Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity

Borja Rodríguez-Gálvez, Ragnar Thobaben, Mikael Skoglund; 25(110):1−43, 2024.

Abstract

In this paper, we present new high-probability PAC-Bayes bounds for different types of losses. Firstly, for losses with a bounded range, we recover a strengthened version of Catoni's bound that holds uniformly for all parameter values. This leads to new fast-rate and mixed-rate bounds that are interpretable and tighter than previous bounds in the literature. In particular, the fast-rate bound is equivalent to the Seeger--Langford bound. Secondly, for losses with more general tail behaviors, we introduce two new parameter-free bounds: a PAC-Bayes Chernoff analogue when the loss' cumulative generating function is bounded, and a bound when the loss' second moment is bounded. These two bounds are obtained using a new technique based on a discretization of the space of possible events for the "in probability" parameter optimization problem. This technique is both simpler and more general than previous approaches optimizing over a grid on the parameters' space. Finally, using a simple technique that is applicable to any existing bound, we extend all previous results to anytime-valid bounds.

[abs][pdf][bib]       
© JMLR 2024. (edit, beta)

Mastodon