Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Random Feature Amplification: Feature Learning and Generalization in Neural Networks

Spencer Frei, Niladri S. Chatterji, Peter L. Bartlett; 24(303):1−49, 2023.

Abstract

In this work, we provide a characterization of the feature-learning process in two-layer ReLU networks trained by gradient descent on the logistic loss following random initialization. We consider data with binary labels that are generated by an XOR-like function of the input features. We permit a constant fraction of the training labels to be corrupted by an adversary. We show that, although linear classifiers are no better than random guessing for the distribution we consider, two-layer ReLU networks trained by gradient descent achieve generalization error close to the label noise rate. We develop a novel proof technique that shows that at initialization, the vast majority of neurons function as random features that are only weakly correlated with useful features, and the gradient descent dynamics `amplify’ these weak, random features to strong, useful features.

[abs][pdf][bib]       
© JMLR 2023. (edit, beta)

Mastodon