Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

On Multi-Armed Bandit Designs for Dose-Finding Trials

Maryam Aziz, Emilie Kaufmann, Marie-Karelle Riviere; 22(14):1−38, 2021.

Abstract

We study the problem of finding the optimal dosage in early stage clinical trials through the multi-armed bandit lens. We advocate the use of the Thompson Sampling principle, a flexible algorithm that can accommodate different types of monotonicity assumptions on the toxicity and efficacy of the doses. For the simplest version of Thompson Sampling, based on a uniform prior distribution for each dose, we provide finite-time upper bounds on the number of sub-optimal dose selections, which is unprecedented for dose-finding algorithms. Through a large simulation study, we then show that variants of Thompson Sampling based on more sophisticated prior distributions outperform state-of-the-art dose identification algorithms in different types of dose-finding studies that occur in phase I or phase I/II trials.

[abs][pdf][bib]       
© JMLR 2021. (edit, beta)

Mastodon