Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA

Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown; 18(25):1−5, 2017.

Abstract

WEKA is a widely used, open-source machine learning platform. Due to its intuitive interface, it is particularly popular with novice users. However, such users often find it hard to identify the best approach for their particular dataset among the many available. We describe the new version of Auto-WEKA, a system designed to help such users by automatically searching through the joint space of WEKA's learning algorithms and their respective hyperparameter settings to maximize performance, using a state-of-the-art Bayesian optimization method. Our new package is tightly integrated with WEKA, making it just as accessible to end users as any other learning algorithm.

[abs][pdf][bib]        [code] [webpage]
© JMLR 2017. (edit, beta)

Mastodon