Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Keep It Simple And Sparse: Real-Time Action Recognition

Sean Ryan Fanello, Ilaria Gori, Giorgio Metta, Francesca Odone; 14(80):2617−2640, 2013.

Abstract

Sparsity has been showed to be one of the most important properties for visual recognition purposes. In this paper we show that sparse representation plays a fundamental role in achieving one-shot learning and real-time recognition of actions. We start off from RGBD images, combine motion and appearance cues and extract state-of-the-art features in a computationally efficient way. The proposed method relies on descriptors based on 3D Histograms of Scene Flow (3DHOFs) and Global Histograms of Oriented Gradient (GHOGs); adaptive sparse coding is applied to capture high-level patterns from data. We then propose a simultaneous on-line video segmentation and recognition of actions using linear SVMs. The main contribution of the paper is an effective real-time system for one-shot action modeling and recognition; the paper highlights the effectiveness of sparse coding techniques to represent 3D actions. We obtain very good results on three different data sets: a benchmark data set for one-shot action learning (the ChaLearn Gesture Data Set), an in-house data set acquired by a Kinect sensor including complex actions and gestures differing by small details, and a data set created for human-robot interaction purposes. Finally we demonstrate that our system is effective also in a human-robot interaction setting and propose a memory game, “All Gestures You Can”, to be played against a humanoid robot.

[abs][pdf][bib]       
© JMLR 2013. (edit, beta)

Mastodon