Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Lower Bounds and Aggregation in Density Estimation

Guillaume LecuĂ©; 7(34):971−981, 2006.

Abstract

In this paper we prove the optimality of an aggregation procedure. We prove lower bounds for aggregation of model selection type of M density estimators for the Kullback-Leibler divergence (KL), the Hellinger's distance and the L1-distance. The lower bound, with respect to the KL distance, can be achieved by the on-line type estimate suggested, among others, by Yang (2000a). Combining these results, we state that log M/n is an optimal rate of aggregation in the sense of Tsybakov (2003), where n is the sample size.

[abs][pdf][bib]       
© JMLR 2006. (edit, beta)

Mastodon