Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Distributed Bootstrap for Simultaneous Inference Under High Dimensionality

Yang Yu, Shih-Kang Chao, Guang Cheng; 23(195):1−77, 2022.

Abstract

We propose a distributed bootstrap method for simultaneous inference on high-dimensional massive data that are stored and processed with many machines. The method produces an $\ell_\infty$-norm confidence region based on a communication-efficient de-biased lasso, and we propose an efficient cross-validation approach to tune the method at every iteration. We theoretically prove a lower bound on the number of communication rounds $\tau_{\min}$ that warrants the statistical accuracy and efficiency. Furthermore, $\tau_{\min}$ only increases logarithmically with the number of workers and the intrinsic dimensionality, while nearly invariant to the nominal dimensionality. We test our theory by extensive simulation studies, and a variable screening task on a semi-synthetic dataset based on the US Airline On-Time Performance dataset. The code to reproduce the numerical results is available in Supplementary Material.

[abs][pdf][bib]        [code]
© JMLR 2022. (edit, beta)

Mastodon