Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Differentially private methods for managing model uncertainty in linear regression

Víctor Peña, Andrés F. Barrientos; 25(74):1−44, 2024.

Abstract

In this article, we propose differentially private methods for hypothesis testing, model averaging, and model selection for normal linear models. We propose Bayesian methods based on mixtures of $g$-priors and non-Bayesian methods based on likelihood-ratio statistics and information criteria. The procedures are asymptotically consistent and straightforward to implement with existing software. We focus on practical issues such as adjusting critical values so that hypothesis tests have adequate type I error rates and quantifying the uncertainty introduced by the privacy-ensuring mechanisms.

[abs][pdf][bib]       
© JMLR 2024. (edit, beta)

Mastodon