capacity of given variable
to decrease nodes heterogeneity, such as the one already proposed in CART (Breiman et al.,
1984) or one usually called MDI (Mean Decrease Impurity) in random forests (Breiman,
2001; Louppe et al., 2013). Another one, sometimes called MDA (Mean Decrease Accuracy)
is based on measuring the effect of permuting the values of a given variable, on prediction
performance (or accuracy). In this paper, we generalize the permutation-based VI, because
in practice it appears that it suffers less from some selection bias (Strobl et al., 2007, 2008;
Gregorutti et al., 2013). For j ∈ {1, . . . , p}, variable importance of input variable X(j), de-
noted VI(X(j)), is computed as follows. For the l-th bootstrap sample LΘl

n , let us define the
associated OOBl sample of all observations that were not picked in LΘl

n . First, errOOBl,
the error made by tree Tn (.,Θl,Θ

′
l) on OOBl is computed. Then, the values of X(j) in

the OOBl sample are randomly permuted, to get a disturbed sample ÕOB
j

l , and the error,

errÕOB
j

l , made by Tn (.,Θl,Θ
′
l) on ÕOB

j

l is calculated. Finally, VI of X(j) is defined as:

VI(X(j)) =
1

q

q∑
l=1

(
errÕOB

j

l − errOOBl

)
.

3.3 Extremely Randomized Fréchet Random Forests

The construction of a Fréchet tree is conditioned by: i) the existence of the Fréchet mean
for the output space (Y, dY); ii) the use of a calculable split function for each input space.
As mentioned in Section 2.2, in practice the 2-means algorithm can be used as the split
function. However, it may not be applicable on all input spaces, for example on input
spaces where the Fréchet mean does not exist. In order to have a split function applicable
on all input metric spaces, we use the split function introduced by Geurts et al. (2006a) for
regression and classification trees in Rp: let ntry be an integer between 1 and n(n− 1)/2,
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we randomly draw ntry different splits i.e. ntry different couples of representatives, then
we calculate the reduction of the Fréchet variance associated to each of these splits for
the response variable and finally we select the split which maximizes the reduction of the
Fréchet variance on the response variable. An extremely randomized Fréchet tree (ERFT)
is any tree built with this random split function. An aggregation of extremely randomized
Fréchet trees is called an extremely randomized Fréchet random forest (ERFRF). Note that
when ntry = n(n − 1)/2 (where n is the sample size of Ln) the node split is no longer
random. This splitting strategy has two advantages: it is applicable for any type of input
and by taking a low value of ntry, it allows to drastically reduce calculation times while
having excellent prediction capabilities (see Section 5.3.1).

4. Theory

In this section we study the consistency of Fréchet regressogram using data-driven partitions.
First, we recall the notions of specific risk and global risk in a general framework before
recalling the notion of Fréchet function. Then we remind the notion of family of partitions
on Rp. Finally we give the definition of Fréchet regressogram using data-driven partition
and a result of its consistency in the case where the input space is Rp and the output space
is a metric space.

4.1 Problem

In this section we present some notations in the general framework where X is any separable
space and (Y, d) is a separable metric space. Consider the pair of random variables (X,Y ) ∈
X × (Y, d). The task is to learn a mapping φ : X −→ Y.
For any mapping φ : X −→ Y the loss function L is given by

L (y, φ(x)) = d2 (y, φ(x)) y ∈ Y, x ∈ X

The global risk associated with the mapping φ is defined by

R(φ) = E [L(Y, φ(X))] = E
[
d2(Y, φ(X))

]
(3)

The Bayes optimal mapping φ∗ is any minimizer of the global risk function i.e.

φ∗ ∈ arg min
φ:X−→Y

R(φ) (4)

When X and Y are separable, according to Blackwell and Maitra (1984) the global risk can
be factorized as

R(φ) = EX
(
EY
[
d2(Y, φ(X))|X

])
(5)

We define the point risk function of φ by

r (x, φ(x)) = EY [L(Y, φ(X))|X = x] = EY
[
d2(Y, φ(X))|X = x

]
(6)

The Bayes optimal point-risk mapping φ∗ is defined by

φ∗(x) ∈ arg min
y∈Y

r (x, y) , where r (x, y) = EY
[
d2(Y, y)|X = x

]
. (7)

This mapping introduced in Petersen and Müller (2019) is called Fréchet regression function.
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4.2 Family of Partitions

Let X = Rp, denote Z = Rp ×Y and let πn be a partitioning rule of Rp i.e a function that
associates a measurable partition of Rp to any vector (z1, . . . , zn) ∈ Zn. We note An the
family of all the partitions we can obtain with πn:

An := {πn (z1, . . . , zn) , (z1, . . . , zn) ∈ Zn} (8)

We denote C (An) = sup
π∈An

|π| the maximal number of cells for the partitions family An.

Finally, letA be a family of partitions, let x1, . . . , xn n points of Rp and let B = {x1, . . . , xn}.
We note ∆ (A, xn1 ) the number of distinct partitions

{A1 ∩B,A2 ∩B, . . . , An ∩B}

induced by the partitions {A1, . . . , An} ∈ A. The growing function of the partitions family
A is defined by

∆∗n (A) = max
xn1∈Rd.n

∆ (A, xn1 ) (9)

Let (X1, . . . , Xn) a sample made of independent observations with the same distribution
as X. Denote µ the distribution of X and µn the empirical distribution of the sample
(X1, . . . , Xn). The following Lemma can be found in (Lugosi and Nobel, 1996, lemma 1).

Lemma 1 Let A be any collection of partitions of Rp. For every n ≥ 1 and every ε > 0,

P

(
sup
π∈A

∑
A∈π
|µ(A)− µn(A)| > ε

)
≤ 4∆∗n (A) 2C(A) exp

(
−nε2/32

)
(10)

4.3 Fréchet Regressogram

Let Ln = {(X1, Y1), . . . , (Xn, Yn)} be a learning sample made of independent observations
with same distribution as (X,Y ) . Let πn a partitioning rule, we define the Fréchet regres-
sogram estimator by

Tn (x) = arg min
y∈Y

1

n

n∑
i=1

d2(Yi, y)1{Xi ∈ πn[x]} (11)

where πn[x] denotes the unique cell containing x. The goal is then to show that under
certain assumptions on the metric space (Y, d), on the distribution of (X,Y ) and on the
partitioning rule, this estimator is consistent for the point risk as well as for the global risk.

We recall the definitions of doubling dimension and covering numbers given in Gottlieb
et al. (2016).

Definition 2 (Doubling dimension) Let (Y, d) be a metric space, let λY > 0 be the
smallest positive integer such that every ball in Y can be covered by λY balls of half its
radius. The doubling dimension of (Y, d) is then defined as ddim(Y) := log2(λY).

Definition 3 (Covering numbers) The ε-covering number N (ε,Y, d) of a metric space
(Y, d) is defined as the smallest number of balls of radius ε that suffices to cover Y.
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The diameter of a metric space (Y, d), denoted diam(Y), is defined by
diam(Y) = sup

y1,y1∈Y
d(y1, y2). When both the diameter and doubling dimension of the metric

space (Y, d) are finite, according to Gottlieb et al. (2016), the following lemma allows to
bound the ε−covering number.

Lemma 4 Let (Y, d) be a metric space with finite diameter diam(Y) < ∞ and finite dou-
bling dimension ddim(Y) <∞. Then, for every 0 < ε ≤ diam(Y)

N(ε,Y, d) ≤
(

2 diam(Y)

ε

)ddim(Y)

(12)

We now state the main result of our analysis.

Theorem 5 Let (Y, d) with finite diameter diam(Y) and finite doubling dimension
ddim (Y). Let πn be a partitioning rule on Rp, Πn be the family of partitions of Rp obtained
from πn and Vn[x] = E(Vol(πn[x])) be the expected volume of the cell containing x. Assume
that the following properties hold:

P1. We assume that (X,Y ) has uniformly continuous and bounded density ρ and the
marginal ρX verifies 0 < ρmin ≤ ρX

P2. C(Πn)
n → 0

P3. log(∆∗n(Πn))
n → 0

P4. logVn[x]
n → 0

P5. 1
Vn[x] = o( n

logn)

P6. diam(πn[x])→ 0 almost surely

then

lim
n→∞

∣∣∣∣r (x, Tn(x))−min
y∈Y

r (x, y)

∣∣∣∣ = 0, a.s. (13)

Furthermore,

lim
n→∞

R(Tn)−R(φ∗) = 0, a.s (14)

Proof The proof can be found in Appendix A.
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4.4 Fréchet Purely Uniformly Random Trees

In this (sub)section the input space considered is X = [0, 1]. As several theoretical works
on regression trees, we consider a simplified version of Fréchet trees. Hence, we study a
variant of the purely random trees introduced in Genuer (2012), denoted Fréchet purely
random tree.

Definition 6 (Fréchet purely uniformly random tree) Let Ln = {(X1, Y1), . . . ,
(Xn, Yn)} be a learning sample of i.i.d measurements in [0, 1]× (Y, d). Let kn be a positive
integer and U1, . . . , Ukn be kn i.i.d uniformly drawn random variables on [0, 1]. Denote
U(1), . . . , U(kn) the order statistics, the Fréchet purely random tree predictor FPURTn is
given by

FPURTn(x) = arg min
y∈Y

1

n

kn∑
j=0

n∑
i=1

d2(y, Yi)1{U(j) ≤ x ≤ U(j+1)} ∀x ∈ [0, 1] (15)

with U(0) = 0 and U(kn+1) = 1

Corollary 7 Let (Y, d) with finite diameter diam(Y) and finite doubling dimension
ddim (Y). Let kn be an integer depending on n. Assume the following assumptions:

A1. We assume that (X,Y ) has uniformly continuous and bounded density ρ and the
marginal ρX verifies 0 < ρmin ≤ ρX

A2. kn →∞ as n→∞ and kn = o(n/ log n)

hold then the Fréchet purely uniformly random tree estimator is consistent for the global
risk i.e

lim
n→∞

R(FPURTn)−R(φ∗) = 0, a.s (16)

Proof Let πn be the partitioning rule used to build FPURTn and let Πn the family of
partitions associated with πn. The interval [0, 1] is partitioned into kn + 1 intervals, then
C(Πn) = kn + 1 which implies

C(Πn)

n
=
kn + 1

n
→

n−→∞
0

It is easy to show that ∆∗n(Πn) ≤ nkn , then we deduce from kn = o(n/ log n) that

log ∆∗n(Πn)

n
≤ kn log n

n
−→
n→∞

0

From Arlot and Genuer (2014) (page 34-36) we have that the expected volume (diameter
in dimension one) of the interval containing x is:

Vn[x] =
2− xkn+1 − (1− x)kn+1

kn + 1
∀x ∈ [0, 1] (17)
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Hence, Vn[x] ≤ 2
kn+1 , then

logVn[x]

n
≤ log 2− log(kn + 1)

n
−→
n→∞

0

Finally, for x ∈ {0, 1}
log n

nVn[x]
=

(kn + 1) log n

n
−→
n→∞

0

and for every 0 < x < 1

log n

nVn[x]
=

(kn + 1) log n

(2− xkn+1 − (1− x)kn+1)n
∼

n→∞

(kn + 1) log n

2n
−→
n→∞

0

We demonstrated that the properties P1-P5 of Theorem 5 are verified. We thus conclude
that the one dimension FPURTn estimator is point-wise consistent as well as consistent for
the global risk.

Here we considered purely uniformly random trees in dimension 1. Arlot and Genuer
(2014) defined purely random trees in Rp. Even if it may be possible to apply Theorem 5
to these trees, it appears far more difficult to get the probability distribution of the volume
of the cell containing x, and thus in verifying the properties P4 and P5. Indeed, as soon
as we consider p > 1, the recursive character of the cuts makes the calculations much more
complex. This problem is out of the scope of this paper.

5. Simulation Study

In this section, we study the behavior of Fréchet random forests through two simulation
scenarios.

5.1 First Scenario, Longitudinal Data

We first study the behavior of Fréchet random forests in the context of longitudinal data,
where both inputs and outputs are curves.

5.1.1 Two Temporal Behavior Functions Scheme

The first scenario deals with the analysis of longitudinal data where inputs and outputs
are curves. We simulate n = 100, 200, 400 and 1000 observations of p = 6 input variables
according to the following model for any i = 1, . . . , n and for any j ∈ {1, . . . , 6}:

X
(j)
i (t) =

βi
(
fj,1(t)1{Gji=1} + fj,2(t)1{Gji=2}

)
+W 1

i (t) if j ∈ {1, 2}

β′i

(
fj,1(t)1{G′ji =1} + fj,2(t)1{G′ji =2}

)
+W 1

i (t) if j ∈ {3, 4, 5, 6}
(18)

where X
(j)
i (t) is the observation of the jth input variable at time t for the ith curve (individ-

ual); t browses a regular subdivision of [0, 1] with a step size of 0.05, Gji and G′ji ∼ U ({1, 2}),

12
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Figure 1: Dynamics of n = 100 simulated input trajectories according to the model (18)
.

βi and β′i ∼ N (1, 0.3), W 1
i (t) is a Gaussian white noise with standard deviation 0.02 and

fj,1 and fj,2 are defined as follows:



f1,1(t) = 0.5t+ 0.1 sin(6t)

f1,2(t) = 0.3− 0.7(t− 0.45)2

f2,1(t) = 2(t− 0.5)2 − 0.3t

f2,2(t) = 0.2− 0.3t+ 0.1 cos(8t)

f3,1(t) = f1,1(t)

f3,2(t) = f1,2(t)



f4,1(t) = f2,1(t)

f4,2(t) = f2,2(t)

f5,1(t) = 0.5t2 − 0.15 sin(5t)

f5,2(t) = 0.5t2

f6,1(t) = 0.6 log(t+ 1)− 0.3 sin(5t)

f6,2(t) = 0.6 log(t+ 1) + 0.3 sin(5t)

The terms Gji and G′ji allow to randomly affect typical temporal behaviors, defined by
fj,1 and fj,2 functions, to observations. The βi and β′i are dilatation/shrinkage terms of
fj,1 or fj,2, while W 1

i (t) corresponds to an additive noise. As illustrated in Figure 1, for
each input variable, the observed trajectories are variations of the typical temporal behavior
functions. The observations are divided into two groups of trajectories.

Output variable Y is simulated in a similar way. The pair (G1
i , G

2
i ) is used to determine

a trajectory for the output variable, this is the primary link between Xi and Yi

Yi(t) = βi

2∑
j=1

2∑
k=1

gj,k(t)1{Gji=j}
1{Gki =k} +W 2

i (t) (19)

where Yi(t) is the ith output curve measured at time t; t browses the same subdivision as
in (18), βi are the same coefficients used in (18), W 2

i (t) is a Gaussian white noise with
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standard deviation 0.05 and gj,k are given by:


g1,1(t) = t+ 0.3 sin(10 (t+ 1))
g1,2(t) = t+ 2(t− 0.7)2

g2,1(t) = 1.5 exp
(
− (t−0.5)2

0.5

)
− 0.1 (t+ 1) cos(10t)

g2,2(t) = log(13(t+0.2))
1+t

(20)

The response curves are distributed according to four different trajectory shapes, one for
each pair of possible trajectory shapes for the first two input curve variables X(1) and X(2).
Of note, the variables X(3) and X(4) are simulated using the same temporal functions as
variables X(1) and X(2); however, the trajectories of variables X(3) and X(4) are simulated
from G′j and not from Gj and thus have no relation with the output variable Y .

5.1.2 Three Temporal Behavior Functions Scheme

This simulation scheme is a variation of the previous one. Here, for each explanatory
variable, the curves are simulated from 3 time behavior functions instead of 2 which leads
the output curves to be constructed according to 9 different mean behavior functions that
are either expanded or contracted. Details about the additional temporal behavior functions
can be found in Appendix B.
In this simulation scheme, we consider 3 groups of curves instead of 2 to make the task of
splitting by Fréchet trees more difficult, see Figure 2 for an illustration of the differences
between the schemes with 2 and 3 time behavior functions for the first two input variables
and the output.

The objective of these first two scenarios is first to compare the predictive capabilities
of the introduced methods with the standard ones such as Breiman’s CART trees and
random forests, linear mixed-effects models but also to compare with the functional method
FDboost (Brockhaus et al., 2017). In a second step, we will focus on the flexibility of the
Fréchet random forests, in particular on the stability of the prediction error as well as of
the importance scores of the variables in two situations frequently encountered in practice:
first when we have time shifts on curves and second when we have missing data.

5.2 Second Scenario, Predict Curves with Images, Scalars and Curves

In this scenario, we want to predict output curves from inputs that are curves, scalars and
images to illustrate the flexibility of the Fréchet RF method, in particular its ability to
learn about different types of inputs and outputs. The input curve variables are simulated
according to the model (18) of the first scenario with βi and β′i drawn according to N (1, 1)
in order to have large variations of the curves around their average temporal behavior.
Similarly, the output curves are simulated according to the model (19) of the first scenario.
Let

(
M1

i

)
i

and
(
M2

i

)
i

two sequences of handwritten images of numbers 1 (for M1
i ) and 2

(forM2
i ) randomly drawn from the MNIST data set (LeCun et al., 2010). We simulate two

input image variables I(1) and I(2) according to the following model:

I
(j)
i =M1

i1{Gji=1} +M2
i1{Gji=2} for j ∈ {1, 2}; i ∈ {1, . . . , n} (21)
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Figure 2: The first two lines show the time behavior functions for schemes (18) and (50),
for the first two input variables X(1) and X(2) and the output Y . The third row
shows 50 simulated dynamics according to scheme (50) (see Appendix B).
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where Gji are the same draws as those used to simulate the input and output curves in

model (18) and model (19). Finally, consider the two real input variables R
(1)
i = βi and

R
(2)
i = β′i, where the βi and β′i are the same as those used to simulate the input and out-

put curves. The first variable R(1) determines the intensity of the contraction/expansion
of the X(1) and X(2) response curves. It is important to note that the link between the
output curves and the input variables is entirely contained in the pairs (G1

i , G
2
i ) which

determine the general shape of the output curve as well as the βi which determine the com-
pression/expansion of the output curves. The pairs (G1

i , G
2
i ) as well as the βi are used to

simulate the first two curve input variables X(1) and X(2). However the two image variables
are constructed only from the pairs (G1

i , G
2
i ) and the scalar variables are βi and β′i.

In this scenario, we are mainly interested in the ability of random forests to handle hetero-
geneous data and to extract information from variables of different natures.
A third simulation scenario in which images from the MNIST data set (LeCun et al., 2010)
are predicted from curves is presented in the Appendix C.

5.3 Results

We first address several aspects of Fréchet random forests in terms of split function, compu-
tational complexity and different kinds of robustness, for the first simulated data scenario.
Then we illustrate the behavior of the method when applied to more heteregeneous data in
the second scenario.

5.3.1 First Scenario

Distance and split function choices for Fréchet trees and forest First, we need
to determine a metric for each input and output space. In the case of longitudinal data
i.e. when repeated measurements of quantitative variables are available over time, the
observations of p input and one output variables can thus be represented by time-dependent
curves. In this case, the i-th observation Xi is a curve from I1×· · ·×Ip ⊂ Rp+ to Rp (where
I1 = [0, 1] and I2 = [0, 1] in the first scenario), and Yi is a curve from J ⊂ R+ to R.
We choose to equip the resulting curves spaces with the Fréchet distance dF introduced in
Fréchet (1906) defined for two real-valued curves f and g with support in I ⊂ R+ as

dF (f, g) = inf
α,β

max
t∈I
|f(α(t))− g(β(t))|

where α and β are any re-parameterizations of I. The definition is the same in the discrete
case (polygonal curves), except that t takes values on I by intervals, see Alt and Godeau
(1995) for a full description of Fréchet distance for discretely sampled curves. This distance
is a natural measure of similarity between the shapes of curves and has been widely used in
various applications such as signature authentication (Zheng et al., 2008), path classification
(Genolini et al., 2016) and speech recognition (Kwong et al., 1998). Note that, unlike several
classical distances, the calculation of the Fréchet distance does not require the same number
of measurements, nor the same observations times on the two trajectories. Once we have
determined the metrics used for the different spaces we need to define the split function
used to cut on the input spaces. The 2-means algorithm for longitudinal data using Fréchet
distance and Fréchet mean introduced in Genolini et al. (2016) is chosen on each input
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space to determine the different competing splits. This split function called kmlShape is
an adaptation of the k-means method tailored to one-dimensional curves. It allows to find
groups of trajectories based on their shapes (which are usually not found by conventional
methods, e.g. based on Euclidean distance).

Computational complexity We analyze the computational complexity of our method
in this framework. We note nt the number of measurement times per individual (which we
consider at first to be the same for each individual). According to Genolini et al. (2016),
the algorithmic complexity of the split function we used is of order O(2× n× n2

t ) where n
is the number of curves. Still according to Genolini et al. (2016), the computation of the
Fréchet distance between two curves of size nt is of order O(n2

t ) and the approximation of
the Fréchet mean of n curves is of order O

(
n× n2

t

)
. At each split, the computation of the

initial Fréchet variance (before splitting) as well as that in each child node is necessary. We
then deduce that for each splitting, the computation of the decrease of the Fréchet variance
is of the order O(n×n2

t +n×n2
t ). In the case of a Fréchet tree, the split function is applied

to the p input variables. Finally, the overall complexity of a split for a Fréchet tree on curves
as inputs and output is of order O

(
p× n× n2

t

)
. Recall that the complexity of a standard

CART tree splitting for n observations and p input variables is given by O (p× n× log n).
Thus, in the longitudinal framework this complexity becomes O (p× n× nt × log(n× nt)).
Indeed, as we consider the case where inputs curves and output curves are all observed at
the same time points, each line (and thus each observation) is one measurement for one
individual and we have therefore n×nt independent observations in total for an unchanged
number of input variables. We then notice that splitting a node with a Fréchet tree has a
computational complexity lower than the one of a standard CART tree when nt ≤ log(n×nt)
and thus ent

nt
≤ n i.e. when the number of individuals n grows exponentially with respect

to the number of time measurements nt.
For instance, in a longitudinal framework where each individual would have 10 measure-
ment times, from the moment the number of individuals exceeds 2202, the Fréchet tree
method would be faster than the CART tree method. It remains true for the associated
random forests which have complexities that derive directly from those of the splitting. It is
important to note that in our implementation of the methods presented in this paper in the
form of the R package FrechForest the emphasis has been put strongly on the flexibility
of the possible inputs and outputs and not on the speed of execution. Another package
currently under development in the Julia language focuses entirely on execution time but
requires a more rigid structure for this.2

Competing methods Fréchet trees and Fréchet random forests were compared on simu-
lated data sets to standard CART trees (Breiman et al., 1984) and standard random forests
(Breiman, 2001) as well as standard existing methods for longitudinal data analysis such
as linear mixed effects model (LMEM) with a random intercept and a random effect on
time and the boosting functional regression method FDboost (Brockhaus et al., 2017) with
optimized number of iterations. FDboost was considered because it is a flexible functional
boosting method that is able to handle regression problems with functions as well as scalars
as inputs and outputs. By its nature and flexibility this method is a natural competitor
to the methods introduced in this paper. As explained in the previous paragraph on the

2. This package is available at https://github.com/Lcapitaine/ExtraFrech.jl
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Figure 3: Boxplots of the prediction error of the Fréchet random forests method according
to the mtry parameter. Prediction errors are calculated on 100 data sets of size
n = 100 simulated according to models (18) and (19) of the first scenario.

computational complexity, for the standard CART and RF methods each observation time
of an output curve is related to the corresponding time of the input curves. Thus, all mea-
surements of the same individual are considered independent by these methods, which is a
fundamental difference from our approach.

The prediction errors (mean squared error) of all the methods are estimated on several
sample sizes n = 100, 200, 400 and 1000 using for each sample size, 100 data sets simulated
according to models (18) and (19). For each simulated data set Ln, we randomly divide
Ln into a training set (with 0.8n observations) and a test set (made of the remaining 0.2n
observations). The Fréchet distance is used on the curved input and output spaces to build
Fréchet trees and Fréchet random forests, however in order not to advantage our method,
prediction errors are calculated with the usual L2 Euclidean distance (time by time) which
benefits to the standard approaches like CART trees, RF and FDboost.

The number of randomly drawn variables mtry at each node has usually a strong impact
on random forests performance: if mtry is too small, individual trees would give too poor
predictions, and if mtry is too high, the collection of trees could be not diverse enough
(Dı́az-Uriarte and Alvarez De Andres, 2006; Genuer et al., 2008). As illustrated in Figure 3
the prediction error (MSE) of the Fréchet random forest decreases as the value of the
mtry increases. In all our experiments in the first scenario both in the 2 and 3 temporal
behavior functions schemes, we chose mtry=5 and q = 250 (justified by the fact that, in this
experiment, the OOB error stabilizes as soon as 100 trees are included in the forest). The
standard random forest was composed of 500 trees and the mtry parameter was optimized
to 2. The number of iterations for FDboost is selected between 1 and 500 through the
internal procedure of the package.

Numerical comparison For any sample size, FDboost, Fréchet tree, and Fréchet random
forests clearly outperform the standard LMEM, CART and RF methods in both the 2 and
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Fréchet Random Forests

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●●●●●●

●●

●
●
●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●●

n=100 n=200 n=400 n=1000
2 behavior functions

3 behavior functions

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 e
rr

or

Methods LMEM CART RF FDboost Ftree FRF

Figure 4: Boxplots of the prediction error (MSE) of the Linear mixed effects model
(LMEM), CART tree, random forests (RF), FDboost, Fréchet tree (Ftree) and
Fréchet random forest (FRF) methods estimated on 100 data sets simulated ac-
cording to the simulation scheme of the first scenario for n = 100, 200, 400 and
1000 sample sizes.

3 temporal behaviors schemes (Figure 4). Not surprisingly, the transition from a Fréchet
tree to a Fréchet RF greatly improves predictive capacity by reducing both prediction error
and error variance. For instance, in the 2 temporal behavior scheme when n = 100, the
estimated MSE obtained with a Fréchet tree is 0.047 while the one obtained with a Fréchet
RF is 0.028 which is a 40% decrease in prediction error; this reduction is, for each sample
size, always between 40% and 60% for the schemes with 2 and 3 temporal behaviors. Even
though FDboost (our principal competitor) shows very good performances, Fréchet tree
and Fréchet RF are the methods that obtain the lowest prediction errors for all sample
sizes and schemes. More precisely, for small data set (n = 100) in the 2 behavior functions
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Figure 5: Boxplots of the prediction error (MSE) and computation times estimated over
100 data sets of sample size n = 100 simulated under models (18) and (19) for
Fréchet RF (FRF) method and Extremely Randomized Fréchet RF (ERFRF)
method with different values of ntry.

scheme FDboost obtains an estimated MSE of 0.05 while Fréchet tree and Fréchet RF
obtain respectively 0.047 and 0.028 while for large data set (n = 1000) the estimated MSE
of FDboost is 0.031 and the Fréchet tree and Fréchet RF estimated MSE are respectively
0.012 and 0.006. Moreover, we can notice that in the scheme with 3 temporal behaviors the
prediction error obtained by FDboost is only about 10% lower than the one obtained by a
standard RF, while the MSE obtained by a Fréchet RF is at least 50% lower than standard
RF (and even keeps a gap of 80% when n = 1000). It is worth noting that FDboost obtained
an MSE between 75% and 85% lower than standard RF in the 2 temporal behavior scheme.
We can see here that the change from the scenario with 2 temporal behaviors to 3 temporal
behaviors has a greater impact on FDboost than on Fréchet RF.
Finally, note that the prediction error of the FDboost, Fréchet tree and Fréchet RF methods
decreases as the sample size n increases which is not the case with other methods that keep
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a stable prediction error. Additionally, this decrease is much larger with the Fréchet tree
and Fréchet RF methods than with the FDboost method. Moreover, the error prediction
of the Fréchet RF seems to converge to zero as n tends to infinity in both schemes. In the
rest of this section, the objective being to present the advantages in terms of flexibility of
the Fréchet RF method as well as to compare them to their extremely randomized version,
we only consider the scheme with 2 average behavior functions.

The extremely randomized version of Fréchet random forests introduced in Section 3.3
has some advantages over the Fréchet RF method. In particular, they are easy to implement,
can be used for any type of data and reduce calculation times. In order to verify this claim we
calculate the prediction error obtained by extremely randomized Fréchet forests (ERFRF)
for different values of ntry on 100 data sets of size n = 100 simulated according to the first
scenario. As shown in Figure 5, the prediction error of the ERFRF method decreases as the
value of the ntry increases. When ntry is large enough (here ntry=3), the error obtained
by ERFRF is similar to that obtained by Fréchet RF. Moreover, the execution time of an
ERFRF is much lower than that of a Fréchet RF. For example, the build time of an Fréchet
RF is 281 seconds while the build time of an ERFRF with ntry=3 is 191 seconds which is
30% lower. Similar results are obtained on larger data sets (not shown here).

Robustness to missing data As mentioned in the presentation of the Fréchet distance
at the beginning of this section, using the Fréchet distance allows to calculate the distance
between two curves measured at different times. Thus, having missing observation times
for some curves does not prevent the construction of the trees, as long as not all observation
times are missing for a given curve. In order to study the robustness of Fréchet RF to
missing observations, we simulate new data sets with n = 100 individuals according to
models (18) and (19) by randomly removing 10%, 20% and 30% of the observation times for
each curve. It is important to note that the removed observation times are different for each
curve. For example, the observations removed for the first variable of the first individual
will not necessarily be the same as those removed for the second or third variable or even
the output curve of the same individual. It is then impossible to use the standard LMEM,
RF and FDboost methods (it is always possible to use the CART method by removing
the missing observations for the output curves). As shown in Figure 6, the prediction
error obtained by Fréchet RF increases slightly as the percentage of missing observations
increases. Moreover, the prediction error obtained with Fréchet RF on simulated data sets
with 30% missing data remains competitive with that obtained by the FDboost method on
data sets without missing observations. There are two properties that allow robustness to
missing data. The first one comes from the functional data framework and thus to consider
that the observations coming from the same individual form a curve. Indeed, even if some
measurement times are missing, as long as there are still some points we still have a curve.
The second one comes from the Fréchet metric used which allows us to calculate the distance
between curves which are not observed at the same measurement times.

Robustness to time shifts It is rather common in applications to have a response
variable observed after the measurement times of the input variables. In order to study
the stability of Fréchet RF method to time shifts, we transform the output curves by
shifting them: i) by the same time shift of 1 for all the curves, i.e., the output curves
are observed on windows [1, 2] instead of [0, 1] (keeping the same shapes); ii) by randomly
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Figure 6: Boxplots of the estimated prediction error over 100 data sets of sample size n=100
simulated under models (18) and (19) for FDboost and Fréchet RF (FRF) meth-
ods based on the number of missing observations.

shifting each of them according to a uniform U([0, 0.5]), making the windows of observation
of the output curves all different in this case (see Figure 11 in Appendix B for the simulated
dynamics according to the time shifts). When all the outputs are all translated by a
different parameter it is impossible to use the Euclidean distance since the output curves
are observed on windows that are not exactly the same. Here we compute the prediction
error of the Fréchet RF according to the Fréchet distance (which is the distance used to
build the Fréchet RF). As illustrated in Figure 7, the constant time shift for the response
curves has no influence on the Fréchet RF prediction error. When the offsets are randomly
drawn for each output curve, the prediction error increases slightly to an average error of
5.2. As an example, the prediction error of FDboost computed with the Fréchet distance on
simulated data without time shifts is 11.4. We refer to Genolini et al. (2016) for a complete
presentation of the Fréchet averaging algorithm for curves, even when time shifted.

Variables importance sensitivity Finally, Figure 8 gives the importance scores of vari-
ables calculated with the Fréchet RF method on 4 data sets of size n = 100 simulated
according to models (18) and (19):

1. With no time shifts on the output curves and no missing observation times.

2. With random time shifts according to a uniform U([0, 0.5]) on the output curves but
with no missing measurement times.

3. With no time shifts but with 30% missing observation times.

4. With 30% missing observations and time shifts on the output curves.

This graph shows that neither time shifts nor missing observation times have an impact on
the importance of the variables. Indeed, the first two variables (those related to the output
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Figure 7: Boxplots of the estimated prediction error over 100 data sets of size n=100 simu-
lated under the first scenario for the FRF method based on the time shift applied
to the output curves.

variable) are always the ones with the highest importance scores. The other four variables
(unrelated to the output variable) have extremely low importance scores compared to the
first two variables.

As a conclusion, we illustrate the superiority on longitudinal data (in terms of prediction
error) of the Fréchet trees and Fréchet RF methods compared to the standard LMEM,
CART, RF methods as well as the longitudinal boosting method FDboost. In addition, we
illustrate the great robustness of the method to missing data and time shifts, both in terms
of prediction error and the importance of the variables. Lastly, we show that the extremely
randomized variant ERFRF can obtain a prediction error similar to that of Fréchet RF
while having lower computation times, making it a method of choice for analyzing very
large data sets.

5.3.2 Second Scenario

The Fréchet distance is used on curve spaces while the standard Euclidean distance is used
on scalar spaces and image variables. Since there is no comparison with other methods in
this scenario, the OOB error will be used as a measure of the performance of the Fréchet
RF. Throughout this section we study the ERFRF method, the version implemented in our
package FrechForest that can handle curves, images and scalars as inputs.

We study the OOB error obtained by ERFRF according to the types of input variables
(images, curves or scalars) on 100 data sets of size n =100 simulated according to the second
scenario. We consider the following models:

1. Only scalar variables R(1) and R(2) are used to predict output curves.

23



Capitaine, Bigot, Thiébaut and Genuer
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Figure 8: Barplots of the Fréchet RF variable importance scores, obtained on 4 data sets
simulated according to model (18) and model (19). The results in the left-hand
column are obtained on the simulated data sets without time shift while the right-
hand column contains those obtained with a random time shift on the output
curves. The results on the first row are those obtained on the simulated data sets
without missing data while those on the second row are those obtained on the
simulated data sets with 30% missing data on the input and output curves.

2. Only curve variables X(1), . . . , X(6) are used to predict output curves.

3. Image variables I(1) and I(2) and scalar variables are used.

4. all variables i.e. curves, scalars and images are used to predict output curves.

Note that case 2 corresponds to the first simulation scenario. Figure 9 shows an example of
an extremely randomized Fréchet tree of depth 2 (only the first three splits are shown here)
for each model above. When the models incorporate different types of inputs, in the case
of models 3) and 4), the constructed trees are mixed in the sense that they can alternate
the split spaces. For example, in the case of model 4), Figure 9 shows an example of a tree
with the first three splits in the three different types of input spaces: curves, scalars and
images. We chose the parameters mtry=5, q = 250 and ntry=5 for each model.

As shown in Figure 10, the highest OOB error is obtained when only scalar variables
are used. When the image variables are added to the scalar variables, the OOB error is the
same as the one obtained on the model using only the input curves. This was expected since
the input curve variables provide the same information as the image and scalar variables
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3)

t1

t2 t3

t4 t5 t7t6
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R(1) ≤ 0.56I(1)

4)

Figure 9: Examples of 4 extremely randomized trees of depth 2 built on n = 100 simulated
observations according to the second scenario. The 4 trees are constructed from
the input variables of: 1) scalars only; 2) curves only; 3) images and scalars; 4)
curves, images and scalars. Below each node is indicated the split variable. To
the left and right of each node are indicated the representative elements of the
right and left child nodes for the split variable in question. For example for model
3) the split variable of the root node is I(2), the images of the variable i(2) which
are closer to the image on the left (for the Euclidean distance), a blurred 2, go
into the node t2 while those closer to 1 go into the node t3.

combined. More precisely, the input curve variables provide both information on the shape
of the output curves as well as on their amplitude, whereas the information on the shape is
only provided by the images and the ones on the amplitude is only provided by the scalars.
Individually, the input variables of images or scalars provide only part of the information
that is provided by the input variables of curves. Finally, when the image and scalar
variables are added to the curve variables, the OOB error of the ERFRF decreases. This
is explained by the fact that in some cases, when the contraction or dilation of the input
curves is too large, the dilated or contracted curves may have a very different shape than
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Figure 10: OOB errors of the ERFRF method according to the types of input variables. The
OOB errors are obtained on 100 data sets of size n = 100 simulated according
to the second scenario.

their initial shape and thus lose the information they brought due to their shape. Thus the
addition of image variables allows to always have access to information on the shapes of the
output curves. Finally, the results of these simulations emphasizes the main strength of the
ERFRF method, which is to handle heterogeneous data, i.e. input and output variables of
different natures.

6. Application to Air Quality Prediction

The airquality data set (De Vito et al., 2008) contains 9358 observations of hourly aver-
aged atmospheric pollutants concentrations both from sensors and from a certified analyzer.3

The observations correspond to daily measurements from March 2004 to February 2005, on
the field in a significantly polluted area, at road level, within an Italian city. In our analysis,
we only consider ground truth measurements (given by the certified analyzer) and we take
the carbon monoxide (CO) concentration as the response (as in Luo and Qi, 2023). The
other measured pollutants concentrations are nitrogen dioxide (NO2), total nitrogen oxides
(NOx) and benzene(C6H6). Note that we did not consider the non-methane hydrocarbons
(NMHC) pollutant because it presents more than 90% missing data. In addition, the hourly
average temperature (Temp), relative (RH) and absolute humidity (AH) are also reported.

Our aim is, for a given day, to predict the CO concentration curve corresponding to the
second-half of the day (from 12 a.m. to 23 p.m) using the other variables curves restricted
to the first-half of the day (from 0 a.m. to 11 a.m.). Hence, we consider the statistical
unit as the day of the year (ending up with 304 units after removing the days with too
many missing values), and for each unit we have 6 input curve variables and 1 output curve

3. The data are publicly available at https://archive.ics.uci.edu/dataset/360/air+quality

26

https://archive.ics.uci.edu/dataset/360/air+quality
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variable. We then have a function-to-function prediction problem for which we use Fréchet
random forests (FRF).

We also apply standard random forests (RF) to the same data but now with hours as
statistical units : for each hour (of all day of the year) we have 6 input scalar variables
and 1 scalar output variable. In this case, the output variable is the CO concentration
measured 12 hours later than the time of measurement of the input variables (we then get
3648 = 304×12 units in this case). The objective of this second analysis is to study if the fact
that FRF take into account the curve structure of the data helps to get better predictions
or not, compared to RF that ignore that structure (and thus consider all observations as
independent of each other).

To compare the prediction performance of both approaches, we use the mean squared
error at the hour level: 1

N

∑N
i=1(ĥ(xi) − yi)2, where N is the total number of hours of the

year, xi and yi are the input variables and the output variable resp., observed at hour i,
and ĥ denotes either the FRF or the RF predictor. This is directly calculable for RF using
OOB predictions. However, it has to be recomputed for FRF since their OOB predictions
have a curve structure (see Section 3.2). This is done by computing the squared difference
between predictions and actual CO concentrations pointwise for those predicted curves.

We stress that, as in previous sections, we keep the Fréchet distance for the space of
curve variables. Hence, the FRF method is not parameterized to optimize the pointwise
error of its predictions. The mtry parameter was optimized for both methods leading to
mtry = 3 for RF and mtry = 2 for FRF, while 500 trees were built in each forest.4

We ran the two methods 20 times on the same data and computed the median and the
interquartile range (IQR) on the 20 obtained errors. The RF predictor reached a median
error of 1.486 (IQR: 1.482− 1.488), while FRF managed to get 1.160 (IQR: 1.155− 1.173),
which corresponds to an error reduction of 22%. Interestingly, the variable importance
scores (see Figure 13 in Appendix D) were also quite different with the two methods: while
NOx and NO2 variables were the most important variables, and C6H6 the least one, for
RF; the two most important variables for FRF were NOx and C6H6. In other words, C6H6
did not seem to help in the independent hourly data case, while it was among the two most
useful variables to predict the output in the daily curve data case.

7. Discussion

Two new tree-based methods, Fréchet trees and Fréchet random forests, for general metric
spaces-valued data were introduced. Let us emphasize that the proposed methods are very
general. Indeed, input variables can thus all be of different kinds, each one having its own
metric, and the kind of the output variable can also be a different one.

The example of learning curve shapes in the context of longitudinal/functional data was
presented to illustrate the capacity of the methods to learn from data in unordered met-
ric spaces. A simulation study in this framework demonstrated the superiority of Fréchet
trees and forests over the existing classical methods, both in terms of prediction error as
well as robustness and flexibility. An important aspect highlighted in our study is the
great robustness of Fréchet trees and Fréchet random forests. Indeed, our simulations il-
lustrated the ability to handle missing data as well as different observation times for the

4. The R code of this analysis is available at https://github.com/sistm/airquality_FrechForest

27

https://github.com/sistm/airquality_FrechForest


Capitaine, Bigot, Thiébaut and Genuer

different variables, which is common in longitudinal data sets. Two other simulation sce-
narios demonstrated the capacity of the methods to simultaneously handle data of different
natures such as curves, images, scalars, factors, shapes, etc. This great flexibility allows
the construction of more efficient predictors while being able to compare the information
provided by each of these variables of different natures thanks to the importance score. Fi-
nally, within the framework of a study on air quality, we highlighted the superiority of the
Fréchet RF method over standard RF. We illustrated that regression on curve shapes could
greatly improve the prediction error while using different information from input variables.

However, there are two main limitations to Fréchet trees and forests: the first one
is that the Fréchet mean has to exist in the output space (Le Gouic and Loubes, 2017)
and has to be fairly approximated. The second concerns the computation time. Indeed,
as mentioned in Section 5.3.1, in the implementation of our R package FrechForest the
emphasis has largely been put on flexibility, which allows to analyze a very large spectrum
of data such as images, curves, scalars, factors and shapes. However, this implementation
has not been optimized for optimal computation times and then Fréchet random forests can
still be computationally intensive. This problem can be alleviated by the fact that, as all
forests methods, they are easily parallelized (the different trees can be built in parallel).

For the theoretical side, we have proved a consistency result for purely uniformly random
trees in the case where the input space is [0, 1] and the output space is a general metric
space. Obviously, it would be interesting to consider trees in which the splitting criterion
is the 2-means function and manage to prove properties as in Theorem 5. However, this is
a quite complex problem which is out of the scope of this paper. For the practical side, we
are developing a new implementation of Fréchet random trees and forests in Julia language.
The package currently under development is called ExtraFrech and focuses on performance
and the ability to analyze large data sets. In the current version, preliminary tests show
that our new implementation is competitive with the R package randomForest. We are
also working on an efficient implementation of metrics adapted to image data, such as the
Wassertein distance (Vallender, 1974), in order to apply the Fréchet RF method to large
brain imaging databases.
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Appendix A. Proof of Theorem 5

First, we demonstrate the point-wise consistency given by (13). We introduce the following
quantity

rn (x, y) =
1
n

∑n
i=1 d

2(Yi, y)1{Xi ∈ πn[x]}
P (X ∈ πn[x])

(22)

From 11 we have Tn(x) = arg min
y∈Y

rn (x, y). First, we use the following classical upper

bound in M -estimation:
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r (x, Tn(x))−min
y∈Y

r (x, y) = r (x, Tn(x))− rn (x, Tn(x)) + rn (x, Tn(x))−min
y∈Y

r (x, y)

= r (x, Tn(x))− rn (x, Tn(x)) + rn (x, Tn(x))− r (x, φ∗(x))

≤ r (x, Tn(x))− rn (x, Tn(x)) + rn (x, φ∗(x))− r (x, φ∗(x))

≤ 2sup
y∈Y
|rn (x, y)− r(x, y)| (23)

We are going to decompose the above supremum in several terms that we are going to
appropriately upperbound to obtain their decay to zero under the assumptions Theorem
5. Consider a δ covering of Y with centers {yα}Qα=1 where Q = N(δ,Y, d). Thus, for every
y ∈ Y, there is α = αy ∈ {1, . . . , Q} such as d (y, yα) < δ. We introduce the following
quantity

rE (x, y) =
E
(
d2(Y, y)1{X ∈ πn[x]}

)
P (X ∈ πn[x])

(24)

Then, the following decomposition is used

rn (x, y)− r(x, y) = rn (x, y)− rn (x, yα)︸ ︷︷ ︸
(i)

+ rn (x, yα)− rE (x, yα)︸ ︷︷ ︸
(ii)

+ rE (x, yα)− rE (x, y)︸ ︷︷ ︸
(iii)

+ rE (x, y)− r (x, y)︸ ︷︷ ︸
(iv)

(25)

We are now going to derive upper bounds for each of the four terms above that do not
depend on y. Let us start with the term (i) of (25), we introduce the following event

En =

{∣∣∣∣∣ 1
n

∑n
i=1 1{Xi ∈ πn[x]}
P (X ∈ πn[x])

− 1

∣∣∣∣∣ < 1

2

}
.

We can upper bound the probability of the complementary of the event En (denoted Ecn) as

P (Ecn) = P

(∣∣∣∣∣ 1
n

∑n
i=1 1{Xi ∈ πn[x]}
P (X ∈ πn[x])

− 1

∣∣∣∣∣ > 1

2

)
(26)

≤ P

(
sup
π∈Πn

∑
A∈π

∣∣∣∣∣ 1
n

∑n
i=1 1{Xi ∈ A}
P (X ∈ A)

− 1

∣∣∣∣∣ > 1

2

)
(27)

Then, we upper bound the last probability using Lemma 1

P

(
sup
π∈Πn

∑
A∈π

∣∣∣∣∣ 1
n

∑n
i=1 1{Xi ∈ A}
P (X ∈ A)

− 1

∣∣∣∣∣ > 1

2

)
≤ 4∆∗n(Πn)2C(Πn) exp− n

128
(28)

On the event En, one has that
∣∣∣ 1
n

∑n
i=1 1{Xi∈πn[x]}
P(X∈πn[x])

∣∣∣ < 3
2 which implies that
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|rn (x, y)− rn (x, yα)| =

∣∣∣∣∣ 1
n

∑n
i=1

(
d2(Yi, y)− d2(Yi, yα)

)
1{Xi ∈ πn[x]}

P (X ∈ πn[x])

∣∣∣∣∣
=

∣∣∣∣∣ 1
n

∑n
i=1 (d(Yi, y)− d(Yi, yα)) (d(Yi, y) + d(Yi, yα)) 1{Xi ∈ πn[x]}

P (X ∈ πn[x])

∣∣∣∣∣
≤ 2 diam (Y) d (y, yα)

∣∣∣∣∣ 1
n

∑n
i=1 1{Xi ∈ πn[x]}
P (X ∈ πn[x])

∣∣∣∣∣ ≤ 3 diam (Y) δ (29)

On the complementary of the event En, we use similar arguments and the upper bound∣∣∣ 1
n

∑n
i=1 1{Xi∈πn[x]}
P(X∈πn[x])

∣∣∣ ≤ 1
P(X∈πn[x]) to derive that

|rn (x, y)− rn (x, yα)| ≤ 2 diam (Y) δ
1

P (X ∈ πn[x])
.

Therefore, we finally obtain that

|rn (x, y)− rn (x, yα)| ≤ diam (Y) δ

(
3P (En) + 2

1− P (En)

P (X ∈ πn[x])

)
Now we consider the term (ii) in (25). To this end, we propose to bound the following
probability

P
(

max
α=1,...,Q

∣∣rn (x, yα)− rE (x, yα)
∣∣ > ε

)
= P

(
∪Qα=1

{∣∣rn (x, yα)− rE (x, yα)
∣∣ > ε

})
≤

Q∑
α=1

P
(∣∣rn (x, yα)− rE (x, yα)

∣∣ > ε
)

(30)

For a fixed α ∈ {1, . . . , Q}, we define Wi = d2(Yi,yα)1{Xi∈πn[x]}
P(X∈πn[x]) , and we thus have that

rn (x, yα)− rE (x, yα) =
1

n

n∑
i=1

Wi − E (Wi) ,

which can be controlled thanks to Bernstein’s inequality by finding upper bounds on |Wi|
and var(Wi). To this end, we first derive a lower bound on P (X ∈ πn[x]).

P (X ∈ πn[x]) = E (P (X ∈ πn[x] |Ln))

= E

(∫
πn[x]

ρX(t)dt

)
≥ ρminE (Vol(πn[x]))

= ρminVn[x] with Vn[x] = E (Vol(πn[x])) .

Therefore, we obtain that

|Wi| ≤
d2(Yi, yα)1{Xi ∈ πn[x]}

ρminVn[x]
≤ diam2 (Y)

ρminVn[x]
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Moreover,

var(Wi) ≤ E
(
W 2
i

)
=

E
(
d4(Yi, yα)12{Xi ∈ πn[x]}

)
P (X ∈ πn[x])2 ≤ diam4(Y)P(X ∈ πn[x])

P(X ∈ πn[x])2
≤ diam4(Y)

ρminVn[x]

Then, by Bernstein’s inequality, we have for every α ∈ {1, . . . , Q}

P
(∣∣rn(x, yα)− rE(x, yα)

∣∣ > ε
)
≤ 2 exp

 −nε2
2 diam4(Y)
ρminVn[x] + 2 diam2(Y)ε

ρminVn[x]


= 2 exp

(
−nε2ρminVn[x]

2 diam2(Y)(diam2(Y) + ε)

)
For ε < 1 we have

P
(∣∣rn(x, yα)− rE(x, yα)

∣∣ > ε
)
≤ 2 exp

(
−Cnε2Vn[x]

)
(31)

with C =
ρmin

2 diam2(Y)(1 + diam2(Y))

We deduce from Equation (30) and Lemma 4

P
(

max
α=1,...,Q

∣∣rn (x, yα)− rE (x, yα)
∣∣ > ε

)
≤ 2

(
2 diam(Y)

δ

)ddim(Y)

exp
(
−Cnε2Vn[x]

)
(32)

Let us now bound the term (iii) in (25) as follows

∣∣rE (x, yα)− rE (x, y)
∣∣ =

E
[(
d2(Y, yα)− d2(Y, y)

)
1{X ∈ πn[x]}

]
P (X ∈ πn[x])

(33)

≤ E [|(d(Y, y)− d(Y, yα)) (d(Y, y) + d(Y, yα))|1{X ∈ πn[x]}]
P (X ∈ πn[x])

(34)

≤ 2 diam (Y) δ. (35)

We combine inequalities (29), (32) and (33) such that with probability, we have: 1 −
2 exp

(
ddim(Y) log 2 diam(Y)

δ − Cnε2Vn[x]
)

.

sup
y∈Y

∣∣rn(x, y)− rE(x, y)
∣∣ ≤ diam(Y)δ

(
3P(En) + 2

1− P(En)

P(X ∈ πn[x])

)
+ ε+ 2 diam(Y)δ

≤ diam(Y)δ

(
3 + 2

1− P(En)

ρminVn[x]

)
+ ε+ 2 diam(Y)δ

= diam(Y)δ

(
5 + 2

1− P(En)

ρminVn[x]

)
+ ε

≤ diam(Y)δ

(
5 + 8

∆∗n(Πn)2C(Πn) exp−n/128

ρminVn[x]

)
+ ε. (36)

31



Capitaine, Bigot, Thiébaut and Genuer

Thanks to the assumptions C(Πn)
n → 0, log(∆∗n(Πn))

n → 0 and logVn[x]
n → 0 of Theorem 5,

the term ∆∗n(Πn)2C(Πn) exp−n/128
ρminVn[x] appearing in the right hand side of the Inequality (36)

converges to zero. Hence, there is a constant D such that

∆∗n(Πn)2C(Πn) exp−n/128

ρminVn[x]
≤ D

for every n. Thus we deduce the following inequality that holds with probability 1 −
2 exp

(
ddim(Y) log 2 diam(Y)

δ − Cnε2Vn[x]
)

sup
y∈Y

∣∣rn(x, y)− rE(x, y)
∣∣ ≤ Bδ + ε (37)

with B = diam(Y)(5 + 8D).

Let s > 0 and δ = n−s, for s large enough Bδ is bounded by ε. Thus, for s large enough
we deduce that

P

(
sup
y∈Y

∣∣rn(x, y)− rE(x, y)
∣∣ > 2ε

)
≤ 2 exp

(
ddim(Y) log

2 diam(Y)

δ
− Cnε2Vn[x]

)
(38)

Under the assumption on 1
Vn[x] = o

(
n

logn

)
, the probability upper bound on the right hand

side in Inequality (38) becomes summable over n. We thus conclude the almost sure con-
vergence of sup

y∈Y

∣∣rn(x, y)− rE(x, y)
∣∣ towards zero by the Borel-Cantelli Lemma.

Finally, we analyze the term (iv) in (25)
∣∣r (x, y)− rE (x, y)

∣∣ For fixed x0 ∈ Rp and
y0 ∈ Y, we have

r (x0, y0) = E(d2(Y, y0)|X = x0) =

∫
Y
d2(y, y0)

ρ(x0, y)

ρX(x0)
dy (39)

and

rE (x0, y0) = E(d2(Y, y0)|X ∈ πn[x0])

=

∫
Y
d2(y, y0)

(∫
πn[x0]

ρ(x, y)

P(X ∈ πn[x0])
dx

)
dy

=

∫
πn[x0]×Y

d2(y, y0)ρ(x, y)dxdy × 1

P(X ∈ πn[x0])
(40)

Moreover, ∫
πn[x0]

ρ(x, y)

P(X ∈ πn[x0])
dx =

∫
R 1 {x ∈ πn[x0]} ρ(x, y)dx∫
R 1 {x ∈ πn[x0]} ρX(x)dx

(41)
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Since ρ is uniformly continuous, for every (x0, y) ∈ Rp × Y, ∀ε > 0, ∃δ1
ε > 0 such that

||x0 − x|| ≤ δ1
ε ⇒ |ρ(x0, y)− ρ(x, y)| ≤ ε. Thus, there exists δ1

ε > 0 such that∣∣∣∣∫
R

1 {x ∈ πn[x0]} (ρ(x, y)− ρ(x0, y))dx

∣∣∣∣
≤
∫
πn[x0]

|ρ(x, y)− ρ(x0, y)|dx

=

∫
B(x0,δ1

ε )∩πn[x0]
|ρ(x, y)− ρ(x0, y)|dx+

∫
πn[x0]/B(x0,δ1

ε )
|ρ(x, y)− ρ(x0, y)|dx

≤ εVol
(
πn[x0] ∩B(x0, δ

1
ε )
)

+ 2||ρ(., y)||∞Vol
(
πn[x0]\B(x0, δ

1
ε )
)

≤ εVol (πn[x0]) + 2||ρ(., y)||∞Vol
(
πn[x0]\B(x0, δ

1
ε )
)

(42)

Using the same argument of continuity on the density ρX , for all ε, there is δ2
ε such that∫

R
1 {x ∈ πn[x0]} (ρX(x)− ρX(x0)) dx ≤ εVol(πn[x0]) + 2||ρX ||∞Vol

(
πn[x0]\B(x0, δ

2
ε )
)

(43)
We define δε = min(δ1

ε , δ
2
ε ). We will apply the dominated convergence theorem to conclude.

To this end, we remark that for every sequence of functions (fn)n, (gn)n and for every
functions f and g we have ∣∣∣∣fngn − f

g

∣∣∣∣ =

∣∣∣∣fngn − f

gn
+

f

gn
− f

g

∣∣∣∣
=

∣∣∣∣fn − fgn
− f g − gn

ggn

∣∣∣∣
≤ |fn − f |

gn
+ f
|g − gn|
ggn

We take

fn(x0, y) =

∫
πn[x0]

ρ(x, y)dx; f(x0, y) = ρ(x0, y);

gn(x0) =

∫
πn[x0]

ρX(x)dx; g(x0) = ρX(x0).

We deduce the following upper bound

|fn − f |
gn

=

∣∣∣∫πn[x0] ρ(x, y)dx− ρ(x0, y)
∣∣∣∫

πn[x0] ρX(x)dx

≤

∣∣∣∫πn[x0] ρ(x, y)dx− ρ(x0, y)
∣∣∣

ρmin Vol(πn[x0])

≤ εVol(πn[x0]) + 2||ρ(., y)||∞Vol (πn[x0]\B(x0, δε))

ρmin Vol(πn[x0])
using (42)

=
ε

ρmin
+

2||ρ(., y)||∞Vol (πn[x0]\B(x0, δε))

ρmin Vol(πn[x0])
(44)
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with the same arguments we also get using (43)

|gn − g|
gn

=

∣∣∣∫πn[x0] ρX(x)dx− ρX(x0)
∣∣∣∫

πn[x0] ρX(x)dx
≤ ε

ρmin
+

2||ρX ||∞Vol (πn[x0]\B(x0, δε))

ρmin Vol(πn[x0])
(45)

From the assumptions of Theorem 5, we have that diam(πn[x0]) converges towards zero
almost surely. Hence, with probability 1, for every δε, there is Nε > 0 such that for every
n ≥ Nε, diam(πn[x0]) ≤ δε/2. Thus, for every n ≥ Nε, Vol(πn(x0)\B(x0, δε)) = 0 almost
surely. Then from (44) and (45) we deduce that for every n ≥ Nε the following inequalities
hold almost surely

|fn − f |
gn

≤ ε

ρmin
and

|gn − g|
gn

≤ ε

ρmin
(46)

Finally, we deduce from (46)∣∣∣∣fngn − f

g

∣∣∣∣ ≤ |fn − f |gn
+ f
|g − gn|
ggn

≤ (f + g)ε

gρmin
a.s (47)

Moreover ∣∣∣∣fngn
∣∣∣∣ ≤ ||ρ||∞Vol(πn[x])

ρmin Vol(πn[x])
=
||ρ||∞
ρmin

<∞ from P1 (48)

Using the dominated convergence theorem we thus get

lim
n→+∞

rE(x0, y0) =

∫
Y
d2(ω, y0)

ρ(x0, ω)

ρ(x0)
dω = r (x0, y0) with probability 1. (49)

Finally, we demonstrate the weak consistency given by (14). The proof uses the arguments
from Hein (2009). Under the assumptions of Theorem 5, for every x ∈ Rp, one has that,
lim
n→∞

r (x, Tn(x)) = r (x, φ∗(x)) almost surely. Now, remark that

R(Tn)−R(φ∗) ≤ E (|r (X,Tn(X))− r (X,φ∗(X))|) .

As diam (Y) < ∞, we have that E (r (X,Tn(X))) < +∞ and E (r (X,φ∗(X))) < +∞.
Therefore, an extension of the dominated convergence theorem given in Glick (1974) allows
to conclude.

Appendix B. Complements about the First Simulation Scenario

In this section, we give details about the simulation of data in case of three temporal
behavior functions.

B.1 Three Temporal Behavior Functions Scheme

In this case the simulation model of the input curves is given as follows

X
(j)
i (t) =

βi
(
fj,1(t)1{Gji=1} + fj,2(t)1{Gji=2} + fj,3(t)1{Gji=3}

)
+W 1

i (t) if j ∈ {1, 2}

β′i

(
fj,1(t)1{G′ji =0} + fj,2(t)1{G′ji =2} + fj,3(t)1{G′ji =3}

)
+W 1

i (t) if 3 ≤ j ≤ 6

(50)
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Figure 11: Dynamics of the output variable curves simulated according to the model (19)
in the standard case (i.e. without time shift), with a constant time shift equal
to 1; with a uniform time shift U([0, 1]).

where all the parameters p, n, βi, W
1
i (t), fj,1 and fj,2 remain identical to the previous

scheme; Gji and G′ji ∼ U ({1, 2, 3}), fj,3 are defined as follows:

f1,3(t) = 0.5t+ 0.1 sin(6t)

f2,3(t) = 0.3− 0.7(t− 0.45)2

f3,3(t) = 2(t− 0.5)2 − 0.3t

f4,3(t) = 0.2− 0.3t+ 0.1 cos(8t)

f5,3(t) = f1,1(t)

f6,3(t) = f1,2(t)

Similarly, the output variable Y is simulated according to the different pairs of temporal
behaviors for the the first input variables, hence (G1

i , G
2
i ) is used to determine a trajectory

for the output variable:

Yi(t) = βi

3∑
j=1

3∑
k=1

gj,k(t)1{G1
i=j}

1{G2
i=k}

+W 2
i (t) (51)

where gj,k being identical to the previous scheme for all j, k ∈ {1, 2} and
g1,3(t) = 0.2− 0.3t+ 0.1 cos(8t)
g2,3(t) = (t− 0.42)2

g3,3(t) = 0.15 + 0.7t sin(3t)
g3,2(t) = 0.5t2 − 0.2 sin(5t)
g3,1(t) = 0.6 log(t+ 1) + 0.3 sin(5t)

(52)
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G1
i = 1, G2

i = 1 G1
i = 2, G2

i = 1 G1
i = 1, G2

i = 2 G1
i = 2, G2

i = 2

βi > 1 M1
i M3

i M5
i M7

i

βi ≤ 1 M2
i M4

i M6
i M8

i

Table 1: Random draws in the MNIST data set of the output images from the realizations
G1
i , G

2
i and βi used to simulate the input curves.

Figure 12: True output images and OOB predictions. In black and white (grayscale), 50
output images from the data set of n = 500 observations simulated according
to the third scenario are displayed. The redscale image to the right of each
grayscale image is the OOB prediction given by the trained Fréchet RF.

Appendix C. Predict Images with Curves, a Toy Example

In this section, we illustrate how Fréchet random forests can also predict outputs that are
images, based on inputs that are curves.

C.1 Simulation Scheme

The purpose of this scenario is to illustrate the ability of the Fréchet RF method to predict
images from input curves. We simulate a data set of n = 500 observations, the input curve
variables are simulated according to the model (18) of the first scenario. As in the second
scenario, the output images are taken from the MNIST data set (LeCun et al., 2010). For
any k = 1, . . . , 8 and for any i = 1, . . . , n we noteMk

i the random draw of the handwritten k
digit in the MNIST data set for the ith observation. Let the pair (G1

i , G
2
i ) used to attribute

their shape to the curves of the first two input variables for the ith observation and βi the
expansion/contraction parameter of these same curves, then the output images are drawn
according to the combinations summarized in Table 1.

As in the first scenario, the output images depend only on the first two input variables,
the link between the images and the curves is entirely contained in the pairs (G1

i , G
2
i ) as
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Figure 13: Variable importance scores for FRF and RF predictors applied on the
airquality data set.

well as in the βi. This means that the handwritten number images then depend both on
the shape of the curves of the first two input variables and their amplitude.

C.2 Results

The Fréchet distance is used on the curve spaces, i.e. on the 6 input variables. The
distance used on the output space is the standard Euclidean distance. A Fréchet RF is
constructed with q = 500 trees (justified by the fact that the OOB error of the Fréchet
RF becomes stable as long as 350 trees compose the forest). Similarly, the mtry parameter
is set to 5. As shown in Figure 12, OOB predictions of output images always give the
correct written digit. However, ghosting can be seen on some digit predictions. This is
due to the simulation scheme itself. The input curves only give information about the
written number, and do not provide any information about its individual characteristics
such as the width of the number, its height, the presence or not of a loop (for writing a 2
for example). More precisely, there is within the same group of numbers (for example the
set of numbers 4 drawn) a variability in the written numbers that is not explained by the
input curves. By introducing variables that provide information on the fine characteristics
of each written number (such as its height, width, etc.) we would get even more accurate
predictions. Moreover, it is noticeable that this phenomenon of ghosting is not present for
numbers that have a very low variability in their writing such as the number 1. In order
to highlight this point a Fréchet RF is constructed on the same simulated data set and the
images are replaced by factors indicating what the written number is. When the outputs
are images, the percentage of explained variance is 20%, which was expected since there
is a large variability between the same numbers that is not explained by the input curves.
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When the outputs are factors expressing the written numbers, the percentage of explained
variance is 98%. It is therefore clear that the link between the output images and the input
curves relates only to the digits and not to its individual characteristics. So even if the
explained variance percentage is only 20% for the images, the Fréchet RF (almost) always
predicts the right digit.

Appendix D. Air Quality Prediction Results

In Figure 13 we plotted the variable importance scores associated to FRF and RF predictors
used for the analysis of the airquality data set.
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