Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

JMLR Volume 13

Distance Metric Learning with Eigenvalue Optimization
Yiming Ying, Peng Li; (1):1−26, 2012.
[abs][pdf][bib]

Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
Gavin Brown, Adam Pocock, Ming-Jie Zhao, Mikel Luján; (2):27−66, 2012.
[abs][pdf][bib]

Plug-in Approach to Active Learning
Stanislav Minsker; (3):67−90, 2012.
[abs][pdf][bib]

Refinement of Operator-valued Reproducing Kernels
Haizhang Zhang, Yuesheng Xu, Qinghui Zhang; (4):91−136, 2012.
[abs][pdf][bib]

An Active Learning Algorithm for Ranking from Pairwise Preferences with an Almost Optimal Query Complexity
Nir Ailon; (5):137−164, 2012.
[abs][pdf][bib]

Optimal Distributed Online Prediction Using Mini-Batches
Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, Lin Xiao; (6):165−202, 2012.
[abs][pdf][bib]

Active Clustering of Biological Sequences
Konstantin Voevodski, Maria-Florina Balcan, Heiko Röglin, Shang-Hua Teng, Yu Xia; (7):203−225, 2012.
[abs][pdf][bib]

Multi Kernel Learning with Online-Batch Optimization
Francesco Orabona, Luo Jie, Barbara Caputo; (8):227−253, 2012.
[abs][pdf][bib]

Active Learning via Perfect Selective Classification
Ran El-Yaniv, Yair Wiener; (9):255−279, 2012.
[abs][pdf][bib]

Random Search for Hyper-Parameter Optimization
James Bergstra, Yoshua Bengio; (10):281−305, 2012.
[abs][pdf][bib]

Noise-Contrastive Estimation of Unnormalized Statistical Models, with Applications to Natural Image Statistics
Michael U. Gutmann, Aapo Hyvärinen; (11):307−361, 2012.
[abs][pdf][bib]

Bounding the Probability of Error for High Precision Optical Character Recognition
Gary B. Huang, Andrew Kae, Carl Doersch, Erik Learned-Miller; (12):363−387, 2012.
[abs][pdf][bib]

Minimax-Optimal Rates For Sparse Additive Models Over Kernel Classes Via Convex Programming
Garvesh Raskutti, Martin J. Wainwright, Bin Yu; (13):389−427, 2012.
[abs][pdf][bib]

Online Learning in the Embedded Manifold of Low-rank Matrices
Uri Shalit, Daphna Weinshall, Gal Chechik; (14):429−458, 2012.
[abs][pdf][bib]

Multi-Assignment Clustering for Boolean Data
Mario Frank, Andreas P. Streich, David Basin, Joachim M. Buhmann; (15):459−489, 2012.
[abs][pdf][bib]

Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks
Vikas C. Raykar, Shipeng Yu; (16):491−518, 2012.
[abs][pdf][bib]

Metric and Kernel Learning Using a Linear Transformation
Prateek Jain, Brian Kulis, Jason V. Davis, Inderjit S. Dhillon; (17):519−547, 2012.
[abs][pdf][bib]

MULTIBOOST: A Multi-purpose Boosting Package
Djalel Benbouzid, Róbert Busa-Fekete, Norman Casagrande, François-David Collin, Balázs Kégl; (18):549−553, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

ML-Flex: A Flexible Toolbox for Performing Classification Analyses In Parallel
Stephen R. Piccolo, Lewis J. Frey; (19):555−559, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

A Primal-Dual Convergence Analysis of Boosting
Matus Telgarsky; (20):561−606, 2012.
[abs][pdf][bib]

Non-Sparse Multiple Kernel Fisher Discriminant Analysis
Fei Yan, Josef Kittler, Krystian Mikolajczyk, Atif Tahir; (21):607−642, 2012.
[abs][pdf][bib]

Learning Algorithms for the Classification Restricted Boltzmann Machine
Hugo Larochelle, Michael Mandel, Razvan Pascanu, Yoshua Bengio; (22):643−669, 2012.
[abs][pdf][bib]

Structured Sparsity and Generalization
Andreas Maurer, Massimiliano Pontil; (23):671−690, 2012.
[abs][pdf][bib]

A Case Study on Meta-Generalising: A Gaussian Processes Approach
Grigorios Skolidis, Guido Sanguinetti; (24):691−721, 2012.
[abs][pdf][bib]

A Kernel Two-Sample Test
Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander Smola; (25):723−773, 2012.
[abs][pdf][bib]

GPLP: A Local and Parallel Computation Toolbox for Gaussian Process Regression
Chiwoo Park, Jianhua Z. Huang, Yu Ding; (26):775−779, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Exact Covariance Thresholding into Connected Components for Large-Scale Graphical Lasso
Rahul Mazumder, Trevor Hastie; (27):781−794, 2012.
[abs][pdf][bib]

Algorithms for Learning Kernels Based on Centered Alignment
Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh; (28):795−828, 2012.
[abs][pdf][bib]

Causal Bounds and Observable Constraints for Non-deterministic Models
Roland R. Ramsahai; (29):829−848, 2012.
[abs][pdf][bib]

NIMFA : A Python Library for Nonnegative Matrix Factorization
Marinka Žitnik, Blaž Zupan; (30):849−853, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Algebraic Geometric Comparison of Probability Distributions
Franz J. Király, Paul von Bünau, Frank C. Meinecke, Duncan A.J. Blythe, Klaus-Robert Müller; (31):855−903, 2012.
[abs][pdf][bib]

Stability of Density-Based Clustering
Alessandro Rinaldo, Aarti Singh, Rebecca Nugent, Larry Wasserman; (32):905−948, 2012.
[abs][pdf][bib]

Mal-ID: Automatic Malware Detection Using Common Segment Analysis and Meta-Features
Gil Tahan, Lior Rokach, Yuval Shahar; (33):949−979, 2012.
[abs][pdf][bib]

Sampling Methods for the Nyström Method
Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar; (34):981−1006, 2012.
[abs][pdf][bib]

Positive Semidefinite Metric Learning Using Boosting-like Algorithms
Chunhua Shen, Junae Kim, Lei Wang, Anton van den Hengel; (35):1007−1036, 2012.
[abs][pdf][bib]

Consistent Model Selection Criteria on High Dimensions
Yongdai Kim, Sunghoon Kwon, Hosik Choi; (36):1037−1057, 2012.
[abs][pdf][bib]

The huge Package for High-dimensional Undirected Graph Estimation in R
Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, Larry Wasserman; (37):1059−1062, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Analysis of a Random Forests Model
Gérard Biau; (38):1063−1095, 2012.
[abs][pdf][bib]

Towards Integrative Causal Analysis of Heterogeneous Data Sets and Studies
Ioannis Tsamardinos, Sofia Triantafillou, Vincenzo Lagani; (39):1097−1157, 2012.
[abs][pdf][bib]

Hope and Fear for Discriminative Training of Statistical Translation Models
David Chiang; (40):1159−1187, 2012.
[abs][pdf][bib]

A Multi-Stage Framework for Dantzig Selector and LASSO
Ji Liu, Peter Wonka, Jieping Ye; (41):1189−1219, 2012.
[abs][pdf][bib]

A Geometric Approach to Sample Compression
Benjamin I.P. Rubinstein, J. Hyam Rubinstein; (42):1221−1261, 2012.
[abs][pdf][bib]

Minimax Manifold Estimation
Christopher Genovese, Marco Perone-Pacifico, Isabella Verdinelli, Larry Wasserman; (43):1263−1291, 2012.
[abs][pdf][bib]

Query Strategies for Evading Convex-Inducing Classifiers
Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, Steven J. Lee, Satish Rao, J. D. Tygar; (44):1293−1332, 2012.
[abs][pdf][bib]

Transfer in Reinforcement Learning via Shared Features
George Konidaris, Ilya Scheidwasser, Andrew Barto; (45):1333−1371, 2012.
[abs][pdf][bib]

On Ranking and Generalization Bounds
Wojciech Rejchel; (46):1373−1392, 2012.
[abs][pdf][bib]

Feature Selection via Dependence Maximization
Le Song, Alex Smola, Arthur Gretton, Justin Bedo, Karsten Borgwardt; (47):1393−1434, 2012.
[abs][pdf][bib]

Structured Sparsity via Alternating Direction Methods
Zhiwei Qin, Donald Goldfarb; (48):1435−1468, 2012.
[abs][pdf][bib]

Activized Learning: Transforming Passive to Active with Improved Label Complexity
Steve Hanneke; (49):1469−1587, 2012.
[abs][pdf][bib]

A Model of the Perception of Facial Expressions of Emotion by Humans: Research Overview and Perspectives
Aleix Martinez, Shichuan Du; (50):1589−1608, 2012.
[abs][pdf][bib]

A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction: Insights and New Models
Neil D. Lawrence; (51):1609−1638, 2012.
[abs][pdf][bib]

Mixability is Bayes Risk Curvature Relative to Log Loss
Tim van Erven, Mark D. Reid, Robert C. Williamson; (52):1639−1663, 2012.
[abs][pdf][bib]

Restricted Strong Convexity and Weighted Matrix Completion: Optimal Bounds with Noise
Sahand Negahban, Martin J. Wainwright; (53):1665−1697, 2012.
[abs][pdf][bib]

glm-ie: Generalised Linear Models Inference & Estimation Toolbox
Hannes Nickisch; (54):1699−1703, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Manifold Identification in Dual Averaging for Regularized Stochastic Online Learning
Sangkyun Lee, Stephen J. Wright; (55):1705−1744, 2012.
[abs][pdf][bib]

Variational Multinomial Logit Gaussian Process
Kian Ming A. Chai; (56):1745−1808, 2012.
[abs][pdf][bib]

Entropy Search for Information-Efficient Global Optimization
Philipp Hennig, Christian J. Schuler; (57):1809−1837, 2012.
[abs][pdf][bib]

Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications
Jian Huang, Cun-Hui Zhang; (58):1839−1864, 2012.
[abs][pdf][bib]

Regularization Techniques for Learning with Matrices
Sham M. Kakade, Shai Shalev-Shwartz, Ambuj Tewari; (59):1865−1890, 2012.
[abs][pdf][bib]

Confidence-Weighted Linear Classification for Text Categorization
Koby Crammer, Mark Dredze, Fernando Pereira; (60):1891−1926, 2012.
[abs][pdf][bib]

Integrating a Partial Model into Model Free Reinforcement Learning
Aviv Tamar, Dotan Di Castro, Ron Meir; (61):1927−1966, 2012.
[abs][pdf][bib]

Jstacs: A Java Framework for Statistical Analysis and Classification of Biological Sequences
Jan Grau, Jens Keilwagen, André Gohr, Berit Haldemann, Stefan Posch, Ivo Grosse; (62):1967−1971, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Variable Selection in High-dimensional Varying-coefficient Models with Global Optimality
Lan Xue, Annie Qu; (63):1973−1998, 2012.
[abs][pdf][bib]

An Improved GLMNET for L1-regularized Logistic Regression
Guo-Xun Yuan, Chia-Hua Ho, Chih-Jen Lin; (64):1999−2030, 2012.
[abs][pdf][bib]

EP-GIG Priors and Applications in Bayesian Sparse Learning
Zhihua Zhang, Shusen Wang, Dehua Liu, Michael I. Jordan; (65):2031−2061, 2012.
[abs][pdf][bib]

Pattern for Python
Tom De Smedt, Walter Daelemans; (66):2063−2067, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Optimistic Bayesian Sampling in Contextual-Bandit Problems
Benedict C. May, Nathan Korda, Anthony Lee, David S. Leslie; (67):2069−2106, 2012.
[abs][pdf][bib]

A Comparison of the Lasso and Marginal Regression
Christopher R. Genovese, Jiashun Jin, Larry Wasserman, Zhigang Yao; (68):2107−2143, 2012.
[abs][pdf][bib]

On the Necessity of Irrelevant Variables
David P. Helmbold, Philip M. Long; (69):2145−2170, 2012.
[abs][pdf][bib]

DEAP: Evolutionary Algorithms Made Easy
Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, Christian Gagné; (70):2171−2175, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

An Introduction to Artificial Prediction Markets for Classification
Adrian Barbu, Nathan Lay; (71):2177−2204, 2012.
[abs][pdf][bib]

Sign Language Recognition using Sub-Units
Helen Cooper, Eng-Jon Ong, Nicolas Pugeault, Richard Bowden; (72):2205−2231, 2012.
[abs][pdf][bib]

A Topic Modeling Toolbox Using Belief Propagation
Jia Zeng; (73):2233−2236, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

MedLDA: Maximum Margin Supervised Topic Models
Jun Zhu, Amr Ahmed, Eric P. Xing; (74):2237−2278, 2012.
[abs][pdf][bib]

Pairwise Support Vector Machines and their Application to Large Scale Problems
Carl Brunner, Andreas Fischer, Klaus Luig, Thorsten Thies; (75):2279−2292, 2012.
[abs][pdf][bib]

High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion
Animashree Anandkumar, Vincent Y.F. Tan, Furong Huang, Alan S. Willsky; (76):2293−2337, 2012.
[abs][pdf][bib]

A Local Spectral Method for Graphs: With Applications to Improving Graph Partitions and Exploring Data Graphs Locally
Michael W. Mahoney, Lorenzo Orecchia, Nisheeth K. Vishnoi; (77):2339−2365, 2012.
[abs][pdf][bib]

Multi-Target Regression with Rule Ensembles
Timo Aho, Bernard Ženko, Sašo Džeroski, Tapio Elomaa; (78):2367−2407, 2012.
[abs][pdf][bib]

Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs
Alain Hauser, Peter Bühlmann; (79):2409−2464, 2012.
[abs][pdf][bib]

On the Convergence Rate of lp-Norm Multiple Kernel Learning
Marius Kloft, Gilles Blanchard; (80):2465−2502, 2012.
[abs][pdf][bib]

Trading Regret for Efficiency: Online Convex Optimization with Long Term Constraints
Mehrdad Mahdavi, Rong Jin, Tianbao Yang; (81):2503−2528, 2012.
[abs][pdf][bib]

Robust Kernel Density Estimation
JooSeuk Kim, Clayton D. Scott; (82):2529−2565, 2012.
[abs][pdf][bib]

Nonparametric Guidance of Autoencoder Representations using Label Information
Jasper Snoek, Ryan P. Adams, Hugo Larochelle; (83):2567−2588, 2012.
[abs][pdf][bib]

Finding Recurrent Patterns from Continuous Sign Language Sentences for Automated Extraction of Signs
Sunita Nayak, Kester Duncan, Sudeep Sarkar, Barbara Loeding; (84):2589−2615, 2012.
[abs][pdf][bib]

Static Prediction Games for Adversarial Learning Problems
Michael Brückner, Christian Kanzow, Tobias Scheffer; (85):2617−2654, 2012.
[abs][pdf][bib]

Selective Sampling and Active Learning from Single and Multiple Teachers
Ofer Dekel, Claudio Gentile, Karthik Sridharan; (86):2655−2697, 2012.
[abs][pdf][bib]

PREA: Personalized Recommendation Algorithms Toolkit
Joonseok Lee, Mingxuan Sun, Guy Lebanon; (87):2699−2703, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Coherence Functions with Applications in Large-Margin Classification Methods
Zhihua Zhang, Dehua Liu, Guang Dai, Michael I. Jordan; (88):2705−2734, 2012.
[abs][pdf][bib]

Linear Regression With Random Projections
Odalric-Ambrym Maillard, Rémi Munos; (89):2735−2772, 2012.
[abs][pdf][bib]

Multi-task Regression using Minimal Penalties
Matthieu Solnon, Sylvain Arlot, Francis Bach; (90):2773−2812, 2012.
[abs][pdf][bib]

A Unified View of Performance Metrics: Translating Threshold Choice into Expected Classification Loss
José Hernández-Orallo, Peter Flach, Cèsar Ferri; (91):2813−2869, 2012.
[abs][pdf][bib]

Local and Global Scaling Reduce Hubs in Space
Dominik Schnitzer, Arthur Flexer, Markus Schedl, Gerhard Widmer; (92):2871−2902, 2012.
[abs][pdf][bib]

Online Submodular Minimization
Elad Hazan, Satyen Kale; (93):2903−2922, 2012.
[abs][pdf][bib]

Efficient Methods for Robust Classification Under Uncertainty in Kernel Matrices
Aharon Ben-Tal, Sahely Bhadra, Chiranjib Bhattacharyya, Arkadi Nemirovski; (94):2923−2954, 2012.
[abs][pdf][bib]

Facilitating Score and Causal Inference Trees for Large Observational Studies
Xiaogang Su, Joseph Kang, Juanjuan Fan, Richard A. Levine, Xin Yan; (95):2955−2994, 2012.
[abs][pdf][bib]

Oger: Modular Learning Architectures For Large-Scale Sequential Processing
David Verstraeten, Benjamin Schrauwen, Sander Dieleman, Philemon Brakel, Pieter Buteneers, Dejan Pecevski; (96):2995−2998, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Multi-Instance Learning with Any Hypothesis Class
Sivan Sabato, Naftali Tishby; (97):2999−3039, 2012.
[abs][pdf][bib]

Finite-Sample Analysis of Least-Squares Policy Iteration
Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos; (98):3041−3074, 2012.
[abs][pdf][bib]

Discriminative Hierarchical Part-based Models for Human Parsing and Action Recognition
Yang Wang, Duan Tran, Zicheng Liao, David Forsyth; (99):3075−3102, 2012.
[abs][pdf][bib]

Breaking the Curse of Kernelization: Budgeted Stochastic Gradient Descent for Large-Scale SVM Training
Zhuang Wang, Koby Crammer, Slobodan Vucetic; (100):3103−3131, 2012.
[abs][pdf][bib]

Bayesian Mixed-Effects Inference on Classification Performance in Hierarchical Data Sets
Kay H. Brodersen, Christoph Mathys, Justin R. Chumbley, Jean Daunizeau, Cheng Soon Ong, Joachim M. Buhmann, Klaas E. Stephan; (101):3133−3176, 2012.
[abs][pdf][bib]

Quantum Set Intersection and its Application to Associative Memory
Tamer Salman, Yoram Baram; (102):3177−3206, 2012.
[abs][pdf][bib]

Dynamic Policy Programming
Mohammad Gheshlaghi Azar, Vicenç Gómez, Hilbert J. Kappen; (103):3207−3245, 2012.
[abs][pdf][bib]

Sally: A Tool for Embedding Strings in Vector Spaces
Konrad Rieck, Christian Wressnegger, Alexander Bikadorov; (104):3247−3251, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Linear Fitted-Q Iteration with Multiple Reward Functions
Daniel J. Lizotte, Michael Bowling, Susan A. Murphy; (105):3253−3295, 2012.
[abs][pdf][bib]

Human Gesture Recognition on Product Manifolds
Yui Man Lui; (106):3297−3321, 2012.
[abs][pdf][bib]

Large-scale Linear Support Vector Regression
Chia-Hua Ho, Chih-Jen Lin; (107):3323−3348, 2012.
[abs][pdf][bib]

Sparse and Unique Nonnegative Matrix Factorization Through Data Preprocessing
Nicolas Gillis; (108):3349−3386, 2012.
[abs][pdf][bib]

Learning Linear Cyclic Causal Models with Latent Variables
Antti Hyttinen, Frederick Eberhardt, Patrik O. Hoyer; (109):3387−3439, 2012.
[abs][pdf][bib]

Iterative Reweighted Algorithms for Matrix Rank Minimization
Karthik Mohan, Maryam Fazel; (110):3441−3473, 2012.
[abs][pdf][bib]

Fast Approximation of Matrix Coherence and Statistical Leverage
Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, David P. Woodruff; (111):3475−3506, 2012.
[abs][pdf][bib]

PAC-Bayes Bounds with Data Dependent Priors
Emilio Parrado-Hernández, Amiran Ambroladze, John Shawe-Taylor, Shiliang Sun; (112):3507−3531, 2012.
[abs][pdf][bib]

DARWIN: A Framework for Machine Learning and Computer Vision Research and Development
Stephen Gould; (113):3533−3537, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Regularized Bundle Methods for Convex and Non-Convex Risks
Trinh Minh Tri Do, Thierry Artières; (114):3539−3583, 2012.
[abs][pdf][bib]

Learning Symbolic Representations of Hybrid Dynamical Systems
Daniel L. Ly, Hod Lipson; (115):3585−3618, 2012.
[abs][pdf][bib]

SVDFeature: A Toolkit for Feature-based Collaborative Filtering
Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, Yong Yu; (116):3619−3622, 2012. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Smoothing Multivariate Performance Measures
Xinhua Zhang, Ankan Saha, S.V.N. Vishwanathan; (117):3623−3680, 2012.
[abs][pdf][bib]

Security Analysis of Online Centroid Anomaly Detection
Marius Kloft, Pavel Laskov; (118):3681−3724, 2012.
[abs][pdf][bib]

Exploration in Relational Domains for Model-based Reinforcement Learning
Tobias Lang, Marc Toussaint, Kristian Kersting; (119):3725−3768, 2012.
[abs][pdf][bib]

© JMLR .
Mastodon