JMLR Volume 11
- An Efficient Explanation of Individual Classifications using Game Theory
- Erik Štrumbelj, Igor Kononenko; (1):1−18, 2010.
[abs][pdf][bib]
- Online Learning for Matrix Factorization and Sparse Coding
- Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro; (2):19−60, 2010.
[abs][pdf][bib]
- Model Selection: Beyond the Bayesian/Frequentist Divide
- Isabelle Guyon, Amir Saffari, Gideon Dror, Gavin Cawley; (3):61−87, 2010.
[abs][pdf][bib]
- On-Line Sequential Bin Packing
- András György, Gábor Lugosi, György Ottucsàk; (4):89−109, 2010.
[abs][pdf][bib]
- Classification Methods with Reject Option Based on Convex Risk Minimization
- Ming Yuan, Marten Wegkamp; (5):111−130, 2010.
[abs][pdf][bib]
- An Investigation of Missing Data Methods for Classification Trees Applied to Binary Response Data
- Yufeng Ding, Jeffrey S. Simonoff; (6):131−170, 2010.
[abs][pdf][bib]
- Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation
- Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos; (7):171−234, 2010.
[abs][pdf][bib]
- Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions
- Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos; (8):235−284, 2010.
[abs][pdf][bib]
- Optimal Search on Clustered Structural Constraint for Learning Bayesian Network Structure
- Kaname Kojima, Eric Perrier, Seiya Imoto, Satoru Miyano; (9):285−310, 2010.
[abs][pdf][bib]
- Bundle Methods for Regularized Risk Minimization
- Choon Hui Teo, S.V.N. Vishwanthan, Alex J. Smola, Quoc V. Le; (10):311−365, 2010.
[abs][pdf][bib]
- A Convergent Online Single Time Scale Actor Critic Algorithm
- Dotan Di Castro, Ron Meir; (11):367−410, 2010.
[abs][pdf][bib]
- Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting
- Philippos Mordohai, Gérard Medioni; (12):411−450, 2010.
[abs][pdf][bib]
- Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization
- Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, Samuel Kaski; (13):451−490, 2010.
[abs][pdf][bib]
- Classification Using Geometric Level Sets
- Kush R. Varshney, Alan S. Willsky; (14):491−516, 2010.
[abs][pdf][bib]
- Generalized Power Method for Sparse Principal Component Analysis
- Michel Journée, Yurii Nesterov, Peter Richtárik, Rodolphe Sepulchre; (15):517−553, 2010.
[abs][pdf][bib]
- Approximate Tree Kernels
- Konrad Rieck, Tammo Krueger, Ulf Brefeld, Klaus-Robert Müller; (16):555−580, 2010.
[abs][pdf][bib]
- On Finding Predictors for Arbitrary Families of Processes
- Daniil Ryabko; (17):581−602, 2010.
[abs][pdf][bib]
- A Rotation Test to Verify Latent Structure
- Patrick O. Perry, Art B. Owen; (18):603−624, 2010.
[abs][pdf][bib]
- Why Does Unsupervised Pre-training Help Deep Learning?
- Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, Samy Bengio; (19):625−660, 2010.
[abs][pdf][bib]
- Error-Correcting Output Codes Library
- Sergio Escalera, Oriol Pujol, Petia Radeva; (20):661−664, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Second-Order Bilinear Discriminant Analysis
- Christoforos Christoforou, Robert Haralick, Paul Sajda, Lucas C. Parra; (21):665−685, 2010.
[abs][pdf][bib]
- On the Rate of Convergence of the Bagged Nearest Neighbor Estimate
- Gérard Biau, Frédéric Cérou, Arnaud Guyader; (22):687−712, 2010.
[abs][pdf][bib]
- A Fast Hybrid Algorithm for Large-Scale l1-Regularized Logistic Regression
- Jianing Shi, Wotao Yin, Stanley Osher, Paul Sajda; (23):713−741, 2010.
[abs][pdf][bib]
- PyBrain
- Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank Sehnke, Thomas Rückstieß, Jürgen Schmidhuber; (24):743−746, 2010.
[abs][pdf][bib]
- Maximum Relative Margin and Data-Dependent Regularization
- Pannagadatta K. Shivaswamy, Tony Jebara; (25):747−788, 2010.
[abs][pdf][bib]
- Stability Bounds for Stationary φ-mixing and β-mixing Processes
- Mehryar Mohri, Afshin Rostamizadeh; (26):789−814, 2010.
[abs][pdf][bib]
- Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models
- Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin; (27):815−848, 2010.
[abs][pdf][bib]
- A Streaming Parallel Decision Tree Algorithm
- Yael Ben-Haim, Elad Tom-Tov; (28):849−872, 2010.
[abs][pdf][bib]
- Image Denoising with Kernels Based on Natural Image Relations
- Valero Laparra, Juan Gutiérrez, Gustavo Camps-Valls, Jesús Malo; (29):873−903, 2010.
[abs][pdf][bib]
- On Learning with Integral Operators
- Lorenzo Rosasco, Mikhail Belkin, Ernesto De Vito; (30):905−934, 2010.
[abs][pdf][bib]
- On Spectral Learning
- Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil; (31):935−953, 2010.
[abs][pdf][bib]
- Generalized Expectation Criteria for Semi-Supervised Learning with Weakly Labeled Data
- Gideon S. Mann, Andrew McCallum; (32):955−984, 2010.
[abs][pdf][bib]
- Kronecker Graphs: An Approach to Modeling Networks
- Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, Zoubin Ghahramani; (33):985−1042, 2010.
[abs][pdf][bib]
- Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes
- Pradeep Ravikumar, Alekh Agarwal, Martin J. Wainwright; (34):1043−1080, 2010.
[abs][pdf][bib]
- Analysis of Multi-stage Convex Relaxation for Sparse Regularization
- Tong Zhang; (35):1081−1107, 2010.
[abs][pdf][bib]
- Large Scale Online Learning of Image Similarity Through Ranking
- Gal Chechik, Varun Sharma, Uri Shalit, Samy Bengio; (36):1109−1135, 2010.
[abs][pdf][bib]
- Continuous Time Bayesian Network Reasoning and Learning Engine
- Christian R. Shelton, Yu Fan, William Lam, Joon Lee, Jing Xu; (37):1137−1140, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- SFO: A Toolbox for Submodular Function Optimization
- Andreas Krause; (38):1141−1144, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning
- Jin Yu, S.V.N. Vishwanathan, Simon Günter, Nicol N. Schraudolph; (39):1145−1200, 2010.
[abs][pdf][bib]
- Graph Kernels
- S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, Karsten M. Borgwardt; (40):1201−1242, 2010.
[abs][pdf][bib]
- Stochastic Complexity and Generalization Error of a Restricted Boltzmann Machine in Bayesian Estimation
- Miki Aoyagi; (41):1243−1272, 2010.
[abs][pdf][bib]
- Approximate Inference on Planar Graphs using Loop Calculus and Belief Propagation
- Vicenç Gómez, Hilbert J. Kappen, Michael Chertkov; (42):1273−1296, 2010.
[abs][pdf][bib]
- Learning From Crowds
- Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez, Charles Florin, Luca Bogoni, Linda Moy; (43):1297−1322, 2010.
[abs][pdf][bib]
- Unsupervised Supervised Learning I: Estimating Classification and Regression Errors without Labels
- Pinar Donmez, Guy Lebanon, Krishnakumar Balasubramanian; (44):1323−1351, 2010.
[abs][pdf][bib]
- Learning Translation Invariant Kernels for Classification
- Kamaledin Ghiasi-Shirazi, Reza Safabakhsh, Mostafa Shamsi; (45):1353−1390, 2010.
[abs][pdf][bib]
- Consistent Nonparametric Tests of Independence
- Arthur Gretton, László Györfi; (46):1391−1423, 2010.
[abs][pdf][bib]
- Characterization, Stability and Convergence of Hierarchical Clustering Methods
- Gunnar Carlsson, Facundo Mémoli; (47):1425−1470, 2010.
[abs][pdf][bib]
- Training and Testing Low-degree Polynomial Data Mappings via Linear SVM
- Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, Chih-Jen Lin; (48):1471−1490, 2010.
[abs][pdf][bib]
- Quadratic Programming Feature Selection
- Irene Rodriguez-Lujan, Ramon Huerta, Charles Elkan, Carlos Santa Cruz; (49):1491−1516, 2010.
[abs][pdf][bib]
- Hilbert Space Embeddings and Metrics on Probability Measures
- Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, Gert R.G. Lanckriet; (50):1517−1561, 2010.
[abs][pdf][bib]
- Near-optimal Regret Bounds for Reinforcement Learning
- Thomas Jaksch, Ronald Ortner, Peter Auer; (51):1563−1600, 2010.
[abs][pdf][bib]
- MOA: Massive Online Analysis
- Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer; (52):1601−1604, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- On the Foundations of Noise-free Selective Classification
- Ran El-Yaniv, Yair Wiener; (53):1605−1641, 2010.
[abs][pdf][bib]
- Consensus-Based Distributed Support Vector Machines
- Pedro A. Forero, Alfonso Cano, Georgios B. Giannakis; (55):1663−1707, 2010.
[abs][pdf][bib]
- Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity
- Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, Patrik O. Hoyer; (56):1709−1731, 2010.
[abs][pdf][bib]
- FastInf: An Efficient Approximate Inference Library
- Ariel Jaimovich, Ofer Meshi, Ian McGraw, Gal Elidan; (57):1733−1736, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Evolving Static Representations for Task Transfer
- Phillip Verbancsics, Kenneth O. Stanley; (58):1737−1769, 2010.
[abs][pdf][bib]
- Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing
- Ryo Yoshida, Mike West; (59):1771−1798, 2010.
[abs][pdf][bib]
- The SHOGUN Machine Learning Toolbox
- Sören Sonnenburg, Gunnar Rätsch, Sebastian Henschel, Christian Widmer, Jonas Behr, Alexander Zien, Fabio de Bona, Alexander Binder, Christian Gehl, Vojt{{\ve}}ch Franc; (60):1799−1802, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- How to Explain Individual Classification Decisions
- David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, Klaus-Robert Müller; (61):1803−1831, 2010.
[abs][pdf][bib]
- Permutation Tests for Studying Classifier Performance
- Markus Ojala, Gemma C. Garriga; (62):1833−1863, 2010.
[abs][pdf][bib]
- Sparse Spectrum Gaussian Process Regression
- Miguel Lázaro-Gredilla, Joaquin Quiñnero-Candela, Carl Edward Rasmussen, Aníbal R. Figueiras-Vidal; (63):1865−1881, 2010.
[abs][pdf][bib]
- Fast and Scalable Local Kernel Machines
- Nicola Segata, Enrico Blanzieri; (64):1883−1926, 2010.
[abs][pdf][bib]
- Chromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary β-Mixing Processes
- Liva Ralaivola, Marie Szafranski, Guillaume Stempfel; (65):1927−1956, 2010.
[abs][pdf][bib]
- Practical Approaches to Principal Component Analysis in the Presence of Missing Values
- Alexander Ilin, Tapani Raiko; (66):1957−2000, 2010.
[abs][pdf][bib]
- Posterior Regularization for Structured Latent Variable Models
- Kuzman Ganchev, João Graça, Jennifer Gillenwater, Ben Taskar; (67):2001−2049, 2010.
[abs][pdf][bib]
- A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design
- Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom Dhaene, Karel Crombecq; (68):2051−2055, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Matrix Completion from Noisy Entries
- Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh; (69):2057−2078, 2010.
[abs][pdf][bib]
- On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation
- Gavin C. Cawley, Nicola L. C. Talbot; (70):2079−2107, 2010.
[abs][pdf][bib]
- Model-based Boosting 2.0
- Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, Benjamin Hofner; (71):2109−2113, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Importance Sampling for Continuous Time Bayesian Networks
- Yu Fan, Jing Xu, Christian R. Shelton; (72):2115−2140, 2010.
[abs][pdf][bib]
- Matched Gene Selection and Committee Classifier for Molecular Classification of Heterogeneous Diseases
- Guoqiang Yu, Yuanjian Feng, David J. Miller, Jianhua Xuan, Eric P. Hoffman, Robert Clarke, Ben Davidson, Ie-Ming Shih, Yue Wang; (73):2141−2167, 2010.
[abs][pdf][bib]
- libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models
- Joris M. Mooij; (74):2169−2173, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Learning Gradients: Predictive Models that Infer Geometry and Statistical Dependence
- Qiang Wu, Justin Guinney, Mauro Maggioni, Sayan Mukherjee; (75):2175−2198, 2010.
[abs][pdf][bib]
- Regularized Discriminant Analysis, Ridge Regression and Beyond
- Zhihua Zhang, Guang Dai, Congfu Xu, Michael I. Jordan; (76):2199−2228, 2010.
[abs][pdf][bib]
- Erratum: SGDQN is Less Careful than Expected
- Antoine Bordes, Léon Bottou, Patrick Gallinari, Jonathan Chang, S. Alex Smith; (77):2229−2240, 2010.
[abs][pdf][bib]
- Restricted Eigenvalue Properties for Correlated Gaussian Designs
- Garvesh Raskutti, Martin J. Wainwright, Bin Yu; (78):2241−2259, 2010.
[abs][pdf][bib]
- High Dimensional Inverse Covariance Matrix Estimation via Linear Programming
- Ming Yuan; (79):2261−2286, 2010.
[abs][pdf][bib]
- Spectral Regularization Algorithms for Learning Large Incomplete Matrices
- Rahul Mazumder, Trevor Hastie, Robert Tibshirani; (80):2287−2322, 2010.
[abs][pdf][bib]
- Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers
- Franz Pernkopf, Jeff A. Bilmes; (81):2323−2360, 2010.
[abs][pdf][bib]
- High-dimensional Variable Selection with Sparse Random Projections: Measurement Sparsity and Statistical Efficiency
- Dapo Omidiran, Martin J. Wainwright; (82):2361−2386, 2010.
[abs][pdf][bib]
- Sparse Semi-supervised Learning Using Conjugate Functions
- Shiliang Sun, John Shawe-Taylor; (84):2423−2455, 2010.
[abs][pdf][bib]
- Rademacher Complexities and Bounding the Excess Risk in Active Learning
- Vladimir Koltchinskii; (85):2457−2485, 2010.
[abs][pdf][bib]
- Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data
- Miloš Radovanović, Alexandros Nanopoulos, Mirjana Ivanović; (86):2487−2531, 2010.
[abs][pdf][bib]
- WEKA−Experiences with a Java Open-Source Project
- Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten; (87):2533−2541, 2010.
[abs][pdf][bib]
- Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization
- Lin Xiao; (88):2543−2596, 2010.
[abs][pdf][bib]
- Stochastic Composite Likelihood
- Joshua V. Dillon, Guy Lebanon; (89):2597−2633, 2010.
[abs][pdf][bib]
- Learnability, Stability and Uniform Convergence
- Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, Karthik Sridharan; (90):2635−2670, 2010.
[abs][pdf][bib]
- Topology Selection in Graphical Models of Autoregressive Processes
- Jitkomut Songsiri, Lieven Vandenberghe; (91):2671−2705, 2010.
[abs][pdf][bib]
- Using Contextual Representations to Efficiently Learn Context-Free Languages
- Alexander Clark, Rémi Eyraud, Amaury Habrard; (92):2707−2744, 2010.
[abs][pdf][bib]
- Mean Field Variational Approximation for Continuous-Time Bayesian Networks
- Ido Cohn, Tal El-Hay, Nir Friedman, Raz Kupferman; (93):2745−2783, 2010.
[abs][pdf][bib]
- Regret Bounds and Minimax Policies under Partial Monitoring
- Jean-Yves Audibert, Sébastien Bubeck; (94):2785−2836, 2010.
[abs][pdf][bib]
- Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance
- Nguyen Xuan Vinh, Julien Epps, James Bailey; (95):2837−2854, 2010.
[abs][pdf][bib]
- Expectation Truncation and the Benefits of Preselection In Training Generative Models
- Jörg Lücke, Julian Eggert; (96):2855−2900, 2010.
[abs][pdf][bib]
- Linear Algorithms for Online Multitask Classification
- Giovanni Cavallanti, Nicoló Cesa-Bianchi, Claudio Gentile; (97):2901−2934, 2010.
[abs][pdf][bib]
- Tree Decomposition for Large-Scale SVM Problems
- Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, Chi-Jen Lu; (98):2935−2972, 2010.
[abs][pdf][bib]
- Semi-Supervised Novelty Detection
- Gilles Blanchard, Gyemin Lee, Clayton Scott; (99):2973−3009, 2010.
[abs][pdf][bib]
- Gaussian Processes for Machine Learning (GPML) Toolbox
- Carl Edward Rasmussen, Hannes Nickisch; (100):3011−3015, 2010. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Covariance in Unsupervised Learning of Probabilistic Grammars
- Shay B. Cohen, Noah A. Smith; (101):3017−3051, 2010.
[abs][pdf][bib]
- Inducing Tree-Substitution Grammars
- Trevor Cohn, Phil Blunsom, Sharon Goldwater; (102):3053−3096, 2010.
[abs][pdf][bib]
- Collective Inference for Extraction MRFs Coupled with Symmetric Clique Potentials
- Rahul Gupta, Sunita Sarawagi, Ajit A. Diwan; (103):3097−3135, 2010.
[abs][pdf][bib]
- A Generalized Path Integral Control Approach to Reinforcement Learning
- Evangelos Theodorou, Jonas Buchli, Stefan Schaal; (104):3137−3181, 2010.
[abs][pdf][bib]
- A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification
- Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin; (105):3183−3234, 2010.
[abs][pdf][bib]
- Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes
- Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, Juha Karhunen; (106):3235−3268, 2010.
[abs][pdf][bib]
- Classification with Incomplete Data Using Dirichlet Process Priors
- Chunping Wang, Xuejun Liao, Lawrence Carin, David B. Dunson; (107):3269−3311, 2010.
[abs][pdf][bib]
- Maximum Likelihood in Cost-Sensitive Learning: Model Specification, Approximations, and Upper Bounds
- Jacek P. Dmochowski, Paul Sajda, Lucas C. Parra; (108):3313−3332, 2010.
[abs][pdf][bib]
- Learning Instance-Specific Predictive Models
- Shyam Visweswaran, Gregory F. Cooper; (109):3333−3369, 2010.
[abs][pdf][bib]
- Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
- Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol; (110):3371−3408, 2010.
[abs][pdf][bib]
- Lp-Nested Symmetric Distributions
- Fabian Sinz, Matthias Bethge; (111):3409−3451, 2010.
[abs][pdf][bib]
- Efficient Algorithms for Conditional Independence Inference
- Remco Bouckaert, Raymond Hemmecke, Silvia Lindner, Milan Studený; (112):3453−3479, 2010.
[abs][pdf][bib]
- An Exponential Model for Infinite Rankings
- Marina Meilă, Le Bao; (113):3481−3518, 2010.
[abs][pdf][bib]
- Rate Minimaxity of the Lasso and Dantzig Selector for the lq Loss in lr Balls
- Fei Ye, Cun-Hui Zhang; (114):3519−3540, 2010.
[abs][pdf][bib]
- Incremental Sigmoid Belief Networks for Grammar Learning
- James Henderson, Ivan Titov; (115):3541−3570, 2010.
[abs][pdf][bib]
- Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory
- Sumio Watanabe; (116):3571−3594, 2010.
[abs][pdf][bib]
- PAC-Bayesian Analysis of Co-clustering and Beyond
- Yevgeny Seldin, Naftali Tishby; (117):3595−3646, 2010.
[abs][pdf][bib]
- Learning Non-Stationary Dynamic Bayesian Networks
- Joshua W. Robinson, Alexander J. Hartemink; (118):3647−3680, 2010.
[abs][pdf][bib]
© JMLR . |