Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Uniform deconvolution for Poisson Point Processes

Anna Bonnet, Claire Lacour, Franck Picard, Vincent Rivoirard; 23(194):1−36, 2022.

Abstract

We focus on the estimation of the intensity of a Poisson process in the presence of a uniform noise. We propose a kernel-based procedure fully calibrated in theory and practice. We show that our adaptive estimator is optimal from the oracle and minimax points of view, and provide new lower bounds when the intensity belongs to a Sobolev ball. By developing the Goldenshluger-Lepski methodology in the case of deconvolution for Poisson processes, we propose an optimal data-driven selection of the kernel bandwidth. Our method is illustrated on the spatial distribution of replication origins and sequence motifs along the human genome.

[abs][pdf][bib]       
© JMLR 2022. (edit, beta)

Mastodon