Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

JMLR Volume 15

Bridging Viterbi and Posterior Decoding: A Generalized Risk Approach to Hidden Path Inference Based on Hidden Markov Models
Jüri Lember, Alexey A. Koloydenko; (1):1−58, 2014.
[abs][pdf][bib]

Fast SVM Training Using Approximate Extreme Points
Manu Nandan, Pramod P. Khargonekar, Sachin S. Talathi; (2):59−98, 2014.
[abs][pdf][bib]

Detecting Click Fraud in Online Advertising: A Data Mining Approach
Richard Oentaryo, Ee-Peng Lim, Michael Finegold, David Lo, Feida Zhu, Clifton Phua, Eng-Yeow Cheu, Ghim-Eng Yap, Kelvin Sim, Minh Nhut Nguyen, Kasun Perera, Bijay Neupane, Mustafa Faisal, Zeyar Aung, Wei Lee Woon, Wei Chen, Dhaval Patel, Daniel Berrar; (3):99−140, 2014.
[abs][pdf][bib]

EnsembleSVM: A Library for Ensemble Learning Using Support Vector Machines
Marc Claesen, Frank De Smet, Johan A.K. Suykens, Bart De Moor; (4):141−145, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

A Junction Tree Framework for Undirected Graphical Model Selection
Divyanshu Vats, Robert D. Nowak; (5):147−191, 2014.
[abs][pdf][bib]

Axioms for Graph Clustering Quality Functions
Twan van Laarhoven, Elena Marchiori; (6):193−215, 2014.
[abs][pdf][bib]

Convex vs Non-Convex Estimators for Regression and Sparse Estimation: the Mean Squared Error Properties of ARD and GLasso
Aleksandr Aravkin, James V. Burke, Alessandro Chiuso, Gianluigi Pillonetto; (7):217−252, 2014.
[abs][pdf][bib]

Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning
Aaron Wilson, Alan Fern, Prasad Tadepalli; (8):253−282, 2014.
[abs][pdf][bib]

Information Theoretical Estimators Toolbox
Zoltán Szabó; (9):283−287, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Off-policy Learning With Eligibility Traces: A Survey
Matthieu Geist, Bruno Scherrer; (10):289−333, 2014.
[abs][pdf][bib]

Early Stopping and Non-parametric Regression: An Optimal Data-dependent Stopping Rule
Garvesh Raskutti, Martin J. Wainwright, Bin Yu; (11):335−366, 2014.
[abs][pdf][bib]

Unbiased Generative Semi-Supervised Learning
Patrick Fox-Roberts, Edward Rosten; (12):367−443, 2014.
[abs][pdf][bib]

Node-Based Learning of Multiple Gaussian Graphical Models
Karthik Mohan, Palma London, Maryam Fazel, Daniela Witten, Su-In Lee; (13):445−488, 2014.
[abs][pdf][bib]

The FASTCLIME Package for Linear Programming and Large-Scale Precision Matrix Estimation in R
Haotian Pang, Han Liu, Robert V, erbei; (14):489−493, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

LIBOL: A Library for Online Learning Algorithms
Steven C.H. Hoi, Jialei Wang, Peilin Zhao; (15):495−499, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Improving Markov Network Structure Learning Using Decision Trees
Daniel Lowd, Jesse Davis; (16):501−532, 2014.
[abs][pdf][bib]

Ground Metric Learning
Marco Cuturi, David Avis; (17):533−564, 2014.
[abs][pdf][bib]

Link Prediction in Graphs with Autoregressive Features
Emile Richard, Stéphane Gaïffas, Nicolas Vayatis; (18):565−593, 2014.
[abs][pdf][bib]

Adaptivity of Averaged Stochastic Gradient Descent to Local Strong Convexity for Logistic Regression
Francis Bach; (19):595−627, 2014.
[abs][pdf][bib]

Random Intersection Trees
Rajen Dinesh Shah, Nicolai Meinshausen; (20):629−654, 2014.
[abs][pdf][bib]

Reinforcement Learning for Closed-Loop Propofol Anesthesia: A Study in Human Volunteers
Brett L Moore, Larry D Pyeatt, Vivekan, Kulkarni, Periklis Panousis, Kevin Padrez, Anthony G Doufas; (21):655−696, 2014.
[abs][pdf][bib]

Clustering Hidden Markov Models with Variational HEM
Emanuele Coviello, Antoni B. Chan, Gert R.G. Lanckriet; (22):697−747, 2014.
[abs][pdf][bib]

A Novel M-Estimator for Robust PCA
Teng Zhang, Gilad Lerman; (23):749−808, 2014.
[abs][pdf][bib]

Policy Evaluation with Temporal Differences: A Survey and Comparison
Christoph Dann, Gerhard Neumann, Jan Peters; (24):809−883, 2014.
[abs][pdf][bib]

Active Learning Using Smooth Relative Regret Approximations with Applications
Nir Ailon, Ron Begleiter, Esther Ezra; (25):885−920, 2014.
[abs][pdf][bib]

An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation
Henning Sprekeler, Tiziano Zito, Laurenz Wiskott; (26):921−947, 2014.
[abs][pdf][bib]

Natural Evolution Strategies
Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, J\"{u}rgen Schmidhuber; (27):949−980, 2014.
[abs][pdf][bib]

Conditional Random Field with High-order Dependencies for Sequence Labeling and Segmentation
Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, Hai Leong Chieu; (28):981−1009, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Ellipsoidal Rounding for Nonnegative Matrix Factorization Under Noisy Separability
Tomohiko Mizutani; (29):1011−1039, 2014.
[abs][pdf][bib]

Improving Prediction from Dirichlet Process Mixtures via Enrichment
Sara Wade, David B. Dunson, Sonia Petrone, Lorenzo Trippa; (30):1041−1071, 2014.
[abs][pdf][bib]

Gibbs Max-margin Topic Models with Data Augmentation
Jun Zhu, Ning Chen, Hugh Perkins, Bo Zhang; (31):1073−1110, 2014.
[abs][pdf][bib]

A Reliable Effective Terascale Linear Learning System
Alekh Agarwal, Oliveier Chapelle, Miroslav Dud\'{i}k, John Langford; (32):1111−1133, 2014.
[abs][pdf][bib]

New Learning Methods for Supervised and Unsupervised Preference Aggregation
Maksims N. Volkovs, Richard S. Zemel; (33):1135−1176, 2014.
[abs][pdf][bib]

Prediction and Clustering in Signed Networks: A Local to Global Perspective
Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon, Ambuj Tewari; (34):1177−1213, 2014.
[abs][pdf][bib]

Bayesian Nonparametric Comorbidity Analysis of Psychiatric Disorders
Francisco J. R. Ruiz, Isabel Valera, Carlos Blanco, Fern, o Perez-Cruz; (35):1215−1247, 2014.
[abs][pdf][bib]

Robust Near-Separable Nonnegative Matrix Factorization Using Linear Optimization
Nicolas Gillis, Robert Luce; (36):1249−1280, 2014.
[abs][pdf][bib]

Follow the Leader If You Can, Hedge If You Must
Steven de Rooij, Tim van Erven, Peter D. Grünwald, Wouter M. Koolen; (37):1281−1316, 2014.
[abs][pdf][bib]

Structured Prediction via Output Space Search
Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli; (38):1317−1350, 2014.
[abs][pdf][bib]

Fully Simplified Multivariate Normal Updates in Non-Conjugate Variational Message Passing
Matt P. W, ; (39):1351−1369, 2014.
[abs][pdf][bib]

Towards Ultrahigh Dimensional Feature Selection for Big Data
Mingkui Tan, Ivor W. Tsang, Li Wang; (40):1371−1429, 2014.
[abs][pdf][bib]

Adaptive Sampling for Large Scale Boosting
Charles Dubout, Francois Fleuret; (41):1431−1453, 2014.
[abs][pdf][bib]

Manopt, a Matlab Toolbox for Optimization on Manifolds
Nicolas Boumal, Bamdev Mishra, P.-A. Absil, Rodolphe Sepulchre; (42):1455−1459, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Training Highly Multiclass Classifiers
Maya R. Gupta, Samy Bengio, Jason Weston; (43):1461−1492, 2014.
[abs][pdf][bib]

Locally Adaptive Factor Processes for Multivariate Time Series
Daniele Durante, Bruno Scarpa, David B. Dunson; (44):1493−1522, 2014.
[abs][pdf][bib]

Iteration Complexity of Feasible Descent Methods for Convex Optimization
Po-Wei Wang, Chih-Jen Lin; (45):1523−1548, 2014.
[abs][pdf][bib]

High-Dimensional Covariance Decomposition into Sparse Markov and Independence Models
Majid Janzamin, Animashree Anandkumar; (46):1549−1591, 2014.
[abs][pdf][bib]

The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman, Andrew Gelman; (47):1593−1623, 2014.
[abs][pdf][bib]

Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife
Stefan Wager, Trevor Hastie, Bradley Efron; (48):1625−1651, 2014.
[abs][pdf][bib]

Surrogate Regret Bounds for Bipartite Ranking via Strongly Proper Losses
Shivani Agarwal; (49):1653−1674, 2014.
[abs][pdf][bib]

Adaptive Minimax Regression Estimation over Sparse $\ell_q$-Hulls
Zhan Wang, Sandra Paterlini, Fuchang Gao, Yuhong Yang; (50):1675−1711, 2014.
[abs][pdf][bib]

Graph Estimation From Multi-Attribute Data
Mladen Kolar, Han Liu, Eric P. Xing; (51):1713−1750, 2014.
[abs][pdf][bib]

Hitting and Commute Times in Large Random Neighborhood Graphs
Ulrike von Luxburg, Agnes Radl, Matthias Hein; (52):1751−1798, 2014.
[abs][pdf][bib]

Bayesian Inference with Posterior Regularization and Applications to Infinite Latent SVMs
Jun Zhu, Ning Chen, Eric P. Xing; (53):1799−1847, 2014.
[abs][pdf][bib]

Expectation Propagation for Neural Networks with Sparsity-Promoting Priors
Pasi Jylänki, Aapo Nummenmaa, Aki Vehtari; (54):1849−1901, 2014.
[abs][pdf][bib]

Pattern Alternating Maximization Algorithm for Missing Data in High-Dimensional Problems
Nicolas Städler, Daniel J. Stekhoven, Peter Bühlmann; (55):1903−1928, 2014.
[abs][pdf][bib]

Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov; (56):1929−1958, 2014.
[abs][pdf][bib]

Sparse Factor Analysis for Learning and Content Analytics
Andrew S. Lan, Andrew E. Waters, Christoph Studer, Richard G. Baraniuk; (57):1959−2008, 2014.
[abs][pdf][bib]

Causal Discovery with Continuous Additive Noise Models
Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf; (58):2009−2053, 2014.
[abs][pdf][bib]

pystruct - Learning Structured Prediction in Python
Andreas C. Müller, Sven Behnke; (59):2055−2060, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

The Student-t Mixture as a Natural Image Patch Prior with Application to Image Compression
A{\"a}ron van den Oord, Benjamin Schrauwen; (60):2061−2086, 2014.
[abs][pdf][bib]

Parallel MCMC with Generalized Elliptical Slice Sampling
Robert Nishihara, Iain Murray, Ryan P. Adams; (61):2087−2112, 2014.
[abs][pdf][bib]

Classifier Cascades and Trees for Minimizing Feature Evaluation Cost
Zhixiang (Eddie) Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen, Olivier Chapelle; (62):2113−2144, 2014.
[abs][pdf][bib]

Particle Gibbs with Ancestor Sampling
Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön; (63):2145−2184, 2014.
[abs][pdf][bib]

Ramp Loss Linear Programming Support Vector Machine
Xiaolin Huang, Lei Shi, Johan A.K. Suykens; (64):2185−2211, 2014.
[abs][pdf][bib]

Clustering Partially Observed Graphs via Convex Optimization
Yudong Chen, Ali Jalali, Sujay Sanghavi, Huan Xu; (65):2213−2238, 2014.
[abs][pdf][bib]

A Tensor Approach to Learning Mixed Membership Community Models
Animashree An, kumar, Rong Ge, Daniel Hsu, Sham M. Kakade; (66):2239−2312, 2014.
[abs][pdf][bib]

Cover Tree Bayesian Reinforcement Learning
Nikolaos Tziortziotis, Christos Dimitrakakis, Konstantinos Blekas; (67):2313−2335, 2014.
[abs][pdf][bib]

Efficient State-Space Inference of Periodic Latent Force Models
Steven Reece, Siddhartha Ghosh, Alex Rogers, Stephen Roberts, Nicholas R. Jennings; (68):2337−2397, 2014.
[abs][pdf][bib]

Spectral Learning of Latent-Variable PCFGs: Algorithms and Sample Complexity
Shay B. Cohen, Karl Stratos, Michael Collins, Dean P. Foster, Lyle Ungar; (69):2399−2449, 2014.
[abs][pdf][bib]

On Multilabel Classification and Ranking with Bandit Feedback
Claudio Gentile, Francesco Orabona; (70):2451−2487, 2014.
[abs][pdf][bib]

Beyond the Regret Minimization Barrier: Optimal Algorithms for Stochastic Strongly-Convex Optimization
Elad Hazan, Satyen Kale; (71):2489−2512, 2014.
[abs][pdf][bib]

One-Shot-Learning Gesture Recognition using HOG-HOF Features
Jakub Konecny, Michal Hagara; (72):2513−2532, 2014.
[abs][pdf][bib]

Contextual Bandits with Similarity Information
Aleks, rs Slivkins; (73):2533−2568, 2014.
[abs][pdf][bib]

Boosting Algorithms for Detector Cascade Learning
Mohammad Saberian, Nuno Vasconcelos; (74):2569−2605, 2014.
[abs][pdf][bib]

Efficient and Accurate Methods for Updating Generalized Linear Models with Multiple Feature Additions
Amit Dhur, har, Marek Petrik; (75):2607−2627, 2014.
[abs][pdf][bib]

Bayesian Estimation of Causal Direction in Acyclic Structural Equation Models with Individual-specific Confounder Variables and Non-Gaussian Distributions
Shohei Shimizu, Kenneth Bollen; (76):2629−2652, 2014.
[abs][pdf][bib]

A Truncated EM Approach for Spike-and-Slab Sparse Coding
Abdul-Saboor Sheikh, Jacquelyn A. Shelton, Jörg Lücke; (77):2653−2687, 2014.
[abs][pdf][bib]

Efficient Occlusive Components Analysis
Marc Henniges, Richard E. Turner, Maneesh Sahani, Julian Eggert, Jörg Lücke; (78):2689−2722, 2014.
[abs][pdf][bib]

Optimality of Graphlet Screening in High Dimensional Variable Selection
Jiashun Jin, Cun-Hui Zhang, Qi Zhang; (79):2723−2772, 2014.
[abs][pdf][bib]

Tensor Decompositions for Learning Latent Variable Models
Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, Matus Telgarsky; (80):2773−2832, 2014.
[abs][pdf][bib]

Bayesian Entropy Estimation for Countable Discrete Distributions
Evan Archer, Il Memming Park, Jonathan W. Pillow; (81):2833−2868, 2014.
[abs][pdf][bib]

Confidence Intervals and Hypothesis Testing for High-Dimensional Regression
Adel Javanmard, Andrea Montanari; (82):2869−2909, 2014.
[abs][pdf][bib]

QUIC: Quadratic Approximation for Sparse Inverse Covariance Estimation
Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar; (83):2911−2947, 2014.
[abs][pdf][bib]

Multimodal Learning with Deep Boltzmann Machines
Nitish Srivastava, Ruslan Salakhutdinov; (84):2949−2980, 2014.
[abs][pdf][bib]

Optimal Data Collection For Informative Rankings Expose Well-Connected Graphs
Braxton Osting, Christoph Brune, Stanley J. Osher; (85):2981−3012, 2014.
[abs][pdf][bib]

Bayesian Co-Boosting for Multi-modal Gesture Recognition
Jiaxiang Wu, Jian Cheng; (86):3013−3036, 2014.
[abs][pdf][bib]

Effective String Processing and Matching for Author Disambiguation
Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, Felix Wu, Hsiao-Yu Tung, Tong Yu, Jui-Pin Wang, Cheng-Xia Chang, Chun-Pai Yang, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Yu-Chuan Su, Cheng-Kuang Wei, Tu-Chun Yin, Chun-Liang Li, Ting-Wei Lin, Cheng-Hao Tsai, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin; (87):3037−3064, 2014.
[abs][pdf][bib]

High-Dimensional Learning of Linear Causal Networks via Inverse Covariance Estimation
Po-Ling Loh, Peter Bühlmann; (88):3065−3105, 2014.
[abs][pdf][bib]

Recursive Teaching Dimension, VC-Dimension and Sample Compression
Thorsten Doliwa, Gaojian Fan, Hans Ulrich Simon, Sandra Zilles; (89):3107−3131, 2014.
[abs][pdf][bib]

Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?
Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, Dinani Amorim; (90):3133−3181, 2014.
[abs][pdf][bib]

ooDACE Toolbox: A Flexible Object-Oriented Kriging Implementation
Ivo Couckuyt, Tom Dhaene, Piet Demeester; (91):3183−3186, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Robust Online Gesture Recognition with Crowdsourced Annotations
Long-Van Nguyen-Dinh, Alberto Calatroni, Gerhard Tr\"{o}ster; (92):3187−3220, 2014.
[abs][pdf][bib]

Accelerating t-SNE using Tree-Based Algorithms
Laurens van der Maaten; (93):3221−3245, 2014.
[abs][pdf][bib]

Set-Valued Approachability and Online Learning with Partial Monitoring
Shie Mannor, Vianney Perchet, Gilles Stoltz; (94):3247−3295, 2014.
[abs][pdf][bib]

Learning Graphical Models With Hubs
Kean Ming Tan, Palma London, Karthik Mohan, Su-In Lee, Maryam Fazel, Daniela Witten; (95):3297−3331, 2014.
[abs][pdf][bib]

Inconsistency of Pitman-Yor Process Mixtures for the Number of Components
Jeffrey W. Miller, Matthew T. Harrison; (96):3333−3370, 2014.
[abs][pdf][bib]

Active Contextual Policy Search
Alexander Fabisch, Jan Hendrik Metzen; (97):3371−3399, 2014.
[abs][pdf][bib]

Matrix Completion with the Trace Norm: Learning, Bounding, and Transducing
Ohad Shamir, Shai Shalev-Shwartz; (98):3401−3423, 2014.
[abs][pdf][bib]

Statistical Analysis of Metric Graph Reconstruction
Fabrizio Lecci, Aless, ro Rinaldo, Larry Wasserman; (99):3425−3446, 2014.
[abs][pdf][bib]

Alternating Linearization for Structured Regularization Problems
Xiaodong Lin, Minh Pham, Andrzej Ruszczy\'{n}ski; (100):3447−3481, 2014.
[abs][pdf][bib]

The Gesture Recognition Toolkit
Nicholas Gillian, Joseph A. Paradiso; (101):3483−3487, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Convolutional Nets and Watershed Cuts for Real-Time Semantic Labeling of RGBD Videos
Camille Couprie, Clément Farabet, Laurent Najman, Yann LeCun; (102):3489−3511, 2014.
[abs][pdf][bib]

On the Bayes-Optimality of F-Measure Maximizers
Willem Waegeman, Krzysztof Dembczy{\'n}ski, Arkadiusz Jachnik, Weiwei Cheng, Eyke Hüllermeier; (103):3513−3568, 2014.
[abs][pdf][bib]

SPMF: A Java Open-Source Pattern Mining Library
Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh Soltani, Cheng-Wei Wu, Vincent S. Tseng; (104):3569−3573, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Efficient Learning and Planning with Compressed Predictive States
William Hamilton, Mahdi Milani Fard, Joelle Pineau; (105):3575−3619, 2014.
[abs][pdf][bib]

Revisiting Stein's Paradox: Multi-Task Averaging
Sergey Feldman, Maya R. Gupta, Bela A. Frigyik; (106):3621−3662, 2014.
[abs][pdf][bib]

Multi-Objective Reinforcement Learning using Sets of Pareto Dominating Policies
Kristof Van Moffaert, Ann Nowé; (107):3663−3692, 2014.
[abs][pdf][bib]

Seeded Graph Matching for Correlated Erdos-Renyi Graphs
Vince Lyzinski, Donniell E. Fishkind, Carey E. Priebe; (108):3693−3720, 2014.
[abs][pdf][bib]

Asymptotic Accuracy of Distribution-Based Estimation of Latent Variables
Keisuke Yamazaki; (109):3721−3742, 2014.
[abs][pdf][bib]

What Regularized Auto-Encoders Learn from the Data-Generating Distribution
Guillaume Alain, Yoshua Bengio; (110):3743−3773, 2014.
[abs][pdf][bib]

Revisiting Bayesian Blind Deconvolution
David Wipf, Haichao Zhang; (111):3775−3814, 2014.
[abs][pdf][bib]

New Results for Random Walk Learning
Jeffrey C. Jackson, Karl Wimmer; (112):3815−3846, 2014.
[abs][pdf][bib]

Transfer Learning Decision Forests for Gesture Recognition
Norberto A. Goussies, Sebastián Ubalde, Marta Mejail; (113):3847−3870, 2014.
[abs][pdf][bib]

Semi-Supervised Eigenvectors for Large-Scale Locally-Biased Learning
Toke J. Hansen, Michael W. Mahoney; (114):3871−3914, 2014.
[abs][pdf][bib]

BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits
Ruben Martinez-Cantin; (115):3915−3919, 2014. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Order-Independent Constraint-Based Causal Structure Learning
Diego Colombo, Marloes H. Maathuis; (116):3921−3962, 2014.
[abs][pdf][bib]

Effective Sampling and Learning for Mallows Models with Pairwise-Preference Data
Tyler Lu, Craig Boutilier; (117):3963−4009, 2014.
[abs][pdf][bib]

Robust Hierarchical Clustering
Maria-Florina Balcan, Yingyu Liang, Pramod Gupta; (118):4011−4051, 2014.
[abs][pdf][bib]

Parallelizing Exploration-Exploitation Tradeoffs in Gaussian Process Bandit Optimization
Thomas Desautels, Andreas Krause, Joel W. Burdick; (119):4053−4103, 2014.
[abs][pdf][bib]

Active Imitation Learning: Formal and Practical Reductions to I.I.D. Learning
Kshitij Judah, Alan P. Fern, Thomas G. Dietterich, Prasad Tadepalli; (120):4105−4143, 2014.
[abs][pdf][bib]

© JMLR .
Mastodon