Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Dropout Regularization Versus l2-Penalization in the Linear Model

Gabriel Clara, Sophie Langer, Johannes Schmidt-Hieber; 25(204):1−48, 2024.

Abstract

We investigate the statistical behavior of gradient descent iterates with dropout in the linear regression model. In particular, non-asymptotic bounds for the convergence of expectations and covariance matrices of the iterates are derived. The results shed more light on the widely cited connection between dropout and $\ell_2$-regularization in the linear model. We indicate a more subtle relationship, owing to interactions between the gradient descent dynamics and the additional randomness induced by dropout. Further, we study a simplified variant of dropout which does not have a regularizing effect and converges to the least squares estimator.

[abs][pdf][bib]       
© JMLR 2024. (edit, beta)

Mastodon