
Journal of Machine Learning Research 25 (2024) 1-27 Submitted 4/19; Revised 2/24; Published 12/24

Approximate Information Tests on Statistical Submanifolds

Michael W. Trosset mtrosset@iu.edu
Department of Statistics
Indiana University
Bloomington, IN 47408, USA

Carey E. Priebe cep@jhu.edu

Department of Applied Mathematics & Statistics

Johns Hopkins University

Baltimore, MD 21218-2682, USA

Editor: Edo Airoldi

Abstract

Parametric inference posits a statistical model that is a specified family of probability dis-
tributions. Restricted inference, for example, restricted likelihood ratio testing, attempts
to exploit the structure of a statistical submodel that is a subset of the specified family.
We consider the problem of testing a simple hypothesis against alternatives from such a
submodel. In the case of an unknown submodel, it is not clear how to realize the bene-
fits of restricted inference. To do so, we first construct information tests that are locally
asymptotically equivalent to likelihood ratio tests. Information tests are conceptually ap-
pealing but (in general) computationally intractable. However, unlike restricted likelihood
ratio tests, restricted information tests can be approximated even when the statistical sub-
model is unknown. We construct approximate information tests using manifold learning
procedures to extract information from samples of an unknown (or intractable) submodel,
thereby providing a roadmap for computational solutions to a class of previously impen-
etrable problems in statistical inference. Examples illustrate the efficacy of the proposed
methodology.

Keywords: Restricted Inference, Dimension Reduction, Information Geometry, Mini-
mum Distance Test

1. Introduction

An engrossing challenge arises when an appropriate statistical model is a subset of a famil-
iar family of probability distributions: how to exploit the structure of the restricted model
for the purpose of subsequent inference? This challenge encompasses theoretical, method-
ological, computational, and practical concerns. The reasons to address these concerns are
especially compelling when the restricted model is of lower dimension than the unrestricted
model, as parsimony principles encourage the selection of less complicated models.

The following example illustrates the concerns of the present manuscript.

Motivating Example Consider a multinomial experiment with 7 possible outcomes and
probability vector θ ∈ <7. To test the simple null hypothesis

H0 : θ = θ̄ = (0.09, 0.09, 0.09, 0.25, 0.16, 0.16, 0.16)
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at significance level α = 0.05, we perform n = 30 trials and observe

o = (3, 5, 4, 6, 9, 2, 1).

Should we reject H0?
The likelihood ratio test statistic of

G2 = 2

7∑
j=1

oj log
(
oj/nθ̄j

)
= 11.93649

results in an (approximate) significance probability of p = 0.0634. Pearson’s X2 = 11.23519
results in p = 0.0814. Neither test provides compelling evidence against H0.

Suppose, however, that it is possible to perform an auxiliary experiment that randomly
generates possible values of θ for the primary experiment. The auxiliary experiment is
performed m = 100 times and it is found that 96% of the variation in the m = 100 values
of θ is explained by 2 principal components. This finding suggests the possibility that θ
is restricted to a (slightly curved) 2-dimensional submanifold of the 6-dimensional simplex
∆6. Can this revelation be exploited to construct a more powerful test?

If the submanifold was known, then one could perform a restricted likelihood ratio test.
But the submanifold is not known. �

In fact, the family of multinomial distributions provides numerous examples of dimension-
restricted submodels. In statistical genetics, the phenomenon of Hardy-Weinberg equi-
librium corresponds to a much-studied 1-parameter subfamily of trinomial distributions.
Spherical subfamilies of multinomial distributions (Gous, 1999) are potentially valuable in a
variety of applications, for example, text mining (Hall and Hoffman, 2000). In a recent effort
to discover brainwide neural-behavioral maps from optogenetic experiments on Drosophila
larvae (Vogelstein et al., 2014), each neuron line was modeled by a 29-dimensional vector
of multinomial probabilities but the available evidence suggested that these vectors resided
on an unknown 4-dimensional submanifold. These examples suggest a natural progression,
from a submodel that is known and tractable, to a submodel that is known but possi-
bly intractable, to an unknown submodel that can be sampled, to an unknown submodel
that must be estimated. The particular challenge of how to exploit low-dimensional struc-
ture that is apparent but unknown motivated our investigation. The present manuscript
addresses the case of known submodels and unknown submodels that can be sampled; a
sequel will address the case of unknown submodels that must be estimated.

For unknown submodels that can be sampled, we propose the computationally inten-
sive approximate information test summarized in Figure 1. The theory that underlies and
motivates this procedure originates in information geometry, specifically in the well-known
fact that Fisher information induces Riemannian structure on a statistical manifold. It
leads to information tests that are conceptually appealing but (in general) computationally
intractable. Approximate information tests circumvent the intractability of information
tests.

Sections 2–5 develop and illustrate the theory of information tests. Section 2 establishes
the mathematical framework that informs our investigation. We review the fundamental
concepts of a statistical manifold and the Riemannian structure induced on it by Fisher
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Suppose that known distributions p̄, p1, . . . , pm lie on an unknown statistical sub-
manifold. To test H0 : p = p̄ against alternatives that lie on the submanifold, we
propose the following procedure.

1. Compute hij , the pairwise Hellinger distances between p̄, p1, . . . , pm.

2. Construct G, a graph whose vertices correspond to the known distributions.
Connect vertices i and j when hij is sufficiently small.

3. Compute the pairwise shortest path distances in G.

4. Construct z̄, z1, . . . , zm ∈ <r, an embedding of G whose pairwise Euclidean
distances approximate the pairwise shortest path distances.

5. From x1, . . . , xn ∼ p, construct a nonparametric density estimate p̂n. Compute
the Hellinger distances of p̂n from p1, . . . , pm and embed p̂n as y(~x) ∈ <r in
the previously constructed Euclidean representation. The proposed test rejects
H0 : θ = θ̄ if and only if the test statistic ‖y (~x)− z̄‖ is sufficiently large.

6. Estimate a significance probability by generating simulated random samples
from the hypothesized distribution p̄.

Figure 1: An approximate information test for the case of an unknown submodel that can
be sampled. Steps 2–4 are essentially isomap (Tenenbaum et al., 2000), used here
to represent the Riemannian structure of a statistical manifold rather than a data
manifold. Details are provided in Section 6.

information. We demonstrate that information distance, that is, geodesic distance on this
Riemannian manifold, is more practically derived from Hellinger distance, and we briefly
review minimum Hellinger distance estimation. Sections 3–5 develop tests of simple null
hypotheses using the concept of information distance. Section 3 demonstrates that in-
formation tests are locally asymptotically equivalent to various classical tests (Hellinger
distance, Wald, likelihood ratio, and Hellinger disparity distance). Section 4 derives infor-
mation tests for submodels of the multinomial model. Section 5 provides examples using
the Hardy-Weinberg submodel of the trinomial model.

Despite their conceptual appeal, the information tests developed in Sections 3–5 are of
limited practical application. Hence, our primary contribution lies in Section 6, which pro-
poses a discrete approximation of an information test and illustrates its effectiveness in two
cases for which an unknown submodel can be sampled. Section 7 reports a small simulation
study designed to explore the effect of sampling density on performance. Section 8 discusses
implications and possible extensions.
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2. Preliminaries

2.1 Statistical Manifolds

We begin by recalling some basic properties of differentiable manifolds. See Matsushima
(1972) for a more detailed explication of these concepts. Let M denote a completely sep-
arable Hausdorff space. Let U ⊆ M and V ⊆ <k denote open sets. If ϕ : U → V is a
homeomorphism, then ϕ(u) = (x1(u), . . . , xk(u)) defines a coordinate system on U . The xi
are the coordinate functions and ϕ−1 is a parametrization of U . The pair (U,ϕ) is a chart.
An atlas on M is a collection of charts {(Ua, ϕa)} such that the Ua cover M .

The set M is a k-dimensional topological manifold if and only if it admits an atlas
for which each ϕa(Ua) is open in <k. It is a differentiable manifold if and only if the
transition maps ϕbϕ

−1
a are diffeomorphisms. A subset S ⊂M is a d-dimensional embedded

submanifold if and only if, for every p ∈ S, there is a chart (U,ϕ) such that p ∈ U and

ϕ(U ∩ S) = ϕ(U) ∩
(
<d × {~0 ∈ <k−d}

)
= {y ∈ ϕ(U) : yd+1 = · · · = yk = 0} .

Our explication of statistical manifolds follows Murray and Rice (1993), from whom
much of our notation is borrowed. Let (Ω,B, µ) denote a measure space. Let M denote
the nonnegative measures on (Ω,B) that are absolutely continuous with respect to µ. We
write an element of M as p dµ, where p is a density function with respect to µ. We write
p dµ ∼ q dµ and say that p dµ and q dµ are equivalent up to scale if and only if∫

B p(x) dµ(x)∫
Ω p(x) dµ(x)

=

∫
B q(x) dµ(x)∫
Ω q(x) dµ(x)

for every B ∈ B. Murray and Rice (1993) regard a probability measure as an equivalence
class of finite measures. Let P denote the space of probability measures in M, that is, the
set of finite measures up to scale.

Let <Ω denote the vector space of measurable real-valued functions on Ω and define the
log-likelihood map ` :M→ <Ω by `(p dµ) = log(p). We say that the log-likelihood map is
smooth if and only if, for each x ∈ Ω, the corresponding real-valued component map defined
by p dµ 7→ [log(p)](x) is sufficiently differentiable.

Definition 1 Let P =
{
p(·, θ) dµ : θ ∈ Θ ⊆ <k

}
denote a parametric family of probability

distributions in P. We say that P is a statistical manifold if and only if P is a differentiable
manifold, the log-likelihood map is smooth, and, for any p dµ ∈ P , the random variables

∂`

∂θ1
(p dµ) , . . . ,

∂`

∂θk
(p dµ)

are linearly independent.

We might dispense with the parametric structure of P , but many of the familiar concepts
and results of classical statistics are stated in terms of index sets rather than families of
distributions. For example, fix p dµ ∈ P . Then the random vector

dp` =

(
∂`

∂θ1
(p dµ) , . . . ,

∂`

∂θr
(p dµ)

)
4
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is the score vector at p dµ, and the set of vectors obtained by observing the score vector at
each x ∈ Ω is the tangent space of P at p dµ, denoted TpP . Our exposition will emphasize
the manifold structure of P itself, but one can just as easily regard P as indexed by a
k-dimensional manifold Θ—and it is often convenient to do so.

2.2 Riemannian Geometry and Fisher Information

A metric tensor on the statistical manifold P is a collection of inner products on the tangent
spaces of P . If P admits a metric tensor, then P is a Riemannian manifold. See Milnor
(1963, Part II) and Hicks (1971) for concise introductions to Riemannian geometry. Note
that many authors refer to the metric tensor as a Riemannian metric. In neither case is the
word “metric” used in the sense of a distance function.

Let Ep denote expectation with respect to p dµ, that is, Epf =
∫

Ω f(x)p(x) dµ(x). Define
an inner product on the space of square-integrable f by 〈f, g〉p = Epfg. If the log-likelihood
map is smooth, then the Fisher information matrix I(p) = [gij(p)] has entries

gij(p) = Ep
∂`

∂θi
∂`

∂θj
=

〈
∂`

∂θi
,
∂`

∂θj

〉
p

.

Because the scores are linearly independent, I(p) is the matrix of the inner product 〈·, ·〉p
with respect to the basis defined by the scores.

Rao (1945) observed that Fisher information induces a natural metric tensor on P . To
obtain a coordinate-free representation of this tensor, that is, a representation that does
not involve Fisher information matrices, suppose that v ∈ TpP and let γ : (−ε, ε) → P be
any variation with tangent vector v at p = γ(0). The differential of the log-likelihood map
at p is the function dp` : TpP → <Ω defined by

dp`(v) =
d

dt
`(γ(t))|t=0 = lim

t→0

`(γ(t))− `(γ(0))

t

and the Fisher information tensor is the collection of inner products

gp(v, w) = Epdp`(v)dp`(w).

Henceforth we regard P as a Riemannian manifold and assume that P is connected.
Given p dµ, q dµ ∈ P , let γ : [0, 1] → P be a smooth variation such that γ(0) = p and
γ(1) = q. Let γ̇(t) ∈ Tγ(t)P denote the tangent vector to γ at γ(t). The distance traversed
by γ is

length(γ) =

∫ 1

0

[
gγ(t) (γ̇(t), γ̇(t))

]1/2
dt =

∫ 1

0
‖γ̇(t)‖γ(t) dt

and the infimum of these lengths over all such variations defines i(p, q), the information
distance between p dµ and q dµ in P .

2.3 Hellinger Distance

Murray and Rice (1993, Section 6.8) remarked that the fact that the inner products gp vary
with p makes it difficult to discern the global structure of the statistical manifold P directly
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from Fisher information. To remedy this difficulty they defined the square root likelihood,
here denoted s : P → <Ω, by s(p) = s(p dµ) = 2

√
p. Defining the inner product

〈f, g〉µ =

∫
Ω
f(x)g(x) dµ(x)

and noting that 2dps = sdp`, we discover that

gp(v, w) = Epdp`(v)dp`(w)

=

∫
Ω

[dp`(v)] (x) [dp`(w)] (x)p(x) dµ(x)

=

∫
Ω

[
s(p)

2
dp`(v)

]
(x)

[
s(p)

2
dp`(w)

]
(x) dµ(x)

=

∫
Ω

[dps(v)] (x) [dps(w)] (x) dµ(x)

= 〈dps(v), dps(w)〉µ .

Hence, if γ is a variation in P and σ = s(γ) is the corresponding variation in s(P ), then

length(γ) =

∫ 1

0
‖γ̇(t)‖γ(t) dt =

∫ 1

0
‖σ̇(t)‖µ dt = length(σ).

The quantity
h(p, q) = ‖s(p)− s(q)‖µ = ‖2√p− 2

√
q‖µ (1)

is the Hellinger distance between the densities p and q. Thus, information distances can
be computed by working with Hellinger distance rather than Fisher information, and in-
formation distance on P behaves locally like Hellinger distance. Proof of the following
approximation is relegated to Appendix A.

Theorem 1 Under standard regularity conditions,

h2 (p (·, θ) , p (·, θ0)) = (θ − θ0)> I (θ0) (θ − θ0) + o
(
‖θ − θ0‖2

)
.

2.4 Minimum Hellinger Distance Estimation

Following Basu et al. (2011), with minor changes in notation, suppose that x1, . . . , xn ∼
p dµ = p(·, θ) dµ and let θ̄ denote the true value of θ. Let u(xi, θ) = ∇θ log p(xi, θ) denote
the score function for P and let

Zn(θ) =
√
n

1

n

n∑
i=1

u (xi, θ) .

Under standard regularity conditions, the maximum likelihood estimator θ̃n of θ is first-
order efficient; in particular,

√
n
(
θ̃n − θ̄

)
= I−1

(
θ̄
)
Zn
(
θ̄
)

+ op(1). (2)
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Let p̂n denote a nonparametric density estimate of p and define the minimum Hellinger
distance estimate (MHDE) of θ by

θ̂n = arg min
θ∈Θ

h (p(·, θ), p̂n) = arg min
θ∈Θ

∫
Ω

[√
p(x, θ)−

√
p̂n(x)

]2
dµ(x).

Under suitable regularity conditions (see Beran, 1977; Basu et al., 2011, Section 3.2.2),

√
n
(
θ̂n − θ̄

)
= I−1

(
θ̄
)
Zn
(
θ̄
)

+ op(1). (3)

Thus, both θ̃n and θ̂n are first-order efficient estimators. Typically, θ̃n is more readily
computed and θ̂n has better robustness properties.

3. Information Tests

Suppose that x1, . . . , xn ∼ p dµ, where p dµ lies in the connected k-dimensional statistical
manifold P . We write p = p(·, θ), p̄ = p(·, θ̄) and test the simple null hypothesis H0 : p = p̄
against the composite alternative hypothesis H1 : p 6= p̄. Equivalently, we test H0 : θ = θ̄
against H1 : θ 6= θ̄.

Let θ̂n denote the MHDE of θ and consider the test statistic

IDn = i2
(
p
(
·, θ̂n

)
, p
(
·, θ̄
))

= i2
(
p
(
·, θ̂n

)
, p̄
)
,

the squared information distance between p(·, θ̂n) and p̄ on the statistical manifold P . Be-
cause information distance on P behaves locally like Hellinger distance (see Section 2.3),
we begin by studying the local behavior of the related test statistic

HDn = h2
(
p
(
·, θ̂n

)
, p̄
)
.

Notice that nHDn differs from the standard Hellinger disparity difference statistic described
in Basu et al. (2011, Section 5.1), although it turns out that they are locally asymptotically
equivalent. More precisely, the relation of tests based on HD to Wald tests is analogous
to the relation of disparity difference tests to likelihood ratio tests. Proof of the following
approximation is relegated to Appendix A.

Theorem 2 Let

Wn = n
(
θ̃n − θ̄

)>
I
(
θ̄
) (
θ̃n − θ̄

)
denote the Wald statistic for testing H0 : θ = θ̄ versus H1 : θ 6= θ̄. If (2) and (3) hold, then

nHDn −Wn = op(1).

Our Theorem 2 is analogous to Theorem 1 in Simpson (1989), which relates a Hellinger
deviance test statistic to the likelihood ratio test statistic

G2
n = 2

n∑
i=1

log p
(
xi, θ̃n

)
/p
(
xi, θ̄

)
.
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The asymptotic null distribution of G2
n and Wn is χ2(k); it follows that the asymptotic

null distribution of Simpson’s test statistic and our nHDn is also χ2(k). Furthermore, a
contiguity argument (for details see Simpson, 1989) establishes that these tests have the
same asymptotic power at local alternatives of the form θ̄ + η/

√
n. (Local alternatives are

defined by fixing η and assuming that θ̄+ η/
√
n ∈ Θ for n sufficiently large.) In this sense,

our HD test, the Wald test, the likelihood ratio test, and Simpson’s Hellinger deviance test
are all locally equivalent.

To extend the equivalence to our ID test, we demonstrate that i2(pt, p0) behaves locally
like (6). Recall that a geodesic arc is a variation with zero curvature, hence with constant
velocity. Given p0 ∈ P , use Lemma 10.3 in Milnor (1963) to choose a neighborhood W
of p0 and ε̄ > 0 such that q ∈ W implies the existence of a unique geodesic variation γ
connecting p0 and q with ε = length(γ) < ε̄. It then follows from Theorem 10.4 in (Milnor,
1963) that i(q, p0) = ε, that is, that γ is the unique path of shortest distance from p0 to q.
Parametrizing γ by arc length and letting q = pε, we obtain

ε = i (pε, p0) = length(γ) =

∫ ε

0
‖γ̇(t)‖γ(t) dt

with constant unit velocity

1 = ‖γ̇(t)‖γ(t) = Iγ (pt) .

It follows from (6) that

h2 (pε, p0) = Iγ (p0) ε2 + o
(
ε2
)

= ε2 + o
(
ε2
)

= i2 (pε, p0) + o
(
ε2
)
. (4)

Set θ0 = θ̄. By arguments analogous to those used to establish Theorem 2, we then obtain
the following relation.

Theorem 3 If (3) holds, then nHDn − nIDn = op(1).

Thus, IDn and HDn are locally asymptotically equivalent for testing H0 : θ = θ̄ versus
H1 : θ 6= θ̄.

Although the information distance, Hellinger distance, Wald, likelihood ratio, and Hellinger
disparity distance tests are all locally asymptotically equivalent, only the information dis-
tance test attempts to exploit the Riemannian geometry of P when testing nonlocal alter-
natives.

4. Restricted Information Tests

LetQ = {p(·, θ) dµ : θ ∈ Ψ ⊂ Θ} denote a parametric subfamily of probability distributions
in P . Suppose that Q is a d-dimensional embedded submanifold of P ; equivalently, suppose
that Ψ is a d-dimensional embedded submanifold of Θ. Suppose that θ̄ ∈ Ψ and that we
want to test H0 : θ = θ̄, restricting attention to alternatives that lie in Ψ. We emphasize that
we are restricting inference to the submanifold, not testing the null hypothesis that θ lies
in the submanifold. Two information tests are then available: the unrestricted information
test computes information distance on the statistical manifold P , whereas the restricted
information test computes information distance on the statistical submanifold Q. It is
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tempting to speculate that restricted information tests are more powerful than unrestricted
information tests.

An analogous investigation of restricted likelihood ratio tests was undertaken by Trosset
et al. (2016), who indeed established that, if d = dim(Ψ) < dim(Θ) = k, then the restricted
likelihood ratio test is asymptotically more powerful than the unrestricted likelihood ratio
test at local alternatives. As information tests are locally asymptotically equivalent to
likelihood ratio tests, they must enjoy the same property. However, Trosset et al. (2016)
also constructed examples in which the restricted likelihood ratio test is less powerful than
the unrestricted likelihood ratio test for certain nonlocal alternatives. Unlike restricted
likelihood ratio tests, restricted information tests potentially exploit the global structure
of the statistical submanifold. This observation motivates investigating the behavior of
information tests at nonlocal alternatives.

In what follows we specialize to the case of multinomial distributions, which are widely
used (as in Kass, 1989) to illustrate the ideas of information geometry. Accordingly, consider
an experiment with k + 1 possible outcomes. The probability model P = Multinomial(θ)
specifies that the outcomes occur with probabilities θ = (θ1, . . . , θk+1). It is parametrized
by the k-dimensional unit simplex in <k+1,

Θ = ∆k = {θ ∈ [0, 1]k+1 : θ1 + · · ·+ θk+1 = 1},

or (upon setting σ =
√
θ, defined by setting each σi =

√
θi) by that portion of the k-

dimensional unit sphere that lies in the nonnegative orthant of <k+1,

Σ = {σ ∈ [0, 1]k+1 : σ2
1 + · · ·+ σ2

k+1 = 1}.

One advantage of studying multinomial distributions is the availability of explicit for-
mulas. If p = p(·, θ = σ2) and q = p(·, π = ρ2), then

h2(p, q) =
k+1∑
i=1

(
2
√
θi − 2

√
πi

)2
= 4

k+1∑
i=1

(σi − ρi)2 = 4 ‖σ − ρ‖2

and we see that Hellinger distance between multinomial distributions corresponds to chordal
(Euclidean) distance on Σ. Hence, by the law of cosines,

h2(p, q) = 4(2− 2 cos δ) = 8− 8〈σ, ρ〉,

where δ is the angle between σ and ρ. But δ is also the great circle (geodesic) distance
between σ and ρ; hence,

i(p, q) = 2δ = 2 arccos〈σ, τ〉,

where the factor of 2 accrues from (1). It follows that

h2(p, q) = 8− 8 cos (i(p, q)/2) ,

establishing that the information and Hellinger distances between multinomial distributions
are monotonically related.

A second advantage of studying multinomial distributions is that empirical distribu-
tions from multinomial experiments are themselves multinomial distributions. Suppose

9
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that one draws n independent and identically distributed observations from Multinomial(θ)
and counts ~x = (x1, . . . , xk+1), where xi records the number of occurrences of outcome i.
The empirical distribution of ~x is p̂n(~x) = ~x/n and furthermore, because ~x/n ∈ Θ, the
unrestricted MHDE of θ ∈ Θ is θ̂n(~x) = ~x/n. The restricted MHDE of θ ∈ Ψ is

θ̌n (~x) = arg min
θ∈Ψ

h2 (θ, ~x/n) = σ̌2
n (~x) ,

where
σ̌n (~x) = arg max

σ2∈Ψ

〈
σ,
√
~x/n

〉
.

Depending on the submanifold Ψ, the calculation of θ̌n(~x) may require numerical optimiza-
tion.

Let i(·, ·; Θ) denote information distance on the unrestricted model and let i(·, ·; Ψ)
denote information distance on the restricted model. The nonrandomized unrestricted in-
formation test with critical value c2 rejects H0 : θ = θ̄ if and only if

in (~x; Θ) = i
(
p
(
·, θ̂n

)
, p
(
·, θ̄
)

; Θ
)

= 2 arccos
〈√

~x/n,
√
θ̄
〉
> c2.

The nonrandomized restricted information test with critical value c1 rejects H0 : θ = θ̄ if
and only if

in (~x; Ψ) = i
(
p
(
·, θ̌n

)
, p
(
·, θ̄
)

; Ψ
)
> c1.

Because ~x is discrete, randomization may be needed to attain a specified size. For n suffi-
ciently large, we can use the 1−α quantiles q1−α(k) and q1−α(d) of chi-squared distributions
with k and d degrees of freedom to select the critical values:

c2 = (q1−α(k)/n)1/2 and c1 = (q1−α(d)/n)1/2

The power functions of the above tests are

β2(θ) = Pθ∈Ψ (in (~x; Θ) > c2)

for the unrestricted information test and

β1(θ) = Pθ∈Ψ (in (~x; Ψ) > c1)

for the restricted information test.

5. Two Trinomial Examples

The probability model Trinomial(θ) specifies that k + 1 = 3 outcomes occur with proba-
bilities θ = (θ1, θ2, θ3). Define ψ : [0, 1] → Θ = ∆2 by ψ(τ) =

(
τ2, 2τ(1− τ), (1− τ)2

)
.

The Hardy-Weinberg subfamily of trinomial distributions is parametrized by the embedded
submanifold Ψ = {ψ(τ) : τ ∈ [0, 1]}. Notice that dim Ψ = 1 < 2 = dim Θ. We write
HW(τ) = Trinomial(ψ(τ)).

Fix τ̄ ∈ (0, 1) and set θ̄ = ψ(τ̄). We test the simple null hypothesis H0 : θ = θ̄ against
alternatives of the form θ = ψ(τ). The unrestricted information test statistic is

in (~x; Θ) = 2 arccos
(
τ̄ (x1/n)1/2 + [2τ̄(1− τ̄)x2/n]1/2 + (1− τ̄) (x3/n)1/2

)
.
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x1, x2, x3 p(~x, ψ(0.3)) i3 (~x; Θ) τ̌(~x) i3 (~x; Ψ)

3, 0, 0 0.000729 2.532207 1 2.803414
2, 1, 0 0.010206 1.806363 0.8535517 1.692687
2, 0, 1 0.011907 1.728807 1 2.803414
1, 2, 0 0.047628 1.584191 0.7236016 1.237653
1, 1, 1 0.111132 0.625338 0.5 0.581973
1, 0, 2 0.064827 1.461264 0 1.639469
0, 3, 0 0.074088 1.731487 0.5 0.581973
0, 2, 1 0.259308 0.734627 0.2763984 0.073708
0, 1, 2 0.302526 0.662028 0.1464483 0.528741
0, 0, 3 0.117649 1.590798 0 1.639469

Table 1: Unrestricted (Trinomial) and restricted (Hardy-Weinberg) information tests of
H0 : θ = ψ(0.3) with n = 3 observations. Columns 1–2 list the possible outcomes
and their exact probabilities under H0; Column 3 lists the unrestricted information
distance of the empirical distributions from the null distribution; Columns 4–5 list
the minimum Hellinger distance estimates of the Hardy-Weinberg parameter, τ ,
and the restricted information distance of the corresponding distributions from
the null distribution.

The restricted MHDE of θ ∈ Ψ is

θ̌n (~x) = ψ (τ̌ (~x)) ,

where

τ̌ (~x) = arg max
τ∈[0.1]

(
τ (x1/n)1/2 + [2τ(1− τ)x2/n]1/2 + (1− τ) (x3/n)1/2

)
.

Letting σ(τ) = 2ψ(τ)1/2, the restricted information test statistic, in (~x; Ψ), is computed by
integrating

‖σ̇(τ)‖ = 2

[
12 +

(1− 2τ)2

2τ(1− τ)
+ 12

]1/2

as τ varies between τ̄ and τ̌(~x).

Example 1 The trinomial experiment with n = 3 has 10 possible outcomes, enumerated
in the first column of Table 1. Consider the unrestricted and restricted information tests of
H0 : θ = ψ(0.3) with size α = 0.1. The exact unrestricted test rejects H0 with certainty if

C2a = {(3, 0, 0), (2, 1, 0), (0, 3, 0), (2, 0, 1)}

is observed, and with probability (0.1− 0.09693)/0.117649
.
= 0.02609457 if C2b = (0, 0, 3) is

observed. The exact restricted test rejects H0 with certainty if

C1a = {(3, 0, 0), (2, 0, 1), (2, 1, 0)}
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Figure 2: Power of the exact unrestricted (β2, plotted in blue) and restricted (β1, plotted in
red) information tests for testing H0 : θ = ψ(0.3) with α = 0.1 (dotted line) and
n = 3. The alternatives {θ = ψ(τ) : τ ∈ [0, 1]} are displayed on the horizontal
axis. The restricted test is greatly superior for τ < 0.3, slightly inferior for
τ > 0.3.

is observed, and with probability (0.1− 0.022842)/0.182476
.
= 0.4228392 if

C1b = {(1, 0, 2), (0, 0, 3)}

is observed. The respective power functions are plotted in Figure 2. The restricted test is
dramatically more powerful for τ < 0.3, slightly less powerful for τ > 0.3. �

The small sample size in Example 1 allows us to illustrate the construction of the un-
restricted and restricted information tests, but understates the superiority of the restricted
test. It is curious that the restricted test is less powerful than the unrestricted test for al-
ternatives τ > 0.3, but Trosset et al. (2016) demonstrated the same anomaly for likelihood
ratio tests. For larger sample sizes, the superiority of the restricted test is unambiguous.

Example 2 The trinomial experiment with n = 20 has 231 possible outcomes. Consider
the unrestricted and restricted information tests of H0 : θ = ψ(0.3) with size α = 0.05. The
exact unrestricted test has a critical region of 169 possible outcomes, with a boundary of
one outcome that requires randomization. The exact restricted test has a critical region of
152 possible outcomes, with a boundary of one outcome that requires randomization. The
difference in power functions, β1(ψ(τ)) − β2(ψ(τ)), is plotted in Figure 3. The restricted
test is clearly superior, although careful examination reveals that it is slightly inferior for
alternatives slightly greater than 0.3. For example,

β1(ψ(0.305))− β2(ψ(0.305))
.
= −0.0002842388.
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Figure 3: Powers of two restricted information tests (β1) minus power of the exact unre-
stricted information test (β2) for testing H0 : θ = ψ(0.3) with α = 0.05 and
n = 20. The black curve corresponds to the exact restricted information test,
which has size α. The green curve corresponds to the restricted information test
with critical value determined by χ2(1), which has size 0.064. The alternatives
{θ = ψ(τ) : τ ∈ [0, 1]} are displayed on the horizontal axis.

For comparison, a χ2(1) approximation yields a critical value of c1 = 0.4382613. The
corresponding critical region is slightly larger than the exact critical region, containing an
additional 5 outcomes. Using a larger critical region increases the probability of rejection,
in particular to a size of 0.06402558. This power function, minus β2(ψ(τ)), is also plotted
in Figure 3. �

6. Approximate Information Tests

So far, our exposition has glossed the computational challenges posed by information tests.
For multinomial manifolds, the empirical distributions lie on the manifold and information
distance can be computed by a simple formula. For the 1-dimensional Hardy-Weinberg sub-
manifold, minimum Hellinger distance estimates require numerical optimization, geodesic
variations are apparent by inspection, and computing an information distance requires nu-
merical integration. In general, however, the information tests described in Sections 3 and
4 necessitate overcoming the following challenges:

1. Numerical optimization on the submanifold to determine the minimum Hellinger dis-
tance estimate, θ̌n.

13
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2. Determining the geodesic variation between θ̌n and the hypothesized θ̄. If the sub-
manifold is 1-dimensional, then this is easily accomplished by inspection; if d > 1,
then the geodesic variation must be determined by solving a potentially intractable
problem in the calculus of variations.

3. Numerical integration along the geodesic variation to determine the information dis-
tance between θ̌n and θ̄.

We now propose procedures that circumvent these challenges. The key idea that underlies
these procedures is that information distance is locally approximated by Hellinger distance.

In what follows, we assume that the problems described above are difficult or in-
tractable, but that we can identify a finite set of distributions in the submanifold Q =
{p(·, θ) dµ : θ ∈ Ψ ⊂ Θ}. For example, in the case of the Hardy-Weinberg submanifold, we
might identify m trinomial distributions by drawing τ1, . . . , τm ∼ Uniform(0, 1). Combined
with the hypothesized distribution, we thus have m + 1 distributions in Q from which we
hope to learn enough about the Riemannian structure of Q to approximate the methods of
Section 4.

Elaborating on Figure 1, we propose the following procedure for testing H0 : θ = θ̄.

1. Identify θ1, . . . , θm ∈ Ψ ⊂ <k and compute the (m+1)m/2 pairwise Hellinger distances
hij between the p̄, p1, . . . , pm that correspond to θ̄, θ1, . . . , θm.

Remark. We include this step for clarity of exposition; however, the localization graph
constructed in the next step may not require pre-computing all (m+ 1)m/2 pairwise
distances.

2. Use the pairwise Hellinger distances to form G, a graph with m + 1 vertices corre-
sponding to the m+ 1 distributions. Connect vertices i and j when hij is sufficiently
small, so that G localizes the structure of the submanifold Q. Weight edge i ↔ j by
hij .

This is a standard construction in manifold learning, for example, Tenenbaum et al.
(2000); Roweis and Saul (2000), although our application of manifold learning tech-
niques to statistical rather than data manifolds appears to be novel. The most popular
constructions are either (a) connect i and j if and only if hij ≤ ε, or (b) connect i and
j if and only if i is a K-nearest neighbor (KNN) of j or j is a KNN of i. The choice
of the localization parameter (ε or K) is a model selection problem. It is imperative
that the localization parameter be chosen so that G is connected.

The computational complexity of the first two steps depends on the type of localization
graph. Traditional algorithms for computing exact KNN graphs require O(km) time.
However, there exist faster algorithms that compute approximate KNN graphs. See
Giles et al. (2008, Section 3.3) and the references therein.

3. Compute ∆ = [δij ], the (m + 1) × (m + 1) dissimilarity matrix of pairwise shortest
path distances in G.

Here we appropriate the key idea of the popular manifold learning procedure isomap
(Tenenbaum et al., 2000). A path in G is a discrete approximation of a variation in Q.
The length of a path is the sum of its Hellinger distance edge weights, hence a discrete
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approximation of the integral that defines the length of the approximated variation.
The shortest path between vertices i and j approximates the geodesic variation be-
tween distributions i and j, hence the shortest path distance δij approximates the
information distance between distributions i and j.

A number of algorithms are available for computing the entire set of pairwise shortest
path distances on a graph. The famous Floyd-Warshall algorithm has computational
complexity O(m3).

4. For a suitable choice of r, embed ∆ in <r by minimizing a suitably weighted raw
stress criterion,

σ(Z) =
∑
i<j

wij [‖zi − zj‖ − δij ]2 ,

where the coordinates of zi ∈ <r appear in row i of the (m + 1) × r configuration
matrix Z.

Isomap (Tenenbaum et al., 2000) embeds shortest path distances by classical multi-
dimensional scaling (Torgerson, 1952; Gower, 1966), which minimizes a squared error
criterion for pairwise inner products. The widely used raw stress criterion is more
directly related to our objective of modeling shortest path distance with Euclidean
distance; it also provides greater flexibility through its ability to accommodate dif-
ferent weighting schemes. The raw stress criterion can be numerically optimized by
majorization (de Leeuw, 1988), several iterations of which usually provides a useful
embedding, or by Newton’s method (Kearsley et al., 1998), which has better local
convergence properties.

An initial embedding can be constructed in O(rm) time, although more expensive
efforts may be less prone to finding nonglobal minimizers and may result in bet-
ter overall performance. For general weights, the computational complexity of the
Guttman majorization algorithm is dominated by an initial Cholesky factorization
that requires O(m3) time. If wij = 1, then the initial Cholesky factorization is not
needed and each application of the Guttman transform requires O(rm) time.

Remark. The choice of r is a model selection problem. While r = d is nearly univer-
sal in conventional manifold learning, r > d may provide a more faithful Euclidean
representation of the geodesic structure of Q.

5. From x1, . . . , xn ∼ p, construct a nonparametric density estimate p̂n. Compute the
Hellinger distances of p̂n from p1, . . . , pm and let j1, . . . , j` index the nearest ` ≥ r
distributions. Embed p̂n in the previously constructed representation by a suitable
out-of-sample embedding technique. Let y(~x) ∈ <r denote the resulting representation
of p̂n. The proposed approximate information test rejects H0 : θ = θ̄ if and only if
the test statistic

în (~x; Ψ) = ‖y (~x)− z̄‖ ,

where z̄ corresponds to θ̄, is sufficiently large.

A comprehensive discussion of how to embed p̂n using only its ` nearest neighbors is
beyond the scope of this manuscript. For r = 1 and ` = 2, one can use the law of
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cosines to project p̂n into the line that contains zj1 and zj2 . This construction is a
special case of out-of-sample embedding into a principal components representation.
See Gower (1968) for a general formula that uses pairwise squared distances; see
Williams and Seeger (2001) for a general formula that uses pairwise inner products.
For Example 4 and Section 7, we simply set y(~x) equal to the centroid of zj1 , zj2 , zj3 .

The computational complexity of this step depends on the out-of-sample embedding
technique. The technique used in Example 4 and Section 7 is O(m).

6. Estimate a significance probability by generating simulated random samples ~xi of size
n from the hypothesized distribution p̄. Perform the previous step for each ~xi and
compute the fraction of ~xi for which

în (~xi; Ψ) ≥ în (~x; Ψ) .

Remark. While the computational complexity of the previous step is just O(m), good
estimates of the correct significance probability will usually require generating a large
number of simulated samples.

Example 3 As in Section 5, we consider the Hardy-Weinberg submanifold of Trinomial(θ),
defined by ψ(τ) =

(
τ2, 2τ(1− τ), (1− τ)2

)
for τ ∈ [0, 1]. Using n = 30 trials, we test

H0 : θ = ψ(0.3) by two methods:

a The information test on the unrestricted manifold of trinomial distributions, for which
information distance can be computed by explicit calculation.

b Ten approximate information tests on estimated 1-dimensional submanifolds, each
constructed using τ̄ = 0.3 and τ1, . . . , τ9 ∼ Uniform[0, 1]. Shortest path distances
on 5NN graphs weighted by pairwise Hellinger distances were embedded in < using
the unweighted raw stress criterion. Empirical distributions were then embedded by
applying the law of cosines to the ` = 2 nearest neighbors.

In each case, a randomized test was constructed to have size α = 0.05. Note that we
use the adjectives exact and approximate to indicate whether the information distance
was computed exactly or approximated by random sampling and manifold learning, not to
describe the size of the test.

The power function of the exact unrestricted test was subtracted from the power func-
tions of the ten approximate restricted tests, resulting in the ten difference functions dis-
played in Figure 4. Except occasionally for values of τ slightly less than 0.3, the approximate
restricted tests are consistently more powerful than the exact unrestricted test—often dra-
matically so. �

We now return to the Motivating Example in Section 1 and illustrate the proposed
methodology.
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Figure 4: Powers of ten approximate restricted information tests minus power of the exact
unrestricted information test for testing H0 : θ = ψ(0.3) versus H1 : θ ∈ {ψ(τ) :
τ ∈ [0, 1]} with α = 0.05 and n = 30. Each test was randomized to have size α.
Each restricted test was constructed using only a random sample of m = 9 points
from the Hardy-Weinberg submanifold.

Example 4 We parametrize the family of multinomial distributions with 7 possible out-
comes by Σ, the portion of the 6-dimensional unit sphere in <7 that lies in the nonnegative
orthant. The null hypothesis to be tested is

H0 : σ = σ̄ = (0.3, 0.3, 0.3, 0.5, 0.4, 0.4, 0.4).

Define ψ : [0, π/2]2 → Σ by

ψ(τ) = (0.3, 0.3, 0.3, 0.5, ρ cos τ1 sin τ2, ρ sin τ1 sin τ2, ρ cos τ2) ,

where ρ2 = 0.48. The 2-dimensional subfamily of multinomial distributions defined by the
embedded submanifold Ψ = {ψ(τ) : τ ∈ [0, π/2]2} is a spherical subfamily in the sense of
Gous (1999). Notice that setting τ1 = π/4 and τ2 = arctan

√
2 results in ψ(τ) = σ̄.
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We want to test H0 against alternatives that lie in Ψ. If Ψ was known, then we could
perform a restricted likelihood ratio test. The likelihood of o = (3, 5, 4, 6, 9, 2, 1) under
σ = ψ(τ) is

Lo(ψ(τ)) = C · 0.093+5+4 · 0.256 · (ρ cos τ1 sin τ2)2·9 · (ρ sin τ1 sin τ2)2·2 · (ρ cos τ2)2·1 .

To find the restricted maximum likelihood estimate of τ , it suffices to minimize

f(τ) = (−18 log cos τ1 − 4 log sin τ1) + (−2 log cos τ2 − 22 log sin τ2) = f1 (τ1) + f2 (τ2)

subject to simple bound constraints τ ∈ [0, π/2]2. The objective function f is separable: it
suffices to choose τ1 to minimize f1 and τ2 to minimize f2. Furthermore, f1 and f2 are each
strictly convex on [0, π/2] (each has a strictly positive second derivative on (0, π/2)), with
unique global minimizers at

τ̆1 = arcsin
√

2/11
.
= 0.4405107 and τ̆2 = arcsin

√
11/12

.
= 1.277954.

The restricted likelihood ratio test statistic is then

−2 logLo (σ̄) /Lo (ψ (τ̆)) = −2 log 0.1612/
(
0.369 · 0.082 · 0.04

)
= 36 log 3− 44 log 2
.
= 9.051566.

The standard asymptotic approximation of the null distribution of the test statistic is a
chi-squared distribution with 2 degrees of freedom, resulting in an approximate significance
probability of p = 0.01082623. This significance probability is considerably smaller than
the significance probabilities that resulted from the unrestricted Pearson and likelihood
ratio tests performed in the Motivating Example. Unlike them, it causes rejection of H0 at
significance level α = 0.05.

Of course, it is only possible to perform a likelihood ratio test of H0 : σ = σ̄ versus
H1 : σ ∈ Ψ if Ψ is known. We are concerned with the case that Ψ is unknown, but elements
of Ψ can be obtained by sampling. To simulate that scenario, we drew τ1, . . . , τ100 ∼
Uniform[0, π/2]2 and computed σi = ψ(τi). As reported in Section 1, the first two principal
components of the corresponding θi account for 96% of the variation in the m = 100
multinomial parameter values. The vectors σ̄, σ1, . . . , σm ∈ <7 were then embedded in <2 by
the manifold learning procedure described above. Shortest path distances on 10NN graphs
weighted by pairwise Hellinger distances were embedded in <2 using the unweighted raw
stress criterion. Empirical distributions were then embedded by averaging the embedded
points corresponding to the ` = 3 nearest neighbors.

The resulting representation of the estimated submanifold, Ψ̂, is displayed in Figure 5, in
which σ1, . . . , σm are indicated by •, σ̄ is indicated by •, and y(~x) is indicated by •. Repeating this
procedure on 10000 simulated samples of size n = 30 drawn from the null distribution resulted in just
259 larger values of the test statistic, that is, the estimated significance probability is 259/10000 =
0.0259. The evidence against H0 produced by the restricted approximate information test is slightly
less compelling than the evidence produced by the restricted likelihood ratio test (for which Ψ is
known), but is more compelling than the unrestricted Pearson or likelihood ratio tests. �
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Figure 5: The estimated submanifold in Example 4. The m = 100 possible distributions
generated by sampling are indicated by •; the null hypothesis is indicated by •; and
the minimum distance estimate based on the empirical distribution is indicated by •.
The proposed test statistic is ‖•−•‖, which leads to an estimated significance probability
of 0.0259.

7. Effect of Sampling the Submanifold

The proposed approximate information test depends on how densely the unknown statistical sub-
manifold is sampled. We explore this dependence via a small simulation study.

Consider the 2-parameter spherical subfamily Ψ of multinomial distributions defined in Exam-
ple 4. For σ̄ = (π/4, arctan

√
2), we test the null hypothesis H0 : ψ(τ) = ψ(σ̄) against alternatives

in Ψ at significance level α = 0.05. We assume that Ψ is unknown, but that we can generate
τ1, . . . , τm ∼ Uniform[0, π/2]2. For m = 25, 100, 400, we investigate the power of the approximate
information test described in Example 4.

For simplicity, we report power functions along two arcs of alternatives,

γ1(t) = ψ((t, arctan
√

2)) and γ2(t) = ψ((π/4, t)),

for t ∈ (0, π/2). For each choice of m, we generate 5 random samples of points in [0, π/2]2. For each
random sample, we estimate the power of the approximate information test as t varies in (0, π/2).
Details are reported in Figure 6. The resulting power functions are plotted in Figures 7 and 8.
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Fix σ̄ = ψ((π/4, arctan
√

2)), n = 30, and α = 0.05. For m = 25, 100, 400 and a = 1, . . . , 5, generate
τ1, . . . , τm ∼ Uniform[0, π/2]2. Compute σi = ψ(τi). Set B = 1000.

1. Construct a representation of the submanifold in <2.

(a) Compute the pairwise Hellinger distances between σ̄, σ1, . . . , σm. Construct G by con-
necting vertices i and j if either vertex i is one of vertex j’s K = 10 nearest neighbors
or vice versa.

(b) Compute the pairwise shortest path distances in G. Embed the shortest path distances
in <2 by minimizing the raw stress criterion, obtaining z̄, z1, . . . , zm.

2. Estimate the critical value. For b = 1, . . . , B, draw o from a multinomial distribution with
n trials and probability vector σ̄.

(a) Compute the Hellinger distances between o/n and σ̄, σ1, . . . , σm and determine the
` = 3 nearest neighbors of o/n.

(b) Compute y(~x) and ‖y (~x)− z̄‖. The estimated critical value Ĉ is the 1−α quantile of
the B values of ‖y (~x)− z̄‖.

3. Estimate power at each alternative. For k = 1, 2, t ∈ {1, . . . , 99} · π/200, and b = 1, . . . , B,
draw o from a multinomial distribution with n trials and probability vector ψ(γi(t)).

(a) Compute the Hellinger distances between o/n and σ̄, σ1, . . . , σm and determine the
` = 3 nearest neighbors of o/n.

(b) Compute y(~x) and ‖y (~x)− z̄‖. The estimated power is the proportion of the B values
of ‖y (~x)− z̄‖ that exceed Ĉ.

Figure 6: Design of the simulation experiments that produced the estimated power func-
tions plotted in Figures 7 and 8.

For comparison, Figures 7 and 8 also display the estimated power function of the unrestricted
likelihood ratio test. Its performance, which hardly exceeds α = 0.05 at any alternative on either
curve, is profoundly unsatisfying. (To confirm preliminary impressions, we used B = 20000 repli-
cations for each alternative. We also estimated the power function of Pearson’s chi-squared test,
obtaining similar results.) Such low power reminds us of the limitations of likelihood ratio tests.

For composite hypotheses, likelihood ratio tests are heuristic procedures inspired by the Neyman-
Pearson Lemma. The theory that supports their use is asymptotic, and n = 30 is a rather small
sample size for a multinomial distribution with 7 possible outcomes. Furthermore, a summand in G2

will be unstable if either oj or nθ̄j is small. It may well be that one of the goodness-of-fit statistics
proposed by Read and Cressie (1988) is better suited to the demands of Example 4.

In any event, our interest lies in the ability of approximate information tests to learn an un-
known statistical submanifold well-enough to derive some benefit from exploiting its structure. The
estimated power functions displayed in Figures 7 and 8 clearly demonstrate the viability of our
approach. Substantial variation in the cyan power functions suggests that sampling m = 25 points
on the submanifold in question may be insufficient to construct a reliable test; in contrast, the blue
(m = 100) and magenta (m = 400) power functions are quite similar. In general, the extent of sam-
pling needed to construct a reliable test will surely depend on the dimension of the submanifold, the
extent of its curvature, and the probability distribution that generates points on the submanifold.
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Figure 7: Estimated power functions produced by the simulation experiment described in
Figure 6 for alternatives lying on the curve γ1(t). Five replications of the approx-
imate information test with m = 25, 100, 400 points drawn from the submanifold
are plotted in cyan, blue, and magenta. The estimated power function of the
unrestricted likelihood ratio test is plotted in black.

It is worth pausing to reflect on what we have learned. We have posited a small-sample situation
in which we want to test a hypothesis about the probability vector of a multinomial distribution with
7 possible outcomes. The parameter space of all such multinomial distributions is the 6-dimensional
simplex ∆6, but the parameters of interest lie on an unknown 2-dimensional submanifold of that
simplex. The unrestricted likelihood ratio test has extremely low power against alternatives on the
submanifold; nevertheless, the ability to sample points from the submanifold allows us to construct
a test with excellent power on the submanifold.

8. Discussion

It is widely believed throughout the statistics community that restricted tests are more powerful
than unrestricted tests. Indeed, although restricted tests may not be uniformly more powerful than
unrestricted tests, our experience has been that the former generally outperform the latter. In
consequence, we prefer restricted likelihood ratio tests to unrestricted likelihood ratio tests. But
restricted likelihood ratio tests can only be constructed when the restriction to a parametric family
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Figure 8: Estimated power functions produced by the simulation experiment described in
Figure 6 for alternatives lying on the curve γ2(t). Five replications of the approx-
imate information test with m = 25, 100, 400 points drawn from the submanifold
are plotted in cyan, blue, and magenta. The estimated power function of the
unrestricted likelihood ratio test is plotted in black.

of probability distributions is known and tractable. It is not clear that the low-dimensional structure
of a restricted submanifold of distributions can be exploited when the submanifold is unknown.

For 1-sample problems with simple null hypotheses, we have proposed information tests that are
locally asymptotically equivalent to likelihood ratio tests. Except in the special case of 1-dimensional
submanifolds, these tests are computationally less tractable than likelihood ratio tests—typically
intractable. Unlike likelihood ratio tests, however, information tests can be approximated when the
relevant submanifold of distributions is unknown.

Implementing an approximate information test requires the user to make numerous decisions.
These include: (1) how to construct the localization graph G and choose a suitable localization
parameter, e.g., ε or K, an important problem in manifold learning; (2) how to choose a suitable
dimension r in which to embed G; (3) what criterion to optimize when embedding G in <r, as
well what algorithm to compute the embedding; (4) how to construct the nonparametric density
estimate p̂n (not an issue for the multinomial examples considered herein); (5) what out-of-sample
embedding technique to use for embedding p̂n; and (6) how many simulated samples to draw from
the hypothesized distribution. Clearly, a comprehensive investigation of how these decisions affect
power is beyond the scope of the present manuscript.
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The proposed approximate informations tests rely on isomap to learn the unknown statistical
submanifold well enough that the advantages of restricted inference can be realized by working on the
learnt submanifold. Doing so exemplifies manifold learning for subsequent inference, as opposed to
the more conventional use of manifold learning for generic nonlinear dimension reduction, as an end
in itself. Without specification of a subsequent exploitation task, it is difficult to provide guidance
on how to select the inevitable tuning parameters, for example, the localization parameter ε or K in
step 1 of isomap. Indeed, one often hears the quip that such choices are “features, not bugs.” The
framework of approximate information testing makes it possible to ask specific questions, such as
“how must one choose the tuning parameters so as to guarantee that the power of the approximate
information test converges to the power of the information test as one samples more extensively
from the unknown submanifold?” Although our current implementation has not advanced beyond
the feature-not-bug approach to manifold learning, we submit that the possibility of doing so is an
advance in and of itself.

While local asymptotic theory commends the use of restricted tests, it does not guarantee that
finite approximations of restricted tests will outperform unrestricted tests using finite sample sizes.
Nevertheless, we report examples in which the unknown submanifold of distributions can be esti-
mated well enough to realize gains in power. A preliminary version of our methodology has already
been used to infer brainwide neural-behavioral maps from optogenetic experiments on Drosophila
larvae (Vogelstein et al., 2014). However, in contrast to the methods discussed herein, that appli-
cation involved a 2-sample problem with a composite null hypothesis. Moreover, the data observed
in that application are estimates of parameter values that only lie near (not necessarily on) the
statistical submanifold. These insights suggest two natural extensions of our methods.

First, consider the 2-sample problem of testing the composite null hypothesis H0 : θa = θb
against the alternative H1 : θa 6= θb. A corresponding test statistic for this problem is the information
distance between θ̂a and θ̂b, but corresponding theory remains to be developed. Second, consider the
problem that results from replacing the randomly generated θ1, . . . , θm ∈ Ψ with randomly generated
~θ1, . . . , ~θm near Ψ. The same methods can be used, but replacing known θi with approximated ~θi
introduces another layer of uncertainty. We are currently exploring both extensions in related work.
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Appendix A.

This appendix contains the proofs of Theorems 1 and 2.

A.1 Proof of Theorem 1

Let γ = {pt dµ : t ∈ (−ε, ε)} denote a smooth variation in the statistical manifold P and consider
the Taylor expansion

h2 (pt, p0) = h2 (p0, p0) +
d

dt
h2 (pt, p0)

∣∣∣∣
t=0

t+
1

2

d2

dt2
h2 (pt, p0)

∣∣∣∣
t=0

t2 + o
(
t2
)
. (5)

Of course h2(p0, p0) = 0. Writing

h2 (pt, p0) =

∫
Ω

[
2
√
pt(x)− 2

√
p0(x)

]2
dµ(x)
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= 4

∫
Ω

[
pt(x)− 2

√
pt(x)p0(x) + p0(x)

]
dµ(x)

= 8− 8

∫
Ω

[pt(x)p0(x)]
1/2

dµ(x)

and assuming standard regularity conditions that permit differentiation under the integral sign, we
obtain

d

dt
h2 (pt, p0)

∣∣∣∣
t=0

= −8

∫
Ω

d

dt
[pt(x)p0(x)]

1/2

∣∣∣∣
t=0

dµ(x)

= −4

∫
Ω

[p0(x)p0(x)]
−1/2

p0(x)
d

dt
pt(x)

∣∣∣∣
t=0

dµ(x)

= −4
d

dt

∫
Ω

pt(x) dµ(x)

∣∣∣∣
t=0

= −4
d

dt
1

∣∣∣∣
t=0

= 0.

Finally,

d2

dt2
h2 (pt, p0)

∣∣∣∣
t=0

= −8

∫
Ω

d2

dt2
[pt(x)p0(x)]

1/2

∣∣∣∣
t=0

dµ(x)

= −8

∫
Ω

d

dt

{
1

2
[pt(x)p0(x)]

−1/2
p0(x)

d

dt
pt(x)

}∣∣∣∣
t=0

dµ(x)

= −8

∫
Ω

{
−1

4
[pt(x)p0(x)]

−3/2
p0(x)

d

dt
pt(x)p0(x)

d

dt
pt(x)+

1

2
[pt(x)p0(x)]

−1/2
p0(x)

d2

dt2
pt(x)

}∣∣∣∣
t=0

dµ(x)

= 2

∫
Ω

[
d
dtpt(x)

∣∣
t=0

p0(x)

]2

p0(x) dµ(x)− 4

∫
Ω

d2

dt2
pt(x)

∣∣∣∣
t=0

dµ(x)

= 2

∫
Ω

[
d

dt
log pt(x)

∣∣∣∣
t=0

]2

p0(x) dµ(x)− 4
d2

dt2

∫
Ω

pt(x) dµ(x)

∣∣∣∣
t=0

= 2Iγ (p0) ,

where Iγ denotes Fisher information with respect to the 1-dimensional submanifold γ. Substituting
the preceding expressions into (5) yields

h2 (pt, p0) = Iγ (p0) t2 + o
(
t2
)
. (6)

Passing from variations to the (parametrized) manifold P , we write pt = p(·, θt) and obtain

h2 (p (·, θt) , p (·, θ0)) = (θt − θ0)
>
I (θ0) (θt − θ0) + o

(
‖θt − θ0‖2

)
. (7)

Having derived this expression, the variation γ is vestigial and we replace θt in (7) with θ. �

A.2 Proof of Theorem 2

The proof of Theorem 2 requires a technical result about the remainder term in (7).

Lemma 4 For any well-defined events A and B, P (A) ≥ 1 − α/2 and P (B) ≥ 1 − α/2 entails
P (A ∩B) ≥ 1− α.
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Proof Notice that (A ∩B)c = Ac ∪Bc. Applying Boole’s Inequality,

P (Ac ∪Bc) ≤ P (Ac) + P (Bc) ≤ α/2 + α/2 = α.

�

Lemma 5 Let
r(θ) = h2 (p(·, θ), p̄)−

(
θ − θ̄

)>
I
(
θ̄
) (
θ − θ̄

)
.

If (3) holds with θt = θ and θ0 = θ̄, then

n
∣∣∣r (θ̂n)∣∣∣ = op(1).

Proof Given c, α > 0, we seek to demonstrate the existence of N such that n ≥ N entails

P
(
n
∣∣∣r (θ̂n)∣∣∣ ≥ c) < α.

Let T denote the random variable to which
√
n(θ̂n − θ̄) converges in distribution and choose ε > 0

such that
P
(
ε‖T‖2 ≥ c

)
<
α

4
.

Choose N1 such that n ≥ N1 entails∣∣∣∣P (ε∥∥∥√n(θ̂n − θ̄)∥∥∥2

≥ c
)
− P

(
ε‖T‖2 ≥ c

)∣∣∣∣ < α

4
,

and hence that

P (Bcn) = P

(
ε
∥∥∥√n(θ̂n − θ̄)∥∥∥2

≥ c
)
<
α

4
+
α

4
=
α

2
.

Because r(θ) = o(‖θ − θ̄‖2), there exists δ > 0 such that ‖θ̂n − θ̄‖ < δ entails∣∣∣r (θ̂n)∣∣∣∥∥∥θ̂n − θ̄∥∥∥2 < ε, hence n
∣∣∣r (θ̂n)∣∣∣ < ε

∥∥∥√n(θ̂n − θ̄)∥∥∥2

.

Choose N2 such that n ≥ N2 entails

P
(∥∥∥θ̂n − θ̄∥∥∥ < δ

)
≥ 1− α

2
,

hence

P (An) = P

(
n
∣∣∣r (θ̂n)∣∣∣ < ε

∥∥∥√n(θ̂n − θ̄)∥∥∥2
)
≥ 1− α

2
.

Let N = max(N1, N2). Then n ≥ N entails

P
(
n
∣∣∣r (θ̂n)∣∣∣ < c

)
≥ P (An ∩Bn) ≥ 1− α

by Lemma 4. �

The relation between the HD and Wald statistics is now straightforward. Applying (2), (3), and
Lemma 5,

nHDn −Wn = n
(
θ̂n − θ̄

)>
I
(
θ̄
) (
θ̂n − θ̄

)
+ op(1)− n

(
θ̃n − θ̄

)>
I
(
θ̄
) (
θ̃n − θ̄

)
=

[
I−1

(
θ̄
)
Zn
(
θ̄
)

+ op(1)
]>
I
(
θ̄
) [
I−1

(
θ̄
)
Zn
(
θ̄
)

+ op(1)
]

+ op(1)

−
[
I−1

(
θ̄
)
Zn
(
θ̄
)

+ op(1)
]>
I
(
θ̄
) [
I−1

(
θ̄
)
Zn
(
θ̄
)

+ op(1)
]

= op(1).

�
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