Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Infinitely Imbalanced Logistic Regression

Art B. Owen; 8(27):761−773, 2007.

Abstract

In binary classification problems it is common for the two classes to be imbalanced: one case is very rare compared to the other. In this paper we consider the infinitely imbalanced case where one class has a finite sample size and the other class's sample size grows without bound. For logistic regression, the infinitely imbalanced case often has a useful solution. Under mild conditions, the intercept diverges as expected, but the rest of the coefficient vector approaches a non trivial and useful limit. That limit can be expressed in terms of exponential tilting and is the minimum of a convex objective function. The limiting form of logistic regression suggests a computational shortcut for fraud detection problems.

[abs][pdf][bib]       
© JMLR 2007. (edit, beta)

Mastodon