On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach
Sam Davanloo Tajbakhsh, Necdet Serhat Aybat, Enrique Del Castillo; 21(217):1−41, 2020.
Abstract
Iterative methods for fitting a Gaussian Random Field (GRF) model via maximum likelihood (ML) estimation requires solving a nonconvex optimization problem. The problem is aggravated for anisotropic GRFs where the number of covariance function parameters increases with the dimension. Even evaluation of the likelihood function requires $O(n^3)$ floating point operations, where $n$ denotes the number of data locations. In this paper, we propose a new two-stage procedure to estimate the parameters of second-order stationary GRFs. First, a convex likelihood problem regularized with a weighted $\ell_1$-norm, utilizing the available distance information between observation locations, is solved to fit a sparse precision (inverse covariance) matrix to the observed data. Second, the parameters of the covariance function are estimated by solving a least squares problem. Theoretical error bounds for the solutions of stage I and II problems are provided, and their tightness are investigated.
[abs]
[pdf][bib] [code]© JMLR 2020. (edit, beta) |