Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Error estimation and adaptive tuning for unregularized robust M-estimator

Pierre C. Bellec, Takuya Koriyama; 26(16):1−40, 2025.

Abstract

We consider unregularized robust M-estimators for linear models under Gaussian design and heavy-tailed noise, in the proportional asymptotics regime where the sample size n and the number of features p are both increasing such that $p/n \to \gamma\in (0,1)$. An estimator of the out-of-sample error of a robust M-estimator is analyzed and proved to be consistent for a large family of loss functions that includes the Huber loss. As an application of this result, we propose an adaptive tuning procedure of the scale parameter $\lambda>0$ of a given loss function $\rho$: choosing $\hat \lambda$ in a given interval $I$ that minimizes the out-of-sample error estimate of the M-estimator constructed with loss $\rho_\lambda(\cdot) = \lambda^2 \rho(\cdot/\lambda)$ leads to the optimal out-of-sample error over $I$. The proof relies on a smoothing argument: the unregularized M-estimation objective function is perturbed, or smoothed, with a Ridge penalty that vanishes as $n\to+\infty$, and shows that the unregularized M-estimator of interest inherits properties of its smoothed version.

[abs][pdf][bib]       
© JMLR 2025. (edit, beta)

Mastodon