Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

On lp-Support Vector Machines and Multidimensional Kernels

Victor Blanco, Justo Puerto, Antonio M. Rodriguez-Chia; 21(14):1−29, 2020.

Abstract

In this paper, we extend the methodology developed for Support Vector Machines (SVM) using the $\ell_2$-norm ($\ell_2$-SVM) to the more general case of $\ell_p$-norms with $p>1$ ($\ell_p$-SVM). We derive second order cone formulations for the resulting dual and primal problems. The concept of kernel function, widely applied in $\ell_2$-SVM, is extended to the more general case of $\ell_p$-norms with $p>1$ by defining a new operator called multidimensional kernel. This object gives rise to reformulations of dual problems, in a transformed space of the original data, where the dependence on the original data always appear as homogeneous polynomials. We adapt known solution algorithms to efficiently solve the primal and dual resulting problems and some computational experiments on real-world datasets are presented showing rather good behavior in terms of the accuracy of $\ell_p$-SVM with $p>1$.

[abs][pdf][bib]       
© JMLR 2020. (edit, beta)

Mastodon