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Abstract

Community detection for large networks poses challenges due to the high computational
cost as well as heterogeneous community structures. In this paper, we consider widely ex-
isting real-world networks with “grouped communities” (or “the group structure”), where
nodes within grouped communities are densely connected and nodes across grouped com-
munities are relatively loosely connected. We propose a two-step community detection ap-
proach for such networks. Firstly, we leverage modularity optimization methods to partition
the network into groups, where between-group connectivity is low. Secondly, we employ
the stochastic block model (SBM) or degree-corrected SBM (DCSBM) to further partition
the groups into communities, allowing for varying levels of between-community connec-
tivity. By incorporating this two-step structure, we introduce a novel divide-and-conquer
algorithm that asymptotically recovers both the group structure and the community struc-
ture. Numerical studies confirm that our approach significantly reduces computational
costs while achieving competitive performance. This framework provides a comprehen-
sive solution for detecting community structures in networks with grouped communities,
offering a valuable tool for various applications.

Keywords: community detection, divide and conquer, large networks, modularity, spec-
tral clustering, stochastic block model

1. Introduction

For many real-world networks, such as social networks, airline route networks, and citation
networks (Egghe and Rousseau, 1990), community structures are commonly observed as
functional modules, i.e., nodes belonging to the same community share similar connectivity
patterns. Finding such community structures can be useful for exploring, modeling, and
understanding networks (Rohe et al., 2011). The stochastic block model (SBM) (Holland
et al., 1983; Snijders and Nowicki, 1997) has been widely used for modeling the commu-
nity structure in networks and has shown appealing empirical and theoretical properties.
Community detection based on the SBM is a nontrivial task, as optimizing the likelihood
function over all possible community labels is an NP-hard problem (Bickel and Chen, 2009).
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Various algorithms have been developed for community detection based on the SBM in the
literature. For example, Daudin et al. (2008) considered the variational EM algorithm
by optimizing the community assignment and probability matrix iteratively. Rohe et al.
(2011) proposed the spectral clustering algorithm by analyzing the Laplacian of the ad-
jacency matrix for high-dimensional SBM. Amini et al. (2013) proposed pseudo-likelihood
based algorithms for network community detection tasks. However, when dealing with
very large networks, the computational cost is often too high and causes challenges. In
the variational EM method, each EM update requires O(n2) computations (Snijders and
Nowicki, 1997; Handcock et al., 2007), where n is the number of nodes in the network; for
the spectral clustering method, the complexity for each iteration is O(mK + nK2), where
m is the number of edges and K is the number of communities (White and Smyth, 2005);
and the pseudo-likelihood algorithm lacks the guarantee of convergence (Wang et al., 2020).
Besides, if the size of communities is unknown, selecting the number of communities also
requires high computational cost. For example, Wang and Bickel (2017) showed that di-
rectly using likelihood-based model selection methods requires an exponential number of
summands and would become intractable as n grows. Even with the variational likelihood
EM update algorithm, each step will require O(n2) computations. Note that these methods
all work and only work with the entire network. To overcome the computational burden for
community detection in large networks, a natural idea is to first divide the large network
into several sub-networks, and then communities are detected within each sub-network in
a parallel way. The random division would break the community structure and lead to
erroneous community detection results. Therefore, a key question is how to divide the large
network into sub-networks in a sensible way.

In many real-world applications, it has often been observed that communities in large
networks can be divided into groups such that nodes (or communities) within the same
group have relatively high link probabilities, while nodes in different groups have much
lower link probabilities. One such example is the airline route network1 which contains
routes among airports spanning the globe. It can be seen that the group structure in the
airline route network corresponds to geographical regions, where connections within the
same region are much denser than connections across regions. Within each region (group),
the airports are further divided into communities depending on connections due to different
levels of economies, areas or politics. See Section 6.1 for more details.

Another illustrative example is the Facebook ego network2, which is created based on
the “friend lists” of 10 ego people (see Figure 8 in Appendix). Naturally, people connected
to the same ego person have higher link probabilities among themselves than to people
connected to different egos. Therefore, it is reasonable to assume that there are 10 groups
corresponding to the 10 egos in the Facebook ego network. Within each group, people could
belong to different friend circles (communities), such as the colleague circle, the family circle,
the classmate circle, etc, of the ego person. See Section 6.2 for more details.

In this paper, we consider large networks with a “grouped community structure”. An
illustration of the “grouped community structure” is shown in Figure 1(a) and (b), where the
network consists of four communities, with the green and the yellow communities belonging
to one group and the red and blue communities belonging to the other group. The groups

1. https://openflights.org/data.html
2. https://snap.stanford.edu/data
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are such that nodes (or communities) within the same group have much denser links than
those between different groups. In Figure 1(a), communities within the same group are
non-assortative, while Figure 1(b) shows an example that communities within the same
group are assortative. Our goal has two folds: divide the large network into sub-networks
according to the group structure so that it does not break the community structure within
each group during the division; consistently conduct community detection within each sub-
network.

Probability Matrix:
(Non-assortative within group)

(a)

Probability Matrix:
(Assortative within group)

(b)

Figure 1: An illustration for the grouped community structure: the yellow and the green
communities belong to the same group; the red and blue communities are in another group.
In panel (a), communities within the same group are non-assortative (links are dense across
communities); and in panel (b), communities within the same group are assortative (links
are dense within communities).

Towards this goal, we adopt a division method by optimizing the modularity (Newman
and Girvan, 2004), which is a widely used measure for the strength of division of a network
into groups. Specifically, modularity is defined as the fraction of edges that fall within the
divided groups minus the expected fraction if edges were distributed at random (Newman,
2012). The larger the modularity, the divided groups will have denser connections within the
groups but sparser connections between the groups. Many modularity optimization algo-
rithms, such as the edge-betweenness method (Newman and Girvan, 2004), the fast-greedy
method (Blondel et al., 2008) and the exhaustive modularity optimization via simulated
annealing method (Guimera et al., 2004), have been developed to divide a network into
groups. These methods are usually model-free and can be implemented efficiently for large
networks. For example, the computational cost for the fast greedy algorithm is O(nlog2n),
which is nearly linear in the size n (Fortunato and Hric, 2016).

Although the modularity optimization methods are computationally efficient, they can-
not be used to recover the refined community structure within groups since communities
within the same group may have relatively more non-assortative links. This motivates us
to adopt a novel divide-and-conquer scheme for distributed community detection for large
networks. Specifically, we propose to first divide a large network into groups using the
modularity-based method and then conduct community detection using the model-based
method within each group. We show that our proposed divide-and-conquer method can
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estimate the community labels consistently for networks with the group structure under
certain conditions.

The remainder of the paper is organized as follows. In Section 2, we describe in detail
the SBM with the grouped community structure. In Section 3, we present the proposed dis-
tributed community detection algorithm. Theoretical properties of the proposed distributed
community detection algorithm and extension to the Degree-Corrected SBM (DCSBM) are
given in Section 4. In Section 5, we conduct simulation studies to examine the perfor-
mance of the proposed method and compare it with other community detection methods.
In Section 6, we apply the proposed method to an airline route network and a Facebook
ego network. We conclude the paper with discussions in Section 7. All technical proofs are
provided in the Appendix.

2. SBM with Grouped Community Structures

Consider an undirected and unweighted network N = (V,A), where V = {v1, v2, ..., vn} is
the set of nodes and A = (Aij) is the adjacency matrix with Aij = 1 representing a link
between nodes vi and vj , and 0 otherwise. First, we assume that the node set {v1, v2, ..., vn}
can be partitioned into G disjoint groups G1,G2, ...,GG. In addition, each group Gt, is further
partitioned into Kt disjoint communities Ct,1, Ct,2, ..., Ct,Kt . Second, the link probabilities

are denoted by the matrix Bn ∈ RK×K , where K =
∑G

t=1Kt is the total number of
communities in the network. It is assumed that for any two nodes vi ∈ Ct,a and vj ∈ Cs,b,
they are connected by an edge with the probability Bn,

∑t−1
i=0 Ki+a,

∑s−1
j=0 Kj+b

, where Bn,h,l is

the (h, l)th element in Bn and K0 is set as 0. Hence, the connection probability between
nodes only depends on their community labels. For group structure g = (g1, g2, ..., gn)T

where gi ∈ {1, 2, .., G} denotes the group label for node vi, i = 1, . . . , n, we assume that the
group labels gi’s follow a multinomial distribution with parameters Π = (Π1,Π2, ...,ΠG)T .
For community structure, we define c = (c1, c2, ..., cn), where ci ∈ {1, 2, ..,K} denotes
the community label for node vi, i = 1, . . . , n, and the community labels ci’s follow a
multinomial distribution with parameters π = (π1, π2, ..., πK)T . With these notation, for
a node vi ∈ Ct,a (i.e. the a-th community in the t-th group), we have ci =

∑t−1
i=0Ki + a.

We also have Πt =
∑Kt

j=1 π
∑t−1

i=0 Ki+j
, t = 1, ..., G, which indicates that the frequency of a

specific group is the summation of the frequencies of the communities in that group.

Note that for the grouped community structure to be meaningful, one needs additional
constraints on the group assignment. Specifically, we introduce Condition 1 on the gen-
erative probability matrix Bn such that links within groups are denser than links across
groups.

Condition 1 For graph G with community label c and probability matrix Bn. Given the
group assignment g, the probability matrix Bn satisfies that Bn,ab > Bn,0 for communities
a and b that belong to the same group g., and Bn,ab < Bn,0 for communities a and b that
belong to different groups, where Bn,0 =

∑
ab πaπbBn,ab measures the averaged connection

probability over all communities.

Lemma 1 shows that, under Condition 1, the group assignment is well-defined and
unique. Therefore, there is no identifiability issue regarding to group structure.
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Lemma 1 For generative SBM graph with probability matrix Bn, if both group assignments
g1 and g2 satisfy Condition 1, then g1 = g2.

Proof: Suppose g1 6= g2, then there exist nodes vi, vj such that g1i = g1j and g2i 6= g2j . Under
the Condition 1, we have Bn,cicj > Bn,0 and Bn,cicj < Bn,0, which causes contradiction.
Therefore, Lemma 1 holds.

To illustrate the SBM with the grouped community structure, we consider the toy
examples in Figures 1(a) and (b). Both networks are generated under the SBM with n = 20,
K = 4, and π = (1/4, 1/4, 1/4, 1/4)T . The link probability matrices are

B1
n =


0.3 0.8 0.01 0.01
0.8 0.3 0.02 0.02
0.01 0.02 0.3 0.9
0.01 0.02 0.9 0.3

 and B2
n =


0.8 0.3 0.02 0.02
0.3 0.7 0.01 0.01
0.02 0.01 0.9 0.3
0.02 0.01 0.3 0.9


respectively. Note that both probability matrices satisfy Condition 1 with group size of two.
Therefore, both networks are SBM with the grouped community structure, i.e., in both
networks, nodes between groups are loosely connected in comparison to nodes within the
same group. In Figure 1(a), within community nodes are relatively loosely connected while
nodes across communities but within the group are relatively densely connected. While in
Figure 1(b), the within community nodes have dense links and nodes across communities
have loose links.

3. A Distributed Community Detection Algorithm

In this section, we present a divide-and-conquer algorithm that first divides the entire
network into disjoint groups and then identifies communities within each group in the SBM.
The summarized algorithms are provided in Algorithm 1.

3.1 Group Division Based on Modularity Optimization

Modularity, as defined by Newman (2006), is the fraction of the edges that fall within the
given groups minus the expected fraction if edges were distributed at random. Hence the
group structure can be recovered by maximizing the modularity.

To evaluate the optimality of a group assignment e, we use the Erdos-Renyi modularity
(Guimera et al., 2004) defined as

QER(e) =
∑
i,j

(Aij − L/n2)I(ei = ej), (1)

where L is sum of degrees as L =
∑

ij Aij . Note that modularity QER(e) ranges from -1
to 1, and a large value of modularity indicates good performance for the group assignment
e, i.e. the group division based on e produces dense links within groups and sparse links
between groups.

Exact modularity maximization is an NP-hard problem, which may be intractable for
large networks. Henceforth, several approximate methods have been developed to find
decent solutions that approximately maximize the modularity. In our implementation, we
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adopt the fast greedy algorithm (Clauset et al., 2004) to divide a large network into groups
by optimizing the modularity, which is a widely used hierarchical clustering algorithm for
group detection. The basic idea of the fast greedy algorithm is to start with each node
being the single member of a group. Then we repeatedly concatenate the two groups whose
amalgamation produces the largest increase in modularity. For a network of n nodes, after
n− 1 such joins, a single group remains and the algorithm stops. The entire process can be
represented as a tree whose leaves are the nodes of the original network and whose internal
joints correspond to the joins. This dendrogram represents a hierarchical decomposition of
the network into groups at all levels. Therefore, a cutoff point of the dendrogram can be
selected based on the modularity or a given number of groups.

Since the fast greedy algorithm generates a dendrogram, the number of groups G can be
determined by choosing the partition with the greatest modularity during the training pro-
cess without extra computation (Newman and Girvan, 2004). One potential risk when using
the maximal modularity to determine the groups is the “resolution limit” issue (Fortunato
and Barthelemy, 2007), which means maximizing modularity would miss substructures of
a network, i.e. wrongly treat several small groups as one large group. However, in our
method, the “resolution limit” issue can be corrected in the following community detection
step.

3.2 Distributed Community Detection Algorithm

After dividing the network into disjoint groups, we conduct community detection within
each group. Various methods can be adapted to estimate the community labels within
each group, such as the variational EM algorithm based on SBM (VSBM) (Daudin et al.,
2008) and the regularized spherical spectral clustering (SSP) algorithm (Qin and Rohe,
2013). The number of communities Kt in group t can be determined by the asymptotic
likelihood ratio Bayesian information criterion (LRBIC) (Wang and Bickel, 2017) which is
a likelihood-based model selection method. We use csubt to denote the community labels
in group t, where csubt = (csubt,1 , c

sub
t,2 , . . . , c

sub
t,|Gt|) and | · | denotes the cardinality of the set.

Let ĉsubt denote the estimated community labels in group t, for t = 1, . . . , G. Then, the
estimated community labels ĉ of the entire network can be constructed by concatenating
detected community labels from all groups as follows: for node vi in group t, if ĉsubt assigns
vi to the k-th community in group t, then we denote the i-th element of ĉ as

∑t−1
j=0 K̂j + k,

where K̂j is the estimated number of communities in group j obtained from the previous
step. Given the estimated community labels ĉ, we can further estimate the probability
matrix B̂n by the maximum likelihood estimation (Karrer and Newman, 2011).

3.3 Computational Cost for Proposed Method

In terms of the computational cost, the division step takes O(nlog2n) computations in the
fast greedy modularity method. Suppose group Gt (for t = 1, 2, .., G) contains nt nodes
and mt edges. For the spectral clustering method, the computational complexity in Gt is
O(mtKt + ntK

2
t ). Define Kmax = max(K1,K2, ..,KG) and nmax,mmax in the same way.

The computational cost for all groups is O(G× (mmaxKmax + nmaxK
2
max)), which is much

smaller than the original cost O(mK+nK2) as n grows. For VSBM in the community-level
detection step, the computational cost in each EM update is O(G × n2max) which is much
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Algorithm 1: Distributed Community Detection

Input: the network N = (V,A)
Output: the estimated community labels ĉ and estimated probability matrix B̂n

1 PART I: Group Division
2 Apply the fast greedy algorithm to the network N and obtain the dendrogram H
3 If G is not given:
4 Choose an increment threshold δ; initialize the group size G = 1; initialize the

current modularity value Q = 0
5 for j = 2; j < n; j = j + 1 do
6 Calculate the modularity value Qj with group size j in dendrogram H
7 if Qj −Q > δ: update the current modularity value Q← Qj and the group size

G← j
8 else: break the loop, output G

9 Divide the network N into G groups {Gt}{t=1,...,G} based on the dendrogram H

10 PART II: Community Detection
11 Initialization: t = 1
12 repeat

13 Determine the number of communities K̂t in each group Gt using LRBIC;

estimate the community labels ĉsubt in Gt using a SBM community detection
method (such as VSBM or SSP)

1515 t = t+ 1;

16 until t = G;
17 PART III: Combination

18 Obtain the community labels ĉ by concatenating ĉsubt , for t = 1, . . . , G, and the

estimated probability matrix B̂n given ĉ.
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smaller than applying VSBM to the whole graph. Furthermore, the computational time
can be significantly decreased if distributed computing is used in the community detection
step. It should also be noted that applying LRBIC to each group for selecting the number
of communities has lower computational cost than to the whole network.

4. Theoretical Properties

In this section, we show that the proposed distributed community detection algorithm
can consistently recover the community labels for networks with the grouped community
structure. We state the main results in this section and provide all the proofs in the
Appendix.

4.1 Group Detection Consistency for the SBM

We first formally formulate the group detection problem for networks with the grouped
community structure. Given the total number of groups G, we use e to denote a group
assignment e = {e1, e2, . . . , en}, where ei is the group label for node vi and it takes value
in {1, 2, . . . , G}. Define ĝ = argmaxeQER(e) as the estimated group labels. Our first goal
is to show that ĝ can consistently estimate the true group labels g.

To establish group consistency for the proposed distributed community detection al-
gorithm, we make the following assumptions for the probability matrix Bn and the true
group assignment g. First, we note the probability matrix Bn is not fixed, as otherwise,
the expected degree for each node will grow proportionally to n as n → ∞, which is not
realistic in practical applications. Specifically, we assume the following condition for the
probability matrix Bn.

Condition 2 The probability matrix Bn can be written as Bn = ρnB, where ρn = πTBnπ =∑
ab πaπbBn,ab is the averaged probability of two nodes being linked. We assume ρn → 0 as

n→∞.

Condition 2 has been widely used in the literature for studying the consistency of com-
munity detection in networks (e.g. Bickel and Chen, 2009; Lei et al., 2015; Jin et al., 2015;
Zhao et al., 2012; Abbe, 2017). Under Condition 2, the expected degree of a node is given by
λn = nρn and the expected total degree in the networks can be written as un = nλn = n2ρn.
If nρn = O(1), then the expected degree of a node is bounded as the size of the network
grows to infinity.

The strong and weak consistency of estimated group labels ĝ can be defined by

P (ĝ = g)→ 1 as n→∞,

and for any ε > 0,

P

[{
1

n

∑
i

1(ĝi 6= gi)

}
< ε

]
→ 1 as n→∞,

respectively. In the next theorem, we establish the consistency for group detection. Note
that all the results are up to permutation of the group labels.
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Theorem 2 Under the SBM, suppose Bn satisfies Conditions 1 and 2, then the estimated
group labels ĝ obtained by maximizing QER(e) are strongly consistent when λn/ log(n)→∞
and weakly consistent when λn →∞.

Theorem 2 shows that by maximizing the modularity and under certain conditions, the
estimated group labels ĝ can consistently recover the group structure in the SBM, without
breaking the community structures within the groups.

In comparison to previous works, the key difference lies in the requirement on the link
probability matrix in Condition 1. For example, Theorem 2 in Zhao et al. (2012) requires the
link probabilities within communities to be higher than a threshold while link probabilities
across communities are lower than it, i.e. to achieve consistency, the community structure
is required to be assortative. In our theory, the community-level assortative condition
is relaxed to the group-level assortative condition, which leads to the divide-and-conquer
algorithm (i.e. Algorithm 1) that works not only for assortative networks but also for
non-assortative networks.

There are two key and unique challenges in the proof of Theorem 2, which are not
shared by previous works. The first one is how to make sure the maximization of modularity
maintains the community structure. Motivated by the proof in Zhao et al. (2012), we show
that if the maximizer of the modularity’s expectation can be denoted as a generic G ×K
matrix with at most one nonzero element in each column, then the corresponding group
estimation is consistent. The second challenge is to show that Conditions 1 and 2 are
sufficient to lead to the generic matrix with at most one nonzero element in each column.
The detailed proof is provided in the Appendix.

4.2 Extension to the Degree-corrected SBM

To allow for more flexible degree heterogeneity, we consider the degree-corrected stochastic
block model (DCSBM) (Karrer and Newman, 2011), an extension of the SBM. Out of
simplicity, we use the same notations as in 2 in DCSBM. In addition to the parameters of
the SBM, each node is also associated with a degree parameter θi. For identifiability, we
assume the expectation of the degree variable is 1, i.e. E(θi) = 1. The edge Aij is a Poisson
distributed random variable with P (Aij = 1|c,θ) = θiθjBn,cicj , where θ = (θ1, θ2, .., θn).

The group structure in DCSBM is defined under the same idea as in grouped SBM:
links within groups are denser than links between groups. Since the DCSBM is a generative
model, the group structure can be defined by adding constraints on the probability matrix
Bn and the degree variable θ as in Condition 3. Further, Lemma 3 shows that the group
structure in the DCSBM is well-defined.

Condition 3 Suppose θi is a discrete random variable and takes value in the set {x1, x2, .., xM}.
Let τau denote the frequency of community a and the degree value xu (i.e. τau = P (ci =
a, θi = xu)). Further, let π̃a =

∑
u τau and B̃n,0 =

∑
ab π̃aπ̃bBn,ab. For the normalized

matrix Γ = W̃ − (W̃1)(W̃1)T where W̃ab = π̃aπ̃bBn,ab/B̃n,0, it satisfies that Γn,ab > 0 for
communities a and b that belong to the same group, and Γn,ab < 0 for a and b that belong
to different groups.

Lemma 3 For generative DCSBM graph with probability Bn, if both g1 and g2 satisfy
Condition 3, then we have g1 = g2.
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Following the same idea as in Section 3 for the SBM, we can build the distributed
community detection algorithm for the DCSBM. In the group division part, the modular-
ity under the DCSBM is defined in Eq. (2), which is a modification of the Erdos-Renyi
modularity in Eq. (1) by taking into account the degree heterogeneity,

QDC(e) =
∑
i,j

(Aij − didj/L)I(ei = ej), (2)

where di =
∑

j Aij is the degree of node vi, and e, O(e), L are all defined the same as before.
As discussed in Section 3.1, exact modularity maximization is infeasible. Therefore, we again
apply a fast greedy method to the degree-corrected modularity. Just like in the SBM, the
number of groups can be obtained during the training process of the fast greedy method.

In the community detection part, we first use LRBIC to determine the number of com-
munities Kt, then we apply community detection methods such as the variational DCSBM
method, spectral clustering or SCORE (Jin et al., 2015), to identify the community label
csubt within each group t, t = 1, 2, .., G. The combination of the community detection part
and the group detection part is the same as in Algorithm 1.

Lastly, we show the group consistency result under the DCSBM in Theorem 4. Based
on the Theorem, the group detection part of the distributed community detection algorithm
can consistently recover the group labels for the DCSBM with group structure.

Theorem 4 Under the DCSBM, if the model satisfies Conditions 2 and 3, then the esti-
mated group labels ĝ obtained by maximizing QDC(e) are strongly consistent when λn/ log(n)→
∞ and weakly consistent when λn →∞.

4.3 Community Detection Consistency

In this subsection, we establish the strong and weak consistency for the estimated commu-
nity labels ĉ obtained using the proposed distributed community detection algorithm. The
definitions of the strong and weak consistency for the estimated community labels ĉ are
similar to those for ĝ: The strong and weak consistency of estimated community labels ĉ
can be defined by

P (ĉ = c)→ 1 as n→∞,

and for any ε > 0,

P

[{
1

n

∑
i

1(ĉi 6= ci)

}
< ε

]
→ 1 as n→∞,

respectively.

Theorem 5 (Consistency of the Distributed Community Detection Algorithm) Provided
that the estimated group labels ĝ are strongly consistent and the adopted community detection
algorithm is strongly (weakly) consistent, then the estimated community labels ĉ are strongly
(weakly) consistent.
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Remark: Note that Theorem 5 covers both the SBM and the DCSBM. If the number of
groups G is 1, Theorem 5 reduces to the community detection results established in Bickel
and Chen (2009) for the SBM and that in Zhao et al. (2011) for the DCSBM.

Because the community level detection methods, including the SSP (Von Luxburg et al.,
2008) and VSBM (Daudin et al., 2008) for the SBM and SCORE (Jin et al., 2015) for
the DCSBM, are consistent, our proposed distributed community detection algorithm is
consistent provided that the estimated group labels are strongly consistent as stated in
Theorem 5.

5. Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the proposed
distributed community algorithm.

5.1 Comparative Methods and Implementation Detail

5In SBM, we consider three baselines. First, FG denotes the ER modularity optimization
(Eq (1)) based on fast-greedy algorithm.3 The estimated community size and community
label can be obtained simultaneously from the dendrogram generated by fast-greedy algo-
rithm. Second, VSBM denotes the variational EM algorithm for maximizing SBM likelihood
function.4 The size of community is selected by LRBIC method where Kmax is set as the
true community size.5 Third, SSP denotes the spherical spectral clustering algorithm,6 the
size of community is also selected by LRBIC method.

As comparison, we study two distributed community detection methods summarized in
Algorithm 1. D-VSBM and D-SSP represent group division via modularity optimization and
community detection within each sub-network is conducted using VSBM and SSP methods,
respectively. The group size is obtained from the group division step and community sizes
within sub-networks are estimated from LRBIC method as well.

In DCSBM, three baselines are compared. Firstly, FG-DC denotes the DC modularity
optimization (Eq (2)) based on fast-greedy algorithm. Secondly, VDCSBM denotes the
variational EM algorithm for maximizing DCSBM likelihood function. Lastly, SCORE
denotes the spectral clustering on ratios-of-eigenvectors community detection method.7 In
both VDCSBM and SCORE method, the size of community is selected through LRBIC
method. We compare the baselines with distributed method, D-DCSBM and D-SCORE,
to evaluate the performance of proposed methods.

5.2 Numerical Results for SBM and DCSBM

We start with grouped community structure SBM network with generation based on the de-
scription in Section 2. Specifically, we generate networks using the SBM with G = 4 groups,
the four groups contain 2, 3, 3 and 4 communities, respectively. The community frequen-

3. https://igraph.org/r/doc/cluster fast greedy.html
4. https://rdrr.io/cran/mixer/
5. LRBIC function in randnet R package: https://cran.r-project.org/web/packages/randnet/randnet.pdf
6. reg.SSP function in randnet R package: https://cran.r-project.org/web/packages/randnet/randnet.pdf
7. https://rdrr.io/cran/ScorePlus/man/SCORE.html
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Figure 2: Relatively small networks. The panels on the left show the NMI for all meth-
ods with growing number of nodes n under the SBM; the panels on the right show the
corresponding computing times; the panel on the bottom is the group NMI.

Figure 3: The panels on the left show the NMI for all methods with growing number of
nodes n under the DCSBM. The panels on the right show the corresponding computing
times; the panel on the bottom is the group NMI.

cies are set as π = (1/12, 1/12, .., 1/12)T . The probability matrix Bn ∈ R12×12 is generated
as follows: for nodes vi and vj belonging to the same group, Bcicj ∼ Unif(1/100, 1); for
nodes vi and vj from different groups, Bcicj ∼ Unif(0, 1/100). Hence, the generated Bn

satisfies Condition 1. Therefore, the networks which are generated from Bn have structure
that community structure within a group is non-assortative while the groups remain as
assortative. Under the setting of DCSBM, we follow the network generation strategy as in
SBM, except that now we have the extra degree parameter θ = (θ1, . . . , θn), and they are
generated independently as follows,

P (θi = mx) = P (θi = x) =
1

2
,

where we set m = 3/2 and x = 2/(m + 1) so that E(θi) = 1 is satisfied as discussed in
Section 4.2. For each setting, we repeat the simulation 100 times with various network sizes
n.

To evaluate the performance of different methods of community detection, we use the
normalized mutual information (NMI) index (Mori and Malik, 2003) shown in Equation
(3) where I(·, ·) and H(·) are mutual information and entropy respectively. NMI ranges
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between 0 and 1, with larger values indicating better performance. NMI equals 1 when the
method recovers the true community structure perfectly.

NMI(c, ĉ) =
2× I(c, ĉ)

H(c), H(ĉ)

I(c, ĉ) =
∑
e1∈c

∑
e2∈ĉ

p(c,ĉ)(e1, e2)log(
p(c,ĉ)(e1, e2)

pc(e1)pĉ(e2)
)

(3)

We also compare the computational time for different methods to evaluate the scalability.
The results for both SBM and DCSBM are summarized in Figures 2 and 3, respectively.
We have three findings from the result. First, as the size of the network n increases,
except for the modularity-based method (FG and FG-DC), the NMI increases for all other
methods in both SBM and DCSBM models. Also, we observe that likelihood-based method
VSBM and VDCSBM are better than SSP and SCORE in NMI, respectively, while the
computational time for VSBM and VDCSBM grows exponentially which means they are
not scalable. Third, we find that the distributed method and non-distributed method
are close in community detection performance, while distributed methods are scalable in
computation time.

To study the performance in relatively large size of networks, we consider relatively large
networks where the size of networks varies from 5e3 to 5e5 and the the size group G also
grows as the size of nodes increases. Within each group, the community size is 5 with equal
community frequency. The probability matrix is designed as the small scale experiment
above. we summarize the result in Table 1. Computational time including community size
selection using LRBIC and community label detection step, hence SSP and SCORE cannot
be calculated when size of n is too large. We use G-NMI to denote the group level NMI
which is defined as G-NMI= NMI(g, ĝ). From the result, we show the proposed distributed
based methods works well even in large size of networks setting. Also, the G-NMIs are large
which indicate the proposed distributed method can maintain the group level structure well.
The distributed based methods are also scalable compared to baseline methods.

6. Data Examples

In this section, we apply the proposed method to real-world networks including an airline
route network and Facebook ego networks. Since the true community labels of real applica-
tion are unknown, the evaluation step is based on two aspects: first, in airline route network,
we analyze the community detection results from regions’ geometric and economic factors;
second, in both applications, we analyze the AUC results by considering the recovering
power of edges based on the estimated SBM model.

6.1 Airline Route Network

The airline route network8 contains 67,663 routes between 3,321 airports on 548 airlines
spanning the globe. The adjacency matrix A is then constructed as follows: each airport
is considered as a node; if there exists a route between two nodes vi and vj , we set Aij = 1,

8. https://openflights.org/data.html
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SBM DCSBM

(n, G, K) Method NMI t (s) G-NMI Method NMI t (s) G-NMI

(5e3,
1e1,
5e1)

VSBM
0.97
(0.005)

6952
(20)

- VDCSBM
0.95
(0.006)

7024
(20)

-

D-VSBM
0.97
(0.008)

42
(6)

0.95 D-VDCSBM
0.95
(0.010)

48
(5)

0.96

SSP
0.88
(0.004)

411
(8)

- SCORE
0.90
(0.007)

502
(9)

-

D-SSP
0.86
(0.006)

25
(4)

0.95 D-SCORE
0.89
(0.012)

35
(5)

0.96

(5e4,
1e2,
5e2)

VSBM - - - VDCSBM - - -

D-VSBM
0.96
(0.010)

512
(10)

0.96 D-VDCSBM
0.95
(0.012)

553
(12)

0.97

SSP - - - SCORE - - -

D-SSP
0.90
(0.008)

273
(11)

0.96 D-SCORE
0.88
(0.013)

394
(12)

0.97

(5e5,
1e3,
5e3)

VSBM - - - VDCSBM - - -

D-VSBM
0.96
(0.010)

5590
(35)

0.94 D-VDCSBM
0.982
(0.010)

6024
(32)

0.97

SSP - - - SCORE - - -

D-SSP
0.90
(0.009)

3025
(20)

0.94 D-SCORE
0.975
(0.012)

4520
(25)

0.97

Table 1: Result for relatively large networks. Computational time includes two parts: 1)
community size selection 2) community label detection. Using LRBIC to determine the
community size grows exponentially with the size of networks. Our distributed community
detection method can calculate the community size as well as get a high NMI score in
community detection.

otherwise, Aij = 0. We apply the proposed method and report the results based on D-SSP.
The results from D-VSBM are similar and omitted here.

We first choose the number of groups G. Figure 6(a) shows the modularity value under
different values of G. As one can see, the modularity value reaches its peak when G = 13
and then remains almost the same as G further increases. Therefore, we divide the network
into G = 13 groups.

Figure 4 shows the seven largest identified groups, where different colors correspond to
different estimated groups. Roughly speaking, these seven groups represent seven different
regions in the world. For example, the black points are mainly in South America, the
pink points are mainly in Canada, while the yellow points are mainly in the United States,
Mexico, and the Caribbean region.

Community detection is then applied to each identified group. For example, the right
panel of Figure 5(a) shows the community detection results for the group in South America.
As one can see, the two detected communities correspond to the two centers in the left
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Figure 4: Group detection in the airline route network; different colors indicate different
estimated group labels.

(a) South America (black points in Figure 4 ) (b) Canada (pink points in Figure 4)

Figure 5: In each sub-figure, one panel shows the airline routes (with red points correspond-
ing to airports and green lines corresponding to airline routes), and the other panel shows
the estimated community labels - different colors indicate different estimated community
labels. In Canada, there are three airports (in black) that are obviously mislabeled.

panel of Figure 5(a): one in Uruguay and Argentina, and the other in Brazil, which are
understandable. Another example is shown in Figure 5(b). Two detected communities
(lower panel) match the airline routes in the upper panel and correspond to eastern and
western Canada, respectively.

Further, we evaluate the effectiveness of community detection in a predictive manner.
Specifically, we first randomly sample a proportion of the node pairs as the testing set and
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mask the corresponding edge Aij values as zero; then we apply the proposed community

detection method to obtain B̂n which can be estimated according to the detected commu-
nity labels ĉ by considering the connection probability of nodes both within and between
communities. Lastly, we evaluate the performance of B̂n on the testing set using the area
under the receiver operating characteristic curve (AUC). The left panel in Figure 7 shows
how the AUC value changes when we vary the proportion of masked node pairs. As we can
see, overall, the AUC values are pretty high and stable. As the proportion of masked node
pairs increases, the AUC value decreases, but not by a lot. We can also see that the AUC
of D-SSP is only slightly lower than that of SSP, indicating again that with data splitting,
the proposed distributed community detection method does not degrade the community
detection performance.

(a) Airline route network (b) Facebook ego network

Figure 6: Modularity under different values of G

6.2 Ego Networks

Ego networks (Leskovec and Mcauley, 2012; Leskovec and Krevl, 2014) are often created
from user surveys in social media, such as Facebook, Twitter, or Google+. Each ego person
is considered as a primary node, and the ego’s friends are all considered as nodes in the
ego network. If two nodes in the ego network are friends with each other, a link is added
between these two nodes. For example, the Facebook ego network we consider here contains
4,039 nodes and 88,234 edges, corresponding to 10 ego people (see Figure 8).

Since there are 10 ego people in this Facebook ego network, it is reasonable to set the
number of groups G as 10. The plot of modularity for the ego network (Figure 6(b)), which
shows the modularity value under different values of G, confirms the conjecture. As one can
see, the modularity value reaches its peak at G = 10 and stays at about the same value for
large G values. After setting the number of groups as 10, we apply the D-SSP method to
the Facebook ego network to obtain the estimated community labels and link probability
matrix. Similar to the previous subsection, the results are evaluated using the AUC on the
testing set (see Figure 7).

Further, we have also considered a Twitter ego network and a Google+ ego network.
Since these two networks are relatively large (with 142 and 132 ego people respectively),
the SSP method can not be applied due to the computational cost. We thus apply the SSP
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Figure 7: AUC under different proportions of masked node pairs. The x-axis for masked
proportion is set as 0.1, 0.3, 0.5, 0.7, 0.99 respectively.

Network Egos Nodes Edges AUC
(mask
10%)
(D-SSP)

Time
(D-SSP)

AUC
(mask
10%)
(SSP)

Time
(SSP)

Facebook 10 4,039 88,234 0.985 44(s) 0.986 214(s)

Twitter 42 5,816 83,694 0.991 34(s) 0.989 420(s)

Google+ 8 6,382 325,819 0.941 101(s) 0.954 761(s)

Twitter 142 81,306 1,342,296 0.989 1091(s) —— ——

Google+ 132 107,614 13,673,453 0.974 5030(s) —— ——

Table 2: Numerical results for ego networks; all experiments are conducted via a Dell R7425
machine with dual processor AMD Epyc 32 core 2.2 GHZ with 8GB of RAM

method only on a subset of the ego network corresponding to a randomly sampled subset
of the ego people. The results are shown in Table 2. It can be seen that the proposed
distributed community detection method D-SSP has comparable performance to SSP (when
SSP can be applied) in terms of the AUC, but significantly reducing the computational cost.

7. Conclusion and Future Work

In this paper, we have proposed a novel distributed community detection method for large
networks with a grouped community structure. The method is easy to implement using
the current technology in modularity optimization and community detection. We have
also established both weak and strong consistency of the proposed method for both group
and community detection. Numerical results show that the proposed distributed commu-
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nity detection method achieves similar detection performance in comparison to community
detection methods without data splitting, but largely reduces the computational cost.

There are several directions we plan to extend our work. The number of groups G is
currently assumed fixed as n grows in our theoretical analysis. Using techniques developed in
Choi et al. (2012) and Rohe et al. (2011), we may relax this assumption. Another interesting
direction is to generalize the current work to incorporate the dynamic representation of time-
varying networks with evolving community structures (Sarkar and Moore, 2006; Berger-Wolf
and Saia, 2006). This is challenging and requires further investigation.
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J-J Daudin, Franck Picard, and Stéphane Robin. A mixture model for random graphs.
Statistics and computing, 18(2):173–183, 2008.

Leo Egghe and Ronald Rousseau. Introduction to informetrics: Quantitative methods in
library, documentation and information science. Elsevier Science Publishers, 1990.

Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1):36–41, 2007.

Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics
Reports, 659:1–44, 2016.
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Appendix

We first formally formulate the group detection problem for networks with the grouped
community structure. Given the total number of groups G, we use e to denote a group
assignment e = {e1, e2, . . . , en}, where ei is the group label for node vi and it takes value
in {1, 2, . . . , G}. Define ĝ = argmaxeQER(e) as the estimated group labels. Our first goal
is to show that ĝ can consistently estimate the true group labels g. Following Bickel and
Chen (2009) and Zhao et al. (2012), for any given group assignment e, we construct matrix
O(e) ∈ RG×G as

Ots(e) =
∑
ij

AijI{ei = t, ej = s},

where I is the indicator function. The total degree in group t under the group assignment
e can be defined as

Ot(e) =
∑
s

Ots(e), t = 1, . . . , G.

Let f(e) = (n1(e)
n , n2(e)

n , ..., nG(e)
n )T denote the frequencies in each group under the group

assignment e, where nt(e) =
∑

i I{ei = t} is the number of nodes in group t. Also, denote
the sum of degrees as L =

∑
ij Aij .

We start with the general format of modularity-based criteria, which can be written as

Q(e) = F (
O(e)

µn
, f(e)).

We aim to find an e that maximizes the modularity.

The key in group detection problem is to construct a “population version” of Q(e) such
that the group labels g can maximize the “population version” of Q(e). We first need to
construct the “population version” of f(e) and O(e).

We define a matrix R(e) ∈ RG×K×M as Rtau(e) = 1
n

∑
i I(ei = t, ci = a, θi = xu), which

is a normalized one-hot representation of the relationship between nodes and structure
including group label, community labels and degree level. For any generic array S =
[Stau] ∈ RG×K×M , we can define a G-dimensional vector h(S) = [ht(S)] by

ht(S) =
∑
au

Stau, (4)

and G×G matrix H(S) = [Hts(S)] by

Hts(S) =
∑
abuv

xuxvBabStaSsb. (5)

Then we have Lemma 6 as follows:

Lemma 6

E(ft(e)|c,θ) = ht(R(e)),

1

un
E(Ots(e)|c,θ) = Hts(R(e)).
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Proof of Lemma 6: For the first equation, left part can be written as E(ft(e)|c,θ) =
ft(e) = 1

n

∑
i I(ei = t) due to the definition of ft(e). From the construction of h and

R(e) above, we have ht(R(e)) =
∑

auRtau(e) =
∑

au
1
n

∑
i I(ei = t, ci = a, θi = xu). After

changing the order of two summations, we have∑
au

1

n

∑
i

I(ei = t, ci = a, θi = xu) =
∑
i

1

n

∑
au

I(ei = t, ci = a, θi = xu) =
1

n

∑
i

I(ei = t).

The last equality holds because community labels c and degrees θ take exact one value
for each i. Therefore, E(ft(e)|c,θ) = ht(R(e)).

For the second equation, we have by definition of Ots:

1

un
E(Ots(e)|c,θ) =

1

un
E(
∑
ij

AijI{ei = t, ej = s}|c,θ)

=
1

un
E(
∑
ij

∑
abuv

AijI{ei = t, gi = a, θi = xu}I{ej = s, gj = b, θj = xv}|c,θ).

Given community labels and degrees, the adjacency matrix A is constructed from the
probability matrix Bn = ρnB. Therefore, we have:

1

un
E(
∑
ij

∑
abuv

AijI{ei = t, gi = a, θi = xu}I{ej = s, gj = b, θj = xv}|c,θ)

=
ρn
un

∑
ij

θiθjBci,cj
∑
abuv

I{ei = t, gi = a, θi = xu}I{ej = s, gj = b, θj = xv}

=
1

n2

∑
abuv

xuxvBab
∑
ij

I{ei = t, gi = a, θi = xu}I{ej = s, gj = b, θj = xv}.

From the construction of H and R(e), the following equations holds:

Hts(R(e)) =
1

n2

∑
abuv

xuxvBabRta(e)Rsb(e)

=
∑
ab

xuxvBab
∑
i

I(ei = t, ci = a)
∑
j

I(ej = s, cj = b).

Therefore, 1
un
E(Ots(e)|c) = Hts(R(e)).

From the Lemma 6, the “population version” of Q(e) can be defined as the expectation
conditional on c but replacing R(e) by T(e) ∈ RG×K×M , where

Ttau(e) =

∑
i I(ei = t, ci = a, θi = xu)∑

i I(ci = a, θi = xu)
τau,

it can be shown that Ttau(e) = Rtau(e)τau/τ̂au, where τau = P(ci = a, θi = xu) and
τ̂au = 1

n

∑
i I(ci = a, θi = xu). Therefore, the “population version” of Q(e) can be fur-

ther denoted as F (H(T(e)),h(T(e))), where we omit the constant multiplier L. Theorem
2 would indicate that the group labels g are the maximizer of F (H(T(e)),h(T(e))).

Lemma 7 is based on Bernstein’s inequality which is utilized in Lemma 8. Lemma 8
provides the conditions for the consistency in maximizing modularity Q(e).
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Lemma 7 Define X(e) ∈ RG×G by Xts(e) = O(e)
µn
−H(R(e)). Let ||X|| = maxs,t|Xst| and

|e− g| =
∑

i I(ei 6= gi). Then

P (maxe||X(e)||∞ ≥ ε) ≤ 2Gn+2exp(− 1

8C
ε2µn) (6)

for ε < 3C, where C = maxabBab.

P (max|e−g|≤m||X(e)−X(g)||∞ ≥ ε) ≤ 2

(
n

m

)
Gm+2exp(−3

8
εµn) (7)

for ε ≥ 6Cm/n.

P (max|e−g|≤m||X(e)−X(g)||∞ ≥ ε) ≤ 2

(
n

m

)
Gm+2exp(− n

16C
ε2µn) (8)

for ε ≤ 6Cm/n.

Proof: See the proof of Lemma A.1. in the supplementary material of Zhao et al. (2012).

Lemma 8 For any Q(e) of the form

Q(e) = F (
O(e)

µn
, f(e))

if π,B, F satisfy conditions (*), (a),(b),(c), then Q is strongly consistent under stochastic
block models if λn/(log(n))→∞ and weakly consistent when λn →∞.

The conditions are listed as follows:
(*) F (H(S),h(S)) is uniquely maximized over P = {S : S ≥ 0,

∑G
t=1 Stau = τau} by

S = S∗, where S∗tau = τau for one t, otherwise, S∗t′au = 0 for t′ 6= t. S∗··u has only one
nonzero element in each column, and communities within group stay in the same row.

(a) F is Lipschitz in its arguments;

(b) Let W = H(D). The directional derivatives ∂2F
∂ε2

(M0 + ε(M1 −M0), t0 + ε(t1 −
t0))|ε=0+ are continuous in (M1, t1) for all (M0, t0) in a neighborhood of (W,π);

(c) Let G(S) = F (H(S),h(S)). Then on P, ∂G((1−ε)D+εS)
∂ε |ε=0+ < −C < 0 for all π,B.

Proof:
The proof has three steps.
Step 1: show that the modularity Q(e) = F (O(e)

µn
, f(e)) is uniformly close to the popu-

lation version F (H(T(e)),h(T(e))). In another word, we need to show that for λn → ∞,
there exist εn → 0 such that

P (maxe|F (
O(e)

µn
, f(e))− F (H(T(e)),h(T(e)))| < εn)→ 1. (9)

Since

|F (
O(e)

µn
, f(e))− F (H(T(e)),h(T(e)))|

≤ |F (
O(e)

µn
, f(e))− F (H(R(e)),h(R(e)))|+ |F (H(R(e)),h(R(e)))− F (H(T(e)),h(T(e)))|,
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For the first item on the left hand above, since h(R(e)) = f(e) and by Lipschitz conti-
nuity,

|F (
O(e)

µn
, f(e))− F (H(R(e)), f(e))| ≤M1||X(e)||∞. (10)

From Equation 6 in Lemma 7, Equation 10 tends to 0 uniformly for λn → ∞. For the
second item,

|F (H(R(e)), f(e))− F (H(T(e)),h(T(e)))|
≤M1||H(R(e))− h(T(e))||∞ +M2||H(R(e))− h(T(e))||2,

(11)

where ||.||2 is Euclidean norm for vectors. Since for λn → ∞, Rta(e) → Tta(e) a.s.,
Equation 11 converges to 0 uniformly too. Thus, Equation 9 holds.

Step 2: show that the weak consistency of group assignments holds. Since T(g) ∈ P
and has only one nonzero element in each column. By continuity and condition (∗), there
exists δn → 0, if |e− g|/n =

∑
i I(ei 6= gi)/n ≥ δn, then

F (H(T(g)),h(T(g)))− F (H(T(e)),h(T(e))) > 2εn.

From Equation 9 in step 1, it is can be shown that

P (max{e:|e−g|/n≥δn}F (
O(e)

µn
, f(e)) < F (

O(g)

µn
, f(g)))

≥ P (|max{e:|e−g|/n≥δn}F (
O(e)

µn
, f(e))−max{e:|e−g|/n≥δn}F (H(T(e)),h(T(e)))| < εn,

|F (
O(g)

µn
, f(g))− F (H(T(e)),h(T(e)))| < εn)→ 1

(12)

The Equation 12 implies that P (|e − g|/n < δn) → 1, and weak consistency of group
assignment holds.

Step 3: show that the strong consistency of group assignments holds. See the step 3 of
the proof of of Theorem 4.1 in the Zhao et al. (2012).

Now we provide the proof of Theorem 2.

Proof of Theorem 2:

Under the block assumption θi ≡ 1, the population version ofQER(e) is F (H(S),h(S)) =∑
t(Htt(S)−B0h

2
t (S)) up to a constant multiplier, where S ∈ RG×K . Therefore, it satisfies

conditions (a),(b),(c) and we only need to show condition (*) is satisfied as well.

For S ∈P, we have the following equation:

G∑
t

(Htt(S)−B0h
2
t (S)) +

G∑
t6=s

(Hts(S)−B0ht(S)hs(S))

=

G∑
t,s

Hts(S)−B0(

G∑
t

ht(S))2

= 1− 12 = 0.

(13)
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The second last equality holds due to Lemma 6 and the fact that
∑

t ft = 1 and
∑

tsOts

L = 1.
Also, we construct ∆ ∈ RG×G by:

∆ts = (I(t = s)− 1/2)× 2. (14)

From Equation 13 and 14, the population version F (H(S),h(S)) can be rewritten as:

F (H(S),h(S)) =
G∑
t

(Htt(S)−B0h
2
t (S))

=
1

2

G∑
t,s

∆ts(Hts(S)−B0ht(S)hs(S)).

From the Definition of h and H in equation 4 and 5, we get:

1

2

G∑
t,s

∆ts(Hts(S)−B0ht(S)hs(S))

=
1

2

G∑
t,s

∆ts(

K∑
a,b

BabStaSsb −B0

K∑
a

Sta

K∑
b

Ssb)

=
1

2

G∑
t,s

K∑
a,b

StaSsb∆ts(Bab −B0).

Construct ∆c ∈ RK×K by:

∆c
ab =

{
1, community a, b belong to same group

−1, O.W.

From the conditions in Condition 1, the following inequality always holds for any t, s, a, b:

∆ts(Bab −B0) ≤ ∆c
ab(Bab −B0).

Therefore, population version of modularity satisfies:

F (H(S),h(S)) =
1

2

G∑
t,s

K∑
a,b

StaSsb∆ts(Bab −B0)

≤ 1

2

G∑
t,s

K∑
a,b

StaSsb∆
c
ab(Bab −B0).

We can change the order of summations in last item above:

1

2

G∑
t,s

K∑
a,b

StaSsb∆
c
ab(Bab −B0) =

1

2

K∑
a,b

∆c
ab(Bab −B0)

G∑
t

Sta

G∑
s

Ssb

=
1

2

K∑
a,b

πaπb∆
c
ab(Bab −B0) = F (H(S∗),h(S∗)).
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The second last equality holds because S ∈ P. Therefore, we have F (H(S),h(S)) ≤
F (H(S∗),h(S∗)) (up to row permutation of S∗). Therefore, condition (∗) is also satisfied.
From the result in Lemma 8, Theorem 2 holds.
Proof of Theorem 4:

For the degree-corrected model, we follow a similar strategy in Proof of Theorem 2. The
population version of QNGM can be denoted as

F (H(S)) =
∑
t

(
Htt

B̃0

− (
Ht

B̃0

)2)

we need to show condition (*) is satisfied. From equation,∑
t

(
Htt

B̃0

− (
Ht

B̃0

)2) +
∑
t6=s

(
Hts

B̃0

− HtHs

B̃2
0

) =
∑
ts

Hts

B̃0

− (
∑
t

Ht

B̃0

)2 = 0,

we can show

F (H(S)) =
1

2
∆ts(

Hts

B̃0

− (
∑
t

Ht

B̃0

)2) (15)

From the definition of H in Equation 5, it can be shown that

Hts =
∑
ab

S̃taS̃sbBab,

and
Ht =

∑
ac

S̃taπ̃cBac

where S̃ta =
∑

u xuStau. Hence, we obtain

F (H(S)) =
1

2

∑
ts

∆ts(

∑
ab S̃taS̃sbBab

B̃0

−
∑

ac S̃taπ̃cBac
∑

bd S̃sbπ̃dBbd

B̃0
2 )

=
1

2

∑
ts

∑
ab

S̃taS̃sb∆ts(
Bab

B̃0

−
(
∑

c π̃cBac)(
∑

d π̃dBbd)

B̃0
2 ).

(16)

From the condition 3, it satisfies that

1

2

∑
ts

∑
ab

S̃taS̃sb∆ts(
Bab

B̃0

−
(
∑

c π̃cBac)(
∑

d π̃dBbd)

B̃0
2 )

≤1

2

∑
ts

∑
ab

S̃taS̃sb∆
c
ab(
Bab

B̃0

−
(
∑

c π̃cBac)(
∑

d π̃dBbd)

B̃0
2 )

=F (H(S∗))

(17)

Therefore, condition (∗) is satisfied (up to permutation). From the result in Lemma 8,
Theorem 4 holds.
Proof of Theorem 5:
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For weak consistency, given any ε > 0:

P (
1

n

n∑
i=1

1(ĉi 6= ci) ≥ ε) = P ({ 1

n

n∑
i=1

1(ĉi 6= ci) ≥ ε}, ĝ = g)+P ({ 1

n

n∑
i=1

1(ĉi 6= ci) ≥ ε}, ĝ 6= g)

The second item P ({ 1n
∑n

i=1 1(ĉi 6= ci) ≥ ε}, ĝ 6= g) tends to zero because of the strong
consistency of group labels ĝ.

The first item can be bounded by considering the event under each group. I.e, for nodes
in group t, { 1n

∑nt
k=1 1(ĉsubt,k 6= csubt,k ) ≥ ε, ĝ = g} can lead to { 1n

∑n
i=1 1(ĉi 6= ci) ≥ ε, ĝ = g}.

Therefore, we have:

P ({ 1

n

n∑
i=1

1(ĉi 6= ci) ≥ ε}, ĝ = g) ≤ P (∪t=1,2,..,G{
1

n

nt∑
k=1

1(ĉsubt,k 6= csubt,k ) ≥ ε, ĝ = g})

= P (∪t=1,2,..,G{
1

nt

nt∑
k=1

1(ĉsubt,k 6= csubt,k ) ≥ ε

πt
, ĝ = g})

≤
G∑
t=1

P ({ 1

nt

nt∑
k=1

1(ĉsubt,k 6= csubt,k ) ≥ ε

πt
, ĝ = g}).

The last part tends to zero for each t due to the weak consistency of the community labels
ĉsubt , t = 1, 2, ..., G.

For strong consistency:

P (ĉ 6= c) = P (ĝ = g, ĉ 6= c) + P (ĝ 6= g, ĉ 6= c)

→ 0 + 0 = 0.

The first item goes to zero from the strong consistency of the estimated community labels
in each correct group; the second item goes to zero from the strong consistency of the
estimated group label.
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Figure 8: The adjacency matrix for the Facebook ego network; in the network, each node
denotes a user and each link denotes two users are friends in Facebook. From the adjacency
matrix, we can easily observe several groups of friend list.
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